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Abstract

Arterial spin labeling (ASL) provides a non-invasive assessment of renal blood flow, but it
faces difficulties due to motion artifacts and the effects of blood inflow. This work intro-
duces GVox, a deep learning-based motion correction (MoCo) framework tailored for ASL
imaging. GVox extends VoxelMorph, incorporating cortical signal enhancement as metric
to optimize and groupwise inference as main contribution. Proposed GVox demonstrates
superior performance compared to the baseline Elastix, with significantly improved image
similarity and computational efficiency.
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1. Introduction

ASL is a magnetic resonance imaging (MRI) technique that enables the characterization
of renal blood flow by magnetically label arterial blood water spins in a non-invasive way
(Nery et al., 2018). Control images contain static tissue signal while label images contain
both static tissue signal and tagged blood signal. Perfusion (or ASL) maps are computed
by substracting control and label images voxel by voxel. Added to the motion caused by
the anatomical displacement of the kidney (due to respiratory and motion of the patient)
is the presence of blood inflow that expands through the kidney, that being the case of
misregistered image sequences and subsequent post-processing errors. Recent deep learning-
based image registration (DLIR) approaches use convolutional neural networks (CNN) for
the estimation of voxel or pixel-wise spatial correspondences (Zöllner et al., 2009), such as
VoxelMorph (Balakrishnan et al., 2019). DLIR approaches model the function gθ(If , Im) =
ϕ. If and Im are the fixed and moving images over a n-D spatial domain Ω ϵRn, respectively,
ϕ is the deformation field, and θ are the learnable parameters of function g that compute
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the optimal deformation field ϕ for each image pair (If , Im). The model warps Im(p) into
Im(ϕ(p)) by spatial transformer network (STN) (Jaderberg et al., 2015) based module,
considering p as a pixel in a 2D image. The spatial transformation enables the calculation
of dissimilarity loss function named as Fsim and updates θ.

Aim. We propose the following pipeline for ASL MoCo on healthy kidneys: 1) to
extend VoxelMorph to provide a tool tailored to the unique needs of ASL, 2) to introduce a
cortical enhancement based measurement as a customized loss metric used as a complement
to the main similarity loss function, and 3) to implement groupwise inference stage by using
principal component analysis (PCA).

2. Method

Data. The dataset consists of 48 healthy kidney ASL studies with acquisition matrix of
96 x 96. Each study contains a M0 proton density or reference image and a set (8-25 pairs)
of control/labels ASL pairs. Manually drawn cortical masks are used for training. Images
are intensity-normalized {0− 1} and affinely registered with Elastix before training.

Registration pipeline Our MoCo framework consists of separate training and testing
stages (Figure 1a). i. Training. MoCo models are trained using VoxelMorph-2 architecture
(Balakrishnan et al., 2019) in unique study (higher motion measured), Adam optimizer,
learning rate of 10−4, 1000 epochs, 100 steps per epoch, a batch size of 8, and weighting
regularization parameter (λ) of 0.9 (experimentally set). The method is implemented on
Python 3.7 using PyTorch 1.13 on GPU NVIDIA GeForce RTX 3060. Our models are
trained using both unidirectional and bidirectional registration (Figure 1a). We use a
customized loss function that measures Fsim between randomly selected If and Im pairs,
consisting of a weighted sum of normalized cross correlation (NCC) and cortical temporal
signal-to-noise ratio (tSNR) (Equation 1). tSNR is calculated as the ratio of time series
(random input images on training) average perfusion signal and its temporal standard
deviation (SD), over the manually drawn ROI of the cortex.

Fsim(If , Iw, SIf , SIw) = − ωnccNCC(If , Iw)− ωtsnrtSNR((SIf , SIw)) (1)

where Iw is Im ◦ ϕ, SIf and SIw are the cortical masks corresponding to If and Iw, being
SIw = SIm ◦ϕ. ωncc and ωtsnr are the corresponding weights for NCC and tSNR, set as 0.9
and 0.1, respectively. ii. Testing. Intra-patient groupwise MoCo is achieved by evaluating
trained models on unseen studies by iteratively warping N images into PCA-based template
image T . The eigenvector V = (w1, w2, ...wn) associated with the largest eigenvalue is used
as weights for the construction of T . In each iteration, the process randomly designates a
moving image and registers it with the template image T . T is initialized using N -1 non-
warped images from the unregistered sequence. As the inference advances, images from the
unregistered sequence are systematically updated with warped, so it does T .

Baseline. We use Elastix (Klein et al., 2010) as the reference non-learning-based MoCo
method due to its widespread use in ASL MoCo (Nery et al., 2019; Bones et al., 2019).

3. Results

We use mean structural similarity index (MSSIM) for MoCo evaluation, that assesses the
structural similarity of images by comparing luminance, contrast, and structure (Sassi et al.,
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Figure 1: Overview of GVox. a) MoCo pipeline. b) MoCo effects on image alignment (axial
(A), sagittal (S), and coronal (C) views). c) Boxplot showing MSSIM values.

2008). MSSIM is calculated in the whole image, and in the right and left kidney encom-
passing bounding box, separately. For statistical analysis, we use ANOVA with Dunnet
pairwise comparison, where unregistered series is set as the control group. MSSIM was
significantly higher (p<0.05) in GVox compared to both unregistered series and Elastix.
Regarding the evaluation of registration direction, none statistical (p > 0.05) difference
was found in MSSIM metric between unidirectional and bidirectional training frameworks.
Mean registration times for Elastix and GVox are 76 and 9 secs per epoch, respectively.
Thus, GVox demonstrates higher computational efficiency. Qualitative results (Figure 1b)
demonstrate excellent performance of GVox in sequentially aligning images.

4. Conclusions

Our GVox method shows significant promise in renal ASL MoCo, preserving anatomical
structure while delivering efficient runtimes and superior performance in image similarity.
These findings suggest the potential of GVox to enhance the accuracy and reliability of
medical MoCo for renal imaging. Moreover, groupwise registration allows for the inclusion
of full ASL data series. As future work, our method shows potential for enhancing renal
imaging accuracy and reliability, particularly in challenging scenarios such as transplant
patients and chronic kidney disease patients with inconsistent breathing patterns.
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