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Abstract

We present MusicSem, a dataset of 32,493 language—audio music descriptions
derived from organic discussions on Reddit. What sets MusicSem apart is its
focus on capturing a broad spectrum of musical semantics, reflecting how listeners
naturally describe music in nuanced, human-centered ways. To structure these
expressions, we propose a taxonomy of five semantic categories: descriptive,
atmospheric, situational, metadata-related, and contextual. Our motivation for
releasing MusicSem stems from the observation that music representation learning
models often lack sensitivity to these semantic dimensions, due to the limited
expressiveness of existing training datasets. MusicSem addresses this gap by
serving as a novel semantics-aware resource for training and evaluating models on
tasks such as cross-modal music generation and retrieval.

1 Introduction

Table 1: Categorization of different caption elements.

Category | Description | Example
Descriptive concrete musical attributes "I like the high pass filter on the vocals in the chorus, really makes harmonies pop."
Contextual other songs "Sabrina Carpenter’s *Espresso* is just a mix of old Ariana Grande and 2018 Dua Lipa."
Situational an activity or environment "I listened to this song on the way to quitting my sh**ty corporate job."
Atmospheric emotions and expressive adjectives "This song makes me feel like a manic pixie dream girl in a bougie coffeeshop."

Metadata-related | technical & background information | "This deluxe edition of this song was released in 2013 and it has three bonus hiphop tracks."

Music representation learning is central to music information retrieval and generation [1} 2]]. While
prior work has primarily focused on audio-centric models [3} 4,15 16], recent advances in multimodal
learning, particularly in aligning text and audio, have enabled progress in tasks such as cross-modal
retrieval [[7, 8} 9], music-to-text generation [10, 11} [12], and text-to-music generation [13} |14} [15,[16].
However, recent work has shown that multimodal models often fail to capture the user’s expressed
intent in text descriptions of music [17, [18]]. This interpretation gap suggests that the language-audio
datasets used to train these models may not fully reflect the broader and more natural forms of human
discourse.

In this paper, we begin by formalizing the notion of musical semantics and introducing a taxonomy that
distinguishes five types of music captions. We then confirm that many state-of-the-art generative and
retrieval models lack sensitivity to these semantic distinctions, particularly variations in atmosphere,
context, situational cues, and metadata-related aspects of user intent. Motivated by this observation,
we introduce MusicSem, a semantically rich language-audio dataset derived from organic music
discussions on the social media platform Reddit. The dataset comprises 32,493 language-audio music
description pairs, with textual annotations that express not only descriptive attributes of the music,
but also emotional resonance, contextual and situational usage, and co-listening patterns. MusicSem



Table 2: Semantic sensitivity analysis in text-
to-music generative models. Best performance
is highlighted in bold, second best in underline.
The superscripts d a s m creferto descriptive,
atmospheric, situational, metadata, and contex-

tual, respectively.

Table 3: Semantic sensitivity analysis on cross
modal retrieval models. Best performance is
highlighted in bold, second best in underline.
The superscripts d a s m creferto descriptive,
atmospheric, situational, metadata, and contex-

tual, respectively. We set K=10.

Model Gt Gt GG Ge Model R* R* R° R™ R
AudioLDM2  0.68 037 035 040 034 LARP 098 0.17 006 00 0.56
MusicLM 050 036 042 039 0.35 CLAP 095 052 035 042 0.52
Mustango 062 0.27 025 026 0.32 ImageBind 0.84 0.39 035 038 041
MusicGen 057 047 039 047 052 CLaMP3 092 0.58 049 0.62 0.55
Stable Audio  0.72  0.67 0.68 0.70 0.74

distinguishes itself by capturing a broader spectrum of musical semantics than prior datasets used
for multimodal model training. MusicSem also serves as a novel semantics-aware resource for
benchmarking cross-modal retrieval and generation models. The accompanying MusicSem website,
including access to the full dataset, detailed documentation, and source code for data construction
will be released upon acceptance.

2 Capturing Music Semantics

One of the goals in language-audio music understanding tasks is the design of models which are
able to capture the nuances that contextualize a listening experience. We organize these contextual
elements into five major categories, which we term music semantics [[19} 20, [21]]. Then, we highlight
the importance of music semantics in language-audio datasets by quantifying the semantic sensitivity
in a wide range of generative and retrieval models.

Categorization of music semantics. Consider the following two prompts: "This song is a ballad.
It contains guitar, male vocals, and a piano. It sounds like something I would listen to at church"
or "This song is a ballad. It contains guitar, male vocals, and a piano. It sounds like something I
would listen to while tripping on acid". While their descriptions of musical attributes (e.g., ballad,
guitar, male vocals, piano) remain the same, the change in the situational context (listen to at church
vs. while tripping on acid) should drastically change our expectations for the associated audio in
generative and retrieval settings. To this end, we present a comprehensive formal categorization
of music semantics, including (1) descriptive elements to describe the musical attributes of a song,
(2) contextual elements that highlight other songs that are similar to a song or might be co-listened
together, (3) situational elements to describe an activity or environment in which a song is listened to,
(4) atmospheric that express the emotions a song evokes or other expressive adjective of a song, and
(5) metadata that provides technical and background information of a song and/or its corresponding
artist. An example for each category is presented in Table

Insensitivity to varying semantic context. We can then quantify the sensitivity of multimodal music
understanding models to varying semantic elements. Given any i-th language-audio pair (¢;,a;) in a
language-audio dataset, we construct a counterfactual annotation t~§ by changing descriptions with
respect to a semantic category c, e.g., while at church vs. while tripping on acid in the aforementioned
example. We randomly sampled 50 language-audio pairs in MusicCaps and create a counterfactual
example with respect to each semantic category present in each language-audio pairﬂWe can then
present two metrics to assess sensitivity of a model to semantic shifts. For text-to-music generation,
we define

G = % lz 1- cosine(fi,ff)] , (1)

i=1

'We release the dataset construction code https://tinyurl.com/musicsem- code|and full set of counter-
factual examples created from the MusicCaps [13] athttps://tinyurl.com/counterfac
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where n is the number of language-audio pairs, f; = M(t;) and f¢ = M(Z¢) are the outputs of the
model M. For text-to-music retrieval, we define
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where A; = M(t;) and AS = M (%) are the top-k retrieved audio candidates.

Table [2) and [3| show the sensitivity of a wide range of SOTA text-to-music generative and retrieval
models. From the tables, we observe that these models maintain a substantially higher sensitivity
to changes in descriptive elements compared to atmospheric, situational, contextual, or metadata
change. These results highlight the lack of semantic awareness in the textual conditioning of a music
understanding model, which manifests a misalignment between the audio candidates expected by a
user and the model output.

3 The MusicSem Dataset

To address this lack of semantic sensibility, we introduce MusicSem, a novel dataset of lan-
guage—audio music description pairs extracted from five English-language Reddit threads featuring
detailed user discussions across diverse genres: r/electronicmusic, r/popheads, r/progrockmusic,
r/musicsuggestions, and r/LetsTalkMusic.

(1) Input (2) Extraction (3) Summarization & Verification
raw text [song, artist] pairs — ‘—P verified ='ﬂ
™ st real [(Handwritten, Gaslight Anthem)] ]|~ Spotify n
e summer my first rea
girlfrignd left me’I Ii*stened tq the* descriptive el [ —VM- retrieved mp3 ]
Gaslight Anthem’s *Handwritten r [really good lyrics, complex M - —
on repeat for weeks because emotions that music on its own semantic summarization
the words really spoke to me. can't describe]

[Handwritten, Gaslight Anthem]
There are also complex _@ L
4

N . . atmospheric elements Song where words really spoke to
em?tlgns thst muzlcboln its own [listened for weeks, really spoke to _@ LM, - | Me, really great lyrics and really
can't describe, and being a l me] l great riffs. Listened to it the

primarily emotion driven summer my first real girlfriend left
medium, it only makes sense me. Reflective of complex
that those songs about complex emotions that music on its own

situational elements
[ [summer my first real girlfriend left] ]

emotions will need words to contextual elements can't describe.
accompany them. Take Pink [Pink Floyd’s *Money* from *Dark
Floyd’s *Money* from *Dark Side of the Moon* | |
Side of the Moon”. L| metadata elements | > A\ Liw,
0

verified
Figure 1: Visualization of the extraction and verification pipeline for dataset construction.

The dataset aims to capture more nuanced musical semantics to support the training and evaluation of
multimodal models in future work. Its construction involved substantial effort to identify, extract,
structure, and validate semantic content from online discourse, combining LLM-assisted extraction
with human annotation and verification. A comprehensive description of this process is provided in
our extended paper and illustrated in the Demo section of our website.

The released dataset comprises 32,493

entries, each includ.ing a S_POtifY ID  Table 4: Statistics (top) and semantic diversity (bottom) of
and URL for audio retrieval, the MusicSem and two other language-audio music datasets. For

source thread, raw text, song and 4 more comprehensive collection of related datasets please
artist names, and semantics struc-  see Appendix A}

tured according to the taxonomy in

Table [ We also constructed an Statistics | MusicCaps [I3]  Song Describer [22] ~ MusicSem (ours)
unpublished test set of 480 entries # Entries 5,521 1,100 32,493
for future leaderboard use on our  #Vocab. Words 6,245 2,824 22,738
website. Table [ shows the propor- M Genres 267 152 493
tion of entries Containing each of Category \ MusicCaps [13] Song Describer [22] MusicSem (ours)
the five semantic categories in Mu-  Descriptive 100% 94% 100%
sicSem and two canonical language- ~ Contextual 6% 8% 77%

. . . Situational 41% 16% 48%
audio datasets. MusicSem consis-  Aumospheric 57% 33% 64%
tently demonstrates broader coverage = Metadata 28% 6% 64%

across all categories, highlighting its
semantic richness. It also exhibits a richer vocabulary, with a higher count of unique words and music
genres.



4 Evaluating on Cross Modal Retrieval and Text-to-Music Generation

To demonstrate the utility and superiority of our dataset, we evaluate representative multimodal
music understanding models on text-to-audio retrieval and generation, two of the major tasks where
semantic awareness in music representation learning plays a pivotal role in a model’s success.

General Insights As we can see in Table [5] model performance differs between datasets and
metrics. There is no conclusive state-of-the-art model for either task, nor along any dataset or
metric. This variation in model rankings across datasets highlights the limited generalization of
current multimodal music understanding models. Furthermore, there is also noticeable performance
inconsistency between the canonical metrics used in Table [5|compared to the semantic sensitivity
results in Tables2]and[3] For example while LARP/CLaMP3 and Stable Audio are the best performing
models in terms of overall semantic sensitivity, they do not achieve superior performance on the
canonical performance metrics for their tasks.

Table 5: Evaluation results on text-to-music generation (left) and retrieval (right) tasks. Best
performance for each metric within a dataset is in bold and second best in underline. Please see
Appendix [F.3|for detailed break down of evaluation metrics.

Generation Metrics Retrieval Metrics

‘ Retrieval Model ‘

Dataset Generation Model ‘ —
| FAD| FADoofMA | €St Vendit | | R@101 N@107 MRR?T
MusicLM 5.70 249.72 028 155 Random 0.36 0.16 031
Stable Audio 6.97 377.02 031 131 LARP 0.98 045 0.62
MusicCaps MusicGen 7.03 354.07 029 157 CLAP 2260 1299 1160
AudioLDM2 3.29 202.11 036 157 ImageBind 14.91 8.25 7.23
Mustango 127 161.47 027 148 CLaMP3 13.65 732 9.07
MusicLM 7.20 241.95 028 149 Random 1.41 0.64 1.01
Stable Audio 442 341.92 031 129 LARP 2.62 1.29 1.61
Song Describer MusicGen 2.64 354.07 035 150 CLAP 2767 1454 1241
AudioLDM2 274 184.03 034 148 ImageBind 2071 1.16 984
Mustango 2.58 170.27 0.29 1.46 CLaMP3 38.61 22.84 19.83
MusicLM 725 248.42 027 146 Random 211 0.96 142
Stable Audio 5.50 342.53 031 128 LARP 3.07 1.22 1.47
MusicSem (Ours) MusicGen 375 229.29 030  1.50 CLAP 9.84 474 4.65
AudioLDM2 347 181.11 028 146 ImageBind 11.07 5.48 5.04
Mustango 5.06 157.32 020 141 CLaMP3 2684 1621  14.68

Text-to-Music Retrieval From the results in Table|5} we can see that MusicSem is more challenging
than existing datasets. Despite its smaller candidate set (480 items), MusicSem sees lower perfor-
mance from most models compared to Song Describer (1K items). This suggests that MusicSem’s
complexity lies in its semantics, highlighting current models’ limitations in music understanding.

Music-to-Text Generation Surprisingly do not see any in Table [5 we are unable to see any per-
formance differences between various models on the canonical benchmark datasets and MusicSem.
This is unexpected because MusicSem contains signif-

icantly less descriptive annotations which should, intu-  Taple 6: The sensitivity of CLAP score.
itively, be reflected in the CLAP score performance, which  The superscripts ¢, 2, *, ©, and ™ refer
is one of the key metrics used to objectively evaluate align- o descriptive, atmospheric, situational,
ment between a textual prompt and its associated generated  contextual, and metadata, respectively.
audio output. Thus, we consider the expressiveness of the
CLAP model in relation to semantic complexity. More Category Metric  Score
specifically, we leverage the semantic sensitivity metric

e d

in Eq. [T]and calculate the cosine similarity of text embed- Descriptive Ga 0.55

. . Atmospheric G 0.36
dings generated by the CLAP model, in order to assess P s

its abil: d 1 e diff . Situational G 0.32

its ability to adequately capture semantic differences in a Contextual Ge 029

textual prompt. Crucially, the results in Table [6]show that Metadata am 0.36

CLAP has a concrete lack of semantic sensitivity. This
strongly indicates that the CLAP score is highly limited in
capturing the rich semantics of music.

5 Conclusion

In this work, we introduce MusicSem, a semantically rich language-audio dataset that captures the
diverse language in organic musical discourse. We categorize these textual annotations into five
categories of music semantics and show the importance of music semantics. We evaluate a suite of



music understanding models in multimodal generation and cross modal retrieval tasks on MusicSem
and other canonical datasets, which reveal critical insights about pitfalls in existing evaluations of
music understanding and the importance of capturing nuances in musical annotations.
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A Related Works

Given the complexity of achieving true music understanding, there has been a large body of work
which attempts to address different facets of this challenging task via various approaches to language-
audio representation learning, each needing their own format of data. We briefly review datasets that
are complementary to our work. For a more comprehensive review we direct readers towards a survey
by Christodoulou, Lartillot, and Jensenius [23]]. Depending on the source of textual data, current
language-audio music datasets can be categorized as human-annotated datasets or LLM-augmented
datasets. For human-annotated language-audio music datasets, MusicCaps [13] is one of the most
commonly used dataset. It consists of approximately 5,521 language-audio samples annotated by
professional musicians. These annotations contain descriptive language that often involves attributes
such as instrumentation, genre, and stylistic analysis. Similarly, YouTube8M-MusicTextClips [24]
contains approximately 4,169 language-audio pairs, but the associated captions are written by text-
for-hire annotators. More recently, Manco et al. [22] presented the Song Describer [22]] extended
1,100 of audio samples in Jamendo [4] with crowd-sourced annotations. Meanwhile, there are also
datasets with LLM-augmented annotations [25} 26} [12} [11} [27], which, though although they have
a larger scale, lack precise description on how music is experienced in the real world [21} [19] 28]].
Different from these datasets that primarily capture the acoustic elements of a song, our work seeks
to understand how a song makes a user feel and the contexts in which users listen to it.

Recently, there has been a push to expand the scope of these datasets via LLM-based augmentation.
For example in their work [29] build a combined dataset of 6.8M pairs by fusing MusicCaps [13]
with LLM-based annotations of 150K popular songs. LP-MusicCaps [11]] combines several sources
including MusicCaps [13|], MagnaTagATune [30], and Million Song Dataset [31]] to construct 2.2M
captions paired with 0.5M audio samples by generating sentence-like captions generated by an LLM.
Similarly, MusicBench [27] is a dataset with 52K paired language-audio samples constructed by
applying automatic algorithms for extracting downbeats, chords, keys, and tempo from the audio
included in MusicCaps and augmenting its original captions to include this information. The dataset
used to train FUTGA [12] follows a similar augmentation strategy in which an LLM is prompted to
augment the annotations in MusicCaps [13]] and Song Describer [22]] to include structural elements
in the music. JamendoMaxCaps [32] is generated by collecting 200,000 audio samples from the
Jamendo [4] dataset and applying a music captioning model to generate automatic textual annotations.
Text2Music [33] is another such dataset which contains 50K language-audio pairs which are compiled
by scraping Spotify for the top 10 most popular playlists and using an LLM to rephrase their metadata
into sentence-like structures. Notably, despite the prevalent use of LLMs in the construction of these
datasets, to our knowledge, there is extremely limited discussion within this body of work on the
hallucination protocols used to ensure data quality. While we acknowledge that it is impossible to
fully mitigate hallucination when engaging on a large scale with LLMs, it is important to consider
the effectiveness of various mitigation techniques in order to ensure data quality.

Table 7: Language-Audio Music Dataset Statistics. Note, for brevity, we present the datasets that
are most comparable with our setting. Here, we use L-A Pairs to mean Language-Audio Pairs and
Annotation Source to indicate the source of the textual annotations.

Dataset Name Year #L-APairs Annotation Source Base Dataset
MusicNet |34 2018 330 Human -

Song Describer 22 2023 1,106 Human -
YouTube8M-MusicTextClips24] 2023 4,169 Human

MusicCaps|13 2023 5,521 Human -

MusicSem (Ours) 2025 35,977 Human or LLM -
MuLaMCap|25 2023 6,800,000 LLM AudioSet
LP-MusicCaps 26 2023 2,000,000 LLM MusicCaps, Magnatagtune, & Million Song Dataset
Text2Music [33] 2024 50,000 LLM Spotify
FUTGA[12 2024 51, 800 LLM MusicCaps & Song Describer
MusicBench 27 2024 53,168 LLM MusicCaps
JamendoMaxCaps |32 2025 200,000 LLM Jamendo

There also exist other music datasets based on Reddit threads [35} 36]. However, they are intended
for different settings from ours. For example, Tip-Of-My-Tongue [35]] is based on r/Tip0fMyTongue
for text-to-music querying. Alternatively, Veselovsky, Waller, and Anderson [36]] scrape Reddit for
536, 860 unique song-artist pairs to analyze the music sharing behaviors in Reddit communities.
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Table 9: Results of music-to-text generation. Best performance within each dataset is in bold.

Dataset Model Bt Bt B3t M7 R1 CIDEr1T Bert-St
LP-MusicCaps 53.21 47.28 44.60 5190 3.35 384.72 90.47
MusicCaps MU-LLaMA 1.35 055 022 4022 11.27 0.09 80.47
FUTGA 880 3.07 1.19 4477 1190 2.63e-17 81.67
LP-MusicCaps 9.51  3.07 094 890 1045 1.03 84.40
Song Describer MU-LLaMA 12.03 473 173 872 13.00 3.59 83.51
FUTGA 339 128 043 872 630 3.58e-30 82.55
LP-MusicCaps 11.57 3.05 0.72 20.59 9.54 0.77 82.13
MusicSem (Ours) MU-LLaMA 4.11 141 051 2233 10.57 0.92 81.63
FUTGA 482 150 044 2223 748 0.01 80.93

In another strain of music understanding tasks, several works have begun to consider music under-
standing through the lens of generative retrieval or musical question-answering [37,|10]. To serve the
needs of this novel task, several works have proposed datasets that reformat the textual information
described above as question-answer pairs. For example, MusicQA [[L0] uses a LLM to reformulate the
captions in MusicCaps [13]] and Magnatagtune [30] into 4,500 question-answer pairs. Alternatively
LLaRK [37]] propose a dataset with over 1.2M language-audio pairs by combining MusicCaps [13]],
YouTube8M [24]], MusicNet [38]], FMA [39]], Jamendo [4], and MagnaTagATune [30]]. Finally Sakshi
et al. [40] curate 10K a set of generalized audio and music question-answer pairs which assess a
variety of music understanding tasks.

Finally, in a complementary body of musical datasets, several works have analyzed music understand-
ing through the lens of online discourse. In addition to the datasets mentioned in the main body of
our work [35}36] which contained discourse from Reddit, the Million Tiveet Dataset [41]] analyzed
over 1M tweets associated with music to understand the trends in popularity among songs and artists.

B Additional Experimental Results & Insights

B.1 Music-to-Text Generation

Music-to-text generation, also known

as music captioning, focuses on gen- Taple 8: Semantics analysis of the music-to-text generation
erating natural language descriptions  regults on MusicSem. *G.T.” refers to *Ground Truth’.

of a musical work. We consider

three SOTA models, including LP-  Model LP-MusicCaps MU-LLaMA FUTGA G.T.
MusicCaps [42], MU-LLaMA [10],

Descriptive 100% 99% 100% 83%
and FUTGA [12], and evaluate them Contextual 2% 1% 0% 17%
on three datasets, i.e., MusicCaps [13]], Situational 42% 0% 1% 38%
Song Describer [22] and the test set of ~ Atmospheric 8% 3% L% 62%
Metadata 32% 2% 34% 15%

our proposed datset, MusicSem. We
employ objective evaluation metrics
borrowed from natural language processing such as BLEU (B) [43], METEOR (M) [44]], ROUGE
(R) [435]], CIDEr [46], and BERT-score (Bert-S) [47] which are commonly used in evaluation for this
task. For a more in-depth discussion of the evaluation metrics and intuitions behind them, please see
Appendix [F.3] The results are presented in Table [9] with the following insights.

Insight 2.1: Model performance differs between datasets and metrics. When looking at the results
for MusicCaps and MusicSem datasets we can see that LP-MusicCaps [11]] has strong performance
on this dataset. Meanwhile, on the Song Describer dataset, MU-LLaMA outperforms both models.
This observation coincides with the performance inconsistency observed in cross modal retrieval,
further justifying that existing music-to-text generation models have generalization issues. Developing
highly generalizable models would be one of the key research questions for text-to-music generation.

Insight 2.2: The performance inconsistency is attributed to the diverse semantics among datasets.

To further demystify the performance inconsistencies, we analyze the presence of each type of
semantics both in the ground truth of the MusicSem test set and the text generated by each model in
Table 8] From this statistics, we can see that LP-MusicCaps’s high performance positively correlates
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with its higher percentage of atmospheric, situational, and contextual annotations in our dataset.
LP-MusicCaps is the model with the highest percentage of these semantic categories represented in
its output. Furthermore, we can clearly see that all of the models are skewed towards presenting
descriptive captions and very few are able to capture the contextual, situational, and atmospheric
elements of the Reddit-based annotations. This highlights the challenge of generating accurate
and meaningful semantic information using the existing SOTA models, and MusicSem can be
instrumental in bridging this gap.

B.2 Case study of music-to-text generation

When looking at the performance of the various music-to-text models reported in Table [9] within
the main body of this work, it seems that LP-MusicCaps is the best performing model but a deeper
analysis of its output challenges this. In Figure 2] we showcase a case study of the comparative outputs
between the original annotation and the captions produced by each model. As we can see in the case
study, FUTGA generates a much more detailed and accurate description of the audio however, it
receives a lower overall performance score because, in generating more content, it has the potential
for a lower n-gram overlap. Meanwhile, MU-LLaMA, though completely incorrect retains scores
which are close to that of FUTGA potentially due to the shortened length of the model’s output.
Furthermore, despite the seemingly high performance of each model on the objective metrics, each
caption output contains at least one factually incorrect description of the input music. This indicates
that there is still a significant information gap that SOTA models are unaware of.

B Incorrectinfo (@ Descriptive caption () Atmospheric caption @ Situational caption @ Metadata caption

Reddit Annotation
Defines exactly how techno should sound. It has a positive and uplifting musical quality with a futuristic vibe. The
album also feels sooooo summery.

LP-MusicCaps Annotation

This song contains digital drums playing a four on the floor groove with a kick on every beat along to an e-bass. In the
background you can hear additional bongo rhythms. A synth string sound is playing long chord notes in the
background. ... A female voice is singing in a higher key and with backing vocals. This song may be playing while
cleaning the kitchen.

MU-LLaMA Annotation
The music is a rock song with a fast tempo, heavy quitar riffs, and a male vocalist.

FUTGA Annotation

The music is characterized by a catchy melody, a groovy bass line, and a driving rhythm section. The mood is upbeat
and energetic, and the theme is repetitive and uplifting... The instruments used in the song include electric guitar,
synthesizer, bass guitar, drums, and piano. The chord progression is typical of a disco song, with a focus on the tonic
and dominant chords.

Intro/Verse: Electric guitar and bass guitar create a driving rhythm...

Chorus: Same instruments as the intro/verse. ...

Outro: Same instruments as the intro/verse Melody fades out.

Figure 2: Case study of music-to-text generation evaluation. We can see that all models make
objective factual errors and focus primarily on descriptive annotations. For reference, please listen to
the song on Youtube — While Others Cry by The Future Sound of London.

C Further Details of Dataset Construction Pipeline

We present the pseudocode for the complete extraction pipeline in Algorithm [T}

In Lines 2-3 we filter the posts within the thread itself, removing any posts that were written by
moderators and any posts that had less than 20 characters. In Line 4 we perform the extraction, using
an LLM to extract semantic information from the text using a prompt (see Appendix [D.1]for the full
prompt). In Line 6 we query the Spotify API to find a unique identifier associated with each song
mentioned in a thread. In Line 7 we perform the first hallucination check, ensuring that the audio
is aligned with the extracted song-artist pair. In Line 8 we extract the mp3 files associated with the
audio of each song. In Line 9 we generate summaries from the extraction caption categories that
mimic those of MusicCaps [13]] or Song Describer [22]. Finally, in Line 10 we perform one more
hallucination check using a different model to ensure that the summary did not deviate from the
extracted caption categories (see Appendix for the full prompt). In total, this process yields a
dataset of approximately 35K language-audio pairs. For a visualization of the entire pipeline, please
see Figure [I] within the main body of the paper.
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Algorithm 1 Collection Framework

Input: thread name 7°, language models M7, My
Output caption set C

1: procedure DATASET GENERATION(T', M)

2: posts = Load_Entire_Thread(T)

3 filtered = Length_and_Mod_Filter(posts)

4: sa_pairs, caption_extracts = M (filtered)

5: descriptive, atmospheric, situational, contextual, metadata = caption_extracts

6

7

8

9

song_ids = Spotify_Metadata(sa_pairs)
sa_pairs = Hallucination_Check1(sa_pairs,fltrd)
mp3s = Spotify_Audio(song_ids)
: final_summaries = Summarize(sa_pairs,caption_extracts, mp3s)
10: filtered_captions = Hallucination_Check2(caption_extracts, final_captions, M)

D Prompts

D.1 Extraction Prompt

Below we present the prompt which is used to extract semantic content from raw text posts on Reddit.
Following the formulation of caption categories in Table|l} we break down the elements which are
contained in each of the five categories. We also provide an example extraction for guidance.

% Feature Extraction

Task Description

You are tasked with analyzing Reddit posts about music and extracting
structured information into specific categories. When given a
Reddit post discussing music, identify and extract the following:

Categories to Extract

Song/Artist pairs

(using the names of artists and their songs with unfixed form) some
examples:

’Shake it 0ff by Taylor Swift’
’Radiohead’s Weird Fishes’
’Genesis - Yes’

>Maroon5 [She Will Be Loved]’

Descriptive (using musical attributes)
This includes detailed observations about:

Instrumentation: ’I love the high pass filter on the vocals in the
chorus and the soft piano in the bridge’

Production techniques: ’The way they layered those harmonies in the
second verse is incredible’
Song structure: ’That unexpected key change before the final chorus

gives me goosebumps’

Sound qualities: ’The fuzzy lo-fi beats with that vinyl crackle in the
background’

Technical elements: ’The 6/8 time signature makes it feel like its
swaying’

Contextual (using other songs/artists)
This includes meaningful comparisons such as:

Direct comparisons: ’Sabrina Carpenter’s Espresso is just a mix of old
Ariana Grande and 2018 Dua Lipa’

Influences: ’You can tell they’ve been listening to a lot of Talking
Heads’

Genre evolution: ’It’s like 90s trip-hop got updated with modern trap
elements’
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29

45

46

55

56

64

66

67

68

69

Sound-alikes: ’If you like this, you should check out similar artists

like...?
Musical lineage: ’They’re carrying the torch that Prince 1lit in the 80
S,

Situational (using an activity, setting, or environment)
This includes relatable scenarios like:

Life events: ’I listened to this song on the way to quitting my shx*x*ty
corporate job’

Regular activities: ’This is my go-to album for late night coding
sessions’

Specific locations: ’Hits different when you’re driving through the
mountains at sunset’

Social contexts: ’We always play this at our weekend gatherings and
everyone vibes to it’

Seasonal connections: ’This has been my summer anthem for three years
running’

Atmospheric (using emotions and descriptive adjectives)

> This includes evocative descriptions such as:

Emotional impacts: ’This song makes me feel like a manic pixie dream
girl in a bougie coffeeshop’

Visual imagery: ’Makes me picture myself in a coming-of-age indie
movie, running in slow motion’

Mood descriptions: ’It has this melancholic yet hopeful quality that
hits my soul’

Sensory experiences: ’The song feels like a warm embrace on a cold day
I

Abstract feelings: ’Gives me this feeling of floating just above my
problems’

Lyrical (focusing on words and meaning)
This includes thoughtful commentary on:

Storytelling: ’The lyrics tell such a vivid story of lost love that I
feel like I’ve lived it’

Wordplay: ’The clever double entendres in the chorus make me
appreciate it more each listen’

Messaging: ’The subtle political commentary woven throughout the
verses really resonates’

Personal connection: ’These lyrics seem like they were written about
my own life experiences’

Quotable lines: ’That line ’we’re all just stardust waiting to returm’

lives rent-free in my head’

Metadata (using information found in labels or research)
This includes interesting facts like:

Technical info: ’The song is hip-hop from the year 2012 with a bpm of
100°

Creation context: ’They recorded this album in a cabin with no
electricity using only acoustic instruments’

Chart performance: ’It’s wild how this underplayed track has over 500
million streams’

5 Artist background: ’Knowing the guitarist was only 17 when they

recorded this makes it more impressive’
Release details: ’This deluxe edition has three bonus tracks that are
better than the singles’

Sentiment (whether the person feels good or bad about the song)
Output Format

Return your analysis as a structured JSON with these categories:
Copy{
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89

91

92

}

’pairs’: [(song_1, artist_1), (song_2, artist_2), ...],

’Descriptive’: [],
’Contextual’: [],

’Situational’: [],
>Atmospheric’: [],

’Lyrical’: [1,
’Metadata’: [],
’Sentiment’: []

Example
Input:
’I like Plastic Love by Mariya Takeuchi because of the funky, jazzy,

retro vibes. I listen to this music at 3am when Im lonely because
it romanticizes my loneliness and makes it meaningful. It helps me
to enjoy my own loneliness. It has very distinctive synthesizer
sounds in the chorus and leading bass lines in the bridge. The
vocals are chill and blended. Another song that sounds very
similar is Once Upon a Night by Billyrrom or Warm on a Cold Night
by Honne. The genre is like City Pop which describes an idealized
version of a city.’

Output:
Copy{
’pairs’: [(’Plastic Love’, ’Mariya Takeuchi’), (’0Once Upon a Night’,
’Billyrrom?’), (’Warm on a Cold Night’, ’HONNE’)],
’Situational’: [’3am when Im lonely’],
’Descriptive’: [’funky’, ’jazzy’, ’retro vibes’, ’distinctive

synthesizer in chorus’, ’leading bass lines in bridge’, ’chill and
blended vocals’, ’genre of City Pop’],

>Atmospheric’: [’romantic loneliness’, ’vulnerability’, ’kind of sad
in a good way’, ’acting heartbroken’, ’idealized version of a
city’],

’Contextual’: [’Plastic Love sounds similar to Once Upon a Night’, °?

Plastic Love sounds similar to Warm on a Cold Night’],
’Metadata’: [’funky’, ’jazzy’, ’retro vibes’, ’genre of City Pop’]

D.2 Hallucination Check Prompt

Below we present the prompt which is used to validate the results of an extraction and summarization.
Here, we use a secondary model to check for hallucination between an extraction of semantic tags
and their sentence-like summarization. Please note that we present the LLM with two examples:
one negative (i.e. containing no hallucinations) and one positive (i.e. containing hallucinations) as
we found in our ablation experiments that this significantly improved the model’s ability to identify
hallucinations.

3 % Getting summarizations
# Summarization task

Write a sentence which combines the associated sentence fragments.
Please do not add anything other than the information given to you.

Your description should:
- Be maximum 4 sentences in length

Your description shouldn’t:
- Add any additional information that is not present in the tags

Include any information that is based on your own knowledge or
assumptions

Example:

>Situational’: [’3am when Im lonely’],\
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’Descriptive’:[’>funky’, ’jazzy’, ’retro vibes’, ’distinctive
synthesizer in chorus’, ’leading bass lines in bridge’, ’chill and
blended vocals’, ’genre of City Pop’],\

>Atmospheric’’: [’romantic loneliness’, ’vulnerability’, ’kind of
sad in a good way’, ’acting heartbroken’, ’idealized version of a
city’],\

’Contextual’: [’Plastic Love sounds similar to Once Upon a Night’,
Plastic Love sounds similar to Warm on a Cold Night’],\
’Metadata’: [’funky’, ’jazzy’, ’retro vibes’, ’genre of City Pop’]\

Desired output: This song has funky, jazzy, retro vibes. I listen to
this music at 3am when Im lonely because it romanticizes my
loneliness and makes it meaningful. \
It helps me to enjoy your own loneliness. It has very distinctive
synthesizer sounds in the chorus and leading bass lines in the
bridge. \
The vocals are chill and blended. The genre is like City Pop
which describes an idealized version of a city.’ \

Tags:
{input_tags}

% Hallucination
# Hallucination Check Prompt for Generated Summary

## Instructions

Evaluate whether the generated summary contains hallucinations based
on the provided features/tags from the original source.

A hallucination is defined as information in the summary that is not
present in or contradicts the features from the source material.

## Input Format

- *x0riginal Features/Tags**: [List of key features/tags from the
source materiall

- **xGenerated Summary**: [The summary to be evaluated]

> ## Task

1. Compare each claim or statement in the summary against the original
features/tags
2. Identify any information in the summary that:
- Is not supported by the original features/tags
- Contradicts the original features/tags
- Represents an embellishment beyond what can be reasonably
inferred

s 3. **The output should be in JSON format.**

## Output Format

€ ¢¢

{{

"hallucination_detected": [True/False],

3

€ ¢ <

7 ## Example 1

**Input Data**:

{
"original_features": {{
’situational’: [’3am when Im lonely’],
’descriptive’:[’funky’, ’jazzy’, ’retro vibes’, ’distinctive

synthesizer in chorus’, ’leading bass lines in bridge’, ’chill and
blended vocals’, ’genre of City Pop’],

’atmospheric’’: [’romantic loneliness’, ’vulnerability’, ’kind of
sad in a good way’, ’acting heartbroken’, ’idealized version of a
city’],
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’contextual’: [’Plastic Love sounds similar to Once Upon a Night?’,
’Plastic Love sounds similar to Warm on a Cold Night’],

1},

"generated_summary": ’funky, jazzy, retro vibes. I listen to this
music at 3am when Im lonely because it romanticizes my loneliness
and makes it meaningful.

It helps me to enjoy your own loneliness. It has very distinctive
synthesizer sounds in the chorus and leading bass lines in the
bridge.

The vocals are chill and blended. The genre is like City Pop
which describes an idealized version of a city.’

1

*xExpected Output**:

€ ¢ <

{{

"hallucination_detected": False,

3

## Exzample 2
**Input Dataxx*:

{{

"original_features": {{

’situational’: [’when I’m quitting my corporate job’],
’descriptive’:[’angry punk guitar’, ’killer drums’, ’harcore vocal
processing’, ’distortion’],

’atmospheric’’: [’pumped up vibes’, ’makes me want to take charge
of my life’],

‘contextual’: [?°],

1,

"generated_summary": ’This song makes me happy. It has a soft and
exciting vibe with killer drums. I listen to this song at parties
or festivals when I feel positive.’

3

**Expected Output**:

[ 2N 2N1

> {{

"hallucination_detected": True,

3

[N 3N1

**Input Data**:
[N

{{
"original_features": {features},
"generated_summary": {summary}

3

[N 3N1

**Expected Output**:
[N 2N1

E Properties of the Dataset

We present additional insights into several unique aspects of MusicSem. As mentioned in earlier
sections, MusicSem contains two key attributes: personalization and contextualization.

Personalization As we show in Table for each song in our dataset there are approximately 3
different posts which discuss it. This yields a variety of annotations containing differing opinions
on the same song. For example, in Figure[3] we showcase the semantic associations of two different
users for the same song. We can see that this broadens the scope of perspectives that are represented
by a dataset, presenting the opportunity for a more nuanced understanding of each musical piece.
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Contextualization of Songs In Table|10|we can see that many songs are presented in tandem, where
each post contains approximately 10 songs. For an intuitive example of this, we present a case
study in Figure[3] In this case study the user describes a set of songs which are aligned under a
unified theme (e.g. positivity). This form of contextualization provides an explicit definition of the
underlying latent need that creates association between songs.

‘ Example of Personalization ‘

Speaking about David Bowie’s Wishful Beginnings
User1: ‘hackneyed drum beat’, ‘horrible synthy bassline’, ‘flat and uninteresting music’, ‘dated sound’;
User 2: ‘awesome voice’, ‘perfectly used vocal effects’, ‘amazing layering’, ‘worth listening with good headphone’

‘ Example of Contextualization ‘

suggestions for songs that emanate optimism (but not toxic positivity)?

Hi! I'm working on a playlist for my girlfriend. Her depression has been bad lately and so | wanted to make her a
playlist of songs that feel like a warm hug and can comfort her. It's important that these songs promote genuine
optimism as opposed to toxic positivity. | already have about 90 minutes worth of songs but | was wondering what
others could help. Some examples of what | already have: (1) Your Song- Elton John -- our song :) // (2) Wildflowers-
Tom Petty // (3) Rainbow- Kacey Musgraves // (4) Dusty Trails- Lucius //(5) Grow As We Go- Ben Platt

Figure 3: An example of personalization and contextualization on Reddit.

Table 10: Properties of the dataset.

Total Size  # Unique Songs  # Unique Artists  # Posts per Song  # Songs per Post ~ # Genres per Song

32,493 11,842 4,430 2.98 10.51 2.71

F Experimental Settings

F.1 Hyperpameter Settings
We present the baseline models and the specific details of their implementations. The evaluation

involves both retrieval and generation tasks, where the tested models are summarized in Table

Table 11: An overview of all the models we evaluate in this work. 'Hier.’, *Trans.’, ’Diff.’, and
"Co-List.” are short of Hierarchical, Transformer, Diffusion, and Co-Listing, respectively.

Task Name Date Architecture Text Conditioner Length  Sample Rate Proprietary
MusicLM [13 2023 Hier. Trans. + SoundStream w2v-BERT [48 variable 24kHz
AudioLDM 2 [16 2023 VAE + 2D U-Net CLAP [7 variable 16kHz
Text-to-Music Stable Audio [15] 2023 VAE + 2D U-Net CLAP [7] up to 95s 48kHz
MusicGen [14 2024 AE + 1D U-Net FLAN-TS5 [49 10s 48kHz
Mustango [27 2024 VAE + 2D U-Net FLAN-TS5 [49 10s 16kHz
Mureka 2024 - - - - v
Task Name Year Architecture Audio Conditioner Length  Sample Rate Proprietary
MU-LLaMA [10 2024 Diff. Trans. MERT [50 60s 16kHz
Music-to-Text  LP-MusicCaps [42] 2023 Trans. BART [51 10s 16kHz
FUTGA [12] 2024 Hier. Trans. + VAE Whisper[52] 240s 16kHz
Task Name Year Architecture Modalities Length  Sample Rate Proprietary
CLAP |7 2023 Contrastive Learning Text + Waveform - 48kHz
Retrieval LARP [53] 2024 Contrastive Learning Text + Waveform + Co-List. Graph 48kHz
ImageBind [9 2023 Contrastive Learning Text + Image - 16kHz
CLaMP3 [8 2024 Contrastive Learning Text + Image + Waveform - 24kHz

F.2 Cross Modal Retrieval Models

CLAP [7] learns joint embeddings between audio clips and text descriptions through Contrastive
Language-Image Pretraining https://arxiv.org/abs/2103.00020, on 630K audio-text pairs.
For audio data, it first represents signals using log Mel spectrograms at a sampling rate of 44.1kHz,
then employs CNN14 [54] (80.8M parameters) pretrained on AudioSet with 2M audio clips. For
text data, it uses BERT [55] (110M parameters) to encode text descriptions, taking the [CLS] token
embedding as text representation. Both modality encodings are projected into a multimodal space
using two learnable projection matrices, resulting in an output dimension of 1024. We employ its
music variant from the official repository https://github.com/LAION-AI/CLAP,
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LARP [53] addresses the cold-start problem in playlist continuation through a three-stage contrastive
learning framework. Built upon the BLIP framework, it consists of two uni-modal encoders: HTS-
AT [56] for audio encoding and BERT for text processing (using [CLS] token embeddings), with
their original 768-dimensional encodings being projected into a unified 256-dimensional space. The
framework then performs within-track contrastive learning, track-track contrastive learning, and
track-playlist contrastive learning to optimize representations from both semantic and intra-playlist
music relevance perspectives. We use the official implementation from https://github.com/
Rsalganik1123/LARP,

ImageBind [36] unifies six modalities (image, audio, text, etc.) in a single embedding space through
multimodal contrastive learning. While not music-specific, its general-purpose audio-text alignment
capability provides a strong baseline for cross-domain retrieval. ImageBind employs Transformer
architectures for all modality encoders. For audio input, it converts 2-second 16kHz samples into
spectrograms using 128 mel-spectrogram bins. Treating spectrograms as 2D signals similar to images,
it processes them using a ViT with patch size 16 and stride 10. For text input, it utilizes pretrained
text encoders (302M parameters) from OpenCLIP [57]. After projection, different modalities are
encoded into a 768-dimensional shared space. We extract audio embeddings from the ViT-B/16
variant available at https://github.com/facebookresearch/imagebind.

CLaMP3 [8] establishes a unified multilingual music-text embedding space through cross-modal
alignment of sheet music, audio recordings, and text in 12 languages. The audio processing pipeline
adopts pre-trained acoustic features from MERT-v1-95M [50]]. Each 5-second clip is represented by
a single embedding obtained through averaging across all MERT layers and time steps. For textual
content processing, the model employs XLM-R-base [58]], a multilingual transformer, which features
a 12-layer architecture with 768-dimensional hidden states. The framework implements contrastive
learning to align multimodal representations, incorporating novel components such as a retrieval-
augmented training mechanism that enhances cross-modal association. We use the checkpoints
and architecture from the original authors’ implementation at https://sanderwood.github.io/
clamp3, specifically the SaaS version optimized for audio.

F.3 Cross Modal Generation Models

Music-to-Text Generation Models:

MU-LLaMA[10] is a music-specific adaptation of the LLaMA-2-7B architecture, integrating MERT
[50] acoustic features through LLaMA-Adapter [59] tuning. We use the official implementation
from https://github.com/shansongliu/MU-LLaMA, with the same hyperparameter settings:
the input audio is split into 60-second audio signal at 16 kHz and the temperature for LLaMA-2-7B
is set to 0.6, top_p is set to 0.8, and the maximum sequence length is 1024 tokens.

LP-MusicCaps [11] employs a BART-based encoder-decoder architecture [51] with 768 widths
and six transformer blocks for both the encoder and the decoder, and the encoder takes a log-mel
spectrogram with convolution layers similar to whisper [52]. We use the official implementation from
https://github.com/seungheondoh/lp-music-caps|and their pretrained checkpoint, splitting
our test audio to 10-second audio signal at 16 kHz and choose the longest caption among all the clips
as the inference result. In addition, the num_beams is set as five and the maximum sequence length is
128 tokens.

FUTGA[12] enables time-located music captioning by automatically detecting functional segment
boundaries. Built upon SALMONN-7B [60] with LoRA-based instruction tuning, it integrates
a music feature extractor for full-length music captioning. For our evaluation of this model we
use the checkpoints and architecture presented by the original authors on https://huggingface.
co/JoshuaW1997/FUTGA! In the implementation, Vicuna-7B https://huggingface.co/lmsys/
vicuna-7b-v1.5 is used as the backbone. For the hyperparameter settings, the repetition_penalty is
set to 1.5, num_beams is set to 5, top_p is set to 0.95, top_k is set to 50, and an audio file is processed
as 240-second 16kHz audio signal.

Text-to-Music Generation Models:

MusicLLM [13]] is a generative model that produces high-quality music from text prompts by using a
hierarchical sequence-to-sequence approach. It leverages audio embeddings from a self-supervised
model and autoregressively generates semantic and acoustic tokens. Unfortunately this model does

19


https://github.com/Rsalganik1123/LARP
https://github.com/Rsalganik1123/LARP
https://github.com/facebookresearch/imagebind
https://sanderwood.github.io/clamp3
https://sanderwood.github.io/clamp3
https://github.com/shansongliu/MU-LLaMA
https://github.com/seungheondoh/lp-music-caps
https://huggingface.co/JoshuaW1997/FUTGA
https://huggingface.co/JoshuaW1997/FUTGA
https://huggingface.co/lmsys/vicuna-7b-v1.5
https://huggingface.co/lmsys/vicuna-7b-v1.5

not have any publicly available architecture or checkpoints. However, we use a crowd-sourced
implementation available at https://github.com/zhvng/open-musiclm. Notably, this imple-
mentation deviates from the originally proposed text conditioning model by using the open-sourced
version of CLAP [7] instead of Mulan [61] and Encodec [62] instead of SoundStream [63]]. The
purpose of including this implementation is to showcase the performance of a large collection of
publicly available models.

Stable Audio [15] is a diffusion-based music generation model that creates audio from text and
optional melody input, using a latent audio representation. The Stable Audio model is based on
a combination of a latent diffusion model consisting of a variational autoencoder, a conditioning
signal, and a diffusion model. The VAE consists of a Descript Audio Codec [64] encoder and
decoder. The textual conditioning signal comes from a pre-trained CLAP model [7], specifically
the HT-SAT [56] and RoBERTa-based [65] iteration. Finally, the diffusion model is based on a
U-Net [33] which consists of 4 levels down-sampling encoder blocks and up-sampling decoder
blocks, with skip connections between them. encoder and decoder blocks providing a residual For
our evaluation of this model we use the checkpoints and architecture presented by the original authors
onhttps://github.com/Stability-AI/stable-audio-tools|

MusicGen [14] is a transformer-based model that generates music from text descriptions. In our
implementation with use the 300M parameter model. This model uses a five layer EnCodec model
for 32 kHz monophonic audio with a stride of 640, resulting in a frame rate of 50 Hz, an initial
hidden size of 64 and a final embedding size of 640. The embeddings are quantized with using
an RVQ with four quantizers, each with a codebook size of 2048. Finally, for sampling, the
model employs top-k sampling, keeping the top 250 tokens and a temperature of 1.0. For our
evaluation of this model we use the checkpoints and architecture presented by the original authors in
https://github.com/facebookresearch/audiocraft.

AudioLDM2 [16]] is a diffusion model for text-to-audio generation, trained on large-scale data and
designed to handle diverse audio types, including music and sound effects. It improves over its
predecessor by using high-quality representations and efficient training strategies. For our evaluation
we use the checkpoints and architecture presented by the original authors in https://github. com/
haoheliu/AudioLDM2. For the specific hyperparameters of the checkpoint architecture, we use the
version with a 2-layer latent diffusion model. As their audio encoder the model uses a AudioMAE
with a patch size of 16 x16 and no overlapping, resulting in a 768-dimension feature sequence with
length 512 for every ten seconds of mel spectrogram. For the text encoder there is a GPT-2 model
that has an embedding dimension of 768 with 12 layers of transformers.

Mustango [27] is a multi-stage latent diffusion model that generates music from text prompts,
focusing on both coherence and audio quality. It introduces a time-aware transformer to model long
audio sequences and supports multi-track generation. For our evaluation we use the checkpoints and
architecture presented by the original authors in https://github.com/AMAAI-Lab/mustangol
During inference, the model uses two transformer-based text-to-music-feature generators which
predict the beat and chord features. For the beats prediction, this model uses DeBERTa Large
model [[66] which predicts both the meter and the sequence of interval duration between the beats.
Simultaneously, the chord predictions are made by a FLAN-TS5 Large model [49].

F.4 Computational Resources

For generative tasks, all experiments were conducted on a system equipped with NVIDIA L40 GPUs
with 48GB VRAM per card, utilizing 12.6. Each experiment was executed on a single GPU instance.

For retrival tasks, all experiments were conducted on a system equipped with NVIDIA A40 GPUs
with 46GB VRAM per card, utilizing CUDA 12.4. Each experiment was executed on a single GPU
instance.

F.5 Evaluation Metrics

F.5.1 Intuition for Interpreting Music-to-Text Metrics

In this section we present a brief overview for the metrics used for evaluating music-to-text models.
Following the canonical works in music-to-text generation [10, [1 1] we begin by presenting three
n-gram based metrics borrowed from machine translation tasks called BLEU [43]], ROUGE [435]]
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and METEOR [44]. BLEU (B) uses precision to compare the overlap in n-grams (sequences of
1,2, or 3 words - (B1, B3, B3) between the original annotation and the generated musical caption.
Alternatively, ROUGE (R) uses recall to compare the overlap in n-grams between the original
annotation and the generated musical caption. Finally, METEOR (M) is designed to be better aligned
with human judgments by extending the comparison to include synonym and paraphrasing-based
matches in addition to the exact matches covered by BLEU/ROUGE. Meanwhile, we also include
the CIDEr [46]] metric which was originally proposed for image captioning. This metric measures
how well the generated text matches the consensus of a set of original annotation, using a weighted
n-gram similarity. Finally, we present the Bert Score [47]] which uses the Bert model to compare the
embeddings between the generated and original musical annotations.

The purpose of using each of these evaluation metrics is to present increasing levels of abstraction in
considering the alignment between the original annotations and their generated counterparts. As we
can see the Bert Score remains the most stable across all three datasets while the range of the n-gram
based metrics maintains high variability between both datasets and models.

F.5.2 CLAP Score

Contrastive Language-Audio Pretraining [[7] Score (CLAP Score) is a simple but effective and
reference-free metric that quantifies how closely audio signal matches a text description. This metric
is commonly used in text-to-music generation to evaluate how well a generative model is able to
express the information provided in a textual input which forms the basis for its generation. Thus,
given a set of associated language-audio pairs, (7', A) where the audio A = M(T) is generated by
providing the associated textual inputs 7" to a music generation model (e.g. MusicGen [14]]). We can
generate embeddings for each modality using the CLAP model such that

Z; = CLAPaio(A), Zr = CLAPy(T),

where Z ;, Z7 are the output from the audio encoder and text encoder for the CLAP model, respec-
tively. Given these sets of audio and text embeddings we can measure the cosine similarity of the
audio and the text embeddings in their joint representation space. We slightly abuse the notation
for indexing borrowing from the syntax used for coding matrices such that Z ; [i] reflects the i-th
embedding. Thus, we can formalize the CLAP Score as:

o 1 < Zsli), Zeli]) >
ST A) = 2 2 Tzt Tzl

As we can see, the more alignment there is between the language and audio representational spaces,
the higher this score will be.

F.5.3 FAD/FADoco

Intuitively, the FAD measures the distance of the mean and covariance of embeddings between the
real (as formalized by some predefined body of reference data) and generated audio, extracted using
a reference model. In this work we compare the results from two different variations of FAD to
demonstrate the complexity of objectively evaluating the quality of audio outputs which we denote
as FAD [67] and FADoo [68]. Recent work [68]] has postulated a criticism of the traditional metric,
explaining that varying the reference model and data yields drastically different results. Thus, we
showcase our results by evaluating over several reference models (indicated by the subscript, where V,
M, E corresponds to VGG [69], MERT [50], and Encodec [62], respectively) and reference datasets
(indicated by the superscript, where MC and FMA refers to MusicCaps[[13] and Free Music Audio
Dataset (FMA) [39], respectively). Similar to the findings presented by Gui et al. [68]], we see that
the values calculated using VGG, MERT, and Encodec demonstrate significant differences between
competing models (often by a factor of x100).

F.6 Dataset Splits
For each of our evaluations on MusicCaps [[13] and Song Describer [22], we evaluate over the entire

dataset that is currently publicly. This choice is justified by the fact that neither dataset has openly
published concrete train-test splits which can be used to standardize over models. For example,
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although in the original MusicCaps paper they address the existence of a test set, on the publicly
available version of their dataset released on Kaggle there is only a training split. Thus, in many of
the works which evaluate on MusicCaps, they simply create a synthetic test set by implementing their
own train-test split over the available data [27, 12} [11]. And, without testing over the entire set, we
cannot ascertain their performance. Unfortunately, the possibility of overfitting cannot be accounted
for without leaderboard access to the held-out test set. The same holds for Song Describer. Loading
from the storage site does not yield any clear demarcation of the dataset meaning that each paper that
evaluates on this dataset selects its own split. Since in our work we do not engage in any fine-tuning,
we felt it was best to evaluate over the entire set and see the final performance. Meanwhile, for
our dataset, which has a clearly demarcated evaluation set, we use only this portion of the data for
evaluation and publish the rest for training.

G User Privacy Safeguards

Here, we specifically address the sensitive nature of releasing data that is scraped from the internet.
In our work we release a large collection of Reddit threads which were scraped from the internet.
While we understand that releasing data which is scraped from Reddit can have lasting impacts, we
do our best to mitigate these. First, since the domain of our dataset is music, we are not dealing with a
safety-critical setting. Second, although the original raw posts contain the user ids, we do not release
these in the final version of our dataset. Finally, given the already anonymous nature of Reddit, we
hope that our scraped posts will cannot be used to identify specific users.
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