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Abstract

Addressing the issues of hallucinations and outdated knowledge in large
language models is critical for their reliable application. Model Editing
presents a promising avenue for mitigating these challenges in a cost-
effective manner. However, existing methods often suffer from unsatis-
factory generalization and unintended effects on non-edited samples. To
overcome these limitations, we introduce a novel approach: Scalable Model
Editing via Customized Expert Networks (SCEN), which is a two-stage
continuous training paradigm. Specifically, in the first stage, we train
lightweight expert networks individually for each piece of knowledge that
needs to be updated. Subsequently, we train a corresponding indexing
neuron for each expert to control the activation state of that expert. We con-
ducted a series of experiments on the ZsRE and Hallucination benchmarks
by tuning the advanced open-source LLM, Llama2, achieving state-of-the-
art results compared to current mainstream methods. Our code is available
at https://github.com/TAL-auroraX/SCEN.

1 Introduction

With the introduction of the transformer architecture(Vaswani et al., 2017), the performance
of various tasks in the field of NLP has improved rapidly, however, that has been accompa-
nied by an explosive increase in the number of model parameters(Zhao et al., 2023; Shoeybi
et al., 2019). While we are astounded by the outstanding results produced by large language
models (LLMs) (Touvron et al., 2023), we also face challenges posed by their toxic and biased
responses, hallucinations of factual information, and outdated knowledge (Ladhak et al.,
2023; Huang et al., 2023a; De Cao et al., 2021). To address these issues, a widely adopted
approach is to fine-tune LLMs for alignment, although this incurs significant computational
and time costs. For LLMs deployed in industry, this issue becomes even more critical,
particularly within the realm of Education, as toxic content and factual hallucinations can
significantly degrade user experience(Liu et al., 2022).

Figure 1: This is an example of model editing, where the Large Language Models (LLMs)
provided an incorrect answer due to outdated knowledge (Q2). This can be corrected using
model editing techniques (Q3), while ensuring a certain level of generalizability (Q4). In
addition, other non-edited questions remain unaffected (Q5).
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To effectively address the aforementioned challenges, researchers have proposed model
editing technique(Wang et al., 2023). This approach involves modifying model parameters
to rectify the model’s outputs, aiming to achieve desired responses for specific questions
without compromising the overall accuracy for others(Fig.1). Additionally, this approach
is both efficient and cost-effective. A successful editing method requires the edited model
to meet three criteria(Liu et al., 2022): Reliability (rectify the outputs where the original
model failed), Generality (correct response for edits rewriting), and Locality (Non-edited
knowledge remains unaffected). Current mainstream methods can be roughly categorized
into three types based on the location of the knowledge to be updated(Yao et al., 2023):
Stored in an external space (Resorting to External Knowledge): This method effectively
leverages contextual information to enhance the accuracy of model response. However, it
may require a substantial number of examples to achieve optimal performance. Addition-
ally, its dependence on precise retrieval results can introduce noise.
Stored in added parameters (Merging Knowledge into the Model): This method directly
modifies the model’s parameters, enabling the integration of new knowledge with existing
knowledge. However, this may lead to knowledge conflicts, and cause the forgetting of
non-edited knowledge.
Stored in the model’s own parameters (Editing Intrinsic Knowledge): Although this can
achieve precise and enduring modifications to the model’s knowledge, it requires a high
level of understanding of the model’s internal mechanisms and may lead to unforeseen side
effects.
Despite some progress, these methods remain unsatisfactory due to their inherent limita-
tions. Inspired by T-Patcher(Huang et al., 2023b), which addresses the issue of catastrophic
forgetting during sequential editing by adding a series of neurons to the fully connected
layer for each error-generating token, we similarly store each sample to be edited sequen-
tially in distinct experts , and these experts are essentially components of a fully connected
neural network. We then control the activation of each expert using a corresponding num-
ber of trainable neurons. Therefore, we introduce a novel two-stage continuous training
model editing paradigm, SCEN (Scalable Model Editing via Customized Expert Networks).
Specifically, in the first stage, we train lightweight expert networks tailored to each sample
that needs to be edited. In the subsequent stage, each expert is associated with an indexing
neuron. These neurons are dynamically added to the network and trained using a spe-
cialized loss function during the sequential editing process. Our approach is meticulously
crafted to fulfill three essential criteria for model editing:

Reliability: SCEN ensures reliability by assigning a customized expert to each sample
that needs editing, thereby mitigates the risk of interference among different samples. The
indexing neurons ensure precise activation of each expert.
Generality: For rewriting samples, SCEN can identify the most suitable expert by indexing
neurons, which are trained using a specific margin loss function, thereby enhancing the
model’s generalizability.
Locality: The architecture of SCEN preserves all the original model weights. As long as the
indexing neurons remain inactive, non-edited samples maintain their original outcomes,
thereby ensuring effective localization.
In summary, SCEN presents a refined approach to model editing, achieving a balance
between preserving the integrity of original knowledge and incorporating new information,
while maintaining the model’s robustness and adaptability. The main contributions of our
work can be summarized as follows:

• We introduce SCEN, a novel two-stage continuous training paradigm for model
editing. SCEN trains a customized expert network for each sample to be edited,
and ensures that each expert is activated only for the current sample through a
dynamic neuron indexing mechanism. SCEN is adaptable to any language model
that is based on the transformer-based architecture.

• We conducted experiments on two distinct sizes of large language models, Llama2-
7B/13B, focusing on two different tasks: question-answering and hallucination
mitigation. The experimental results demonstrate that SCEN is an effective ap-
proach for model editing, achieving state-of-the-art performance on both tasks.
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• We have conducted an in-depth exploration of the mechanisms underlying the stor-
age of factual knowledge within LLMs, as well as the capacity of individual neurons
to learn correct samples during sequence editing. This research contribution to
enhancing the interpretability of LLMs.

Figure 2: SCEN Overall Architecture. The left half of the figure represents the editing stages.
Stage1 is the process for training the experts and Stage2 is the process corresponding to
training the indexing neurons. The right half represents the inference stage, where the
corresponding experts are activated by the indexing neurons to complete the subsequent
inference.

2 Related Work

Probing Knowledge in Pretrained Models. Recent studies have highlighted that large
language models (LLMs), such as BERT (Petroni et al., 2019) and T5 (Jiang et al., 2020;
Roberts et al., 2020), effectively store and recall factual knowledge within their parameters,
acting as knowledge bases. This capability is leveraged for tasks like closed-book question
answering, demonstrating their potential to memorize information from extensive pre-
training corpora without further fine-tuning. Probing techniques and analysis have shown
that such knowledge is encoded in specific neurons, particularly within the Feed-Forward
Network(FFN) layers of transformer models(Meng et al., 2022a). Researchers have identified
these ”knowledge neurons” at the top layers of pretrained models and have developed
methods to edit factual knowledge by manipulating these characteristic FFN layers(Dai
et al., 2021). This reveals a deeper understanding of the interpretability and structure of
transformers, enabling more targeted and computationally efficient fine-tuning.

Model Editing. As mentioned in the Introduction, there are three research directions in
the mainstream model editing methods, categorized by the location of new knowledge
storage. Fine-tuning stands out as a straightforward and intuitive approach, which updates
knowledge by updating the original model parameters. Both ROME(Meng et al., 2022a)
and MEMIT(Meng et al., 2022b) exhibit enhancements derived from this perspective. This
methodology preserves the original parameters and architecture of the model; however, it
frequently precipitates catastrophic forgetting. To mitigate this issue, some researchers have
recommended strategies that integrate external space into the model. For example, GRACE
(Hartvigsen et al., 2024) adopts a novel approach by creating codebooks that store modifiable
samples and employs the Euclidean distance metric to navigate the selection of specific
parameter trajectories during the inference phase. Alternatively, SERAC(Mitchell et al., 2022)
utilizes cache memory units to chronicle information relevant to model editing and executes
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these modifications by deploying classification models for retrieval tasks. Nonetheless,
these strategies necessitate the incorporation of additional storage components, which may
be a limitation. Meanwhile, some researches are investigating approaches that involve
adapting the model’s architecture by integrating additional neurons. An example of this
approach is T-Patcher(Huang et al., 2023b), which introduces new neural units for each
token identified as erroneous, aiming to assimilate newly edited knowledge through an
end-to-end learning process. While T-Patcher reduces the need for extra memory space and
ensure the success rate of editing, it can result in an exponential increase in parameter space
and computational overhead. This issue becomes particularly pronounced in the context of
LLMs.

Continual Learning(CL) in LLMs. CL is an essential aspect of machine learning as it
enables models to adapt to new tasks while retaining performance on previous ones. Recent
advancements, as delineated by Lin et al. (2022), introduce an innovative paradigm known
as continual model refinement (CMR). This paradigm is designed to efficiently rectify pre-
dictive inaccuracies encountered in out-of-distribution data streams, while simultaneously
circumventing the peril of catastrophic forgetting. The notion of sequential model editing
(SME), as expounded by T-Patcher (Huang et al., 2023b) and further developed in the work
of GRACE(Hartvigsen et al., 2024), can be considered a specialized instantiation of CL.
This approach entails the processing of individual data samples in a sequential manner.
However, it grapples with the same challenge of catastrophic forgetting that is characteristic
of broader CL approaches.

3 Methodology

3.1 Problem Formulation

Define the model fmodel as the one obtained by training on the data Dtrain, and we denote
the subset of Dtrain where fmodel makes exact predictions as Dloc. Suppose we have a
model editing task using the data Dedit = [d1, d2, ..., dn], where each di represents a sample
containing input and output information (xi,xr

i ,yi). xi is the input to be edited, and yi is the
desired output. xr

i is a semantically equivalent rewrite of xi, and the corresponding label
for both xi and xr

i is yi. We denote the sequential editing process as the time step t ∈ [1, n],
where the data required for each time step corresponds to di in Dedit. Meanwhile, we define
ft as the model obtained after editing at the time step t. Based on the aforementioned
settings, three properties are used to evaluate the effectiveness of the sequential model
editing method.

Property 1. Reliability: The edited model ft obtained at time step t, with the set of all
samples up to time step t denoted as [d1, ..., dt], needs to meet the following expectations:

ft(xt) = yt, t ∈ [1, .., t] (1)

Property 2. Locality: For non-edited samples Dloc, ft needs to ensure that they remain
unaffected:

ft(x) = fmodel(x), x ∈ Dloc (2)

Property 3. Generality: ft needs to ensure that the rewritten sample xr
t also receives a

correct response after editing.:

ft(xr
t ) = yt, t ∈ [1, .., t] (3)

3.2 Customized Expert Networks

Inspired by the Mixture of Experts (MoE) architecture(Shazeer et al., 2017; Fedus et al.,
2022), we propose to incorporate a series of expert networks for each incoming edit sample
in a sequential editing setting. During inference, different requests will be routed to the
corresponding experts to ensure optimal performance.

All transformer-based language models (LMs) are constructed using stacked transformer
blocks. Assuming we are editing the lth layer of the LLM, and that the FFN part of lth layer
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has two components, Wup and Wdown. We consider Wdown as a lightweight expert network,
with the reason provided in the ablation studies section. We train a corresponding Wt

down
for each sample that needs to be edited. During training, we freeze all the other weights of
the fmodel and activate only Wdown. As shown in Stage 1 of the left side of Fig.2, after each
training of Wt

down is completed, the weights are stored in the local database, and will be
used during inference when subsequent activation occurs. Since our expert networks are
trained with sample-level granularity, each expert is responsible for handling a single edit
sample. This ensures that there is no interference between different samples and prevents
the forgetting of multiple edits.

3.3 Scalable Indexing Neurons

After training multiple customized expert networks, it is necessary to activate a specific
expert during the inference phase to achieve the desired output. This is not a standard clas-
sification task where a sample is assigned to a specific expert. Due to the streaming nature
of sequential editing, using a fixed neuron for training will inevitably lead to catastrophic
forgetting. Additionally, utilizing a classification model to assign samples to experts would
incur additional time costs. Inspired by T-Patcher, we propose a Scalable Indexing Neurons
method, which trains a corresponding neuron for each expert using the same edit sample
through a specific loss function, and these neurons are incrementally added in sequence as
the editing progresses. The newly trained neurons integrated with the existing neurons and
utilized during the inference phase. In the following we will provide a detailed description
of how the neurons are employed during the training, merging, and inference phases.

Training Indexing Neurons. The settings are identical to those used for training a cus-
tomized expert network with editing at lth layer of the LLM. We introduce a new network
structure Wneuron which is placed after Wup. This network consists of a single output neuron,
implying that the parameter size of Wneuron is 1 × h, where h represents the dimension
of FFN hidden layer. And we employ a sigmoid activation function for the output. The
completed calculation is as follows:

at = Sigmoid(WneuronWup(xatt
t )) (4)

where xatt
t is the representation of the last token in xt obtained after the attention layer of

the lth layer.

We determine whether a sample needs to be edited based on the activation value a. Samples
that require editing, or those that are semantically consistent with these samples, typically
exhibit larger activation values, whereas non-edited samples show smaller activation values.
To achieve the aforementioned objectives, we design the loss function from three aspects to
control the activation value of a .
For Reliability and Generality, the effect is ensured by lactivate loss, which is calculated as
follows:

lactivate = exp(−at) (5)
where at represents the activation value that is required at the current time step t to edit the
sample.

ldisactivate loss and lmargin loss are used to ensure Locality. We consider all the samples that
need to be edited before the current time step t as negative examples ai, i ∈ [1, ..., t − 1].
Here, we define the following two loss functions based on the activation values of these
negative samples.

ldisactivate =
1

t − 1

t−1

∑
i=1

exp(ai + α) (6)

lmargin =
1

t − 1

t−1

∑
i=1

exp(ai − at + β) (7)
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where α and β are the corresponding hyperparameters, we aim to minimize the activation
values corresponding to ai, maximize the value of at, and use α and β as the respective
penalty terms. In our experiments, α was set to 0.7 and β was set to 0.3. Therefore, the
complete loss function for training indexing neurons is:

loss = lactivate + m(ldisactivate + lmargin) (8)

m is the hyperparameter as a trade-off between activation and disactivation.

Note that during the training of Wneuron, only the weights prior to the l-th layer of the LLM
are used. Similarly, we only activate Wneuron for gradient updates while freezing all other
weights.

Merge Neurons. We denote the weight of the indexing neuron trained at time step t as
Wt

neuron. Assuming that we have edited t samples, we should be able to get the weights of
t indexing neurons [W1

neuron,W2
neuron, ... ,Wt

neuron]. During inference, learn to merge these
weights together to obtain Wmerge ∈Rt×h. We define it formally as follows:

Wmerge = [W1
neuron, W2

neuron, ..., Wt−1
neuron, Wt

neuron] (9)

Inference Stage. Assume we have a model that has already been edited at lth layer. Now,
given a new test sample q , how can we obtain the activation values of the indexing neurons
for this sample? When the forward inference reaches the lth layer, we can obtain the answer
using the following formula. It should be noted that here we take the last token of the input
q as the representation of the sample.

aq = Sigmoid(WmergeWup(xatt
q )) (10)

where there are t activation values in the aq vector, each corresponding to an experts, denote
aq

i as the activation value at the ith position in aq. Here, we determine whether to activate
an expert or use the model’s original weights by setting a threshold θ.
Following the rule described below, as shown in Eq.(11). When the activation value is
below the threshold θ, the model’s original weights Wdown are used, without activating any
experts. Conversely, if the maximum activation value aq exceeds the threshold, the index
corresponding to this maximum value will indx to a unique expert, which will be used to
replace the original weights, as shown in Eq.(12). After determining the structure of the
FFNl at the lth layer, the inference proceeds forward. The complete inference process is
illustrated in the right half of Fig.2.

FFNl =

{
WExpert(aq)

down Wup if max(aq) > θ,

WdownWup otherwise,
(11)

Expert(aq) = arg max
i

aq
i (12)

4 Experiments

4.1 Experimental Setup

Datasets. We utilized two benchmark datasets suitable for sequence editing, ZsRE and
Hallucination, to evaluate the effectiveness of our method. ZsRE is a comprehensive
question-answering (QA) dataset(Levy et al., 2017). We randomly selected 20,000 entries
from this dataset. Specifically, 10,000 entries,denoted as Dtrain, were used for typical super-
vised fine-tuning (SFT) based on the LLaMA2 model, while the remaining 10,000 entries,
denoted as Dtest, were reserved for evaluating the performance of the SFT model. Based on
the evaluation results, we divided the post-test data into two subsets: Dedit and Dloc. The
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subset Dedit consists of samples where the SFT model made incorrect predictions. From
this subset, we selected the first 200 and first 1000 samples for subsequent editing opera-
tions. Conversely, Dloc comprises samples where the SFT model made correct predictions.
Similarly, we selected the first 1000 samples from this subset to evaluate our method’s
Localization metric. Detailed information is provided in Appendix A. Hallucination is a
dataset designed to evaluate the performance of model editing methods in of mitigating
model hallucinations, as described by Manakul et al. (2023) and (Hartvigsen et al., 2024).
Manakul et al. (2023) prompt GPT-3 to generate 238 wikipediastyle biographies for concepts
extracted from WikiBio, they then annotate factual accuracy of each sentence, noting which
are hallucinations. We followed the processing method described by (Hartvigsen et al., 2024)
and created 1392 sequential edits and 592 accurate outputs. Based on the WikiBio dataset,
we incorporated 200 samples from OpenWebText and trained Llama 7B and 13B respectively.
During the editing phase, we selected the first 200 out of the previous 1392 sequential edits
for evaluation, denoted as WikiBio-E. Additionally, we used the results from 516 accurate
outputs, referred to as WikiBio-A, combined with 200 samples from OpenWebText as a test
set to evaluate the localization.

Baselines. We compare the proposed method with several mainstream model editing
methods. Fine-tuning based methods (including FT and FT+KL), FT refers to the scenario
where the fully connected network within a certain transformer block is trainable,while,
FT+KL incorporates the Kullback-Leibler (KL) divergence into the loss function, as described
in (Mitchell et al., 2021), to mitigate catastrophic forgetting. Memory-based methods, such as
SERAC(Mitchell et al., 2022) and GRACE (Hartvigsen et al., 2024), have shown significant
promise. GRACE, in particular, is the latest state-of-the-art (SOTA) method based on
memory. MEND (Mitchell et al., 2021) aims to learn a HyperNetwork using additional
training data to transform the gradients obtained through standard fine-tuning. MEMIT, as
proposed by (Meng et al., 2022b), is a method for directly updating a language model with
many memories.In the realm of generative tasks for LLMs, T-Patcher(Huang et al., 2023b)
introduces neurons at the token level. Inspired by this approach, we explore the addition of
neurons at the granularity of samples. However, due to the inherent characteristics of T-
Patcher, it exhibits substantial training and inference performance constraints. Consequently,
we did not experiment with T-Patcher on the Hallucination dataset nor perform a thousand
edits on the ZsRE dataset. Detailed parameter settings and experimental details for each
method are reported in Appendix C.

Metrics. We used Accuracy and Perplexity to evaluate the ZsRE and Hallucination datasets.
In ZsRE, the three metrics Reliability, Generality, and Locality refer respectively to whether
all edited samples are successful, whether rewrited samples can answer correctly, and
whether non-edited samples can answer correctly. In Hallucination, WikiBio-E, WikiBio-A,
and OpenWebText refer to whether the perplexity of the edited samples is reduced and
whether the perplexity of the unrelated WikiBio-A and OpenWebText can be maintained at
a lower level, respectively.

4.2 Experimental Results

We conducted 200 and 1000 sequential editing experiments on Llama-2 7B and 13B respec-
tively, as shown in Tables 1 and 2, respectively. For the ZsRE dataset. We focus on two
aspects: the trade-off between Reliability and Locality, and the average performance across
three metrics. For the Hallucination dataset, we examine whether the ppl of WikiBio-E
decreases, and whether the ppl of WikiBio-A and OpenWebText increases due to halluciation
effects. The FT+KL method could not be evaluated on the Hallucination dataset due to it’s
requirement for additional data.The MEMIT method is not a sequential editing method and
performs significantly below baseline levels in hallucination scenarios, so it is not used in
our comparison.

On the ZsRE dataset, both at 200 and 1000 edits for long sequences, Tables 1 and 2 demon-
strate that our proposed method(SCEN) substantially outperforms the comparison methods
on average across all three metrics. In terms of Generality and Locality, SCEN achieves
a better trade-off on both the Llama2 7B and 13B models, and it also demonstrates im-
proved stability. In contrast, the direct fine-tuning(FT) method demonstrated that while

7



Published as a conference paper at COLM 2024

ZsRE(ACC ↑) Hallucination(PPL ↓)
Method Reliability Generality Locality Avg. WikiBio-E WikiBio-A OpenWebText Avg.

Llama2-7B
FT 98.0 93.0 48.6 79.9 1.25 2.58 5.31 3.04

FT+KL 92.0 83.8 55.7 77.2 - - - -
MEND 1.0 2.83 96.7 33.5 19.3 2.33 4.82 8.82
SERAC 89.0 16.2 81.8 62.3 20.6 2.31 4.79 9.23
MEMIT 24.0 39.9 17.0 27.0 - - - -

T-Patcher 94.0 87.9 62.9. 81.3 - - - -
GRACE 94.5 38.2 99.9 77.5 3.67 2.31 4.79 3.59
SCEN 100.0 90.0 83.3 91.1 2.93 2.28 4.82 3.34

Llama2-13B
FT 93.5 86.7 48.8 76.3 1.10 2.40 5.94 3.15

T-Patcher 92.5 85.3 55.8. 77.9 - - - -
GRACE 90.0 40.6 100 76.9 2.21 1.98 4.69 2.96
SCEN 99.5 80.7 83.5 87.9 1.57 1.97 4.70 2.75

Table 1: Comparison of SCEN with existing methods. All experimental results were obtained
after 200 edits.

Llama2-7B (ACC ↑) Llama2-13B (ACC ↑)
Method Reliability Generality Locality Avg. Reliability Generality Locality Avg.
FT 92.1 87.3 38.7 72.7 90.8 83.0 34.9 69.6
GRACE 90.0 33.8 99.9 74.5 92.6 38.2 100.0 76.9
SCEN 96.2 80.2 83.8 86.7 98.0 76.1 70.2 81.4

Table 2: Results were obtained by performing 1000 sequential edits on the ZsRE dataset.

Reliability and Generality were maintained, there was a significant drop in Locality. To
address this limitation, FT+KL was utilized; however, its impact on improving Locality
was minimal. The GRACE achieved the best results on Locality but its Generalization
was very insufficient. Similarly, SEARAC exhibited an imbalance between Generality and
Locality. T-Patcher achieves results close to SCEN on the Reliability and Generality metrics.
However due to the addition of neurons for each token which significantly increases the
number of parameters and the fact that T-Patcher is an end-to-end approach, these factors
collectively contribute to its unsatisfactory performance on the Locality metric. MEMIT
is not a sequential editing approach, and thus it does not achieve superior results across
all three metrics. Overall, we propose the dynamic addition of indexing neurons, which
can accurately activate experts for long sequence edits without catastrophic forgetting. This
method strikes a balance between Generality and Locality without resorting to extremes.

On the Hallucination dataset, it can be seen from Table 1 that FT is an effective method
that drastically reduces the perplexity of editing samples. Due to its excellent performance
on WikiBio-E, FT achieved the best result on the Llama2-7B model, with SCEN ranking
second. On the other hand, SCEN achieved the best results on the Llama2-13B model,
maintaining a low level of average perplexity across the three test sets. Meanwhile, GRACE
was competitive and secured second place. In summary, it can be seen that SCEN also
maintained a relatively good stability in the hallucination relief task.

4.3 Ablations and Analysis

Ablation Study. We conducted two ablation experiments in SCEN to investigate the
contribution of each component. Specifically, we examined the impact of using different
positions of weights as experts for editing and employing different training loss functions
for indexing neurons. The complete experimental results are shown in Table.3, where
the top three rows illustrate the effect of editing on different positions of weights. Wattn
indicates that editing is performed in the attention layer, Wup indicates that editing is
performed in the upper half of the fully-connected layer following the attention layer, and
the corresponding Wdown indicates that editing is performed in the lower half of the fully-
connected layer. For a more concise description of Wattn, Wup and Wdown , please refer to
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One sample in One neuron Two sample in One neuron Four sample in One neuron

Figure 3: The Impact of Varying Sample Sizes on the Activation Patterns of Indexing
Neurons.

Fig.2. The following three rows in Table.3, please refer to the effect of employing different
training loss functions for indexing neurons on the final results. w/o ldisactivate&lmargin
represents the scenario in which we retain only the activation loss, while w/o lmargin
represents retaining both the activation loss and the disactivate loss. It can be observed that
in terms of the positioning of expert weights, Wdown achieves the optimal performance in
editing, whereas Wattn exhibits the poorest performance. These findings are consistent with
the results reported by ROME(Meng et al., 2022a). In terms of loss, the main contribution is
attributed to ldisactivate, while the effect of addition of lmargin also shows improvement.

Llama2-7B (ZsRE)
Reliability Generality Locality Avg.

Wattn 90.0 77.3 92.0 86.4
Wup 96.5 83.2 86.7 88.8
Wdown 100.0 90.0 83.3 91.1
w/o ldisactivate&lmargin 100 93.8 73.7 89.2
w/o lmargin 100 90.6 82.1 90.9
SCEN loss(Eq.(8)) 100 90.0 83.3 91.1

Table 3: Ablation Experiments of SCEN on the ZsRE Dataset

How many samples can each expert handle? We consider whether the added parameters
can be reduced in terms of optimizing storage space and inference time. We conducted
three sets of experiments in which an expert and its corresponding indexing neuron were
responsible for handling one sample, two samples, and four samples, respectively. In this
way the present, after sequential editing 200 entries, we obtained 200, 100, and 50 experts,
respectively. With Table.4 shows that the number of added parameters has decreased,
and both Reliability and Generalizability metrics have significantly declined. This decline
may be attributed to each expert learning from multiple diverse training samples, which
consequently leads to a significant reduction in the robustness of indexing neurons.

Llama2-7B (ZsRE)
Numbers Reliability Generality Locality Experts
One 100 90.0 83.3 200
Two 86.5 72.7 81.7 100
Four 53.0 43.7 84.7 50

Table 4: Performance of Different Number of
Compression Strategies on ZsRE

It is evident that a single neuron is insuffi-
cient to accurately model multiple diverse
samples. We also demonstrate the activa-
tion of the corresponding indexing neurons
for different numbers of samples, as illus-
trated in Fig.3. The horizontal coordinates
represent the indexing neurons correspond-
ing to each edited expert, while the verti-
cal coordinates represent the sequentially
edited samples. In the left figure, as it is a
one-to-one sample, clear highlighting can
be observed along the diagonal. The middle and right figures illustrate the two-to-one and
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Reliability Generality Locality

Figure 4: Impact of θ Value Variations on the Performance of the ZsRE Dataset

four-to-one scenarios, respectively, showing that the activation state progresses in a stepwise
manner.

Activation parameter analysis. We investigated the effect of the size of the activation
threshold value θ on the final Reliability, Generality and Locality by dividing θ into 11
hyperparameters ranging from 0.60 to 0.70 in increments of 0.01.The experiments were
conducted on the ZsRE dataset, as illustrated in Fig.4. It can be observed that lower
activation values favor Reliability and Generality, but Locality suffers more. The trend
indicates that Reliability and Generality decrease with increasing θ, while Locality increases
with increasing θ . Memory-based model editing approaches are frequently challenged
by the need to balance Generality and Locality. SCEN minimizes the situations where
hyperparameters significantly impact the metrics. As shown in Fig.4, our method exhibits
relatively small fluctuations across all three metrics within the first half of the thresholds.

Which layer is better for editing? We examined the performance of the even-numbered
layers of Llama2-7B separately, as shown in Fig.5. It is evident that in the lower-level
transformer blocks of Llama2-7B, editing has minimal effect, thereby preserving the original
model results and maintaining a high level of Locality. In contrast, in the higher-level
transformer blocks, the impact of editing is pronounced. Starting from the 16th layer
onward, Reliability remains at a high level, with minimal fluctuations in Generality and
Locality. Consequently, we further validate that the higher-level transformer blocks of LM ,
based on the transformer architecture, contain some factual knowledge, and editing of these
layers has a significant effect.

Figure 5: Results of Editing with SCEN at Even-Numbered Layers of Llama 2-7B

5 Conclusions

In this paper, we present SCEN, an innovative two-stage continuous training paradigm for
model editing. This approach involves training a customized lightweight expert network
for each sample to be edited. Additionally, we have developed a scalable dynamic neuron
indexing mechanism that efficiently activates the corresponding experts. Our experimental
results indicate that SCEN consistently surpasses the most latest state-of-the-art methods
in model editing. Furthermore, we delve into the interpretability of LLMs with a focus on
transformer-based architectures, substantiating that factual knowledge is predominantly
stored in the latter layers of the language model. Looking ahead, we plan to explore
advanced weight compression techniques aimed at reducing the number of expert networks
and indexing neurons. This effort should lead to faster processing and less storage use,
making model editing more practical and efficient.
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A ZsRE dataset details

For ZsRE, we first trained the base model using 10k data to get an SFT model. The format
of the data is shown in Table 5. We added [INST] and [/INST] to the query, which is to
simulate the chat model training format of LLM. The format in editing and result evaluation
is consistent with the format of the training data.We additionally sampled 10k samples Dtest
for constructing edit samples Dedit and samples Dloc for evaluating localization. Dedit is the
sample where the SFT model answered incorrectly in Dtest.In the experiments of this thesis,
we took the first 200 and the first 1,000 samples of Dedit, respectively, which were used to
evaluate the effect of editing, meanwhile, we used the first 3 rewrites of these samples as a
test set to evaluate the generalizability.

Prompts Answer

[INST]Whose direction is From Dusk till Dawn?[/INST] Robert Rodriguez</s>
[INST]The date of birth for Sinoti Sinoti is what?[/INST] 9 September 1985</s>
[INST]In which war did Paul Lacombe de La Tour fight?[/INST] World War I</s>
......

Table 5: Data formats for training SFT models in ZsRE
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B Hallucination dataset details

GRACE constructed a dataset via SelfCheckGPT(Manakul et al., 2023) to evaluate the effect
of model editing methods to reduce model illusions, and called this dataset Hallucination.
Manakul et al. (2023) utilizes GPT3 to extract concepts from WikiBio to generate correspond-
ing biographies. For each sentence generated, they labeled which sentences were factual
and which were hallucinatory. Follow the idea of GRACE to edit the highly inaccurate
sentences and replace them with real Wikipedia sentences. The highly accurate samples are
utilized to judge whether the model still maintains a relatively low level of perplexity on
these samples after editing. Through the above processing, a total of 1,392 editing samples
and 516 sentences that have been accurate have been generated. Compared with the dataset
used in the previous model editing, Hallucination has a longer text length, which is more in
line with the data situation in the real scenario. In this paper, we used the first 200 of the
1392 edited samples for our experiments, in the two Llama2-7B/13B models. Partial data
are shown in Table 6.

WikiBio-W:
This is a Wikipedia passage about akila dananjaya. Akila Dananjaya (born 2 August 1995) is a ......
This is a Wikipedia passage about wilhelm windelband. Wilhelm Windelband (15 March 1848 ......
......
WikiBio-A:
This is a Wikipedia passage about rick mahler. Rick Mahler (born Richard Alan Mahler on April .....
......
OpenWebText:
A magazine supplement with an image of Adolf Hitler and the title ’The Unreadable Book’ is pictured .......
For today’s post, I’d like to take a look at California’s voter initiative to legalize pot. If the measure ......
......

Table 6: Data format for continued training in Hallucination

C Experiment details

Detailed parameter settings using the comparison method used are described in detail
below:

For FT+KL, additional data is needed to be used with the KL loss. In the ZsRE data, we
should have a vector indexing model(all-mpnet-base-v2) for each edit sample from the
5 most similar samples found in the training data of SFT. The training step for each edit
sample is 10 and the learning rate is 0.0001.

For the MEND, additional data is needed to train an editor, and to avoid any test set leakage,
in the ZsRE data, we use 2000 entries from the data used to train the SFT to train the editor.
In the Hallucination dataset, we use the last 400 data out of 1352 entries to train the editor.

For the SEARAC method, the method contains a total of three models, of which the classifi-
cation model we use is distilbert-base-cased, and the threshold we set is 0.6.

For the GRACE method, ϵ is set to 3.0, the number of iterations is set to 10, the learning rate
is set to 1.0, and the adapter weights are taken to be randomly initialized.

For MEMIT, we only experimented on ZsRE, the fact token used makes the last token of
the entity, and the positions to be edited are the 20th and 22nd transofmerblock.
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