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Abstract

The grokking phenomenon as reported by Power et al. [13] refers to a regime where1

a long period of overfitting is followed by a seemingly sudden transition to perfect2

generalization. In this paper, we attempt to reveal the underpinnings of Grokking3

via a series of empirical studies. Specifically, we uncover an optimization anomaly4

plaguing adaptive optimizers at extremely late stages of training, referred to as5

the Slingshot Mechanism. A prominent artifact of the Slingshot Mechanism can6

be measured by the cyclic phase transitions between stable and unstable training7

regimes, and can be easily monitored by the cyclic behavior of the norm of the8

last layers weights. We empirically observe that without explicit regularization,9

Grokking as reported in [13] almost exclusively happens at the onset of Slingshots,10

and is absent without it. While common and easily reproduced in more general11

settings, the Slingshot Mechanism does not follow from any known optimization12

theories that we are aware of, and can be easily overlooked without an in depth13

examination. Our work points to a surprising and useful inductive bias of adaptive14

gradient optimizers at late stages of training, calling for a revised theoretical15

analysis of their origin.16
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Figure 1: Slingshot Effects are observed with a fully-connected ReLU network (FCN). The FCN is trained with
200 randomly chosen CIFAR-10 samples with Adam. Multiple Slingshot Effects occur in a cyclic fashion as
indicated by the dotted red boxes. Each Slingshot Effect is characterized by a period of rapid growth of the last
layer weights, an ensuing training loss spike, and a norm plateau.

1 Introduction17

Recently, the grokking phenomenon was proposed by [13], in the context of studying the optimization18

and generalization aspects in small, algorithmically generated datasets. Specifically, grokking refers19
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to a sudden transition from chance level validation accuracy to perfect generalization, long past the20

point of perfect training accuracy, i.e., Terminal Phase of Training (TPT). This curious behavior21

contradicts the common belief of early stopping in the overfitting regimes, and calls for further22

understandings of the generalization behavior of deep neural networks.23

In the literature, it has been suggested that in some scenarios, marginal improvements in validation24

accuracy appears in TPT, which seem to directly support grokking. For example, it has been shown25

in [14] that gradient descent on logistic regression problems converges to the maximum margin26

solution, a result that has been since extended to cover a wider setting [11, 17]. A key finding in [14]27

shows that when training on linearly separable data with gradient descent using logistic regression,28

the classifier’s margin slowly improves at a rate of O( 1
log t ), while the weight norm of the predictor29

layer grows at a rate of O(t), where t is the number of training steps. While specified for gradient30

descent, Wang et al. [17] showed that similar results also hold for adaptive optimizers (such as Adam31

and RMSProp). Taking these results into consideration, one could reasonably hypothesise that deep32

nonlinear networks could benefit from longer training time, even after achieving zero errors on the33

training set.34

35

In this paper, we provide in depth empirical analyses to the mechanism behind grokking. We find that36

the phenomenology of grokking differs from those predicted by [14] in several key aspects. To be37

concrete, we find that grokking occurs during the onset of another intriguing phenomenon directly38

related to adaptive gradient methods (see Algorithm 1 for a generic description of adaptive gradient39

methods). In particular, leveraging the basic setup in [13], we make the following observations:40

1. During the TPT, training exhibits a cyclic behaviour between stable and unstable regimes. A41

prominent artifact of this behaviour can be seen in the norm of a model’s last layer weights, which42

exhibits a cyclical behavior with distinct, sharp phase transitions that alternate between rapid growth43

and plateaus over the course of training.44

2. The norm grows rapidly sometime after the model has perfect classification accuracy on training45

data. A sharp phase transition then occurs when the model missclassifies training samples. This46

phase change is accompanied by a sudden spike in training loss, and a plateau in the norm growth of47

the final classification layer.48

3. The features (pre-classification layer) show rapid evolution as the weight norm transitions from49

rapid growth to a growth plateau, and change relatively little at the norm growth phase.50

4. Phase transitions between norm growth and norm plateau phases are typically accompanied by a51

sudden bump in generalization as measured by classification accuracy on a validation set, as observed52

in a dramatic fashion in [13].53

5. It is empirically observed that grokking as reported in [13] almost exclusively happens at the onset54

of Slingshots, and is absent without it.55

We denote the observations above as the Slingshot Effect, which is defined to be the full cycle starting56

from the norm growth phase, and ending in the norm plateau phase. And empirically, a single training57

run typically exhibits multiple Slingshot Effects. Moreover, while grokking as described in [13]58

might be data dependent, we find that the Slingshot Mechanism is pervasive, and can be easily59

reproduced in multiple scenarios, encompassing a variety of models (Transformers and MLPs) and60

datasets (both vision, algorithmic and synthetic datasets). Since we only observe Slingshot Effects61

when training classification models with adaptive optimizers, our work can be seen as empirically62

characterizing an implicit bias of such optimizers. Finally, while our observations and conclusions63

hold for most variants of adaptive gradient methods, we focus on Adam in the main paper, and64

relegate all experiments with additional optimizers to the appendix.65

Algorithm 1 Generic Adaptive Gradient Method
Input: X1 ∈ F , step size µ, sequence of functions {ϕt, ψt}Tt=1, ϵ ∈ R+

Output: Fitted α.
1 for t = 1..., T do
2 gt = ∇ft(xt).
3 mt = ϕt(g1, ..., gt) and Vt = ψt(g1, ..., gt).
4 xt+1 = xt − µmt√

V 2
t +ϵ
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1.1 Implications of Our Findings66

The findings in this paper have both theoretical and practical implications that go beyond characteriz-67

ing Grokking. A prominent feature of the Slingshot Mechanism is the repeating phase shifts between68

stable and unstable training regimes, where the unstable phase is characterized by extremely large69

gradients, and spiking training loss. Furthermore, we find that learning at late stages of training have70

a cyclic property, where non trivial feature adaptation only takes place at the onset of a phase shift.71

From a theoretical perspective, this is contradictory to common assumptions made in the literature of72

convergence of adaptive optimizers, which typically require L smooth cost functions, and bounded73

stochastic gradients, either in the L2 or L∞ norm, decreasing step sizes and stable convergence74

[18, 1, 2]. From the apparent generalization benefits of Slingshot Effects, we cast doubt on the ability75

of current working theories to explain the Slingshot Mechanism.76

Practically, our work presents additional evidence for the growing body of work indicating the77

importance of the TPT stage of training for optimal performance [6, 13, 12].78

In an era where the sheer size of models are quickly becoming out of reach for most practitioners,79

our work suggest focusing on improved methods to prevent excessive norm growth either implicitly80

through Slingshot Effects or through other forms of explicit regularization or normalization.81

2 Related Work82

The Slingshot Mechanism we uncover here is reminiscent of the catapult mechanism described in83

Lewkowycz et al. [9]. Lewkowycz et al. [9] show that loss of a model trained via gradient descent with84

an appropriately large learning rate shows a non-monotonic behavior —the loss initially increases85

and starts decreasing once the model "catapults" to a region of lower curvature —early in training.86

However, the catapult phenomenon differs from Slingshot Effects in several key aspects. The catapult87

mechanism is observed with vanilla or stochastic gradient descent unlike the Slingshot Mechanism88

that is seen with adaptive optimizers including Adam [7] and RMSProp [15]. Furthermore, the89

catapult phenomenon relates to a large initial learning rate, and does not exhibit a repeating cyclic90

behavior. More intriguingly, Slingshot Effects only emerge late in training, typically long after the91

model reaches perfect accuracy on the training data.92

Cohen et al. [3] describe a "progressive sharpening" phenomenon in which the maximum eigenvalue93

of the loss Hessian increases and reaches a value that is at equal to or slightly larger than 2/η where94

η is the learning rate. This "progressive sharpening" phenomenon leads to model to enter a regime95

Cohen et al. [3] call Edge of Stability where-in the model shows non-monotonic training loss behavior96

over short time spans. Edge of Stability is similar to the Slingshot Mechanism in that it is shown to97

occur later on in training. However, Edge of Stability is shown for full-batch gradient descent while98

we observe Slingshot Mechanism with adaptive optimizers, primarily Adam [7] or AdamW [10].99

As noted above, the Slingshot Mechanism emerges late in training, typically longer after the model100

reaches perfect accuracy and has low loss on training data. The benefits of continuing to training101

a model in this regime has been theoretically studied in several works including [14, 11]. Soudry102

et al. [14] show that training a linear model on separable data with gradient using the logistic103

loss function leads to a max-margin solution. Furthermore Soudry et al. [14] prove that the loss104

decreases at a rate of O( 1t ) while the margin increases much slower O( 1
log t ), where t is the number105

of training steps. Soudry et al. [14] also note that the weight norm of the predictor layer increases106

at a logarithmic rate, i.e., O(log(t)). Lyu and Li [11] generalize the above results to homogeneous107

neural networks trained with exponential-type loss function and show that loss decreases at a rate of108

O(1/t(log(t))2−2/L). This is, where L is defined as the order of the homogenous neural network.109

Although these results indeed prove the benefits of training models, their analyses are limited110

to gradient descent. Moreover, the analyses developed by Soudry et al [14] do not predict any111

phenomenon that resembles the Slingshot Mechanism. Wang et al. [17] show that homogenous neural112

networks trained with RMSProp [15] or Adam without momentum [17] do converge in direction to113

the max-margin solution. However, none of these papers can explain the Slingshot Mechanism and114

specifically the cyclical behavior of the norm of the last layer weights.115
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Figure 2: Division dataset: Last layer weight norm growth versus a) loss on training data b) accuracy on training
data (c) loss on validation data d) accuracy on validation data e) normalized relative change in features of first
Transformer layer (f) normalized relative change in features of second Transformer layer. Note that the feature
change plots are shown starting at 10K step to emphasize the feature change behavior during norm growth and
plateau phases, revealing that the features stop changing during the norm growth phase and resume changing
during the plateaus.

3 The Slingshot Mechanism116

3.1 Experimental Setup117

We use the training setup studied by Power et al. [13] in the main paper as a working example to118

illustrate the Slingshot Mechanism. In this setup, we train decoder-only Transformers [16] on a119

modular division dataset [13] of the form a ÷ b = c, where a, b and c are discrete symbols and ÷120

refers to division modulo p for some prime number p, split into training and validation sets. The121

task consists of calculating c given a and b. The algorithmic operations and details of the datasets122

considered in our experiments are described in Appendix B. The Transformer consists of 2 layers,123

of width 128 and 4 attention heads with approximately 450K trainable parameters and is optimized124

by Adam [7, 10]. For these experiments we set learning rate to 0.001, weight decay to 0, β1 = 0.9,125

β2 = 0.98, ϵ = 10−8, linear learning rate warmup for the first 10 steps and minibatch size to 512126

which are in line with the hyperparameters considered in [13].127

Figure 2 shows the metrics of interest that we record on training and validation samples for modular128

division dataset. Specifically, we measure 1) train loss; 2) train accuracy; 3) validation loss; 4)129

validation accuracy; 5) last layer norm: denoting the norm of the classification layer’s weights and 6)130

feature change: the relative change of features of the l-th layer (hl) after the t-th gradient update step131

∥hl
t+1−hl

t∥
∥hl

t∥
. We observe from Figure 2b that the model is able to reach high training accuracy around132

step 300 while validation accuracy starts improving after 105 steps as seen in Figure 2d. Power et133

al. [13] originally showed this phenomenon and refer to it as grokking. We observe that while the134

validation accuracy does not exhibit any change until much later in training, the validation loss shown135

in Figure 2c exhibits a double descent behavior with an initial decrease, then a growth before rapidly136

decreasing to zero.137

Seemingly, some of these observations can be explained by the arguments in [14] and their extensions138

to adaptive optimizers [17]. Namely, at the point of reaching perfect classification of the training set,139

the cross-entropy (CE) loss by design pressures the classification layer to grow in norm at relatively140

fast rate. Simultaneously, the implicit bias of the optimizer coupled with the CE loss, pushes the141

direction of the classification layer to coincide with that of the maximum margin classifier, albeit at a142

much slower rate.143
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These insights motivate us to measure the classifier’s last layer norm during training. We observe in144

Figure 2a that once classification reaches perfect accuracy on the training set, the classification layer145

norm exhibits a distinct cyclic behavior, alternating between rapid growth and plateau, with a sharp146

phase transition between phases. Simultaneously, the training loss retains a low value in periods of147

rapid norm growth, and then wildly fluctuating in periods of norm plateau. Figure 2e and Figure 2f148

shows the evolution of the relative change in features output by each layer in the Transformer. We149

observe that the feature maps are not updated much during the norm growth phase. However, at the150

phase transition, we observe that the feature maps receive a rapid update, which suggests that the151

internal representation of the model is updating.152

Is Slingshot a general phenomenon? In an attempt to ascertain the generality of Slingshot153

Effects as an optimization artifact, we run similar experiments with additional architectures, datasets,154

optimizers, and hyperparameters. We use all algorithmic datasets as proposed in [13], as well as155

frequently used vision benchmarks such as CIFAR-10 [8], and even synthetic Gaussian dataset. For156

architectures, we use Transformers, MLPs and deep linear models (see figure 1). We find abundant157

evidence of Slingshot Effects in all of our experiments with Adam, AdamW and RMSProp. We158

are unable to observe Slingshot Effects with Adagrad [5] and also with stochastic gradient descent159

(SGD) or SGD with momentum, pointing to the generality of the mechanism across architectures and160

datasets. We refer the reader to Appendix A for the full, detailed description of the experiments.161

Why does Slingshot happen? We hypothesize that the norm growth continues until the curvature162

of the loss surface becomes large, effectively “flinging" the weights to a different region in parameter163

space as small gradient directions get amplified, reminiscent of the mechanics of a slingshot flinging a164

projectile. We attempt to quantify how far a model is flung by measuring the cosine distance between165

a checkpoint during optimization and initial parameters. Specifically, we divide the model parameters166

into representation (pre-classifier) parameters and classifier (last layer) parameters and calculate how167

far these parameters have moved from initialization. We show that checkpoints collected after a168

model experiences Slingshot have a larger representation cosine distance. We defer the reader to the169

appendix for further details.170
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Figure 3: Curvature metric (denoted as "update sharpness") evolution vs norm growth on (a) addition, (b)
subtraction, (c) multiplication, and (d) division dataset. Note the spike in the sharpness metric near the phase
transitions between norm growth and plateau.

By design, adaptive optimizers adapt the learning rate on a per parameter basis. In toy, convex171

scenarios, the ϵ parameter provably determines whether the algorithm will converge stably. To172
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illustrate this, we take inspiration from [3], and consider a quadratic cost function L(A,B,C) =173
1
2x

⊤Ax+B⊤x+C,A ∈ Rd×d, x,B ∈ Rd, C ∈ R, where we assume A is symmetric and positive174

definite. Note that the global minimum of this cost is given by x⋆ = −A−1B. The gradient of175

this cost with respect to x is given by g = Ax + B. Consider optimizing the cost with adaptive176

optimization steps of the simple form xt+1 = xt − µ g
|g|+ϵ = xt − µ Axt+B

|Axt+B|+ϵ where µ is a learning177

rate, and the division and absolute operations are taken element wise. Starting from some x0, the178

error et = xt − x⋆ evolves according to:179

et+1 =
(
I − µdiag(

1

|Aet|+ ϵ
)A

)
et

def
= Mtet (1)

Note that the condition ∥A∥s < 2ϵ
µ where ∥ · ∥s denotes the spectral norm, implies that the mapping180

Mt is a contraction for all values of t, and hence convergence to the global optimum is guaranteed181

(This is in contrast to gradient descent, where the requirement is ∥A∥s < 2
µ ). Note that the choice182

of ϵ crucially controls the requirement on the curvature of the cost, represented by the the spectrum183

of A in this case. In other words, the smaller ϵ, the more restrictive the requirements on the top184

eigenvalue of A. In [3], it was observed that full batch gradient descent increases the spectral norm185

of the Hessian to its maximum allowed value. We therefore hypothesize that for deep networks, a186

small value for ϵ requires convergence to a low curvature local minimum, causing a Slingshot Effect187

when this does not occur. Moreover, we may reasonably predict that increasing the value of ϵ would188

lift the restriction on the curvature, and with it evidence of Slingshot Effects.189

Figure 3 shows evidence consistent with the hypothesis that Slingshot Effects occur in the vicinity of190

high loss curvature, by measuring the local loss surface curvature along the optimization trajectory.191

Let Ht denote the local Hessian matrix of the loss, and ut the parameter update at time t given the192

optimization algorithm of choice. We use the local curvature along the trajectory of the optimizer,193

given by 1
∥ut∥2u

⊤
t Htut, as a curvature measure. Across the arithmetic datasets from [13], whenever194

the last layer weight norm plateaus, the curvature measure momentarily peaks and settles back down.195

Varying ϵ We next observe from Figure 2a that the training loss value also spikes up around the196

time step when the weight norm transitions from growth to plateau. A low training loss value suggests197

that the gradients (and their moments) used as inputs to the optimizer are small, which in turn can198

cause the ϵ hyperparameter value to play a role in calculating updates. Our hypothesis here is that the199

Slingshot Effect should eventually disappear with a sufficiently large ϵ. To confirm this hypothesis,200

we run an experiment where we vary ϵ while retaining the rest of the setup described in the previous201

section.202

Figure 4 shows the results for various values of ϵ considered in this experiment. We first observe that203

the number of Slingshot Effect cycles is higher for smaller values of ϵ. Secondly, smaller values of ϵ204

cause grokking to appear at an earlier time step when compared to larger values. More intriguingly,205

models that show signs of grokking also experience Slingshot Effects while models that do not206

experience Slingshot Effects do not show any signs of grokking. Lastly, the model trained with the207

largest ϵ = 10−5 shows no sign of generalization even after receiving 500K updates.208

3.2 Effects on Generalization209

In order to understand the relationship between Slingshot Effects and neural networks generalization,210

we experiment with various models and datasets. We observe that models that exhibit Slingshot tend211

to generalize better, which suggests the benefit of training models for a long time with Adam [7] and212

AdamW [10]. More surprisingly, we observe that Slingshots and grokking tend to come in tandem.213

Transformers with algorithmic datasets We follow the setting in Power et al. [13] and generate214

several datasets that represent algorithmic operations and consider several training and validation215

splits. This dataset creation approach is consistent with the methodology used to demonstrate216

grokking [13]. The Transformer is trained with AdamW [10] with a learning rate of 0.001, weight217

decay set to 0, and with learning rate warmup for 500K steps. We consider ϵ of AdamW as a218

hyperparameter in this experiment. Figure 5 summarizes the results for this experiment where the219

x-axis indicates the algorithmic operation followed by the training data split size. As can be seen220

in Figure 5, Slingshot Effects are seen with lower values of ϵ and disappear with higher values of ϵ221
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Figure 4: Varying ϵ in Adam on the Division dataset. Observe that as ϵ increases, there is no Slingshot Effect or
grokking behavior. Figure (a) corresponds to default ϵ suggested in [7] where the model trained with smallest
value undergoes multiple Slingshot cycles.

which confirms the observations made in Section 3 with modular division dataset. In addition, models222

that exhibit Slingshot Effects and grokking (shown in green) tend to generalize better than models223

that do not experience Slingshot Effects and grokking (shown in red).224

ViT with CIFAR-10 For further validation of Slingshot Effects and generalization, we train a225

Vision Transformer (ViT) [4] on CIFAR-10 [8]. The ViT consists of 12 layers, width 384 and226

12 attention heads trained on fixed subsets of CIFAR-10 dataset [8]. The ViT model described227

above is trained with 10K, 20K, 30K, 40K and 50K (full dataset) training samples. We train the228

models with the following learning rates: 0.0001, 0.00031 and 0.001 and with a linear learning rate229

warmup for the 1 epoch of optimization. We consider multiple learning rates to study the impact of230

this hyperparameter on Slingshot taking inspiration from [13] where the authors report observing231
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No Slingshot Effects, no grokking Slingshot Effects and grokkingSlingshot Effects, no grokking

Figure 5: Extended analysis on multiple grokking datasets. Points shown in green represent both Slingshot
Effects and grokking, points shown blue indicate Slingshot Effects but not grokking while points in red indicate
no Slingshot Effects and no grokking. ϵ in Adam is varied as shown in text. Observe that as ϵ increases, there
are no Slingshot Effects or grokking behavior.

grokking over a narrow range of learning rates . Figure 6 shows a plot of the highest test accuracy for232

a set of hyperparameters (learning rate, number of training samples) as a function of the number of233

training samples from which we make the following observations. The best test accuracy for a given234

set of hyperparameters is typically achieved after Slingshot phase begins during optimization. The235

checkpoints that achieve the highest test accuracy are labeled as "post-slingshot" and shown in green236

in Figure 6. While post-Slingshot checkpoints seem to enjoy higher test accuracy, there are certain237

combinations of hyperparameters that lead to models that show better test accuracy prior to the start238

of the first Slingshot phase. We label these points as "pre-slingshot" (shown in blue) in Figure 6. The239

above observations appear to be consistent with our finding that training long periods of time may240

lead to better generalization seen with grokking datasets [13].241

Non-Transformer Models We conduct experiments with MLPs on synthetic data where the242

synthetic data is a low dimensional embedding projected to higher dimensions via random projections.243

This design choice is critical with showing the existence of the Slingshot Effect with synthetically244

generated data. We find that using low dimensional data does not lead to any Slingshots. With this245

dataset, we show that generalization occurs late in training with Adam. Specifically, we tune ϵ in246

Adam and show that the optimizer is highly sensitive to this hyperparameter. These observations are247

consistent with the behavior reported above with Transformers and on algorithmic datasets as well248

as standard vision benchmark such as CIFAR-10. We refer the reader to Appendix ?? for complete249

description and details of these experiments.250

3.3 Drawbacks and Limitations251

While the Slingshot Mechanism exposes an interesting implicit bias of Adam that often promotes252

generalization, due to its arresting of the norm growth and ensuing feature learning, it also leads to253

some training instability and prolonged training time. In the Appendix we show that it is possible to254

achieve similar levels of generalization with Adam on the modular division dataset [13] using the255

same Transformer setup as above, while maintaining stable learning, in regimes that do not show256

a clear Slingshot Effect. First we employ weight decay, which causes the training loss values to257

converge to a higher value than the unregularized model. In this regime the model does not become258

unstable, but instead regularization leads to comparable generalization, and much more quickly.259

However, it is important to tune the regularization strength appropriately. Similarly, we find that it is260
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Figure 6: Slingshot Effects on subsets of CIFAR-10 dataset. We train ViTs with multiple learning rates to verify
the impact this parameter has on Slingshot. Power et al [13] note that grokking occurs over a narrow range of
learning rates. Note that the points marked in: (i) green correspond to test accuracy for an experiment after the
Slingshot Effect begins, (ii) blue are for trials where best checkpoint is observed prior to start of a Slingshot
Effect and (iii) red are for trials with no Slingshot Effect.

possible to normalize the features and weights using the following scheme to explicitly control norm261

growth: w = w
∥w∥ , f(x) =

f(x)
∥f(x)∥ , where w and f(x) are the weights and inputs to the classification262

layer respectively, the norm used above is the L2 norm, and x is the input to the neural network. This263

scheme also results in stable training and similar levels of generalization. In all cases the effects rely264

on keeping the weight norms from growing uncontrollably, which may be the most important factor265

for improving generalization. These results suggest that while the Slingshot Mechanism may be an266

interesting self-correcting scheme for controlling norm growth, there are likely more efficient ways267

to leverage adaptive optimizers to similar levels of generalization without requiring the instability268

that is a hallmark of the Slingshot effect.269

Finally, we lack a satisfactory theoretical explanation for the Slingshot Mechanism, and hence270

removed all attempts at a more rigorous mathematical definition, which we feel would only serve as a271

distraction.272

4 Conclusion273

We have empirically shown that optimizing deep networks with cross entropy loss and adaptive274

optimizers produces the Slingshot Mechanism, a curious optimization anomaly unlike anything275

described in the literature. We have provided ample evidence that Slingshot Effects can be observed276

with different neural architectures and datasets. Furthermore, we find that Grokking [13] almost277

always occurs in the presence of Slingshot Effects and associated regions of instability in the Terminal278

Phase of Training (TPT). These results in their pure form absent explicit regularization, reveal an279

intriguing inductive bias of adaptive gradient optimizers that becomes salient in the TPT, characterized280

by cyclic stepwise effects on the optimization trajectory. These effects often promote generalization281

in ways that differ from non-adaptive optimizers like SGD, and warrant further study to be able282

to harness efficiently. There are open question remaining to be answered, for instance 1) What’s283

the causal factor of the plateau of weight norm growth? 2) Are there better ways of promoting284

generalization without relying on this accidental training instability? Answering these questions w ill285

allow us to decouple optimization and regularization, and ultimately to control and improve them286

independently.287

5 Societal Impact288

This is a fundamental work in Deep Learning, it will impact the society via its effects on relevant289

models and applications.290
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