
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

BILEVEL OPTIMIZATION WITH LOWER-LEVEL
UNIFORM CONVEXITY: THEORY AND ALGORITHM

Anonymous authors
Paper under double-blind review

ABSTRACT

Bilevel optimization is a hierarchical framework where an upper-level optimization
problem is constrained by a lower-level problem, commonly used in machine
learning applications such as hyperparameter optimization. Existing bilevel
optimization methods typically assume strong convexity or Polyak-Łojasiewicz
(PL) conditions for the lower-level function to establish non-asymptotic
convergence to a solution with small hypergradient. However, these assumptions
may not hold in practice, and recent work (Chen et al., 2024) has shown that bilevel
optimization is inherently intractable for general convex lower-level functions with
the goal of finding small hypergradients.
In this paper, we identify a tractable class of bilevel optimization problems that
interpolates between lower-level strong convexity and general convexity via lower-
level uniform convexity. For uniformly convex lower-level functions with exponent
p ≥ 2, we establish a novel implicit differentiation theorem characterizing the
hyperobjective’s smoothness property. Building on this, we design a new stochastic
algorithm, termed UniBiO, with provable convergence guarantees, based on an
oracle that provides stochastic gradient and Hessian-vector product information
for the bilevel problems. Our algorithm achieves Õ(ϵ−5p+6) oracle complexity
bound for finding ϵ-stationary points. Notably, our complexity bounds match
the optimal rates in terms of the ϵ dependency for strongly convex lower-level
functions (p = 2), up to logarithmic factors. Our theoretical findings are validated
through experiments on synthetic tasks and data hyper-cleaning, demonstrating the
effectiveness of our proposed algorithm.

1 INTRODUCTION

Bilevel optimization (Bracken & McGill, 1973; Dempe, 2002) is a hierarchical optimization
framework where an upper-level optimization problem is constrained by a lower-level optimzation
problem. Bilevel optimization plays a crucial role in various machine learning applications, including
meta-learning (Finn et al., 2017), hyperparameter optimization (Franceschi et al., 2018), data
hypercleaning (Franceschi et al., 2017; Shaban et al., 2019), continual learning (Borsos et al.,
2020; Hao et al., 2023), neural network architecture search (Liu et al., 2018), and reinforcement
learning (Konda & Tsitsiklis, 1999). The bilevel optimization problem can be defined as:

min
x∈Rdx

ϕ(x) := f(x, y∗(x)), y∗(x) ∈ argmin
y∈Rdy

g(x, y), (1)

where f and g are referred to as upper-level and lower-level functions respectively. A common
assumption in bilevel optimization is that the lower-level function is either strongly convex (Ghadimi
& Wang, 2018; Hong et al., 2023; Ji et al., 2021; Chen et al., 2021a; 2023; Hao et al., 2024; Kwon
et al., 2023a) or satisfies the Polyak-Łojasiewicz (PL) condition (Liu et al., 2022; Kwon et al., 2023b;
Shen & Chen, 2023; Huang, 2024), which facilitates the design of algorithms with non-asymptotic
convergence guarantees for finding a solution with a small hypergradient. However, these assumptions
do not always hold in practice.

Recent work (Chen et al., 2024) has explored the relaxation of these conditions but has primarily
yielded negative results. Specifically, they show that for general convex lower-level problems, bilevel
optimization can be intractable with the goal of finding a point with a small hypergradient: the
hyperobjective function can be discontinuous and may lack stationary points. This stark contrast
between lower-level strong convexity (LLSC) and mere lower-level convexity (LLC) naturally raises
the following question:

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Can we identify an intermediate class of bilevel optimization problems that bridges the
gap between LLSC and LLC, enabling the design of efficient algorithms of finding small
hypergradients in polynomial time?

In this paper, we provide a positive answer to this question by introducing a function class that
satisfies a property called lower-level uniform convexity (LLUC)1. This property serves as a natural
interpolation between LLSC and LLC, controlled by an exponent p. Uniform convexity (Zǎlinescu,
1983; Iouditski & Nesterov, 2014) is a refined notion of convexity characterized by p ≥ 2, where
p = 2 corresponds to strong convexity.

Finding small hypergradients under LLUC presents several challenges. First, for uniformly convex
lower-level functions, the Hessian of the lower-level objective may be singular, making it impossible
to compute hypergradients directly using the standard implicit differentiation theorem applicable
under LLSC (Ghadimi & Wang, 2018). Second, the LLUC property inherently conflicts with the
standard smoothness assumptions for the lower-level function (i.e., Lipschitz-continuous gradient in
terms of the lower-level variable), which are crucial for the theoretical analysis of existing bilevel
optimization algorithms (Ghadimi & Wang, 2018; Hong et al., 2023; Ji et al., 2021; Kwon et al.,
2023a; Hao et al., 2024). Consequently, addressing bilevel optimization under LLUC necessitates the
development of a fundamentally different algorithmic framework and novel analysis techniques.

In this work, we tackle these challenges with two key innovations. First, we develop a novel
implicit differentiation theorem under LLUC, which characterizes the smoothness property of the
hyperobjective, where the degree of smoothness depends on the uniformly convex exponent p.
Second, to overcome the lack of standard smoothness assumptions for the lower-level function, we
propose a new stochastic algorithm called UniBiO (Uniformly Convex Bilevel Optimization). After a
warm-start stage for the lower-level variable, UniBiO employs a normalized momentum update for
the upper-level variable and a multistage stochastic gradient descent with a shrinking ball strategy to
update the lower-level variable. Notably, the lower-level updates are required only periodically rather
than at every iteration. Our main contributions are summarized as follows.

• We identify a tractable class of bilevel optimization problems that interpolates between LLSC
and LLC by leveraging the LLUC. Under this problem class, we develop a novel implicit
differentiation theoremthat provides an explicit hypergradient formula and establishes its
smoothness property. This theorem is of independent interest and could be applied to other
hierarchical optimization settings (e.g., multilevel and minimax optimization).

• We design a new stochastic algorithm named UniBiO, the first algorithm designed for bilevel
optimization under LLUC. We prove that UniBiO achieves the oracle complexity Õ(ϵ−5p+6)
for finding an ϵ-stationary point for the hyperobjective in the stochastic setting, where
the oracle provides either stochastic gradients or Hessian-vector products. Notably, this
oracle complexity matches the optimal complexity for strongly convex lower-level functions
(p = 2) up to logarithmic factors.

• We conduct experiments on both an synthetic task and data hypercleaning, which validate
our theory and show the effectiveness of our proposed algorithm.

2 RELATED WORK

Bilevel Optimization with Lower-Level Strong Convexity. Early research on bilevel optimization
primarily focused on asymptotic convergence guarantees (Vicente et al., 1994; Anandalingam &
White, 1990; White & Anandalingam, 1993). A major breakthrough came with Ghadimi & Wang
(2018), which established the first non-asymptotic convergence guarantees for finding a solution
with a small hypergradient under the assumption that the lower-level function is strongly convex.
This work laid the foundation for a series of subsequent studies that improved either the complexity
or the simplicity of algorithm design (Hong et al., 2023; Chen et al., 2021b; Ji et al., 2021; Kwon
et al., 2023a; Hao et al., 2024; Gong et al., 2024a; Chen et al., 2021a; Khanduri et al., 2021; Dagréou
et al., 2022; Guo et al., 2021; Yang et al., 2021; Gong et al., 2024b). These works critically rely on
the implicit differentiation theorem from Ghadimi & Wang (2018), which is applicable under the
assumption of lower-level strong convexity. In contrast, our work does not assume LLSC, rendering
the standard implicit differentiation technique from Ghadimi & Wang (2018) inapplicable.

1The definition of LLUC is given in Assumption 3.2 (i).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Bilevel Optimization with Lower-Level Nonconvexity. Bilevel optimization with nonconvex lower-
level functions is generally intractable without additional assumptions (Daskalakis et al., 2021).
One common approach assumes that the lower-level function satisfies the Polyak-Łojasiewicz (PL)
condition (Liu et al., 2022; Kwon et al., 2023b; Shen & Chen, 2023; Huang, 2024; Chen et al.,
2024). Another line of work leverages sequential approximation minimization techniques (Liu et al.,
2021a;b; 2020) to solve bilevel problems without assuming lower-level strong convexity, though
these methods typically offer only asymptotic convergence guarantees. Additionally, Arbel & Mairal
(2022) employs Morse theory to extend implicit differentiation in the presence of multiple lower-level
minima caused by nonconvexity. In contrast, our work focuses on a class of uniformly convex
lower-level problems.

Bilevel Optimization with General Lower-level Convexity. Despite the negative results of Chen
et al. (2024) under LLC from the hypergradient perspective, there is a line of work which investigates
algorithms converging to ϵ-KKT solution of a corresponding constrained optimization problem (Lu
& Mei, 2024a;b). In contrast, our work focuses on finding an solution with small hypergradient, not
an ϵ-KKT solution for a corresponding constrained problem.

Optimization for Uniformly Convex Functions. For an single-level optimization problem under
uniform convexity, the work of Iouditski & Nesterov (2014) established first-order algorithms with
optimal complexity upper bounds for nonsmooth functions with bounded gradients. Under a high-
order smoothness assumption, the work of Song et al. (2019) designed high-order methods for
uniformly convex functions. In addition, the work of Bai & Bullins (2024) derived lower bounds
for a class of optimization problems characterized by high-order smoothness and uniform convexity.
In contrast, our work focuses on updating the lower-level variable using first-order methods under
LLUC, without bounded gradients or smoothness assumptions.

3 PRELIMINARIES

Define ∥ · ∥ as the Euclidean norm (spectral norm) when the argument is a vector (an square matrix).
Define ⟨·, ·⟩ as the inner-product in Euclidean space. Denote ⊙ by the Hadamard (element-wise)
product. For any a ∈ Rd, We adopt the notation [a]◦ρ = (aρ1, . . . , a

ρ
d) for a ∈ Rd to denote the

element-wise power of a vector., where ρ > 0 can be any positive number (e.g., integers or non-
integers). We use asymptotic notation Õ(·), Θ̃(·), Ω̃(·) to hide polylogarithmic factors in terms of
1/ϵ. Define f : Rdx × Rdy 7→ R as the upper-level function, and g : Rdx × Rdy 7→ R as the
lower-level function. We consider the stochastic optimization setting: we only have noisy observation
of f and g: f(x, y) = Eξ∼Df

[F (x, y; ξ)] and g(x, y) = Eζ∼Dg
[G(x, y; ζ)], where Df and Dg are

underlying data distributions for upper-level function and lower-level functions respectively. We need
the following definition of the differentiability in the normed vector space.

Definition 3.1 (Differentiability in Normed Vector Spaces). Let (X, ∥·∥X) and (Y, ∥·∥Y) be normed
vector spaces, let E ⊆ X and x0 ∈ E be an accumulation point of E. The function ℓ : E → Y is
defined to be differentiable at x0 if there exists a continuous linear function J : X → Y (depending
on f and x0) such that:

lim
x→x0

ℓ(x)− ℓ(x0)− J(x− x0)
∥x− x0∥X

= 0. (2)

In addition, J is defined as the derivative of h in terms of x at the point x0, i.e., J := dℓ(x)
dx |x=x0

.

In the following, we will introduce the problem class of LLUC with corresponding assumptions in
Section 3.1, and provide some examples within the problem class in Section 3.2.

3.1 THE LOWER-LEVEL UNIFORM CONVEXITY PROBLEM CLASS

In this section, we introduce the assumptions that define the LLUC problem class. In particular, we
identity the assumptions for both upper-level function f , lower-level function g and the hyperobjective
Φ. We make the following assumptions throughout this paper.

Assumption 3.2. The following conditions hold for the lower-level function g for some p ≥ 2. (i) For
every x, g(x, y) is (µ, p)-uniformly-convex with respect to y: g(x, y2) ≥ g(x, y1)+⟨∇yg(x, y1), y2−
y1⟩ + µ

p ∥y2 − y1∥p holds for any y1, y2. (ii) g(x, y) is (L0, L1)-smooth in y for any given x:
∥∇2

yyg(x, y)∥ ≤ L0 + L1∥∇yg(x, y)∥ for any y and any x. (iii) ∇yg(x, y) is lg,1-Lipschitz in

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

x: ∥∇yg(z1) − ∇yg(z2)∥ ≤ lg,1∥x1 − x2∥ for any z1 = (x1, y), z2 = (x2, y) ∈ Rdx+dy . (iv)
∇2

xyg(x, y) is lg,2-Lipschitz jointly in (x, y): ∥∇2
xyg(z1) − ∇2

xyg(z2)∥ ≤ lg,2∥z1 − z2∥ for any

z1 = (x1, y1), z2 = (x2, y2) ∈ Rdx+dy . (v) d∇yg(x,y)
d[y]◦p−1 exists and lg,2 jointly Lipschitz continuous

with (x, y):
∥∥∥d∇yg(x1,y1)

d[y1]◦p−1 − d∇yg(x2,y2)
d[y2]◦p−1

∥∥∥ ≤ lg,2∥z1 − z2∥ holds for any z1 = (x1, y1), z2 =

(x2, y2) ∈ Rdx+dy , where ∥d∇yg(x,y)
d[y]◦p−1 ∥ := sup∥z∥=1,z∈Rdy ∥d∇yg(x,y)

d[y]◦p−1 z∥. We assume that the

generalized Jacobian satisfies λmin

(
d∇yg(x,y)

d[y]◦(p−1)

)
≥ µ > 0. (vi) ∥d∇yg(x,y)

d[y]◦p−1 ∥ ≤ C for some C > 0.

Remark: Assumption 3.2 specifies the key conditions imposed on the lower-level function. In
particular: (i) establishes uniform convexity (Zǎlinescu, 1983; Iouditski & Nesterov, 2014), a
generalization of strong convexity that offers greater flexibility. (ii) introduces a relaxed smoothness
condition (Zhang et al., 2020), which differs from the standard L-smooth assumption. The standard
L-smooth condition is incompatible with uniform convexity when the domain is unbounded, making
this relaxation more appropriate. (iii) and (iv) are standard assumptions commonly adopted in bilevel
optimization (Ghadimi & Wang, 2018; Hong et al., 2023; Ji et al., 2021; Kwon et al., 2023a). (v)
and (vi) impose differentiability of ∇yg(x, y) with respect to [y]◦p−1 (as defined in Theorem 3.1,
with the complete definition in Theorem A.1). These two conditions are essential for developing
the implicit differentiation theorem under LLUC in Section 4. Note that the assumption (v) can
be replaced by the assumption that d∇yg(x,y)

d[y]◦p−1 is independent of y◦(p−1), and more details can be
found in Appendix B.2. When p = 2, the uniformly convex function becomes strongly convex, the
generalized Hessian becomes the standard Hessian matrix ∇yyg(x, y), which is positive definite.
Assumption 3.3. The following conditions hold for the upper-level function f for some p ≥ 2:
(i) ∇xf(x, y) is lf,1-jointly Lipschitz in (x, y): ∥∇xf(z1) − ∇xf(z2)∥ ≤ lf,1∥z1 − z2∥ for any
z1 = (x1, y1), z2 = (x2, y2) ∈ Rdx+dy ; (ii) df(x,y)

d[y]◦p−1 exists and lf,1-jointly Lipschitz in (x, y):

∥ df(x1,y1)
d[y1]◦p−1 − df(x2,y2)

d[y2]◦p−1

∥∥ ≤ lf,1∥z1 − z2∥ for any z1 = (x1, y1) ∈ Rdx+dy , z2 = (x2, y2) ∈ Rdx+dy ;

(iii) ∥ df(x,y)
d[y]◦p−1 ∥ ≤ lf,0 for any x ∈ Rdx and any y ∈ Rdy . (iv) There exists ∆ϕ ≥ 0 such that

Φ(x0)− infx Φ(x) ≤ ∆ϕ.

Remark 1: Assumption 3.3 characterizes the assumptions we need for the upper-level function f and
the hyperobjective Φ. In particular: (i) and (iv) are standard assumptions in the nonconvex and bilevel
optimization literature (Ghadimi & Lan, 2013; Ghadimi & Wang, 2018; Hong et al., 2023; Ji et al.,
2021; Kwon et al., 2023a). (ii) and (iii) impose differentiability of f(x, y) in terms of [y]◦p−1 (as
defined in Definition 3.1), which is satisfied for a class of functions satisfying growth condition (See
Appendix B.7 for more details). These two conditions are also crucial for the implicit differentiation
theorem under LLUC in Section 4.

Remark 2: If the differentiability assumption in Assumption 3.2 (v) (vi) and Assumption 3.3 (ii) (iii)
hold with respect to the variable [y − a]◦p−1 with some vector a ∈ Rdy , the analysis of the implicit
differentiation theorem in Section 4 is the same as in the case of a = 0. Without loss of generality,
we simply assume a = 0 for the clean presentation. More details are illustrated in Appendix B.4.
Assumption 3.4. We access stochastic estimators through an unbiased oracle and they satisfy:

Eξ∼Df [∥∇xF (x, y; ξ)−∇xf(x, y)∥2] ≤ σ2
f , Eζ∼Dg [exp(∥∇yG(x, y; ζ)−∇yg(x, y)∥2/σ2

g,1)] ≤ exp(1),

Eζ∼Dg [∥∇xyG(x, y; ζ)−∇xyg(x, y)∥2] ≤ σ2
g,2,

Eξ∼Df

[∥∥∥∥dF (x, y; ξ)

d[y]◦p−1
− df(x, y)

d[y]◦p−1

∥∥∥∥2
]
≤ σ2

f , Eζ∼Dg

[∥∥∥∥d∇yG(x, y; ζ)

d[y]◦p−1
− d∇yg(x, y)

d[y]◦p−1

∥∥∥∥2
]
≤ σ2

g,2. (3)

Remark: Theorem 3.4 states that the stochastic oracle has bounded variance, which is a standard
assumption in nonconvex stochastic optimization (Ghadimi & Lan, 2013; Ghadimi & Wang, 2018; Ji
et al., 2021). Additionally, it assumes that the stochastic first-order oracle for the lower-level problem
is light-tailed, a common requirement for high-probability analysis in lower-level optimization (Lan,
2012; Hazan & Kale, 2014; Hao et al., 2024; Gong et al., 2024a). Our unique assumptions under
LLUC are presented in Eq. (3), assuming bounded variance for generalized derivative and generalized
Hessian for upper-level and lower-level functions. When p = 2, these assumptions recover the
standard ones in bilevel optimization under LLSC (Ghadimi & Wang, 2018; Hong et al., 2023).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

3.2 EXAMPLES

In this section, we provide two examples of bilevel optimization problems where the lower-level
problem is uniformly convex. More examples can be found in Appendix A.2.

Example 1. f(x, y) = y3, g(x, y) = 1
4y

4 − y sinx. In this example, the LLUC holds with p = 4.

Example 2 (Data Hypercleaning). The data hypercleaning task (Shaban et al., 2019) aims to learn a
set of weights λ to the noisy training dataset Dtr, such that training a model on the weighted training
set can leads to a strong performance on the clean validation set Dval. The noisy set is defined as
Dtr := {xi, ȳi}, where each label ȳi is independently flipped to a different class with probability
0 < p̃ < 1. This problem can be formulated as a bilevel optimization task:

min
λ

1

|Dval|
∑

ξ∈Dval

L(w∗(λ); ξ), s.t. w∗(λ) ∈ argmin
w

1

|Dtr|
∑

ζi∈Dtr

σ(λi)L(w; ζi) + c∥w∥pp,

(4)
where w represents the model parameters, and σ(x) = 1

1+e−x is the sigmoid function. Note that the
LLUC condition holds when the lower-level problem is a ℓp norm regression (Woodruff & Zhang,
2013; Jambulapati et al., 2022) problem for p ≥ 2, with/without a uniformly convex regularizer
∥w∥pp (Sridharan & Tewari, 2010).

If we choose L(w; ξ) in Equation (4) to be L(w; ζi) = |x⊤i w − ȳi|p, where ζi = (xi, ȳi) is the i-th
training sample. In this case, the lower-level problem in Equation (4) becomes

g(w, λ) =
1

n
∥Λ(Xw − ȳ)∥pp + c∥w∥pp, Λ = diag(σ(λ1)1/p, . . . , σ(λn)1/p), (5)

X = [x⊤1 ; . . . ;x
⊤
n] ∈ Rn×d, ȳ = [ȳ1, . . . , ȳn]

⊤ ∈ Rn×1, w ∈ Rd.

We know that g(w, λ) is a sum of two uniformly convex functions, and hence is uniformly convex by
Assumption 3.2 (i): the summation of a (µ1, p) and (µ2, p)-uniformly-convex functions is (µ1+µ2, p)-
uniformly-convex. The specific value of µ1 and µ2 can be found in Appendix A.2.

The detailed proof is included in Appendix A.2. The key characteristic is that the lower-level function
g is not a strongly convex function in terms of y when p > 2.

4 IMPLICIT DIFFERENTIATION THEOREM UNDER LLUC

In this section, we present the implicit differentiation theorem under the LLUC condition. A key
technical challenge arises from the singular Hessian of the lower-level function, which renders
the standard implicit function theorem (Ghadimi & Wang, 2018) inapplicable in our setting. To
overcome this, our theorem explicitly exploits the uniform convexity of the lower-level function and
its high-order differentiability to establish the differentiability of the hyperobjective, along with its
smoothness property. The formal statement is given in Theorem 4.1.
Theorem 4.1 (Implicit Differentiation Theorem under LLUC). Suppose Assumption 3.2 and 3.3 hold.
Then Φ is differentiable in x and can be computed as the following:

∇Φ(x) = ∇xf(x, y
∗(x))−∇xyg(x, y

∗(x))

[
d∇yg(x, y

∗(x))

d[y∗(x)]◦p−1

]−1
df(x, y∗(x))

d[y∗(x)]◦p−1
. (6)

In addition, the function Φ satisfies the following properties:

∥∇Φ(x1)−∇Φ(x2)∥ ≤ Lϕ1∥x1 − x2∥
1

p−1 + Lϕ2∥x1 − x2∥, (7)

Φ(x1) ≤ Φ(x2) + ⟨∇Φ(x2), x1 − x2⟩+
(p− 1)Lϕ1

p
∥x1 − x2∥

p
p−1 +

Lϕ2

2
∥x1 − x2∥2. (8)

where lp =
(

plg,1
µ

) 1
p−1

, Lϕ1 = lp(lf,1 +
lf,2lg,2

µ +
lg,1lf,1

µ +
lg,1lf,1lg,2

µ2), Lϕ2 = lf,1 +
lf,2lg,2

µ +
lg,1lf,1

µ +
lg,1lf,1lg,2

µ2 .

Remark: Theorem 4.1 provides an explicit formula Eq. (6) to calculate the hypergradient, as
well as the smoothness property of Φ characterized in Eq. (7). In addition, it includes the
descent inequality Eq. (8), which plays a crucial role in the algorithmic analysis under LLUC

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

in Section 5. Notably, when p = 2, this theorem recovers the standard implicit function theorem
under LLSC (Ghadimi & Wang, 2018). Intuitively, as p increases, the lower-level function deviates
further from strong convexity, and hence the smoothness property of the hyperobjective becomes
worse. The proof of Theorem 4.1 is included in Appendix B.3.

4.1 PROOF SKETCH

In this section, we provide a proof sketch for the proof of Theorem 4.1. The key idea is to prove
two things under Assumptions 3.2 and 3.3: (1) the optimal lower-level variable is Hölder continuous
in terms of upper-level variable, which is stated in Lemma 4.2; (2) the generalized Hessian after
the change of variable (i.e., y is replaced to y◦p−1) has a positive minimum eigenvalue and hence is
invertible, which is stated in Lemma B.2. These two lemmas can be regarded as counterparts of the
implicit differentiation theorem under LLSC (Ghadimi & Wang, 2018).
Lemma 4.2 (Hölder Continuity of the Lower-Level Optimal Solution Mapping). y∗(x) is hölder
continuous: for any x1, x2 ∈ Rdx , we have ∥y∗(x2) − y∗(x1)∥ ≤ lp∥x2 − x1∥

1
p−1 , where lp is

defined in Theorem 4.1.

Remark: This lemma shows that the optimal lower-level variable y∗(x) is Hölder continuous in
terms of the upper-leval variable x, with the exponent 1

p−1 . When p = 2, this lemma recovers the
standard Lipschitz continuous condition of y∗(x) under LLSC (Ghadimi & Wang, 2018). It is worth
nothing that the existing bilevel optimization algorithms with nonasymptotic convergence guarantees
to ϵ-stationary point all require the Lipschitzness of y∗(x) (Ghadimi & Wang, 2018; Hong et al.,
2023; Ji et al., 2021; Kwon et al., 2023b; Chen et al., 2024).

Building on Lemma 4.2,we are ready to show the hyperobjective is differentiable everywhere and
establish the smoothness property of the hyperobjective. The detailed proof of Theorem 4.1 is
included in Appendix B.3.
Lemma 4.3 (Hypergradient Bias). Suppose we have an inexact estimate ŷ(x) for the optimal lower-

level variable y∗(x). Define ∇̂Φ(x) = ∇xf(x, ŷ(x))−∇xyg(x, ŷ(x))
[
d∇yg(x,ŷ(x))
d[ŷ(x)]◦p−1

]−1
df(x,ŷ(x))
d[ŷ(x)]◦p−1 .

Then we have
∥∇̂Φ(x)−∇Φ(x)∥ ≤ Lϕ2∥ŷ(x)− y∗(x)∥. (9)

Remark: Lemma 4.3 provides the bias of the hypergradient due to the inaccurate estimate of the
lower-level variable. This lemma is useful for the algorithm design and analysis in Section 5. The
proof of Lemma 4.3 is included in Appendix B.5.

5 ALGORITHM AND CONVERGENCE ANALYSIS

5.1 ALGORITHM DESIGN

In this section, we introduce our algorithm design techniques, leveraging our implicit differentiation
theorem under LLUC. A natural approach is as follows: for a fixed upper-level variable x, one can
iteratively update the lower-level variable until it sufficiently approximates y∗(x), ensuring an accurate
hypergradient estimation. The upper-level variable x can then be updated accordingly. However, this
naive method may suffer from a high oracle complexity. To design an algorithm with better oracle
complexity, our algorithm updates the upper-level variable by normalized momentum, while the
lower-level variable is updated by an variant of Epoch-SGD (Hazan & Kale, 2014) periodically. The
algorithm is similar to the BO-REP algorithm in Hao et al. (2024), but with a crucial distinction: while
BO-REP is designed for strongly convex lower-level problems and relaxed smooth hyperobjectives,
our UniBiO algorithm is tailored for uniformly convex and relaxed smooth lower-level problems with
Hölder-smooth hyperobjectives. Therefore, despite conceptual similarities in the update mechanism,
UniBiO requires significantly different hyperparameter choices, such as the learning rate, periodic
update intervals, and the number of iterations.

The detailed description of our algorithm is illustrated in Algorithm 2. The algorithm starts from a
warm-start stage, where the lower-level variable is updated by the epoch-SGD algorithm for a certain
number of iterations under the fixed upper-level variable x0 (line 3). After that, the algorithm follows
a periodic update scheme for the lower-level variable, performing an update every I iterations (line
4 ∼ 6), while the upper-level variable is updated at each iteration using a normalized stochastic

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Algorithm 1 EPOCH-SGD
1: Input: function ψ, γ1, T1, D1, and total time N
2: Initialize: w1

1 , set τ = 2(p− 1)/p and k = 1

3: while
∑k

i=1Ni ≤ N do
4: for t = 1, . . . , Nk do
5: wk

t+1 = Πw∈B(wk
1 ,Dk)

(wk
t − γk∇ψ(wk

t ;π
k
t))

6: end for
7: wk+1

1 = 1
Nk

∑Tk

t=1 w
k
t

8: Nk+1 = 2τNk, γk+1 = γk/2, Dk+1 = Dk/2
1
p .

9: k ← k + 1
10: end while
11: Return wk

1

Algorithm 2 UNIBIO
1: Input: η, β, {αt,1}, {Kt,1}, {Rt,1}, {Kt}, T
2: Initialize: x1, y0,m−1 = 0
3: y1 = EPOCH-SGD(g(x0, ·), α0,1,K0,1, R0,1,K0)
4: for t = 1, . . . , T do
5: if t is a multiple of I then
6: yt = EPOCH-SGD(g(xt, ·), αt,1,Kt,1, Rt,1,Kt)
7: end if
8: mt = βmt−1 + (1− β)∇̂f(xt, yt; ξ̄t), where ∇̂f(x, y; ξ̄) is defined in Eq. (46)
9: xt+1 = xt − η mt

∥mt∥
10: end for

gradient with momentum (lines 7 ∼ 8). For the lower-level update, our method employs a variant of
Epoch-SGD (described in Algorithm 1), which integrates stochastic gradient descent updates with a
shrinking ball strategy.

5.2 MAIN RESULTS

Before presenting the main result, we first introduce a few notations. Denote σ(·) as the σ-algebra
generated by the random variables in the arguments. Define Ft := σ(ξ̄1, . . . , ξ̄t−1) for t ≥ 1, let Fy

be the filtration used to update {yt}Tt=0. We use C1 to denote large enough constant.
Theorem 5.1. Under Theorems 3.2 to 3.4, for any given δ ∈ (0, 1) and ϵ > 0, choose αt,1 = O(1),
Kt,1 = O(1), Rt,1 = O(1), Kt = Õ(ϵ−2p+2), I = O(ϵ−2), Q = Õ(1), 1 − β = Θ(ϵ2), and
η = Θ(ϵ3p−3) (see Theorem D.1 for exact choices). Let T =

C1∆ϕ

ηϵ . Then with probability at least

1− δ over the randomness in Fy , we have 1
T

∑T
t=1 E∥∇Φ(xt)∥ ≤ ϵ, where the expectation is taken

over the randomness in FT+1. The total oracle complexity is Õ(ϵ−5p+6).

Remark: The full statement of Theorem 5.1 is included in Section D. Theorem 5.1 shows that our
algorithm UniBiO requires Õ(ϵ−5p+6) oracle complexity for finding an ϵ-stationary point. To the
best of our knowledge, this is the first nonasymptotic result under LLUC. In addition, when the lower
function is strongly convex (p = 2), the complexity bound becomes Õ(ϵ−4), which matches the
optimal rate in terms of the ϵ dependency (Arjevani et al., 2023) for stochastic bilevel optimization
under LLSC (Dagréou et al., 2022; Chen et al., 2023). It remains unclear whether the complexity
result in terms of ϵ is tight for p > 2.

5.3 PROOF SKETCH

In this section, we present a sketch of the proof for Theorem 5.1. The complete proof can be found in
Appendix D. The key idea of the proof resembles the proof of Hao et al. (2024), but our proof is under
a different problem setting (i.e., Hölder smooth hyperobjective and uniformly convex lower-level
function). Define y∗t = y∗(xt). Note that Algorithm 2 uses normalized momentum update, therefore
∥xt+1 − xt∥ = η. By the Hölder continuity of y∗(x) (guaranteed by Lemma 4.2), we know that

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

∥y∗t+1 − y∗t ∥ ≤ lpη
1

p−1 . Therefore the optimal lower-level variable moves slowly across iterations
when η is small. Hence, the periodic update for the lower-level variable can still be a good estimate for
the optimal lower-level variable if the length of the period I is not too large. Lemma 5.2 and 5.3 are
devoted to control the lower-level error, while 5.4 is devoted to control the cummulative hypergradient
bias over time. Given these lemmas, one can leverage the descent inequality Eq. (8) developed in
Theorem 4.1 to establish the convergence rate. The following lemmas are based on Theorems 3.2
to 3.4. The detailed proofs of this section can be found in Section C.
Lemma 5.2. Under the same parameter setting as in Theorem 5.1, for any sequence {x̃t} such that
x̃0 = x0 and ∥x̃t+1− x̃t∥ = η, let {ỹt} be the output produced by Algorithm 2 with input {x̃t}. Then
with probability at least 1− δ, for all t ∈ [T] we have ∥ỹt − ỹ∗t ∥ ≤ min{ϵ/4Lϕ2 , 1/L1}.

Remark: Lemma 5.2 establishes a bound on the lower-level tracking error for any slowly varying
sequence {x̃t} under LLUC. A key advantage of this result is that it provides lower-level guarantees
independently of the randomness in the upper-level variables, avoiding potential randomness
dependency issues. Similar techniques have been employed in Hao et al. (2024). The main difficulty
of the proof comes from a high probability analysis for handling the convergence analysis of epoch-
SGD for the lower-level variable under lower-level uniform convexity and relaxed smoothness. The
complete proof of Lemma 5.2 can be found in the proof of Lemma C.9 in the Appendix.
Corollary 5.3. Under the same setting as in Theorem 5.1, let {xt} and {yt} be the iterates generated
by Algorithm 2. Then with probability at least 1− δ (denote this event as E) we have ∥yt − y∗t ∥ ≤
min{ϵ/4Lϕ2 , 1/L1} for all t ≥ 1.

Remark: Corollary 5.3 is a direct application of Lemma 5.2. We replace the any sequence {x̃t} to
the actual sequence xt in the Algorithm 2 and obtains the same bound. The reason is that the actual
sequence in Algorithm 2 satisfies the condition in Lemma 5.2.

Lemma 5.4. Define ϵt := mt − ∇Φ(xt). Under event E , we have
∑T

t=1 E∥ϵt∥ ≤
σ1

1−β +

T
√
1− βσ1 + Tϵ

4 +
Tlg,1lf,0

µ

(
1− µ

C

)Q
+ T

1−β

(
Lϕ1

η
1

p−1 + Lϕ2
η
)

.

Remark: Lemma 5.4 characterizes the cumulative bias of the hypergradient over time. When 1− β
is small (e.g., Θ(ϵ2) in Theorem 5.1) and η is small (e.g., η = Θ(ϵ3p−3)), the cummulative bias grow
with a sublinear rate in terms of T . This lemma can be regarded as a generalization of the analysis of
normalized momentum for smooth functions (Cutkosky & Mehta, 2020) to bilevel problems with
Hölder-smooth functions.

6 EXPERIMENTS

Synthetic Experiment. We consider the following synthetic experiment in the bilevel optimization
problem illustrated in Example 3 in Appendix A: g(x, y) = 1

py
p − y sinx, and f(x, y) =

1

(
y > (π2)

1
p−1

)
−1

(
y < −(π2)

1
p−1

)
+sin(yp−1)1

(
|y| ≤ (π2)

1
p−1

)
, where 1(·) is the indicator

function, p ≥ 2 is an even number. The goal of this experiment is to verify the complexity results
established in Theorem 5.1. In theory, we expect that larger p will make our algorithm UniBiO
converge slower.

We conduct our experiments by implementing our proposed algorithms with varying values of
p = [2, 4, 6, 8]. The number of upper-level iterations is fixed at T = 500, while the number
of lower-level iterations is set to N = 100. To consider the effects of stochastic gradients, we
introduce Gaussian noise with different variances on the gradients, specifically N (0, 10), N (0, 1),
and N (0, 0.01). Other fixed parameters are set as β = 0.9, I = 2, T1 = 5, and D1 = 1, with
initialization at the point (x0, y0) = (1, 1). We tune the learning rates from (0.01, 0.1) for both
upper-level and lower-level for every p ∈ [2, 4, 6, 8]. The best learning rate choices for upper-level
variable are η = [0.05, 0.03, 0.02, 0.01] for p = [2, 4, 6, 8], respectively, while the best lower-level
learning rate for every p is α = [1, 1, 1, 1] corresponding to p = [2, 4, 6, 8].

Figure 1 presents the results for the deterministic setting (a) and the stochastic settings (b) (c) (d)
with Gaussian noise with variances 0.01, 1 and 10 respectively. Our experimental results empirically
validate the theoretical analysis of our algorithm, demonstrating that an increase in the lower-level
parameter p leads to a deterioration in computational complexity. This observation aligns with our

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0 100 200 300 400 500
Iterations

0.0

0.2

0.4

0.6

0.8

1.0

H
yp

er
gr

ad
ie

nt
 N

or
m

f

Hypergradient Norm under Different p Values

p=2
p=4
p=6
p=8

(a) Deterministic case

0 100 200 300 400 500
Iterations

0.0

0.2

0.4

0.6

0.8

1.0

H
yp

er
gr

ad
ie

nt
 N

or
m

f

Hypergradient Norm under Different p Values

p=2
p=4
p=6
p=8

(b) Noise N (0, 0.01)

0 100 200 300 400 500
Iterations

0.0

0.2

0.4

0.6

0.8

1.0

H
yp

er
gr

ad
ie

nt
 N

or
m

f

Hypergradient Norm under Different p Values

p=2
p=4
p=6
p=8

(c) Noise N (0, 1.0)

0 100 200 300 400 500
Iterations

0.0

0.2

0.4

0.6

0.8

1.0

H
yp

er
gr

ad
ie

nt
 N

or
m

f

Hypergradient Norm under Different p Values

p=2
p=4
p=6
p=8

(d) Noise N (0, 10)

Figure 1: Convergence results for synthetic experiments on upper-level non-convex, lower-
level uniform-convex bilevel optimization with varying uniform-convex parameter p =
[2, 4, 6, 8] in the deterministic case and stochastic case with different types of Gaussian noise
N (0, 0.01),N (0, 1.0),N (0, 10) respectively.

0 20 40 60 80 100
Epoch

0.4

0.5

0.6

0.7

0.8

Tr
ai

n_
AC

C

Train_ACC vs. Epoch

StocBio
TTSA
SABA
MA-SOBA
SUSTAIN
VRBO
UniBiO

(a) Training ACC

0 20 40 60 80 100
Epoch

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

Te
st

_A
CC

Test_ACC vs. Epoch

StocBio
TTSA
SABA
MA-SOBA
SUSTAIN
VRBO
UniBiO

(b) Test ACC

0 5000 10000 15000 20000
running time /s

0.4

0.5

0.6

0.7

0.8

Tr
ai

n_
AC

C

Train_ACC vs. running time (s)

StocBio
TTSA
SABA
MA-SOBA
SUSTAIN
VRBO
UniBiO

(c) Training ACC vs. running time

0 5000 10000 15000 20000
running time /s

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

Te
st

_A
CC

Test_ACC vs. running time (s)

StocBio
TTSA
SABA
MA-SOBA
SUSTAIN
VRBO
UniBiO

(d) Test ACC vs. running time

Figure 2: Results of bilevel optimization on data hyper-cleaning with probability p̃ = 0.1 and the
uniformly convex regularizer ∥w∥pp with p = 3. Subfigure (a), (b) show the training and test accuracy
with the training epoch. Subfigures (c), (d) show the training and test accuracy with the running time.

theoretical results. Additional experiments for various values of p and other bilevel optimization
baselines (such as StocBiO (Ji et al., 2021), TTSA (Hong et al., 2023) and MA-SOBA (Chen et al.,
2023)) are included in Appendix E.1.

Data Hypercleaning. To verify the effectiveness of the proposed UniBiO algorithm, we conduct
data hypercleaning experiments (Shaban et al., 2019) and compare with other baselines as formulated
in Eq. (4). To evaluate this approach, we apply our proposed bilevel algorithms and other baselines
to a noisy version of the Stanford Natural Language Inference (SNLI) dataset (Bowman et al., 2015)
(under Creative Commons Attribution-ShareAlike 4.0 International License), a text classification task.
The model used is a three-layer recurrent neural network with an input dimension of 300, a hidden
dimension of 4096, and an output dimension of 3, predicting labels among entailment, contradiction,
and neutral. In our experimental setup, each training sample’s label is randomly altered to one of the
other two categories with probability 0.1. All the experiments are run on an single NVIDIA A6000
(48GB memory) GPU and a AMD EPYC 7513 32-Core CPU. We have also included the experiment
of p = 4 in Appendix E.2. Our method achieves higher classification accuracy on both the training
and test sets compared with baselines, as illustrated in Figure 4. Moreover, it demonstrates strong
computational efficiency. Further details on parameter selection and tuning are provided in Appendix
F.

7 CONCLUSION

In this paper, we identify a tractable class of bilevel optimization problems that interpolates between
lower-level strong convexity and general convexity via lower-level uniform convexity. We develop a
novel implicit differentiation theorem under LLUC characterizing the hyperobjective’s smoothness
property. Based on this, we introduce UniBiO, a new stochastic algorithm that achieves Õ(ϵ−5p+6)
oracle complexity for finding ϵ-stationary points. Experiments on an synthetic task and a data
hyper-cleaning task demonstrate the superiority of our proposed algorithm. One limitation is that our
algorithm design requires the prior knowledge of p, but in practice, such a knowledge of p may not
be available. Designing a universal bilevel optimization algorithm that adapts to p without explicit
knowledge in the spirit of Nesterov (2015) is an important challenge.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We provide Theorems 4.1 and 5.1 in main text, the proof of Theorem 4.1 in Section B.3, and the
proof of Theorem 5.1 in Section D.

An anonymized code archive with training/evaluation scripts, configurations, seeds, and environment
files is included in the supplementary materials. The dataset SNLI is accessible on HuggingFace
under Creative Commons Attribution-ShareAlike 4.0 International License. We include
preprocessing/splitting scripts, and references to their dataset cards and licenses. These materials
sufficiently support the reproduction of our results.

REFERENCES

G Anandalingam and DJ White. A solution method for the linear static stackelberg problem using
penalty functions. IEEE Transactions on automatic control, 35(10):1170–1173, 1990.

Michael Arbel and Julien Mairal. Non-convex bilevel games with critical point selection maps.
Advances in Neural Information Processing Systems, 35:8013–8026, 2022.

Yossi Arjevani, Yair Carmon, John C Duchi, Dylan J Foster, Nathan Srebro, and Blake Woodworth.
Lower bounds for non-convex stochastic optimization. Mathematical Programming, 199(1-2):
165–214, 2023.

Site Bai and Brian Bullins. Tight lower bounds under asymmetric high-order h\" older smoothness
and uniform convexity. arXiv preprint arXiv:2409.10773, 2024.

J Frédéric Bonnans and Alexander Shapiro. Perturbation analysis of optimization problems. Springer
Science & Business Media, 2013.

Zalán Borsos, Mojmir Mutny, and Andreas Krause. Coresets via bilevel optimization for continual
learning and streaming. Advances in neural information processing systems, 33:14879–14890,
2020.

Samuel R Bowman, Gabor Angeli, Christopher Potts, and Christopher D Manning. A large annotated
corpus for learning natural language inference. arXiv preprint arXiv:1508.05326, 2015.

Jerome Bracken and James T McGill. Mathematical programs with optimization problems in the
constraints. Operations research, 21(1):37–44, 1973.

Lesi Chen, Jing Xu, and Jingzhao Zhang. On finding small hyper-gradients in bilevel optimization:
Hardness results and improved analysis. In The Thirty Seventh Annual Conference on Learning
Theory, pp. 947–980. PMLR, 2024.

Tianyi Chen, Yuejiao Sun, and Wotao Yin. Closing the gap: Tighter analysis of alternating stochastic
gradient methods for bilevel problems. Advances in Neural Information Processing Systems, 34:
25294–25307, 2021a.

Tianyi Chen, Yuejiao Sun, and Wotao Yin. A single-timescale stochastic bilevel optimization method.
arXiv preprint arXiv:2102.04671, 2021b.

Xuxing Chen, Tesi Xiao, and Krishnakumar Balasubramanian. Optimal algorithms for stochastic
bilevel optimization under relaxed smoothness conditions. arXiv preprint arXiv:2306.12067, 2023.

Ashok Cutkosky and Harsh Mehta. Momentum improves normalized sgd. In International conference
on machine learning, pp. 2260–2268. PMLR, 2020.

Mathieu Dagréou, Pierre Ablin, Samuel Vaiter, and Thomas Moreau. A framework for bilevel
optimization that enables stochastic and global variance reduction algorithms. Advances in Neural
Information Processing Systems, 35:26698–26710, 2022.

Constantinos Daskalakis, Stratis Skoulakis, and Manolis Zampetakis. The complexity of constrained
min-max optimization. In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of
Computing, pp. 1466–1478, 2021.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Stephan Dempe. Foundations of bilevel programming. Springer Science & Business Media, 2002.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of
deep networks. In International conference on machine learning, pp. 1126–1135. PMLR, 2017.

Luca Franceschi, Michele Donini, Paolo Frasconi, and Massimiliano Pontil. Forward and reverse
gradient-based hyperparameter optimization. In International Conference on Machine Learning
(ICML), pp. 1165–1173, 2017.

Luca Franceschi, Paolo Frasconi, Saverio Salzo, Riccardo Grazzi, and Massimiliano Pontil. Bilevel
programming for hyperparameter optimization and meta-learning. In International conference on
machine learning, pp. 1568–1577. PMLR, 2018.

Saeed Ghadimi and Guanghui Lan. Stochastic first-and zeroth-order methods for nonconvex stochastic
programming. SIAM Journal on Optimization, 23(4):2341–2368, 2013.

Saeed Ghadimi and Mengdi Wang. Approximation methods for bilevel programming. arXiv preprint
arXiv:1802.02246, 2018.

Xiaochuan Gong, Jie Hao, and Mingrui Liu. A nearly optimal single loop algorithm for stochastic
bilevel optimization under unbounded smoothness. In Forty-first International Conference on
Machine Learning, 2024a.

Xiaochuan Gong, Jie Hao, and Mingrui Liu. An accelerated algorithm for stochastic bilevel
optimization under unbounded smoothness. arXiv preprint arXiv:2409.19212, 2024b.

Zhishuai Guo, Quanqi Hu, Lijun Zhang, and Tianbao Yang. Randomized stochastic variance-reduced
methods for multi-task stochastic bilevel optimization. arXiv preprint arXiv:2105.02266, 2021.

Jie Hao, Kaiyi Ji, and Mingrui Liu. Bilevel coreset selection in continual learning: A new formulation
and algorithm. Advances in Neural Information Processing Systems, 36, 2023.

Jie Hao, Xiaochuan Gong, and Mingrui Liu. Bilevel optimization under unbounded smoothness: A
new algorithm and convergence analysis. In The Twelfth International Conference on Learning
Representations, 2024.

Elad Hazan and Satyen Kale. Beyond the regret minimization barrier: optimal algorithms for
stochastic strongly-convex optimization. Journal of Machine Learning Research, 15(1):2489–
2512, 2014.

Mingyi Hong, Hoi-To Wai, Zhaoran Wang, and Zhuoran Yang. A two-timescale stochastic algorithm
framework for bilevel optimization: Complexity analysis and application to actor-critic. SIAM
Journal on Optimization, 33(1):147–180, 2023.

Feihu Huang. Optimal hessian/jacobian-free nonconvex-pl bilevel optimization. arXiv preprint
arXiv:2407.17823, 2024.

Anatoli Iouditski and Yuri Nesterov. Primal-dual subgradient methods for minimizing uniformly
convex functions. arXiv preprint arXiv:1401.1792, 2014.

Arun Jambulapati, Yang P Liu, and Aaron Sidford. Improved iteration complexities for
overconstrained p-norm regression. In Proceedings of the 54th Annual ACM SIGACT Symposium
on Theory of Computing, pp. 529–542, 2022.

Kaiyi Ji, Junjie Yang, and Yingbin Liang. Bilevel optimization: Convergence analysis and enhanced
design. In International conference on machine learning, pp. 4882–4892. PMLR, 2021.

Prashant Khanduri, Siliang Zeng, Mingyi Hong, Hoi-To Wai, Zhaoran Wang, and Zhuoran Yang. A
near-optimal algorithm for stochastic bilevel optimization via double-momentum. Advances in
Neural Information Processing Systems (NeurIPS), 34:30271–30283, 2021.

Vijay Konda and John Tsitsiklis. Actor-critic algorithms. Advances in neural information processing
systems, 12, 1999.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Jeongyeol Kwon, Dohyun Kwon, Stephen Wright, and Robert D Nowak. A fully first-order method
for stochastic bilevel optimization. In International Conference on Machine Learning, pp. 18083–
18113. PMLR, 2023a.

Jeongyeol Kwon, Dohyun Kwon, Steve Wright, and Robert Nowak. On penalty methods
for nonconvex bilevel optimization and first-order stochastic approximation. arXiv preprint
arXiv:2309.01753, 2023b.

Guanghui Lan. An optimal method for stochastic composite optimization. Mathematical
Programming, 133(1-2):365–397, 2012.

Bo Liu, Mao Ye, Stephen Wright, Peter Stone, and Qiang Liu. Bome! bilevel optimization made
easy: A simple first-order approach. Advances in Neural Information Processing Systems, 35:
17248–17262, 2022.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search.
International Conferrence on Learning Representations, 2018.

Risheng Liu, Pan Mu, Xiaoming Yuan, Shangzhi Zeng, and Jin Zhang. A generic first-order
algorithmic framework for bi-level programming beyond lower-level singleton. In International
Conference on Machine Learning (ICML), 2020.

Risheng Liu, Xuan Liu, Xiaoming Yuan, Shangzhi Zeng, and Jin Zhang. A value-function-based
interior-point method for non-convex bi-level optimization. In International Conference on
Machine Learning (ICML), 2021a.

Risheng Liu, Yaohua Liu, Shangzhi Zeng, and Jin Zhang. Towards gradient-based bilevel optimization
with non-convex followers and beyond. Advances in Neural Information Processing Systems, 34:
8662–8675, 2021b.

Zhaosong Lu and Sanyou Mei. First-order penalty methods for bilevel optimization. SIAM Journal
on Optimization, 34(2):1937–1969, 2024a.

Zhaosong Lu and Sanyou Mei. A first-order augmented lagrangian method for constrained minimax
optimization. Mathematical Programming, pp. 1–42, 2024b.

Yu Nesterov. Universal gradient methods for convex optimization problems. Mathematical
Programming, 152(1):381–404, 2015.

Amirreza Shaban, Ching-An Cheng, Nathan Hatch, and Byron Boots. Truncated back-propagation
for bilevel optimization. In International Conference on Artificial Intelligence and Statistics
(AISTATS), pp. 1723–1732, 2019.

Han Shen and Tianyi Chen. On penalty-based bilevel gradient descent method. arXiv preprint
arXiv:2302.05185, 2023.

Chaobing Song, Yong Jiang, and Yi Ma. Unified acceleration of high-order algorithms under h\"{o}
lder continuity and uniform convexity. arXiv preprint arXiv:1906.00582, 2019.

Karthik Sridharan and Ambuj Tewari. Convex games in banach spaces. In COLT, pp. 1–13, 2010.

Luis Vicente, Gilles Savard, and Joaquim Júdice. Descent approaches for quadratic bilevel
programming. Journal of optimization theory and applications, 81(2):379–399, 1994.

Douglas J White and G Anandalingam. A penalty function approach for solving bi-level linear
programs. Journal of Global Optimization, 3:397–419, 1993.

David Woodruff and Qin Zhang. Subspace embeddings and\ell_p-regression using exponential
random variables. In Conference on Learning Theory, pp. 546–567. PMLR, 2013.

Junjie Yang, Kaiyi Ji, and Yingbin Liang. Provably faster algorithms for bilevel optimization.
Advances in Neural Information Processing Systems, 34:13670–13682, 2021.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Jingzhao Zhang, Tianxing He, Suvrit Sra, and Ali Jadbabaie. Why gradient clipping accelerates
training: A theoretical justification for adaptivity. International Conference on Learning
Representations, 2020.

C Zǎlinescu. On uniformly convex functions. Journal of Mathematical Analysis and Applications,
95(2):344–374, 1983.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A PROOFS IN SECTION 3

A.1 DEFINITION

Definition A.1. df(x,y)
d[y]◦p−1 and d∇yg(x,y)

d[y]◦p−1 are defined as the following: for any y, define z = [y]◦p−1

and f(x, z◦
1

p−1),∇yg(x, z
◦ 1

p−1) is differentiable with z. Mathematically, there exist linear mappings
J1, J2 such that for any z ∈ Rdy , vector h ∈ Rdy and any small constant δ, the following statements
hold:

lim
δ→0

f(x, [z + δh]◦
1

p−1)− f(x, z◦
1

p−1)− ⟨J1, δh⟩
∥δh∥

= 0,

lim
δ→0

∇yg(x, [z + δh]◦
1

p−1)−∇yg(x, z
◦ 1

p−1)− J2δh
∥δh∥

= 0

(10)

In addition, we define J1 = df(x,y)
d[y]◦p−1 = df(x,z

◦ 1
p−1)

dz , and J2 =
d∇yg(x,y)
d[y]◦p−1 =

d∇yg(x,z
◦ 1
p−1)

dz .

A.2 EXAMPLES

Example 1. Let functions f and g be defined as:

f(x, y) = y3, g(x, y) =
1

4
y4 − y sinx. (11)

Now we verify the assumptions.

• Assumption 3.2 (i): Since 1
4y

4 is a (1, 4)-uniform convex function , y sinx is a linear
function with y, so g(x, y) = 1

4y
4 − y sinx is (1, 4) uniform convex with y.

• Assumption 3.2 (ii): ∥∇yyg(x, y)∥ = 3y2 ≤ 12 + 6∥y3 − sinx∥ = 12 + 6∥∇yg(x, y)∥,
hence we have L0 = 12, L1 = 6.

• Assumption 3.2 (iii): ∇yg(x, y) = y3− sinx, so ∥∇yg(x1, y)−∇yg(x2, y)∥ = ∥ sinx2−
sinx1∥ ≤ ∥x1 − x2∥. Therefore lg,1 = 1.

• Assumption 3.2 (iv): ∇xyg(x, y) = − cosx, so ∥∇xyg(x1, y1) − ∇xyg(x2, y2)∥ =
∥ cosx2 − cosx1∥ ≤ ∥x1 − x2∥. Therefore lg,2 = 1.

• Assumption 3.2 (v): ∇yg(x, y) = y3 − sinx, so d∇yg(x,y)
d[y]◦3 = 1 and ∥d∇yg(x1,y1)

d[y1]◦3
−

d∇yg(x2,y2)
d[y2]◦3

∥ = 0. Therefore, lg,2 can take value 0 only for this assumption. To make lg,2
consistent with other assumptions, we can have lg,2 = 1.

• Assumption 3.2 (vi):∥d∇yg(x,y)
d[y]◦3 ∥ = 1, so C = 1.

• Assumption 3.3 (i): ∇xf(x, y) = 0, so lf,1 = 0.

• Assumption 3.3 (ii): df(x,y)
d[y]◦3 = 1, so ∥df(x1,y1)

d[y1]◦3
− df(x2,y2)

d[y2]◦3
∥ = 0, so lf,1 = 0.

• Assumption 3.3 (iii):∥df(x,y)d[y]◦3 ∥ = 1, so lf,0 = 1.

• Assumption 3.3 (iv): ∇yg(x, y
∗(x)) = (y∗(x))3 − sinx = 0, so y∗(x) = (sinx)

1
3 ,

therefore Φ(x) = sinx and ∆Φ ≤ 2.

Example 2. In the data hypercleaning task, choose L(w, ζ) in Eq. (4) to be

L(w; ζi) =
∣∣x⊤i w − ȳi∣∣p, ζi = (xi, ȳi) i ∈ [n]. (12)

Then the lower-level objective is

g(w, λ) =
1

n

∥∥Λ (Xw − ȳ)
∥∥p
p
+ c ∥w∥pp, (13)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

where w is the lower-level variable and λ is the upper-level variable, and

Λ = diag
(
σ(λ1)

1/p, . . . , σ(λn)
1/p
)
, X =

x
⊤
1
...
x⊤n

 ∈ Rn×d, ȳ =

ȳ1...
ȳn

 ∈ Rn, w ∈ Rd.

Write g(·, λ) = G(·) +R(·) with

G(w) :=
1

n

∥∥Λ(Xw − ȳ)∥∥p
p
, R(w) := c∥w∥pp.

By Assumption 3.2 (i), the sum of a (µ1, p)-uniformly-convex function and a (µ2, p)-uniformly-
convex function is (µ1 + µ2, p)-uniformly-convex. We now identify µ1 and µ2.

By Eq. (16), we know that c∥w∥pp is
(

cp
d1/2−1/p , p

)
-uniformly convex. Hence µ2 = cp

d 1/2−1/p .

By translation invariance of uniform convexity, it suffices to consider 1
n∥ΛXw∥

p
p. Using the p-

minimum singular value
σmin,p(M) := inf

∥u∥p=1
∥Mu∥p,

together with standard ℓp–ℓ2 norm transitions for p ≥ 2, we obtain the lower bound

1

n

∥∥ΛXw∥∥p
p
≥
(
σmin,p(ΛX)

)p
nd1/2−1/p

∥w∥p2. (14)

Therefore G is
(
µ1, p

)
-uniformly convex with µ1 =

p
(
σmin,p(ΛX)

)p
nd 1/2−1/p .

Combining the two parts via assumption 3.2 (i), the function g in Eq. (13) is (µ, p)-uniformly convex
with

µ =
p
(
σmin,p(ΛX)

)p
nd 1/2−1/p

+
cp

d 1/2−1/p
.

This establishes LLUC for the hypercleaning lower-level objective and quantifies its modulus.

Example 3. Let p ≥ 2 be an even integer, and let the functions f and g be defined as:

f(x, y) =


−1 y < −

(
π
2

) 1
p−1

sin(yp−1) y ∈
[
−
(
π
2

) 1
p−1 ,

(
π
2

) 1
p−1

]
1 y >

(
π
2

) 1
p−1

, g(x, y) =
1

p
yp − y sinx. (15)

Now we verify the assumptions.

• Assumption 3.2 (i): Note that 1
py

p is a (1, p) uniform convex function, y sinx is a linear
function with y, so g(x, y) = 1

py
p − y sinx is a (1, p) uniform convex with y.

• Assumption 3.2 (ii): ∥∇yyg(x, y)∥ = (p−1)yp−2 ≤ 4(p−1)+2(p−1)∥yp−1− sinx∥ =
4(p− 1) + 2(p− 1)∥∇yg(x, y)∥, hence we have L0 = 4(p− 1), L1 = 2(p− 1).

• Assumption 3.2 (iii): ∇yg(x, y) = yp−1 − sinx, so ∥∇yg(x1, y) − ∇yg(x2, y)∥ =
∥ sinx2 − sinx1∥ ≤ ∥x1 − x2∥. Therefore lg,1 = 1.

• Assumption 3.2 (iv): ∇xyg(x, y) = − cosx, so ∥∇xyg(x1, y1) − ∇xyg(x2, y2)∥ =
∥ cosx2 − cosx1∥ ≤ ∥x1 − x2∥. Therefore lg,2 = 1.

• Assumption 3.2 (v): ∇yg(x, y) = yp−1 − sinx, so d∇yg(x,y)
d[y]◦p−1 = 1 and ∥d∇yg(x1,y1)

d[y1]◦p−1 −
d∇yg(x2,y2)
d[y2]◦p−1 ∥ = 0. Therefore, lg,2 can take value 0 only for this assumption. To make lg,2

consistent with other assumptions, we can have lg,2 = 1.

• Assumption 3.2 (vi):∥d∇yg(x,y)
d[y]◦p−1 ∥ = 1, so C = 1.

• Assumption 3.3 (i): ∇xf(x, y) = 0, so lf,1 = 0. To make lf,1 consistent with other

assumptions, we can have lf,1 = (p− 1)
(
π
2

) p−2
p−1 .

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

• Assumption 3.3 (ii): df(x,y)
d[y]◦p−1 =


0, y > (π2)

1
p−1

cos(yp−1), −(π2)
1

p−1 ≤ y ≤ (π2)
1

p−1

0, y < −(π2)
1

p−1

so from the mean-value theorem, we have∥∥∥∥df(x1, y1)d[y1]◦p−1
− df(x2, y2)

d[y2]◦p−1

∥∥∥∥ ≤ max
y∈[−(π

2)
1

p−1 ,(π
2)

1
p−1]

(p−1)yp−2 sin(yp−1)∥y1−y2∥ ≤ (p−1)(π
2
)

p−2
p−1 ∥y1−y2∥,

and hence lf,1 = (p− 1)
(
π
2

) p−2
p−1 .

• Assumption 3.3 (iii):∥ df(x,y)
d[y]◦p−1 ∥ ≤ 1, so lf,0 = 1.

• Assumption 3.3 (iv): ∇yg(x, y
∗(x)) = (y∗(x))p−1 − sinx = 0, so y∗(x) = (sinx)

1
p−1 ,

therefore Φ(x) = sin sinx and ∆ϕ = 2.

Example 4. Define x = (x1, . . . , xd) ∈ Rd , y = (y1, . . . , yd) ∈ Rd, p is an even integer or a
fraction of even number divide by an old number. Then we consider the following function

f(x, y) =

d∑
i=1

|yi|p−1sgn(yi), g(x, y) =
1

p
∥y∥pp −

d∑
i=1

yi sinxi,

where sgn(·) is the sign function, p ≥ 2 is even number.

Define y∗(x) = (y∗1(x), . . . , y
∗
d(x)) := (y∗1 , . . . , y

∗
d). Note that ∇yg(x, y

∗(x)) = 0,
therefore we have (|y∗1 |p−1sgn(y∗1), . . . , |y∗d|p−1sgn(y∗d)) = (sinx1, . . . , sinxd) and Φ(x) =∑d

i=1 |y∗i |p−1sgn(yi) =
∑d

i=1 sinxi.

All assumptions can be satisfied by choosing the problem-dependent parameters as the following:

p µ L0 L1 lg,1 lg,2 C lf,1 lf,0 ∆ϕ

p 1

d
1
2
− 1

p
4(p− 1) 2(p− 1) 1 1 1 0

√
d 2d

Table 1: Parameter values as functions of p and d

• Assumption 3.2 (i): g(x, y) is
(

1

d
1
2
− 1

p
, p

)
uniform-convex due to:

1

p
∥y∥p2 ≥

1

p
∥y∥pp ≥

1

pd
1
2−

1
p

∥y∥p2. (16)

• Assumption 3.2 (ii): ∇yyg(x, y) = diag
{
(p− 1)yp−2

1 , . . . , (p− 1)yp−2
d

}
and g(x, y) is

(4(p− 1), 2(p− 1))-smooth w.r.t y:

∥∇yyg(x, y)∥2 = (p− 1)∥[y]◦(p−2)∥∞
≤ 4(p− 1) + 2(p− 1)∥[y]◦(p−1) − sin(x))∥∞
≤ 4(p− 1) + 2(p− 1)∥∇yg(x, y)∥∞
≤ 4(p− 1) + 2(p− 1)∥∇yg(x, y)∥2.

• Assumption 3.2 (iii): The gradient∇yg(x, y) = [y]◦(p−1)−sin(x) is 1-Lipschitz continuous
w.r.t. x.

• Assumption 3.2 (iv) ∇xyg(x, y) = − cos(x)) is 1-jointly Lipschitz w.r.t. (x, y).

• Assumption 3.2 (v) and (vi): d∇yg(x,y)

d[y]◦(p−1) = I is 0-jointly Lipschitz w.r.t. (x, y), and it satisfies
the uniform bound: ∥∥∥∥d∇yg(x, y)

d[y]◦(p−1)

∥∥∥∥
2

= λmax(I) = 1.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

• Assumption 3.3 (i): ∇xf(x, y) = 0 jointly Lipschitz w.r.t. (x, y).

• Assumption 3.3 (ii) and (iii): df(x,y)
d[y]◦(p−1) = 1 is 0-jointly Lipschitz and satisfies the uniform

bound: ∥∥∥∥ df(x, y)

d[y]◦(p−1)

∥∥∥∥
2

≤
√
d

• Assumption 3.3 (iv): Φ(x0)− inf Φ ≤ 2d = ∆ϕ.

B PROOFS IN SECTION 4

B.1 PROOF OF LEMMA 4.2

Lemma B.1 (Restatement of Lemma 4.2). y∗(x) is hölder continuous: for any x1, x2 ∈ Rdx , we
have

∥y∗(x2)− y∗(x1)∥ ≤ lp∥x2 − x1∥
1

p−1 , where lp =

(
plg,1
µ

) 1
p−1

. (17)

Proof of Theorem B.1. Since g(x, ·) is uniformly convex, for any y ∈ Rdy we have the following
p-th order growth condition:

g(x1, y) ≥ g(x1, y∗(x1)) + ⟨∇yg(x1, y
∗(x1)), y − y1⟩+

µ

p
∥y − y1∥p

= g(x1, y
∗(x1)) +

µ

p
∥y − y∗(x1)∥p.

(18)

In particular, if we let y = y∗(x2), then

g(x1, y
∗(x2))− g(x1, y∗(x1)) ≥

µ

p
∥y∗(x2)− y∗(x1)∥p. (19)

Next, we follow the similar procedure as in proof of Proposition 4.32 in Bonnans & Shapiro (2013).
We consider the difference function h(y) := g(x2, y)− g(x1, y), then we have

g(x1, y
∗(x2))− g(x1, y∗(x1)) = h(y∗(x1))− h(y∗(x2)) + g(x2, y

∗(x2))− g(x2, y∗(x1))
≤ h(y∗(x1))− h(y∗(x2)) ≤ lg,1∥x2 − x1∥ · ∥y∗(x2)− y∗(x1)∥

(20)

where in the first inequality we use g(x2, y∗(x2)) ≤ g(x2, y∗(x1)), and in the second inequality we
use the fact that g is lg,1-smooth in x and mean value theorem to obtain (denote κ(x1, x2) as the
Lipschitz constant of function h):

κ(x1, x2) ≤ sup
y∈Rdy

∥∇h(y)∥ = sup
y∈Rdy

∥∇yg(x1, y)−∇yg(x2, y)∥ ≤ lg,1∥x1 − x2∥ (21)

Combining Eq. (19) and Eq. (20) yields
µ

p
∥y∗(x2)− y∗(x1)∥p ≤ lg,1∥x2 − x1∥ · ∥y∗(x2)− y∗(x1)∥.

Therefore, the Lemma is proved.

B.2 A TECHNICAL LEMMA UNDER A DIFFERENT ASSUMPTION

Lemma B.2 (Positive Definite Generalized Hessian). d∇yg(x,y)
d[y]◦p−1 is an invertible matrix and

λmin(
d∇yg(x,y)
d[y]◦p−1) ≥ µ, where λmin(·) denotes the minimum eigenvalue of a matrix.

Remark: If we do not directly assume the generalized Hessian is positive definite, under the
assumption that d∇yg(x,y)

d[y]◦p−1 is independent of y◦(p−1), Lemma B.2 provides a characterization of the
minimum eigenvalue of a generalized Hessian matrix, which plays a crucial role in establishing our
implicit function theorem under the LLUC condition.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Proof. Define z = [y]◦p−1. Since d∇yg(x,y)
d[y]◦p−1 exists, then by Definition A.1, we have for any h̄ ∈ Rdy

and any z ∈ Rdy , there exists a linear map J2 :=
d∇yg(x,y)
d[y]◦p−1 ∈ Rdy×dy such that the following holds

lim
δ→0

∇yg(x, [z + δh̄]◦
1

p−1)−∇yg(x, z
◦ 1

p−1)− ⟨J2, δh̄⟩
∥δh̄∥

= 0. (22)

Since J2 is independent of z (by definition A.1), we can take z = 0 in Eq. (22), rearrange this
equality and take norm on both sides, we have

lim
δ→0

∥∇yg(x, [δh̄]
◦ 1

p−1)−∇yg(x, 0)∥
∥δh̄∥

= lim
δ→0

∥J2δh̄∥
∥δh̄∥

. (23)

By uniform convexity of g in terms of y, we have

∥∇yg(x, [δh̄]
◦ 1

p−1)−∇yg(x, 0)∥ ≥ µ∥[δh̄]◦
1

p−1 ∥p−1 ≥ µ∥[δh̄]◦
1

p−1 ∥p−1
2(p−1) = µ∥δh̄∥. (24)

where the first inequality holds because of the uniform convexity, the second inequality holds by the
fact that ∥y∥ ≥ ∥y∥2(p−1) for p ≥ 2, and the last equality holds by the definition of 2(p− 1)-norm.

Combining Eq. (23) and Eq. (24), we have

lim
δ→0

∥J2δh̄∥
∥δh̄∥

≥ µ. (25)

Since h̄ can be a vector with any direction, therefore J2 =
d∇yg(x,y)
d[y]◦p−1 is an invertible matrix and

λmin(
d∇yg(x,y)
d[y]◦p−1) ≥ µ.

B.3 PROOF OF THEOREM 4.1

Theorem B.3 (Restatement of Theorem 4.1). Suppose Assumption 3.2 and 3.3 hold. Then Φ is
differentiable in x and can be computed as the following:

∇Φ(x) = ∇xf(x, y
∗(x))−∇xyg(x, y

∗(x))

[
d∇yg(x, y

∗(x))

d[y∗(x)]◦p−1

]−1
df(x, y∗(x))

d[y∗(x)]◦p−1
. (26)

In addition, the function Φ satisfies the following properties:

∥∇Φ(x1)−∇Φ(x2)∥ ≤ Lϕ1
∥x1 − x2∥

1
p−1 + Lϕ2

∥x1 − x2∥, (27)

Φ(x1) ≤ Φ(x2) + ⟨∇Φ(x2), x1 − x2⟩+
(p− 1)Lϕ1

p
∥x1 − x2∥

p
p−1 +

Lϕ2

2
∥x1 − x2∥2. (28)

where lp =
(

plg,1
µ

) 1
p−1

, Lϕ1
= lp(lf,1 +

lf,2lg,2
µ +

lg,1lf,1
µ +

lg,1lf,1lg,2
µ2), Lϕ2

= lf,1 +
lf,2lg,2

µ +
lg,1lf,1

µ +
lg,1lf,1lg,2

µ2 .

Proof. Define y∗(x) = [z∗(x)]◦
1

p−1 . Noting that ∇yg(x, y
∗(x)) = 0, we take derivative in terms of

x on both sides and use the chain rule, which yields

∇xyg(x, [z
∗(x)]◦

1
p−1) +

dz∗(x)

dx

d∇yg(x, [z
∗(x)]◦

1
p−1)

dz∗(x)
= 0. (29)

Therefore,

∇xyg(x, y
∗(x)) +

dz∗(x)

dx

d∇yg(x, y
∗(x))

dz∗(x)
= 0. (30)

Now we start to derive the properties of Φ.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

By Lemma B.2, we know that λmin(
d∇yg(x,y)
d[y]◦p−1) ≥ µ > 0 holds for any y, therefore we plug in

y = y∗(x) and know that d∇yg(x,y
∗(x))

dz∗(x) is a invertible matrix. Hence we have

dz∗(x)

dx
= −∇xyg(x, y

∗(x)

[
d∇yg(x, y

∗(x))

dz∗(x)

]−1

. (31)

Therefore, z∗(x) is differentiable with x everywhere.

By Assumption 3.3 (iii), we know that J1 = df(x,[z∗(x)]
◦ 1
p−1)

dz∗(x) exists. Therefore, we can use chain
rule to directly derive hypergradient formula:

∇Φ(x) = df(x, y∗(x))

dx
= ∇xf(x, [z

∗(x)]◦
1

p−1) +
dz∗(x)

dx

df(x, [z∗(x)]◦
1

p−1)

dz∗(x)

= ∇xf(x, y
∗(x))−∇xyg(x, y

∗(x))

[
d∇yg(x, y

∗(x))

dz∗(x)

]−1
df(x, y∗(x))

dz∗(x)

= ∇xf(x, y
∗(x))−∇xyg(x, y

∗(x))

[
d∇yg(x, y

∗(x))

d[y∗(x)]◦p−1

]−1
df(x, y∗(x))

d[y∗(x)]◦p−1
.

(32)
Therefore, the final hypergradient can be computed as:

∇Φ(x) = ∇xf(x, y
∗(x))−∇xyg(x, y

∗(x))

[
d∇yg(x, y

∗(x))

d[y∗(x)]◦p−1

]−1
df(x, y∗(x))

d[y∗(x)]◦p−1
. (33)

Define

v(x, y) := −∇xyg(x, y)

[
d∇yg(x, y)

d[y]◦p−1

]−1
df(x, y)

d[y]◦p−1
. (34)

Now we start to prove the properties of Φ. By Assumption 3.2 (iii), we have for any x1, x2Rdx , the
following inequality holds:

∥∇yg(x1, y)−∇yg(x2, y)∥ ≤ lg,1∥x1 − x2∥ =⇒ ∥∇xyg(x, y)∥ ≤ lg,1. (35)

so we have∥∥∥∥dz∗(x)dx

∥∥∥∥ =

∥∥∥∥d[y∗(x)]◦p−1

dx

∥∥∥∥ ≤ ∥∇xyg(x, y
∗(x)∥

∥∥∥∥∥
[
d∇yg(x, y

∗(x))

dz∗(x)

]−1
∥∥∥∥∥ ≤ lg,1

µ
. (36)

In addition, note that for any invertible matrices H1 and H2, the inequality holds:

∥H−1
2 −H−1

1 ∥ = ∥H
−1
1 (H1 −H2)H

−1
2 ∥ ≤ ∥H

−1
1 ∥∥H

−1
2 ∥∥H1 −H2∥, (37)

therefore we have∥∥∥∥∥
[
d∇yg(x1, y

∗(x1))

d[y∗(x1)]◦p−1

]−1

−
[
d∇yg(x2, y

∗(x2))

d[y∗(x2)]◦p−1

]−1
∥∥∥∥∥ ≤ 1

µ2

∥∥∥∥d∇yg(x1, y
∗(x1))

d[y∗(x1)]◦p−1
− d∇yg(x2, y

∗(x2))

d[y∗(x2)]◦p−1

∥∥∥∥
≤ lg,2

µ2
(∥x1 − x2∥+ ∥y∗(x1)− y∗(x2)∥) ,

(38)
where the last inequality holds because of the lg,2-jointly Lipschitz in (x, y) for the matrix d∇yg(x,y)

d[y]◦p−1

(i.e., Assumption 3.2 (v)).

For the second part of hypergradient, we have

∥v(x1, y
∗(x1))− v(x2, y

∗(x2))∥

=

∥∥∥∥∥∇xyg(x2, y
∗(x2))

[
d∇yg(x2, y

∗(x2))

d[y∗(x2)]◦p−1

]−1
df(x2, y

∗(x2))

d[y∗(x2)]◦p−1
−∇xyg(x1, y

∗(x1))

[
d∇yg(x1, y

∗(x1))

d[y∗(x1)]◦p−1

]−1
df(x1, y

∗(x1))

d[y∗(x1)]◦p−1

∥∥∥∥∥
=

∥∥∥∇xyg(x2, y
∗(x2))

[
d∇yg(x2, y

∗(x2))

d[y∗(x2)]◦p−1

]−1
df(x2, y

∗(x2))

d[y∗(x2)]◦p−1
−∇xyg(x1, y

∗(x1))

[
d∇yg(x2, y

∗(x2))

d[y∗(x2)]◦p−1

]−1
df(x2, y

∗(x2))

d[y∗(x2)]◦p−1

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

+∇xyg(x1, y
∗(x1))

[
d∇yg(x2, y

∗(x2))

d[y∗(x2)]◦p−1

]−1
df(x2, y

∗(x2))

d[y∗(x2)]◦p−1
−∇xyg(x1, y

∗(x1))

[
d∇yg(x1, y

∗(x1))

d[y∗(x1)]◦p−1

]−1
df(x1, y

∗(x1))

d[y∗(x1)]◦p−1

∥∥∥
≤

∥∥∥∥∥∇xyg(x2, y
∗(x2))

[
d∇yg(x2, y

∗(x2))

d[y∗(x2)]◦p−1

]−1
df(x2, y

∗(x2))

d[y∗(x2)]◦p−1
−∇xyg(x1, y

∗(x1))

[
d∇yg(x2, y

∗(x2))

d[y∗(x2)]◦p−1

]−1
df(x2, y

∗(x2))

d[y∗(x2)]◦p−1

∥∥∥∥∥
+

∥∥∥∥∥∇xyg(x1, y
∗(x1))

[
d∇yg(x2, y

∗(x2))

d[y∗(x2)]◦p−1

]−1
df(x2, y

∗(x2))

d[y∗(x2)]◦p−1
−∇xyg(x1, y

∗(x1))

[
d∇yg(x1, y

∗(x1))

d[y∗(x1)]◦p−1

]−1
df(x1, y

∗(x1))

d[y∗(x1)]◦p−1

∥∥∥∥∥
(a)

≤ lf,0
µ

∥∇xyg(x2, y
∗(x2))−∇xyg(x1, y

∗(x1)∥

+ lg,1

∥∥∥∥∥
[
d∇yg(x1, y

∗(x1))

d[y∗(x1)]p−1

]−1
df(x1, y

∗(x1))

d[y∗(x1)]◦p−1
−

[
d∇yg(x2, y

∗(x2))

d[y∗(x2)]p−1

]−1
df(x2, y

∗(x2))

d[y∗(x2)]◦p−1

∥∥∥∥∥
(b)

≤ lf,0
µ

∥∇xyg(x2, y
∗(x2))−∇xyg(x1, y

∗(x1)∥+ lg,1

∥∥∥∥df(x1, y
∗(x1))

d[y∗(x1)]◦p−1

∥∥∥∥
∥∥∥∥∥
[
d∇yg(x1, y

∗(x1))

d[y∗(x1)]◦p−1
]

]−1

−
[
d∇yg(x2, y

∗(x2))

d[y∗(x2)]◦p−1

]−1
∥∥∥∥∥

+ lg,1

∥∥∥∥∥
[
d∇yg(x2, y

∗(x2))

d[y∗(x2)]◦p−1

]−1
∥∥∥∥∥
∥∥∥∥df(x1, y

∗(x1))

d[y∗(x1)]◦p−1
− df(x2, y

∗(x2))

d[y∗(x2)]◦p−1

∥∥∥∥
(c)

≤ lf,0
µ

∥∇xyg(x2, y
∗(x2))−∇xyg(x1, y

∗(x1)∥+ lg,1lf,0

∥∥∥∥∥
[
d∇yg(x1, y

∗(x1))

d[y∗(x1)]◦p−1

]−1

−
[
d∇yg(x2, y

∗(x2))

d[y∗(x2)]p−1

]−1
∥∥∥∥∥

+
lg,1
µ

∥∥∥∥df(x1, y
∗(x1))

d[y∗(x1)]◦p−1
− df(x2, y

∗(x2))

d[y∗(x2)]◦p−1

∥∥∥∥
(d)

≤
(
lf,0lg,2

µ
+

lg,1lf,1
µ

+
lg,1lf,0lg,2

µ2

)
(∥x1 − x2∥+ ∥y∗(x1)− y∗(x2)∥) , (39)

where (a) holds because of Assumption 3.3 (iii), Lemma B.2 and Eq. (35); (b) holds because of
triangle inequality of the norm, (c) holds because of Assumption 3.3 (iii) and Lemma B.2; (d) holds
because of Assumption 3.2 (iv), Assumption 3.3 (ii) and Eq. (38).

Therefore, the hypergradient satisfies the following property:

∥∇Φ(x1)−∇Φ(x2)∥ = ∥∇xf(x1, y
∗(x1)) + v(x1, y

∗(x1))− [∇xf(x2, y
∗(x2)) + v(x2, y

∗(x2)]∥
≤ lf,1(∥x1 − x2∥+ ∥y∗(x1)− y∗(x2)∥) + ∥v(x1, y∗(x1)− v(x2, y∗(x2))∥

≤ (lf,1 +
lf,0lg,2
µ

+
lg,1lf,1
µ

+
lg,1lf,0lg,2

µ2
)∥x1 − x2∥+ (lf,1 +

lf,0lg,2
µ

+
lg,1lf,1
µ

+
lg,1lf,0lg,2

µ2
))∥y∗(x1)− y∗(x2)∥

≤ (lf,1 +
lf,0lg,2
µ

+
lg,1lf,1
µ

+
lg,1lf,0lg,2

µ2
)∥x1 − x2∥+ (lf,1 +

lf,0lg,2
µ

+
lg,1lf,1
µ

+
lg,1lf,0lg,2

µ2
))lp∥x1 − x2∥

1
p−1

(40)
Define Lϕ1

:= lp(lf,1+
lf,0lg,2

µ +
lg,1lf,1

µ +
lg,1lf,0lg,2

µ2) and Lϕ2
:= lf,1+

lf,0lg,2
µ +

lg,1lf,1
µ +

lg,1lf,0lg,2
µ2 .

Then we have

∥∇Φ(x1)−∇Φ(x2)∥ ≤ Lϕ1∥x1 − x2∥
1

p−1 + Lϕ2∥x1 − x2∥. (41)

Furthermore, we have

Φ(x1)− Φ(x2)− ⟨∇Φ(x2), x1 − x2)⟩ =
∫ 1

0

⟨∇Φ(x2 + t(x1 − x2))−∇Φ(x2), x1 − x2⟩dt

≤
∫ 1

0

∥∇Φ(x2 + t(x1 − x2))−∇Φ(x2)∥∥x1 − x2∥dt

≤ ∥x1 − x2∥
p

p−1

∫ 1

0

(Lϕ1
t

1
p−1)dt+ ∥x1 − x2∥2

∫ 1

0

(Lϕ2
t)dt

=
(p− 1)Lϕ1

p
∥x1 − x2∥

p
p−1 +

Lϕ2

2
∥x1 − x2∥2.

(42)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

B.4 GENERALIZATION OF ASSUMPTIONS

If there exists a constant a such that df(x,y)
d[y−a]◦p−1 ,

d∇yg(x,y)
d[y−a]◦p−1 exist and satisfy all of our assumptions,

we can choose z = [y − a]◦p−1, then y∗(x) = [z∗(x)]◦
1

p−1 + a and we can derive the same
hypergradient formula. Therefore we assume a = 0 without loss of generality. To show the fact that
the hypergradient formula is the same as in the case of a = 0, we have

∇Φ(x) = df(x, y∗(x))

dx
= ∇xf(x, [z

∗(x)]◦
1

p−1 + a) +
dz∗(x)

dx

df(x, [z∗(x)]◦
1

p−1 + a)

dz∗(x)

= ∇xf(x, [z
∗(x)]◦

1
p−1 + a)−∇xyg(x, [z

∗(x)]◦
1

p−1 + a)

[
d(∇yg(x, [z

∗(x)]◦
1

p−1 + a)

dz∗(x)

]−1
df(x, [z∗(x)]◦

1
p−1 + a)

dz∗(x)

= ∇xf(x, y
∗(x))−∇xyg(x, y

∗(x))

[
d∇yg(x, y

∗(x))

d[y∗(x)]◦p−1

]−1
df(x, y∗(x))

d[y∗(x)]◦p−1
.

B.5 PROOF OF LEMMA 4.3

Lemma B.4 (Restatement of Lemma 4.3). Suppose we have an inexact estimate ŷ(x)

for the optimal lower-level variable y∗(x). Define ∇̂Φ(x) = ∇xf(x, ŷ(x)) −
∇xyg(x, ŷ(x))

[
d∇yg(x,ŷ(x))
d[ŷ(x)]◦p−1

]−1
df(x,ŷ(x))
d[ŷ(x)]◦p−1 . Then we have

∥∇̂Φ(x)−∇Φ(x)∥ ≤ Lϕ2
∥ŷ(x)− y∗(x)∥ (43)

where Lϕ2 = lf,1 +
lf,0lg,2

µ +
lg,1lf,1

µ +
lg,1lf,0lg,2

µ2 .

Proof. Similar to the proof of Theorem 4.1, we can use almost identical arguments to prove that
∇xf(x, y) + v(x, y) is Lipschitz in (x, y), where v(x, y) is defined in Eq. (34). In particular, for any
x1, x2, y1, y2, we can follow the similar analysis of Eq. (39) and leverage the lf,1-joint Lipschitzness
of ∇xf(x, y) (i.e., Assumption 3.3 (i)) to show the following inequality holds:

∥∇xf(x1, y1) + v(x1, y1)−∇xf(x2, y2)− v(x2, y2)∥
≤ ∥∇xf(x1, y1)−∇xf(x2, y2)∥+ ∥v(x1, y1)− v(x2, y2)∥
≤ lf,1(∥x1 − x2∥+ ∥y1 − y2∥)

+

∥∥∥∥∥∇xyg(x2, y2))

[
d∇yg(x2, y2)

d[y2]◦p−1

]−1
df(x2, y2)

d[y2]◦p−1
−∇xyg(x1, y1)

[
d∇yg(x1, y1)

d[y1]◦p−1

]−1
df(x1, y1)

d[y1]◦p−1

∥∥∥∥∥
≤ lf,1(∥x1 − x2∥+ ∥y1 − y2∥) +

∥∥∥∥∥∇xyg(x2, y2))

[
d∇yg(x2, y2)

d[y2]◦p−1

]−1
df(x2, y2)

d[y2]◦p−1
−∇xyg(x1, y1)

[
d∇yg(x2, y2)

d[y2]◦p−1

]−1
df(x2, y2)

d[y2]◦p−1

∥∥∥∥∥
+

∥∥∥∥∥∇xyg(x1, y1)

[
d∇yg(x2, y2)

d[y2]◦p−1

]−1
df(x2, y2)

d[y2]◦p−1
−∇xyg(x1, y1)

[
d∇yg(x1, y1)

d[y1]◦p−1

]−1
df(x1, y1)

d[y1]◦p−1

∥∥∥∥∥
≤ lf,1(∥x1 − x2∥+ ∥y1 − y2∥) +

lg,2
µ

(∥x1 − x2∥+ ∥y1 − y2∥)

+ lg,1lf,0

∥∥∥∥∥
[
d∇yg(x2, y2)

d[y2]◦p−1

]−1

−
[
d∇yg(x2, y2)

d[y2]◦p−1

]−1
∥∥∥∥∥+

lg,1
µ

∥∥∥∥df(x1, y1)

d[y1]◦p−1
− df(x1, y1)

d[y1]◦p−1

∥∥∥∥
≤

(
lf,0lg,2

µ
+

lg,1lf,1
µ

+
lg,1lf,0lg,2

µ2

)
(∥x1 − x2∥+ ∥y1 − y2∥) + lf,1(∥x1 − x2∥+ ∥y1 − y2∥)

= Lϕ2(∥x1 − x2∥+ ∥y1 − y2∥).
(44)

Therefore, we have
∥∇̂Φ(x)−∇Φ(x)∥ ≤ ∥∇xf(x, ŷ(x))−∇xf(x, y

∗(x))∥+ ∥v(x, ŷ(x))− v(x, y∗(x))∥

≤ lf,1∥ŷ(x)− y∗(x)∥+
(
lf,0lg,2
µ

+
lg,1lf,1
µ

+
lg,1lf,0lg,2

µ2

)
∥ŷ(x)− y∗(x)∥

= Lϕ2
∥ŷ(x)− y∗(x)∥.

(45)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Therefore the proof is done.

B.6 HYPERGRADIENT IMPLEMENTATION

The hypergradient ∇Φ(x) has the following form:

∇Φ(x) = ∇xf(x, y
∗(x))−∇xyg(x, y

∗(x))

[
d∇yg(x, y

∗(x))

d[y∗(x)]◦p−1

]−1
df(x, y∗(x))

d[y∗(x)]◦p−1
.

To avoid computation of matrix inverse, we use Neumann series approach (Ghadimi & Wang, 2018;
Ji et al., 2021) to approximate the hypergradient. Define

∇̂f(x, y; ξ̄) = ∇xF (x, y; ξ)−∇xyG(x, y; ζ
(0))

 1

C

Q−1∑
q=0

Q∏
j=1

(
I − 1

C

d∇yG(x, y; ζ
(q,j))

d[y]◦p−1

) dF (x, y; ξ)
d[y]◦p−1

,

(46)
where ∇̂f(x, y; ξ̄) is the stochastic approximation of hypergradient∇Φ(x) and the randomness ξ̄ is
defined as

ξ̄ := {ξ, ζ(0), ζ̄(0), . . . , ζ̄(Q−1)}, with ζ̄(q) := {ζ(q,1), . . . , ζ(q,q)}.

Lemma B.5. Denote H as

H =
1

C

Q−1∑
q=0

Q∏
j=1

(
I − 1

C

d∇yG(x, y; ζ
(q,j))

d[y]◦p−1

)
.

Under Theorems 3.2 to 3.4, we have∥∥∥∥∥Eξ̄[H]−
[
d∇yG(x, y

∗(x))

d[y∗(x)]◦p−1

]−1
∥∥∥∥∥ ≤ 1

µ

(
1− µ

C

)Q
.

Proof of Theorem B.5. We follow a similar proof as (Ghadimi & Wang, 2018, Lemma 3.2). We have∥∥∥∥∥Eξ̄[H]−
[
d∇yG(x, y

∗(x))

d[y∗(x)]◦p−1

]−1
∥∥∥∥∥ ≤ 1

C

∥∥∥∥∥∥
∞∑

q=Q

(
I − 1

C

d∇yG(x, y; ζ
(q,j))

d[y]◦p−1

)q
∥∥∥∥∥∥

≤ 1

C

∞∑
q=Q

∥∥∥∥∥
(
I − 1

C

d∇yG(x, y; ζ
(q,j))

d[y]◦p−1

)q
∥∥∥∥∥ ≤ 1

µ

(
1− µ

C

)Q
,

where the second inequality uses triangle inequality, and the last inequality is due to Theorem B.2.

B.7 SUFFICIENT AND NECESSARY CONDITION FOR THE DIFFERENTIABLITY ASSUMPTION

Lemma B.6 (Sufficient And Necessary Condition For the Differentiablity Assumption). Fix p ≥ 2
and set α := 1

p−1 ∈ (0, 1). Define the sign–preserving, coordinatewise power map Sα : Rd → Rd

by Sα(z) = sgn(z) ⊙ |z|α so that zi = sgn(yi) |yi| p−1 where y = Sα(z). Let h : Rd → R
be differentiable near 0 and define r(z) := h(Sα(z)). Then r(z) is differentiable at z = 0 with
∇r(0) = 0 if and only if

lim
y→0

∥∇h(y)∥
∥y∥ p−2

= 0.

Proof. By definition, r is differentiable at 0 with ∇r(0) = 0 iff limz→0
|r(z)−r(0)|

∥z∥ = 0.

Let y = Sα(z). Then

∥z∥ =
(d∑

i=1

|yi|2(p−1)
)1/2

.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

(Sufficiency). Suppose limy→0
∥∇h(y)∥
∥y∥p−2 = 0. Since h is differentiable, for each y there exists ξ on

the line from 0 to y such that h(y)− h(0) = ∇h(ξ)⊤y. Hence

|r(z)− r(0)|
∥z∥

=
|h(y)− h(0)|

∥z∥
≤ ∥∇h(ξ)∥∥y∥

∥z∥
.

Define M := maxi |yi|, we have ∥y∥ ≤
√
dM and ∥z∥ ≥M p−1, so

∥y∥
∥z∥
≤
√
dM−(p−2) ≤ (

√
d) p−1 ∥y∥−(p−2).

Therefore

lim sup
z→0

|r(z)− r(0)|
∥z∥

≤ (
√
d) p−1 lim sup

y→0

∥∇h(y)∥
∥y∥p−2

= 0.

Thus r is differentiable at 0 with ∇r(0) = 0.

(Necessity). Conversely, assume limz→0
|r(z)−r(0)|

∥z∥ = 0. By a standard result in calculus, we have

|r(z)− r(0)|
∥z∥

=

∣∣∣∣∫ 1

0

∇h(ty)⊤ y

∥z∥
dt

∣∣∣∣ ≥ 1√
d

(∫ 1

0

∥∇h(ty)∥ dt
)
∥y∥−(p−2),

where we used ∥z∥ = (
∑
|yi|2(p−1))1/2 ≤

√
d ∥y∥p−1.

Since y = Sα(z) is continuous in z, z → 0 iff y → 0. Hence taking lim infz→0 is equivalent to
taking lim infy→0.

Taking lim infy→0 yields

0 ≥ 1√
d
lim inf
y→0

∥∇h(y)∥
∥y∥p−2

.

Since the ratio is nonnegative, it follows that limy→0
∥∇h(y)∥
∥y∥p−2 = 0.

Finally, away from the origin, Sα is differentiable with Jacobian

DSα(z) = diag
(
α |zi|α−1

)d
i=1

,

so for z ̸= 0, the chain rule gives ∇r(z) = DSα(z)
⊤∇h(Sα(z)).

B.8 OTHER USEFUL LEMMAS

Lemma B.7 (Variance). Under Theorems 3.2 to 3.4, we have

Eξ̄∥∇̂f(x, y; ξ̄)−Eξ̄[∇̂f(x, y; ξ̄)]∥2 ≤ σ2
1 , where σ2

1 = σ2
f+

3

µ2

[
(σ2

f + l2f,0)(σ
2
g,2 + 2l2g,1) + σ2

f l
2
g,1

]
.

Proof of Theorem B.7. Following the proof of (Hong et al., 2023, Lemma 1) gives the result.

C PROOFS OF SECTION 5.3

C.1 CONVERGENCE GUARANTEE FOR MINIMIZING SINGLE-LEVEL UNIFORMLY CONVEX
FUNCTIONS

In this section we consider the problem of minimizing single-level objective function ψ : Rd → R:

min
w∈Rd

ψ(w). (47)

Denote w∗ = argminw∈Rd ψ(w) as the minimizer of ψ. Assume that we access ∇ψ(w) through an
unbiased stochastic oracle, i.e., Eπ[∇ψ(w;π)] = ∇ψ(w). We rely on the following assumption for
analysis in this section.
Assumption C.1. Assume function ψ is (µ, p)-uniformly convex (see Theorem 3.2). In addition, the
noise satisfies Eπ[exp(∥∇ψ(w;π)−∇ψ(w)∥2/σ2)] ≤ exp(1).

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Lemma C.2. Under Theorem C.1, if there exists a constant G such that ∥∇ψ(x)∥ ≤ G, then we
have

ψ(x)− ψ(x∗) ≤ G(pG/µ)
1

p−1 .

Proof of Theorem C.2. By convexity of ψ and the Cauchy-Schwarz inequality, we have

ψ(x)− ψ(x∗) ≤ ⟨∇ψ(x), x− x∗⟩ ≤ G∥x− x∗∥.

By (µ, p)-uniform convexity of ψ,

ψ(x)− ψ(x∗) ≥ µ

p
∥x− x∗∥p.

Combing the above inequalities together gives ∥x− x∗∥ ≤ (pG/µ)
1

p−1 . Therefore,

ψ(x)− ψ(x∗) ≤ G∥x− x∗∥ ≤ G(pG/µ)
1

p−1 .

Lemma C.3. Under Theorem C.1, for any given w∗, let D be an upper bound on ∥w1 − w∗∥ and
assume there exists a constant G such that ∥∇ψ(w)∥ ≤ G. Apply the update

wt+1 = wt − γ∇ψ(wt;πt)

for T iterations. Then for any δ ∈ (0, 1), with probability at least 1− δ we have

1

T

T∑
t=1

ψ(wt)− ψ(w∗) ≤ 2γ(G2 + σ2) log(2/δ) +
∥w1 − w∗∥2

2γT
+

8(G+ σ)D
√

3 log(2/δ)√
T

.

Proof of Theorem C.3. Define the filtration as Ht := σ(π1, . . . , πt−1), where σ(·) denotes the σ-
algebra. With a minor abuse of notation, we use Et[·] = E[· | Ht]. By Theorem C.1, we have

Et

[
exp

(
∥∇ψ(wt;πt)∥2

4G2 + 4σ2

)]
≤ Et

[
exp

(
∥∇ψ(wt)∥2 + ∥∇ψ(wt;πt)−∇ψ(wt)∥2

2G2 + 2σ2

)]
≤ exp

(
1

2

)√
Et

[
exp

(
∥∇ψ(wt;πt)−∇ψ(wt)∥2

G2 + σ2

)]
≤ exp(1),

(48)
where the first inequality uses Young’s inequality, the second inequality is due to Jensen’s inequality.
Since Et[⟨∇ψ(wt;πt), wt − w∗⟩] = ⟨∇ψ(wt), wt − w∗⟩, then

Xt := ⟨∇ψ(wt), wt − w∗⟩ − ⟨∇ψ(wt;πt), wt − w∗⟩

is a martingale difference sequence. Note that |Xt| can be bounded as

|Xt| ≤ ∥∇ψ(wt)∥∥wt − w∗∥+ ∥∇ψ(wt;πt)∥∥wt − w∗∥ ≤ 2GD + 2D∥∇ψ(wt;πt)∥,

where the last inequality uses ∥wt−w∗∥ ≤ ∥wt−w1∥+∥w1−w∗∥ ≤ 2D since xt, x∗ ∈ B(w1, D).
This implies that

Et

[
exp

(
X2

t

64(G2 + σ2)D2

)]
≤ Et

[
exp

(
4D2(2G2 + 2∥∇ψ(wt;πt)∥2)

64(G2 + σ2)D2

)]
≤ exp

(
1

8

)√
Et

[
exp

(
∥∇ψ(wt;πt)∥2
4G2 + 4σ2

)]
≤ exp(1),

where the first inequality uses Young’s inequality, the second inequality is due to Jensen’s inequality,
and the last inequality uses Eq. (48). By Theorem C.7, with probability at least 1− δ/2, we have∑T

t=1Xt ≤ 8(G+ σ)D
√

3T log(2/δ), which implies

1

T

T∑
t=1

⟨∇ψ(wt), wt − w∗⟩ − ⟨∇ψ(wt;πt), wt − w∗⟩ ≤
8(G+ σ)D

√
3 log(2/δ)√

T
. (49)

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Next,

E

[
exp

(∑T
t=1 ∥∇ψ(wt;πt)∥2

4G2 + 4σ2

)]
= E

[
ET

[
exp

(∑T
t=1 ∥∇ψ(wt;πt)∥2

4G2 + 4σ2

)]]

= E

[
exp

(∑T−1
t=1 ∥∇ψ(wt;πt)∥2

4G2 + 4σ2

)
ET

[
exp

(
∥∇ψ(wT ;πT)∥2

4G2 + 4σ2

)]]

= E

[
exp

(∑T−1
t=1 ∥∇ψ(wt;πt)∥2

4G2 + 4σ2

)
· exp(1)

]
,

where the last inequality uses Eq. (48). Apply the above procedure inductively, we obtain

E

[
exp

(∑T
t=1 ∥∇ψ(wt;πt)∥2

4G2 + 4σ2

)]
≤ exp(T).

By Markov’s inequality, with probability at least 1− δ/2, we have
T∑

t=1

∥∇ψ(wt;πt)∥2 ≤ 4(G2 + σ2)T log(2/δ).

By Theorem C.6 and Eq. (49), we conclude that

1

T

T∑
t=1

ψ(wt)− ψ(w∗) ≤ 2γ(G2 + σ2) log(2/δ) +
∥w1 − w∗∥2

2γT
+

8(G+ σ)D
√

3 log(2/δ)√
T

.

Lemma C.4. Define ∆k and Vk, choose γ1 and T1 as

∆k = ψ(wk)−ψ(w∗), Vk =
G(pG/µ)

1
p−1

2k−1
and γ1 =

G(pG/µ)
1

p−1

24(G2 + σ2)
, T1 =

602(G2 + σ2)

G2
.

(50)
For any k, with probability at least (1− δ̃)k−1 we have ∆k ≤ Vk log(2/δ̃).

Proof of Theorem C.4. Denote ι := log(2/δ̃). We will prove the lemma by induction on k, i.e.,
∆k ≤ Vkι.
Base Case. The claim is true for k = 1 since ∆1 ≤ V1ι by Theorem C.2.

Induction. Assume that ∆k ≤ Vkι for some k ≥ 1 with probability at least (1− δ̃)k−1 and now we
prove the claim for k+1. Since ∆k ≥ µ

p ∥w
k
1 −w∗∥p by (µ, p)-uniform convexity, which, combined

with the induction hypothesis ∆k ≤ Vkι implies that

∥wk
1 − w∗∥ ≤ (p∆k/µ)

1
p = Dk. (51)

Apply Theorem C.3 with D = Dk and hence with probability at least 1− δ̃,

∆k+1 = ψ(wk+1
1)− ψ(w∗)

≤ 2γk(G
2 + σ2)ι+

∥wk
1 − w∗∥2

2γkTk
+

8(G+ σ)Dk

√
3ι√

Tk

≤ 2γk(G
2 + σ2)ι+

(p∆k/µ)
2
p

2γkTk
+

20(G+ σ)(p∆k/µ)
1
p
√
ι√

Tk

≤ γ1(G
2 + σ2)ι

2k−2
+

(pVkι/µ)
2
p

2γ1T1 · 2
p−2
p (k−1)

+
20(G+ σ)(pVkι/µ)

1
p
√
ι√

T12τ(k−1)

≤ Vkι

12
+
Vkι

300
+
Vkι

3

≤ Vkι

2
= Vk+1ι,

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

where the first inequality uses Theorem C.3, the second inequality is due to Eq. (51), the third
inequality uses the induction hypothesis and the definition of γk and Tk, and the fourth inequality is
due to the choice of γ1 and T1 as in Eq. (51).

Factoring in the conditioned event ∆k ≤ Vkι, which happens with probability at least (1− δ̃)k−1,
thus we obtain that ∆k+1 ≤ Vk+1ι with probability at least (1− δ̃)k.

Theorem C.5. Under Theorem C.1, given any δ ∈ (0, 1), set δ̃ = δ/k† for k† = ⌊ 1τ log2((
T
T1
)(2τ −

1) + 1)⌋. Set the parameters γ1, T1 and D1 as

γ1 =
G(pG/µ)

1
p−1

24(G2 + σ2)
, T1 =

602(G2 + σ2)

G2
, D1 = min

{(
pG

µ

) 1
p−1

log(2/δ̃), ∥w1
1 − w∗∥

}
(52)

in Algorithm 1. Then with probability at least 1− δ, we have

ψ(wk
1)− ψ(w∗) ≤ (602(G2 + σ2))

p
2(p−1) (p/µ)

1
p−1 log(2/δ̃)

T
p

2(p−1)

= O
(
T− p

2(p−1)

)
,

∥wk
1 − w∗∥ ≤ (602(G2 + σ2))

1
2(p−1) (p/µ)

1
p−1 log(2/δ̃)

T
1

2(p−1)

= O
(
T− 1

2(p−1)

)
.

Proof of Theorem C.5. Recall τ = 2(p − 1)/p as defined in Algorithm 1. By Theorem C.4, with
probability at least 1− δ̃,

ψ(wk†+1
1)− ψ(w∗) = ∆k†+1 ≤ Vk†+1 log(2/δ̃)

=
G(pG/µ)

1
p−1 log(2/δ̃)

2k† ≤ G(pG/µ)
1

p−1

((
T

T1

)
(2τ − 1) + 1

)− 1
τ

log(2/δ̃)

≤ T
1
τ
1 G(pG/µ)

1
p−1 log(2/δ̃)

T
1
τ

=
(602(G2 + σ2))

p
2(p−1) (p/µ)

1
p−1 log(2/δ̃)

T
p

2(p−1)

,

where the second inequality uses the definition of k†, the third inequality is due to τ ≥ 1, and the
last equality uses the definition of τ and the choice of T1 as in Eq. (52). Also, by (µ, p)-uniform
convexity of ψ we have

ψ(wk†+1
1)− ψ(w∗) ≥ µ

p
∥wk†+1

1 − w∗∥p.

Combing the above inequalities yields the results.

Lemma C.6 ((Hazan & Kale, 2014, Lemma 6)). Starting from an arbitrary point w1 ∈ Rd, apply T
iterations of the update

wt+1 = wt − γ∇ψ(wt;πt).

Then for any point w∗ ∈ Rd, we have

T∑
t=1

⟨∇ψ(wt;πt), wt − w∗⟩ ≤ γ

2

T∑
t=1

∥∇ψ(wt;πt)∥2 +
∥w1 − w∗∥2

2γ
.

Lemma C.7 ((Hazan & Kale, 2014, Lemma 14)). Let X1, . . . , XT be a martingale difference
sequence, i.e., Et[Xt] = 0 for all t. Suppose that there exists σ1, . . . , σT such that Et[exp(X

2
t /σ

2
t)] ≤

exp(1). Then with probability at least 1− δ, we have

T∑
t=1

Xt ≤

√√√√3 log(1/δ)

T∑
t=1

σ2
t .

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

C.2 PROOF OF LEMMA 5.2

We will use a short hand y∗ = y∗(x).
Lemma C.8. Under Theorem 3.2, if y∗ ∈ B(y;R) for some R > 0, then for all ȳ ∈ B(y;R),

∥∇yg(x, ȳ)∥ ≤
(2(2L1R+1) − 1)L1

L0
.

Proof of Theorem C.8. For any ȳ ∈ B(y;R), let y′0 = y∗ and y′j = ȳ, then there exists y′0, y
′
1, . . . , y

′
j

with j = ⌈L1∥ȳ − y∗∥⌉ such that ∥y′i − y′i−1∥ ≤ 1/L1 for i = 1, . . . , j. We will prove
∥∇yg(x, y

′
i)∥ ≤ (2i − 1)L1/L0 for all i ≤ j by induction.

Base Case. For y′1, by Theorem 3.2 we have

∥∇yg(x, y
′
1)−∇yg(x, y

′
0)∥ ≤ (L0 + L1∥∇yg(x, y

′
0)∥∥y′1 − y′0∥ ≤

L0

L1
,

where the last inequality uses y′0 = y∗. This implies that ∥∇yg(x, y
′
1)∥ ≤ L0/L1.

Induction. Assume that ∥∇yg(x, y
′
i)∥ ≤ (2i − 1)L0/L1 holds for some i ≤ j − 1. Then for y′i+1

we have

∥∇yg(x, y
′
i+1)−∇yg(x, y

′
i)∥ ≤ (L0 + L1∥∇yg(x, y

′
i)∥∥y′i+1 − y′i∥ ≤

2iL0

L1
,

where the last inequality uses the induction hypothesis. By triangle inequality and the induction
hypothesis we obtain ∥∇yg(x, y

′
i+1)∥ ≤ (2i+1 − 1)L1/L0. Therefore, we conclude that for any

ȳ ∈ B(y;R),

∥∇yg(x, ȳ)∥ ≤
(2j − 1)L1

L0
=

(2⌈L1∥ȳ−y∗∥⌉ − 1)L1

L0
≤ (2(2L1R+1) − 1)L1

L0
,

where the last inequality uses ∥ȳ − y∗∥ ≤ 2R since ȳ, y∗ ∈ B(y;R).

Lemma C.9 (Restatement of Theorem 5.2). For any given δ ∈ (0, 1) and ϵ > 0, set δ̃ = δ/(Tk†)
for k† = ⌊ 1τ log2((

Kt

Kt,1
)(2τ − 1) + 1)⌋, where τ = 2(p − 1)/p is defined in Algorithm 1. Choose

{αt,1}, {Kt,1}, {Rt,1}, {Kt} as

Gt =


(2(2L1∥y0−y∗

0∥+1) − 1)
L1

L0
t = 0

L1

L0
t ≥ 1

, Rt,1 =


min

{
(pGt/µ)

1
p−1 log(2/δ̃), ∥y0 − y∗0∥

}
t = 0

min

{
ϵ

4Lϕ2

,
1

L1

}
t ≥ 1

,

(53)

αt,1 =
Gt(pGt/µ)

1
p−1

24(G2
t + σ2

g,1)
, Kt,1 =

602(G2
t + σ2

g,1)

G2
t

, Kt =
602(G2

t + σ2
g,1)(p/µ)

2(log(2/δ̃))2(p−1)

(min{ϵ/8Lϕ2
, 1/2L1})2(p−1)

.

(54)
For any sequence {x̃t} such that x̃0 = x0 and ∥x̃t+1 − x̃t∥ = η for η satisfying

η ≤
(

1

Ilp
min

{
ϵ

8Lϕ2

,
1

2L1

})p−1

, (55)

let {ỹt} be the output produced by Algorithm 2. Then with probability at least 1− δ, for all t ∈ [T]
we have ∥ỹt − ỹ∗t ∥ ≤ min{ϵ/4Lϕ2

, 1/L1}.

Proof of Theorem C.9. For t = 0, by Theorems C.5 and C.8 and the choices of α0,1,K0,1, R0,1 as in
Eq. (53) and Eq. (54), with probability at least 1− δ/T we have ∥ỹ1 − ỹ∗0∥ ≤ min{ϵ/8Lϕ2

, 1/2L1}.
For 1 ≤ t ≤ I , we have

∥ỹt − ỹ∗t ∥ = ∥ỹ1 − ỹ∗t ∥ ≤ ∥ỹ1 − ỹ∗0∥+
t∑

i=1

∥ỹ∗i−1 − ỹ∗i ∥ ≤ min{ϵ/8Lϕ2 , 1/2L1}+ Ilp∥x̃i−1 − x̃i∥
1

p−1

= min{ϵ/8Lϕ2
, 1/2L1}+ Ilpη

1
p−1 ≤ min{ϵ/4Lϕ2

, 1/L1},

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

where the first inequality uses triangle inequality, the second inequality is due to t ≤ I and
Theorem 4.2, the last inequality uses the choice of η as in Eq. (55). For t ≥ I , apply
Theorems C.5 and C.8 with the choices of αt,1,Kt,1, Rt,1 as in Eq. (53) and Eq. (54), then
follow the above procedure inductively, we obtain with probability at least 1 − δ that for all t,
∥ỹt − ỹ∗t ∥ ≤ min{ϵ/4Lϕ2

, 1/L1}.

C.3 PROOF OF LEMMA 5.3

Corollary C.10 (Restatement of Theorem 5.3). Let {xt} and {yt} be the iterates generated by
Algorithm 2. For any given δ ∈ (0, 1) and ϵ > 0, under the same parameter setting in Theorem C.9,
with probability at least 1− δ (denote this event as E) we have ∥yt − y∗t ∥ ≤ min{ϵ/4Lϕ2

, 1/L1} for
all t ≥ 1.

Proof of Theorem C.10. By line 8 of Algorithm 2, we have ∥xt+1 − xt∥ = η. Setting {x̃t} = {xt}
yields the result.

C.4 PROOF OF LEMMA 5.4

Lemma C.11. Under Theorems 3.2 and 3.3, define ϵt := mt −∇Φ(xt), then we have

Φ(xt+1) ≤ Φ(xt)− η∥∇Φ(xt)∥+ 2η∥ϵt∥+
(p− 1)Lϕ1

p
η

p
p−1 +

Lϕ2

2
η2.

Furthermore,
T∑

t=1

∥∇Φ(xt)∥ ≤
∆ϕ

η
+ T

(
(p− 1)Lϕ1

p
η

1
p−1 +

Lϕ2

2
η

)
+ 2

T∑
t=1

∥ϵt∥.

Proof of Theorem C.11. By Theorem 4.1, we have

Φ(xt+1) ≤ Φ(xt) + ⟨∇Φ(xt), xt+1 − xt⟩+
(p− 1)Lϕ1

p
∥xt+1 − xt∥

p
p−1 +

Lϕ2

2
∥xt+1 − xt∥2

= Φ(xt)− η
〈
mt − ϵt,

mt

∥mt∥

〉
+

(p− 1)Lϕ1

p
η

p
p−1 +

Lϕ2

2
η2

= Φ(xt)− η∥mt∥+ η

〈
ϵt,

mt

∥mt∥

〉
+

(p− 1)Lϕ1

p
η

p
p−1 +

Lϕ2

2
η2

≤ Φ(xt)− η∥∇Φ(xt) + ϵt∥+ η∥ϵt∥+
(p− 1)Lϕ1

p
η

p
p−1 +

Lϕ2

2
η2

≤ Φ(xt)− η∥∇Φ(xt)∥+ 2η∥ϵt∥+
(p− 1)Lϕ1

p
η

p
p−1 +

Lϕ2

2
η2,

(56)
where the first equality uses the update rule (line 8) of Algorithm 2, the second inequality is due to
Cauchy–Schwarz inequality, and the last inequality uses triangle inequality. Rearranging Eq. (56)
and taking summation yields the result.

Lemma C.12 (Restatement of Theorem 5.4). Under Theorems 3.2 to 3.4 and event E , we have
T∑

t=1

E∥ϵt∥ ≤
σ1

1− β
+ T

√
1− βσ1 + TLϕ2

min

{
ϵ

4Lϕ2

,
1

L1

}
+
T lg,1lf,0

µ

(
1− µ

C

)Q
+

T

1− β

(
Lϕ1

η
1

p−1 + Lϕ2
η
)
.

Proof of Theorem C.12. Define ϵ̂t = ∇̂f(xt, yt; ξ̄t)−∇Φ(xt) and S(a, b) = ∇Φ(a)−∇Φ(b). By
Theorem 4.1, we have

∥S(xt, xt+1)∥ = ∥Φ(xt)−Φ(xt+1)∥ ≤ Lϕ1
∥xt−xt+1∥

1
p−1 +Lϕ2

∥xt−xt+1∥ ≤ Lϕ1
η

1
p−1 +Lϕ2

η.
(57)

For all t ≥ 1, we have the following recursion:

ϵt+1 = βϵt + (1− β)ϵ̂t+1 + βS(xt, xt+1). (58)

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Unrolling the recursion gives

ϵt+1 = βtϵ1 + (1− β)
t−1∑
i=0

βiϵ̂t+1−i + β

t−1∑
i=0

βiS(xt−i, xt+1−i).

By triangle inequality and Eq. (57), we have

∥ϵt+1∥ ≤ βt∥ϵ1∥+ (1− β)

∥∥∥∥∥
t−1∑
i=0

βiϵ̂t+1−i

∥∥∥∥∥+ β
(
Lϕ1

η
1

p−1 + Lϕ2
η
) t−1∑

i=0

βi

≤ βt ∥ϵ1∥︸︷︷︸
(A)

+(1− β)

∥∥∥∥∥
t−1∑
i=0

βiϵ̂t+1−i

∥∥∥∥∥︸ ︷︷ ︸
(B)

+
β

1− β

(
Lϕ1

η
1

p−1 + Lϕ2
η
)
.

(59)

Bounding (A). Observe that ϵ1 = ϵ̂1. Taking expectation and using Jensen’s inequality, we have

E∥ϵ1∥ = E∥ϵ̂1∥ ≤
√
E∥ϵ̂1∥2 ≤ σ1.

Bounding (B). By triangle inequality, we have

E

∥∥∥∥∥
t−1∑
i=0

βiϵ̂t+1−i

∥∥∥∥∥ ≤ E

∥∥∥∥∥
t−1∑
i=0

βi(∇̂f(xi, yi; ξ̄i)− Et[∇̂f(xi, yi; ξ̄i)])

∥∥∥∥∥+ E

∥∥∥∥∥
t−1∑
i=0

βi(Et[∇̂f(xi, yi; ξ̄i)]−∇Φ(xi))

∥∥∥∥∥
≤

√√√√t−1∑
i=0

β2iE∥∇̂f(xi, yi; ξ̄i)− Et[∇̂f(xi, yi; ξ̄i)]∥2 +
t−1∑
i=0

βi

(
Lϕ2∥yi − y∗i ∥+

lg,1lf,0
µ

(
1− µ

C

)Q)

≤ σ1√
1− β

+
Lϕ2

1− β
min

{
ϵ

4Lϕ2

,
1

L1

}
+

lg,1lf,0
µ(1− β)

(
1− µ

C

)Q
,

where the second inequality uses Jensen’s inequality and the fact that for i ̸= j, ξ̄i and ξ̄j are
uncorrelated, and the last inequality is due to Theorem B.7 and Theorem C.10.

Returning to Eq. (59), we obtain

E∥ϵt+1∥ ≤ βtσ1 +
√

1− βσ1 + Lϕ2
min

{
ϵ

4Lϕ2

,
1

L1

}
+
lg,1lf,0
µ

(
1− µ

C

)Q
+

β

1− β

(
Lϕ1

η
1

p−1 + Lϕ2
η
)
.

Summing from t = 1 to T yields

T∑
t=1

E∥ϵt∥ ≤
σ1

1− β
+ T

√
1− βσ1 + TLϕ2

min

{
ϵ

4Lϕ2

,
1

L1

}
+
T lg,1lf,0

µ

(
1− µ

C

)Q
+

T

1− β

(
Lϕ1

η
1

p−1 + Lϕ2
η
)
.

D PROOF OF MAIN THEOREM 5.1

Theorem D.1 (Restatement of Theorem 5.1). Under Theorems 3.2 to 3.4, for any given δ ∈ (0, 1)

and ϵ > 0, set δ̃ = δ/(Tk†) for k† = ⌊ 1τ log2((
Kt

Kt,1
)(2τ −1)+1)⌋, where τ = 2(p−1)/p is defined

in Algorithm 1. Choose {αt,1}, {Kt,1}, {Rt,1}, {Kt} as

Gt =


(2(2L1∥y0−y∗

0∥+1) − 1)
L1

L0
t = 0

L1

L0
t ≥ 1

, Rt,1 =


min

{
(pGt/µ)

1
p−1 log(2/δ̃), ∥y0 − y∗0∥

}
t = 0

min

{
ϵ

Lϕ2

,
1

L1

}
t ≥ 1

,

(60)

αt,1 =
Gt(pGt/µ)

1
p−1

24(G2
t + σ2

g,1)
, Kt,1 =

602(G2
t + σ2

g,1)

G2
t

, Kt =
602(G2

t + σ2
g,1)(p/µ)

2(log(2/δ̃))2(p−1)

(min{ϵ/2Lϕ2
, 1/2L1})2(p−1)

.

(61)

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

In addition, choose β, η, I and Q as

1−β = min

{
1,
c1ϵ

2

σ2
1

}
, η = c2 min

{(
ϵ ·min

{
1− β
Lϕ1

,
p

(p− 1)Lϕ1

,
1− β
lpLϕ2

})p−1

,
(1− β)ϵ
Lϕ2

,
ϵ

Lϕ2

}
,

(62)

I =
1

1− β
, Q = ln

(
µϵ

4lg,1lf,0

)/
ln
(
1− µ

C

)
. (63)

Let T =
C1∆ϕ

ηϵ . Then with probability at least 1 − δ over the randomness in Fy, we have
1
T

∑T
t=1 E∥∇Φ(xt)∥ ≤ ϵ, where the expectation is taken over the randomness in FT+1. The

total oracle complexity is Õ(ϵ−5p+6).

Proof of Theorem D.1. We apply Theorems C.11 and C.12 to obtain that, under event E ,

1

T

T∑
t=1

E∥∇Φ(xt)∥ ≤
∆ϕ

Tη
+

(
(p− 1)Lϕ1

p
η

1
p−1 +

Lϕ2

2
η

)
+

2

T

T∑
t=1

E∥ϵt∥

≤ ∆ϕ

Tη
+

(
(p− 1)Lϕ1

p
η

1
p−1 +

Lϕ2

2
η

)
+

2σ1
T (1− β)

+ 2
√
1− βσ1 + 2Lϕ2

min

{
ϵ

4Lϕ2

,
1

L1

}
+

2

1− β

(
Lϕ1

η
1

p−1 + Lϕ2
η
)
+
lg,1lf,0
µ

(
1− µ

C

)Q
≤
(

1

C1
+ c

1
p−1

2 +
c2
2

+
2c2σ1ϵ

C1∆ϕLϕ2

+ 2
√
c1 +

1

2
+ 2c

1
p−1

2 + 2c2 +
1

4

)
ϵ

≤ ϵ,

where the third inequality uses the choice of η, β and Q as in Eq. (62) and Eq. (63), the last inequality
is due to the choice of small enough constants c1, c2 and large enough constant C1.

Moreover, the total oracle complexity is (assume target accuracy ϵ is small enough):

O

T +

⌈T/I⌉∑
j=0

KjIQ

 = Õ
(
ϵ−3p+2 + ϵ−5p+6

)
= Õ

(
ϵ−5p+6

)
.

E ADDITIONAL EXPERIMENTS

E.1 MORE EXPERIMENTS FOR SYNTHETIC DATA

(a) p = 4 (b) p = 12 (c) p = 20

Figure 3: Results of bilevel optimization on the synthetic example 2 when p = {4, 12, 20}. All
algorithms are initialized at (x0, y0) = (0.001, 0.001), and the upper-level variable is updated for
T = 500 iterations. The performance of the algorithms was evaluated through the ground-truth
hypergradient given by∇Φ(x) = sin(x) cos(sin(x)). For all algorithms, learning rates are optimally
tuned with a grid search over the range [0.01, 1].

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

In this section, we conducted extensive synthetic experiments to rigorously compare UniBiO
against prominent LLSC-based algorithms, including StocBiO (Ji et al., 2021), TTSA (Hong
et al., 2023), and MA-SOBA (Chen et al., 2023), under a deterministic setting. All experiments
were initialized at (x0, y0) = (0.001, 0.001), with the upper-level iteration number fixed at
T = 500. Algorithm performance was evaluated through the ground-truth hypergradient given
by ∇Φ(x) = sin(x) cos(sin(x)) across varying p ∈ {4, 12, 20}.
Parameter Settings: For UniBiO and StocBiO, we set Neumann series iterations as Q = 10.
Momentum for UniBio and MA-SOBA was fixed at 0.9. The optimal upper- (ηUL) and lower-level
learning rates (ηLL) for each algorithm were determined through a grid search over the range [0.01, 1].
Specifically the learning rates are: UniBiO (ηUL = 0.02, ηLL = 1.0); StocBiO (ηUL = 0.5, ηLL =
0.1); TTSA (ηUL = 0.1, ηLL = 0.1); MA-SOBA (ηUL = 1.0, ηLL = 0.01, ηz = 0.01). Other
fixed parameters included: UniBio (I = 10, T1 = 5, D1 = 1, Ty = 100), StocBiO (the number of
inner iterations Ty = 5), and MA-SOBA (the auxiliary variable z is initialized at z0 = 0).

E.2 MORE EXPERIMENTS FOR DATA HYPER-CLEANING

0 20 40 60 80 100
Epoch

0.4

0.5

0.6

0.7

0.8

Tr
ai

n_
AC

C

Train_ACC vs. Epoch

StocBio
TTSA
SABA
MA-SOBA
SUSTAIN
VRBO
UniBiO

(a) Training ACC

0 20 40 60 80 100
Epoch

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

Te
st

_A
CC

Test_ACC vs. Epoch

StocBio
TTSA
SABA
MA-SOBA
SUSTAIN
VRBO
UniBiO

(b) Test ACC

0 5000 10000 15000 20000
running time /s

0.4

0.5

0.6

0.7

0.8

Tr
ai

n_
AC

C

Train_ACC vs. running time (s)

StocBio
TTSA
SABA
MA-SOBA
SUSTAIN
VRBO
UniBiO

(c) Training ACC vs. running time

0 5000 10000 15000 20000
running time /s

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

Te
st

_A
CC

Test_ACC vs. running time (s)

StocBio
TTSA
SABA
MA-SOBA
SUSTAIN
VRBO
UniBiO

(d) Test ACC vs. running time

Figure 4: Results of bilevel optimization on data hyper-cleaning with noise p̃ = 0.1 and p = 4.
Subfigure (a), (b) show the training and test accuracy with the training epoch. Subfigure (c), (d) show
the training and test accuracy with the running time.

F HYERPARAMETER SETTING

For a fair comparison, we carefully tune the hyperparameters for each baseline, including upper-
and lower-level step sizes, the number of inner loops, momentum parameters, etc. For the data
hyper-cleaning experiments, the upper-level learning rate η and the lower-level learning rate γ are
selected from range [0.001, 0.1]. The best (η, γ) are summarized as follows: Stocbio: (0.01, 0.002),
TTSA: (0.001, 0.02), SABA: (0.05, 0.02), MA-SOBA: (0.01, 0.01), SUSTAIN: (0.05, 0.05), VRBO:
(0.1, 0.05), UniBiO: (0.05, 0.02). The number for neumann series estimation in StocBiO and VRBO
is fixed to 3, while it is uniformly sampled from {1, 2, 3} in TTSA, and SUSTAIN. The batch size is
set to be 128 for all algorithms except VRBO, which uses larger batch size of 256 (tuned in the range
of {63, 128, 256, 512, 1024}) at the checkpoint step and 128 otherwise. UniBiO uses the periodic
update for low-level variable and sets the iterations N = 3 and the update interval I = 2. The
momentum parameter β is fixed to 0.9 in MA-SOBA and UniBiO.

G THE USE OF LARGE LANGUAGE MODELS (LLMS)

LLMs are not involved in our research methodology or analysis. Their use is limited to polish the
writing.

31

	Introduction
	Related Work
	Preliminaries
	The Lower-Level Uniform Convexity Problem Class
	Examples

	Implicit Differentiation Theorem under LLUC
	Proof Sketch

	Algorithm and Convergence Analysis
	Algorithm Design
	Main Results
	Proof Sketch

	Experiments
	Conclusion
	Proofs in Section 3
	Definition
	Examples

	Proofs in Section 4
	Proof of Lemma 4.2
	A Technical Lemma Under a Different Assumption
	Proof of Theorem 4.1
	Generalization of Assumptions
	Proof of Lemma 4.3
	Hypergradient Implementation
	Sufficient and Necessary Condition for the Differentiablity Assumption
	Other Useful Lemmas

	Proofs of Section 5.3
	Convergence Guarantee for Minimizing Single-level Uniformly Convex Functions
	Proof of lemma 5.2
	Proof of lemma 5.3
	Proof of lemma 5.4

	Proof of Main Theorem 5.1
	Additional Experiments
	More Experiments for Synthetic Data
	More Experiments for Data Hyper-cleaning

	Hyerparameter Setting
	The Use of Large Language Models (LLMs)

