Under review as a conference paper at ICLR 2026

BILEVEL OPTIMIZATION WITH LOWER-LEVEL
UNIFORM CONVEXITY: THEORY AND ALGORITHM

Anonymous authors
Paper under double-blind review

ABSTRACT

Bilevel optimization is a hierarchical framework where an upper-level optimization
problem is constrained by a lower-level problem, commonly used in machine
learning applications such as hyperparameter optimization. Existing bilevel
optimization methods typically assume strong convexity or Polyak-Lojasiewicz
(PL) conditions for the lower-level function to establish non-asymptotic
convergence to a solution with small hypergradient. However, these assumptions
may not hold in practice, and recent work (Chen et al.|[2024) has shown that bilevel
optimization is inherently intractable for general convex lower-level functions with
the goal of finding small hypergradients.

In this paper, we identify a tractable class of bilevel optimization problems that
interpolates between lower-level strong convexity and general convexity via lower-
level uniform convexity. For uniformly convex lower-level functions with exponent
p > 2, we establish a novel implicit differentiation theorem characterizing the
hyperobjective’s smoothness property. Building on this, we design a new stochastic
algorithm, termed UniBiO, with provable convergence guarantees, based on an
oracle that provides stochastic gradient and Hessian-vector product information

for the bilevel problems. Our algorithm achieves O(e~5*%) oracle complexity
bound for finding e-stationary points. Notably, our complexity bounds match
the optimal rates in terms of the e dependency for strongly convex lower-level
functions (p = 2), up to logarithmic factors. Our theoretical findings are validated
through experiments on synthetic tasks and data hyper-cleaning, demonstrating the
effectiveness of our proposed algorithm.

1 INTRODUCTION

Bilevel optimization (Bracken & McGill, (1973 Dempel 2002) is a hierarchical optimization
framework where an upper-level optimization problem is constrained by a lower-level optimzation
problem. Bilevel optimization plays a crucial role in various machine learning applications, including
meta-learning (Finn et al.l |2017), hyperparameter optimization (Franceschi et al., [2018), data
hypercleaning (Franceschi et al., 2017; Shaban et al., |2019), continual learning (Borsos et al.|
2020; Hao et al., [2023), neural network architecture search (Liu et al., [2018)), and reinforcement
learning (Konda & Tsitsiklis, [1999). The bilevel optimization problem can be defined as:

min 6(z) = f(@,y"(x)),  y"(x) € argming(z,y), o

zER yER
where f and g are referred to as upper-level and lower-level functions respectively. A common
assumption in bilevel optimization is that the lower-level function is either strongly convex (Ghadimi
& Wang|, 2018; Hong et al.| 2023} Ji et al., 2021}; |Chen et al.| |2021a} 2023 Hao et al.| 2024} [Kwon
et al.| 2023a)) or satisfies the Polyak-Lojasiewicz (PL) condition (Liu et al.| 2022} Kwon et al., 2023b;
Shen & Chen, [2023; [Huang} 2024])), which facilitates the design of algorithms with non-asymptotic
convergence guarantees for finding a solution with a small hypergradient. However, these assumptions
do not always hold in practice.

Recent work (Chen et al.| 2024) has explored the relaxation of these conditions but has primarily
yielded negative results. Specifically, they show that for general convex lower-level problems, bilevel
optimization can be intractable with the goal of finding a point with a small hypergradient: the
hyperobjective function can be discontinuous and may lack stationary points. This stark contrast
between lower-level strong convexity (LLSC) and mere lower-level convexity (LLC) naturally raises
the following question:



Under review as a conference paper at ICLR 2026

Can we identify an intermediate class of bilevel optimization problems that bridges the
gap between LLSC and LLC, enabling the design of efficient algorithms of finding small
hypergradients in polynomial time?

In this paper, we provide a positive answer to this question by introducing a function class that
satisfies a property called lower-level uniform convexity (LLUCﬂ This property serves as a natural
interpolation between LLSC and LLC, controlled by an exponent p. Uniform convexity (Zalinescul
1983;; Touditski & Nesterov, [2014)) is a refined notion of convexity characterized by p > 2, where
p = 2 corresponds to strong convexity.

Finding small hypergradients under LLUC presents several challenges. First, for uniformly convex
lower-level functions, the Hessian of the lower-level objective may be singular, making it impossible
to compute hypergradients directly using the standard implicit differentiation theorem applicable
under LLSC (Ghadimi & Wang, [2018]). Second, the LLUC property inherently conflicts with the
standard smoothness assumptions for the lower-level function (i.e., Lipschitz-continuous gradient in
terms of the lower-level variable), which are crucial for the theoretical analysis of existing bilevel
optimization algorithms (Ghadimi & Wang, 2018} [Hong et al.l [2023; |Ji et al.| 2021; [Kwon et al.|
2023a; Hao et al.,[2024). Consequently, addressing bilevel optimization under LLUC necessitates the
development of a fundamentally different algorithmic framework and novel analysis techniques.

In this work, we tackle these challenges with two key innovations. First, we develop a novel
implicit differentiation theorem under LLUC, which characterizes the smoothness property of the
hyperobjective, where the degree of smoothness depends on the uniformly convex exponent p.
Second, to overcome the lack of standard smoothness assumptions for the lower-level function, we
propose a new stochastic algorithm called UniBiO (Uniformly Convex Bilevel Optimization). After a
warm-start stage for the lower-level variable, UniBiO employs a normalized momentum update for
the upper-level variable and a multistage stochastic gradient descent with a shrinking ball strategy to
update the lower-level variable. Notably, the lower-level updates are required only periodically rather
than at every iteration. Our main contributions are summarized as follows.

* We identify a tractable class of bilevel optimization problems that interpolates between LLSC
and LLC by leveraging the LLUC. Under this problem class, we develop a novel implicit
differentiation theorem that provides an explicit hypergradient formula and establishes its
smoothness property. This theorem is of independent interest and could be applied to other
hierarchical optimization settings (e.g., multilevel and minimax optimization).

* We design a new stochastic algorithm named UniBiO, the first algorithm designed for bilevel

optimization under LLUC. We prove that UniBiO achieves the oracle complexity O(¢~5PF6)
for finding an e-stationary point for the hyperobjective in the stochastic setting, where
the oracle provides either stochastic gradients or Hessian-vector products. Notably, this
oracle complexity matches the optimal complexity for strongly convex lower-level functions
(p = 2) up to logarithmic factors.

* We conduct experiments on both an synthetic task and data hypercleaning, which validate
our theory and show the effectiveness of our proposed algorithm.

2 RELATED WORK

Bilevel Optimization with Lower-Level Strong Convexity. Early research on bilevel optimization
primarily focused on asymptotic convergence guarantees (Vicente et al., [1994; |/Anandalingam &
‘Whitel [1990; [White & Anandalingam), [1993). A major breakthrough came with | Ghadimi & Wang
(2018)), which established the first non-asymptotic convergence guarantees for finding a solution
with a small hypergradient under the assumption that the lower-level function is strongly convex.
This work laid the foundation for a series of subsequent studies that improved either the complexity
or the simplicity of algorithm design (Hong et al., [2023} |Chen et al.| 2021bj Ji et al., 2021; Kwon
et al., 2023aj |Hao et al.| 2024} |Gong et al., 2024aj |Chen et al., 2021a; Khanduri et al., [2021; Dagréou
et al.| 2022} |Guo et al.| 2021} |Yang et al., 2021 (Gong et al.,|2024b)). These works critically rely on
the implicit differentiation theorem from |Ghadimi & Wang| (2018)), which is applicable under the
assumption of lower-level strong convexity. In contrast, our work does not assume LL.SC, rendering
the standard implicit differentiation technique from |Ghadimi & Wang| (2018)) inapplicable.

'The definition of LLUC is given in Assumption ).



Under review as a conference paper at ICLR 2026

Bilevel Optimization with Lower-Level Nonconvexity. Bilevel optimization with nonconvex lower-
level functions is generally intractable without additional assumptions (Daskalakis et al.| [2021)).
One common approach assumes that the lower-level function satisfies the Polyak-Eojasiewicz (PL)
condition (Liu et al., 2022; [Kwon et al.l 2023b} |Shen & Chenl 2023} [Huang|, 2024} |Chen et al.|
2024). Another line of work leverages sequential approximation minimization techniques (Liu et al.,
2021agb; 2020) to solve bilevel problems without assuming lower-level strong convexity, though
these methods typically offer only asymptotic convergence guarantees. Additionally,|Arbel & Mairal
(2022)) employs Morse theory to extend implicit differentiation in the presence of multiple lower-level
minima caused by nonconvexity. In contrast, our work focuses on a class of uniformly convex
lower-level problems.

Bilevel Optimization with General Lower-level Convexity. Despite the negative results of (Chen
et al. (2024) under LLC from the hypergradient perspective, there is a line of work which investigates
algorithms converging to e-KKT solution of a corresponding constrained optimization problem (Lu
& Meil 2024aib). In contrast, our work focuses on finding an solution with small hypergradient, not
an e-KKT solution for a corresponding constrained problem.

Optimization for Uniformly Convex Functions. For an single-level optimization problem under
uniform convexity, the work of louditski & Nesterov|(2014) established first-order algorithms with
optimal complexity upper bounds for nonsmooth functions with bounded gradients. Under a high-
order smoothness assumption, the work of [Song et al.| (2019) designed high-order methods for
uniformly convex functions. In addition, the work of |Bai & Bullins|(2024) derived lower bounds
for a class of optimization problems characterized by high-order smoothness and uniform convexity.
In contrast, our work focuses on updating the lower-level variable using first-order methods under
LLUC, without bounded gradients or smoothness assumptions.

3 PRELIMINARIES

Define || - || as the Euclidean norm (spectral norm) when the argument is a vector (an square matrix).
Define (-, -) as the inner-product in Euclidean space. Denote ® by the Hadamard (element-wise)
product. For any a € R?, We adopt the notation [a|” = (af,...,af) for a € R? to denote the

element-wise power of a vector., where p > 0 can be any positive number (e.g., integers or non-
integers). We use asymptotic notation O(-), ©(-), () to hide polylogarithmic factors in terms of
1/e. Define f : R% x R% + R as the upper-level function, and g : R% x R% - R as the
lower-level function. We consider the stochastic optimization setting: we only have noisy observation
of fand g: f(z,y) = E¢p, [F(2,y;€)] and g(,y) = E¢op,[G(2, y; ()], where Dy and D, are
underlying data distributions for upper-level function and lower-level functions respectively. We need
the following definition of the differentiability in the normed vector space.

Definition 3.1 (Differentiability in Normed Vector Spaces). Let (X, ||-|/x) and (Y, || - ||y) be normed
vector spaces, let £ C X and xy € F be an accumulation point of £. The function ¢ : £ — Y is
defined to be differentiable at x( if there exists a continuous linear function J : X — Y (depending
on f and z() such that:

Ux) — l(xo) — J(x — x0)

lim =0. )
@ =0 |z — 2ol x
In addition, J is defined as the derivative of h in terms of x at the point zg, i.e., J := dz(f) =20

In the following, we will introduce the problem class of LLUC with corresponding assumptions in
Section [3.1] and provide some examples within the problem class in Section[3.2]

3.1 THE LOWER-LEVEL UNIFORM CONVEXITY PROBLEM CLASS

In this section, we introduce the assumptions that define the LLUC problem class. In particular, we
identity the assumptions for both upper-level function f, lower-level function g and the hyperobjective
®. We make the following assumptions throughout this paper.

Assumption 3.2. The following conditions hold for the lower-level function g for some p > 2. (i) For
every z, g(z,y) is (i, p)-uniformly-convex with respect to y: g(z, y2) > g(z, y1)+(Vyg(z,y1), y2—
y1) + %Hyz — y1||? holds for any y1,y2. (i) g(z,y) is (Lo, L1)-smooth in y for any given z:

IV2,9(x,y)|| < Lo+ Li||Vyg(x,y)|| for any y and any . (iii) V,g(z,y) is ly,1-Lipschitz in



Under review as a conference paper at ICLR 2026

x: ||Vyg(z1) — Vyg(22)|| < lgallzn — a2 for any 21 = (21,y), 22 = (z2,y) € Ré=tdy - (jv)
Viyg(x,y) is 14 2-Lipschitz jointly in (x, y): ||szg(2:1) Viyg(zg)ﬂ <lg.2||z1 — 22|| for any z =
(1,91), 22 = (T2,y2) € RIE=Fdu_ (v) d[yg(x ) exists (292 s defined in dehmtlon and

yop 1 d[l/]Op 1
14,2 jointly Lipschitz continuous with (z, y): ‘ dv@ﬁfj’yl) dv[’;g](omf’yz ‘ < lg.2||z1 — 22| holds for
AV, g(z,; dv
any 21 = (21,91), 22 = (T2,y2) € Rty where ||#(p’{')\\ 1= SUP| | =1,.€r% | d[;’]gopzy 2|

We assume that the generalized Jacobian satisfies Apin dVyg(z.y) ud (T,’i’) > > 0. (vi) ||7d ”go(r’ll’) |<C
dfy]e(»—1) P =
for some C' > 0.

Remark: Assumption specifies the key conditions imposed on the lower-level function. In
particular: (i) establishes uniform convexity (Zalinescu, [1983; [Iouditski & Nesterov, 2014), a
generalization of strong convexity that offers greater flexibility. (ii) introduces a relaxed smoothness
condition (Zhang et al.,[2020), which differs from the standard L-smooth assumption. The standard
L-smooth condition is incompatible with uniform convexity when the domain is unbounded, making
this relaxation more appropriate. (iii) and (iv) are standard assumptions commonly adopted in bilevel
optimization (Ghadimi & Wang} |2018; |Hong et al., 2023} J1 et al.l [2021; [Kwon et al., [2023a). (v
and (vi) impose differentiability of V,g(z,y) with respect to [y]°?~! (as defined in definition [3.1]
with the complete definition in definition [A.T)). These two conditions are essential for developing

the implicit differentiation theorem under LLUC in Section[d] Note that the assumption (v) can be

replaced by the assumption that %Svy) is independent of [y]°P~, and more details can be found in

Appendix [B.2] When p = 2, the uniformly convex function becomes strongly convex, the generalized
Hessian becomes the standard Hessian matrix V,,g(x,y), which is positive definite.

Assumption 3.3. The following conditions hold for the upper-level function f for some p > 2:
(i) Vo f(x,y) is lf1-jointly Lipschitz in (z,y): |V, f(zl) — Vo f(z2)|| < lpallz1 — 22| for any
21 = (z1,41), 22 = (T2,12) € R¥Tdu; (ii) df( 2Y) exists and l11-jointly Lipschitz in (z,y):

df (x4, y1 df (w2,y2)
I | <lpa

dUl]Op d[y op 1
(iii) || dd[ ]‘fpyl | <y forany z € R% and any y € R%. (iv) There exists Ay > 0 such that
O (zp) — inf, O(z) < Ay

|21 — 29| forany z1 = (z1,y1) € RO Fv, 25 = (29, y0) € R%=Tdv;

Remark 1: Assumption [3.3|characterizes the assumptions we need for the upper-level function f and
the hyperobjective ®. In particular: (i) and (iv) are standard assumptions in the nonconvex and bilevel
optimization literature (Ghadimi & Lan||2013; /Ghadimi & Wang, |2018; Hong et al.| 2023} Ji et al.,
2021;|Kwon et al.,2023a). (ii) and (iii) impose differentiability of f(z,y) in terms of [y]°P~! (as
defined in Definition[A.T)), which is satisfied for a class of functions satisfying growth condition (See
Appendix [B.7]for more details). These two conditions are also crucial for the implicit differentiation
theorem under LLUC in Section 4

Remark 2: If the differentiability assumption in Assumption [3.2](v) (vi) and Assumption [3.3](ii) (iii)
hold with respect to the variable [y — a]°?~! with some vector a € R%, the analysis of the implicit
differentiation theorem in Section[d]is the same as in the case of a = 0. Without loss of generality,
we simply assume a = 0 for the clean presentation. More details are illustrated in Appendix
Assumption 3.4. We access stochastic estimators through an unbiased oracle and they satisfy:

Ecwp, |V F(2,5:6) = Vaf (@,9)I°] < 07, Econ, [exp(|VyG(z, ;) — Vyg(@,y)l1?/o5.1)] < exp(1),
Ecnp, [|Vay G (2, y; ) — Vayg(z,y)|*] < o2,

dF(z,;6)  df(z,y) | 2 dv Gmyo ~ dVyg(z,y) |
H dlylor=t dlylr ]S(’f’ e U' el e

Ee¢vp,

] <052 ()

Remark: Theorem [3.4]states that the stochastic oracle has bounded variance, which is a standard
assumption in nonconvex stochastic optimization (Ghadimi & Lan, 2013} |Ghadimi & Wang, [2018; |J1
et al.,|2021)). Additionally, it assumes that the stochastic first-order oracle for the lower-level problem
is light-tailed, a common requirement for high-probability analysis in lower-level optimization (Lan,
2012; Hazan & Kale, 2014} |Hao et al., |2024; |Gong et al., |[2024a). Our unique assumptions under
LLUC are presented in Eq. (3), assuming bounded variance for generalized derivative and generalized
Hessian for upper-level and lower-level functions. When p = 2, these assumptions recover the
standard ones in bilevel optimization under LLSC (Ghadimi & Wang, [2018}; [Hong et al.| 2023)).



Under review as a conference paper at ICLR 2026

We use Neumann series approach (Ghadimi & Wang] 2018} Ji et al.| 2021) to approximate the
hypergradient. Define

. § 18 1.dV,G(x,y; ¢ @)Y\ | dF(z,y;
Vi, y;€) = Vo F(x,y;§) =V G2, y; Cm)) C Z H <I T ’ df;ogf )> d[fgoplff)

q=0 j=1

. . @
where V f(x,y; €) is the stochastic approximation of hypergradient V® () and the randomness & is
defined as £ := {£,¢(©, ¢ .. (@D} with ((9) = {¢(@D) (@D},

3.2 EXAMPLES

In this section, we provide two examples of bilevel optimization problems where the lower-level
problem is uniformly convex. More examples can be found in Appendix [A.2}

Example 1. f(z,y) = °, g(z,y) = 2y* — ysinz. In this example, the LLUC holds with p = 4.

Example 2 (Data Hypercleaning). The data hypercleaning task (Shaban et al.|[2019) aims to learn a
set of weights \ to the noisy training dataset Dy,., such that training a model on the weighted training
set can leads to a strong performance on the clean validation set D,4;. The noisy set is defined as
D = {x;, §; }, where each label g; is independently flipped to a different class with probability
0 < p < 1. This problem can be formulated as a bilevel optimization task:

. 1
min

1
s Z Lw*(N);€), st w*(N) eargrrgnw Z o(N)L(w; ¢) + c|w|?,

§€Dva Ci €Dy

(%)
where w represents the model parameters, and o (z) = H% is the sigmoid function. Note that the
LLUC condition holds when the lower-level problem is a £, norm regression (Woodruff & Zhang,
2013} Jambulapati et al.l 2022)) problem for p > 2, with/without a uniformly convex regularizer
Hw||§ (Sridharan & Tewari, [2010)).

If we choose £(w; ) in Equation (5)) to be £(w; ;) = |=] w — §:|P, where ; = (5, ;) is the i-th
training sample. In this case, the lower-level problem in Equation (5)) becomes

1 .
g(w,\) = EHA(Xw*ﬂ)HZHIIwIIZ, A =diag(a(M)'7,...,0(A)'P), (6)
X=l[z];. ;2] e R G=[7,...,0.) € R weRe

We know that g(w, \) is a sum of two uniformly convex functions, and hence is uniformly convex by
Assumption 3.2 (i): the summation of a (1, p) and (2, p)-uniformly-convex functions is (1 + g2, p)-
uniformly-convex. The specific value of 7 and 5 can be found in Appendix [A22]

The detailed proof is included in Appendix[A.2] The key characteristic is that the lower-level function
g is not a strongly convex function in terms of y when p > 2.

4 IMPLICIT DIFFERENTIATION THEOREM UNDER LLUC

In this section, we present the implicit differentiation theorem under the LLUC condition. A key
technical challenge arises from the singular Hessian of the lower-level function, which renders
the standard implicit function theorem (Ghadimi & Wang|, 2018) inapplicable in our setting. To
overcome this, our theorem explicitly exploits the uniform convexity of the lower-level function and
its high-order differentiability to establish the differentiability of the hyperobjective, along with its
smoothness property. The formal statement is given in Theorem 4.1}

Theorem 4.1 (Implicit Differentiation Theorem under LLUC). Suppose Assumption[3.2]and[3-3|hold.
Then @ is differentiable in x and can be computed as the following:

_ () — ey [4Vag(@y" (@) df (2, y" (@) ;
V() = V.o (o)) = Vsl (o)) | TRACED | AL, ™

In addition, the function ® satisfies the following properties:
IV (1) = VO(@2)|| < Loy ll1 — 2a]| 7T + Loy |21 — 2], ®)



Under review as a conference paper at ICLR 2026

— 1L _p_ L
®(z1) < D(z2) + (VP(z2), 71 — T2) + %Hm — azsz’ﬁl + %le — x| )

1
where [, = (LZJ) T Ly, =1,(lp1+ lf’ijg‘Q + l""if’l + l'q’lli‘zllg’2), Ly, =1lp1 + 71’"’2,5”’2 —+

lgalra | lgalpalge
3 + u? )

Remark: Theorem [4.1] provides an explicit formula Eq. to calculate the hypergradient, as
well as the smoothness property of ® characterized in Eq. (8). In addition, it includes the
descent inequality Eq. (9), which plays a crucial role in the algorithmic analysis under LLUC
in Section E} Notably, when p = 2, this theorem recovers the standard implicit function theorem
under LLSC (Ghadimi & Wang, 2018)). Intuitively, as p increases, the lower-level function deviates
further from strong convexity, and hence the smoothness property of the hyperobjective becomes
worse. The proof of Theorem[4.1]is included in Appendix [B.3]

4.1 PROOF SKETCH

In this section, we provide a proof sketch for the proof of Theorem[d.1] The key idea is to prove two
things under Assumptions [3.2]and 3.3} (1) the optimal lower-level variable is Holder continuous in
terms of upper-level variable, which is stated in Lemma[.2} (2) the generalized Hessian after the
change of variable (i.e., y is replaced to [y]°?~!) has a positive minimum eigenvalue and hence is
invertible, which is stated in Lemma|B.2] These two lemmas can be regarded as counterparts of the
implicit differentiation theorem under LLSC (Ghadimi & Wang, [2018).

Lemma 4.2 (Holder Continuity of the Lower-Level Optimal Solution Mapping). y*(x) is hélder

continuous: for any x1,zs € R%, we have ||y*(z2) — y*(z1)|| < Lyllze — 1 ﬁ, where [, is
y Y Y P P

defined in Theorem

Remark: This lemma shows that the optimal lower-level variable y*(z) is Holder continuous in
terms of the upper-leval variable x, with the exponent zﬁ When p = 2, this lemma recovers the

standard Lipschitz continuous condition of y*(x) under LLSC (Ghadimi & Wang}, 2018). It is worth
nothing that the existing bilevel optimization algorithms with nonasymptotic convergence guarantees
to e-stationary point all require the Lipschitzness of y*(z) (Ghadimi & Wang, 2018} |Hong et al.,
20235 J1 et al., 2021} [Kwon et al.| [2023b; |Chen et al., 2024).

Building on Lemma .2 we are ready to show the hyperobjective is differentiable everywhere and
establish the smoothness property of the hyperobjective. The detailed proof of Theorem [.1] is

included in Appendix
5 ALGORITHM AND CONVERGENCE ANALYSIS

5.1 ALGORITHM DESIGN

In this section, we introduce our algorithm design techniques, leveraging our implicit differentiation
theorem under LLUC. A natural approach is as follows: for a fixed upper-level variable z, one can
iteratively update the lower-level variable until it sufficiently approximates y*(x), ensuring an accurate
hypergradient estimation. The upper-level variable = can then be updated accordingly. However, this
naive method may suffer from a high oracle complexity. To design an algorithm with better oracle
complexity, our algorithm updates the upper-level variable by normalized momentum, while the
lower-level variable is updated by an variant of Epoch-SGD (Hazan & Kalel 2014) periodically. The
algorithm is similar to the BO-REP algorithm in|Hao et al.|(2024), but with a crucial distinction: while
BO-REP is designed for strongly convex lower-level problems and relaxed smooth hyperobjectives,
our UniBiO algorithm is tailored for uniformly convex and relaxed smooth lower-level problems with
Holder-smooth hyperobjectives. Therefore, despite conceptual similarities in the update mechanism,
UniBiO requires significantly different hyperparameter choices, such as the learning rate, periodic
update intervals, and the number of iterations.

The detailed description of our algorithm is illustrated in Algorithm [2| The algorithm starts from a
warm-start stage, where the lower-level variable is updated by the epoch-SGD algorithm for a certain
number of iterations under the fixed upper-level variable z( (line 3). After that, the algorithm follows
a periodic update scheme for the lower-level variable, performing an update every [ iterations (line



Under review as a conference paper at ICLR 2026

Algorithm 1 EPoCcH-SGD
: Imput: function v, v1, T3, D1, and total time T’
Initialize: wi, set7 =2(p — 1)/pand k = 1
while °F | T; < T do
fort=1,...,T; do
w£€+1 = I_IwEB(wic,Dk)(’wilff - ’YkV’lﬂ(’lUf, ﬂ-f))
elid for .
1 .
wyt = T% p wy
1
Tit1 = 27Tk, Yet1 = Vi/2, D41 = Dy /27.
k+—k+1
end while
Return w!

TRYR e N

—_

Algorithm 2 UNIB1O
: Input: m, ﬁa {at,l}v {Kt,1}7 {Rt,l}; {Kt}a T
. Initialize: x,,yo,m_1 =0
y1 = EPOCH-SGD(g(zo, ), 20,1, Ko,1, Ro,1, Ko)
cfort=1,...,Tdo
if ¢ is a multiple of I then
Yyt = EPOCH-SGD(g(w¢, ), 1, Ki 1, Re1, Kt)
end if . ~ . -
me = Bmy—1 + (1 — BV f (24, y0: &), where V f(z, y; €) is defined in Eq. (4)
Tiy1 = Tt — nHZiH
end for

[

VRN RR

,_
=4

4 ~ 6), while the upper-level variable is updated at each iteration using a normalized stochastic
gradient with momentum (lines 7 ~ 8). For the lower-level update, our method employs a variant of
Epoch-SGD (described in Algorithm [T)), which integrates stochastic gradient descent updates with a
shrinking ball strategy.

5.2 MAIN RESULTS

Before presenting the main result, we first introduce a few notations. Denote o (-) as the o-algebra
generated by the random variables in the arguments. Define 7} := 0(&q,...,&—1) fort > 1, let F,
be the filtration used to update {y;}7_,. We use C; to denote large enough constant.

Theorem 5.1. Under Assumptions , ]:or any given § € (0,1) and € >~0, we choose
ap1 =0(), K1 = O0(1), Rey = O(1), Ky = O(e72%2), I = 0(e72), Q = O(1), 1 — 8 =
O(e?), andn = O(e3P73) (see TheoremlDzlfor exact choices). Let T = %. Then with probability
at least 1 — & over the randomness in F,, we have - Zle E|V®(z)|| < € where the expectation
is taken over the randomness in Fr1. The total oracle complexity is 6(6_5p+6).

Remark: The full statement of Theorem [5.1lis included in Section[Dl Theorem[3.1] shows that our
algorithm UniBiO requires O(e~°P*6) oracle complexity for finding an e-stationary point. To the
best of our knowledge, this is the first nonasymptotic result under LLUC. In addition, when the lower
function is strongly convex (p = 2), the complexity bound becomes O(e~*), which matches the
optimal rate in terms of the € dependency (Arjevani et al., 2023) for stochastic bilevel optimization
under LLSC (Dagréou et al.| 2022; |Chen et al., [2023)). It remains unclear whether the complexity
result in terms of e is tight for p > 2.

5.3 PROOF SKETCH

In this section, we present a sketch of the proof for Theorem[5.1] The complete proof can be found in
Appendix D] The key idea of the proof resembles the proof of [Hao et al.|(2024), but our proof is under
a different problem setting (i.e., Holder smooth hyperobjective and uniformly convex lower-level
function). Define y; = y*(z:). Note that Algorithmuses normalized momentum update, therefore



Under review as a conference paper at ICLR 2026

[2t41 — 2¢|| = n. By the Holder continuity of y*(x) (guaranteed by Lemma [4.2), we know that

lyit —vill < lpmlfl. Therefore the optimal lower-level variable moves slowly across iterations
when 7 is small. Hence, the periodic update for the lower-level variable can still be a good estimate
for the optimal lower-level variable if the length of the period I is not too large. Lemma[5.2]and[5.3]
are devoted to control the lower-level error, while Lemma is devoted to control the cummulative
hypergradient bias over time. Given these lemmas, one can leverage the descent inequality Eq. (O)
developed in Theorem [4.1] to establish the convergence rate. The following lemmas are based on
Theorems [3.2]to[3.4} The detailed proofs of this section can be found in Section[C]

Lemma 5.2. Under the same parameter setting as in Theorem for any sequence {Z;} such that
To = wo and ||Ty1 — T|| =, let {§,} be the output produced by Algorithm2|with input {Z,}. Then
with probability at least 1 — 6, for all t € [T we have ||g; — §;|| < min{e/4Lg,,1/L1}.

Remark: Lemma 5.2 establishes a bound on the lower-level tracking error for any slowly varying
sequence {Z; } under LLUC. A key advantage of this result is that it provides lower-level guarantees
independently of the randomness in the upper-level variables, avoiding potential randomness
dependency issues. Similar techniques have been employed in Hao et al.|(2024). The main difficulty
of the proof comes from a high probability analysis for handling the convergence analysis of epoch-
SGD for the lower-level variable under lower-level uniform convexity and relaxed smoothness. The
complete proof of Lemma|[5.2]can be found in the proof of Lemma [C.9]in the Appendix.

Corollary 5.3. Under the same setting as in Theorem[5.1} let {x;} and {y:} be the iterates generated
by Algorithm[2| Then with probability at least 1 — & (denote this event as £) we have ||y, — y;|| <
min{e/4Ly,,1/L1} forallt > 1.

Remark: Corollary [5.3]is a direct application of Lemmal[5.2] We replace the any sequence {Z;} to
the actual sequence x; in the Algorithm [2]and obtains the same bound. The reason is that the actual
sequence in Algorithm [2]satisfies the condition in Lemma[5.2]

Lemma 5.4. Define €, := my — V®(xy). Under event £, we have Zle Elle]] < 125 +
e | Tlgaly, Q 1o
T\/mal—"_%_’_%(l_%) +%(L¢1np ! +L¢277)'

Remark: Lemma characterizes the cumulative bias of the hypergradient over time. When 1 — /3
is small (e.g., O(e*) in Theorem and 7 is small (e.g., n = ©(e3~?)), the cummulative bias grow
with a sublinear rate in terms of 7". This lemma can be regarded as a generalization of the analysis of
normalized momentum for smooth functions (Cutkosky & Mehtal |2020) to bilevel problems with
Holder-smooth functions.

6 EXPERIMENTS

Synthetic Experiment. We consider the following synthetic experiment in the bilevel optimization

problem illustrated in Example 3 in Appendix g(z,y) = %yp — ysinz, and f(x,y) =
1 1 1

1<y > (g)f’—l) —1{y < —(5)P~1 ) +sin(yP 1)1 |y < (g)P—l), where 1(+) is the indicator

function, p > 2 is an even number. The goal of this experiment is to verify the complexity results
established in Theorem [5.1] In theory, we expect that larger p will make our algorithm UniBiO
converge slower.

We conduct our experiments by implementing our proposed algorithms with varying values of
p = (2,4, 6, 8]. The number of upper-level iterations is fixed at 7' = 500, while the number of lower-
level iterations is set to 100. To consider the effects of stochastic gradients, we introduce Gaussian
noise with different variances on the gradients, specifically N(0,10), A(0,1), and N(0,0.01).
Other fixed parameters are set as § = 0.9, [ = 2, T3 = 5, and D; = 1, with initialization at
the point (2o, o) = (1,1). We tune the learning rates from (0.01,0.1) for both upper-level and
lower-level for every p € [2,4,6,8]. The best learning rate choices for upper-level variable are
n = [0.05,0.03,0.02,0.01] for p = [2, 4, 6, 8], respectively, while the best lower-level learning rate
for every pis a = [1, 1, 1, 1] corresponding to p = [2,4, 6, 8].

Figure [I| presents the results for the deterministic setting (a) and the stochastic settings (b) (c) (d)
with Gaussian noise with variances 0.01, 1 and 10 respectively. Our experimental results empirically
validate the theoretical analysis of our algorithm, demonstrating that an increase in the lower-level



Under review as a conference paper at ICLR 2026

b Values Norm P Values Hypergradient Norm under Different p Values

°

Hypergradient Norm [vf]
o o o o o
82 £ 2 B
? |
.

g

Norm
1.0 — p=2
=
0.8 T=pme
pes
06
04 ’
bt ot 00 ' ot

0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500 ) 100 200 300 400 500
Iterations. Iterations Iterations Iterations

-
°

o
i
~
-
°

— p=2

°
=
b
&>
°
=
£
i
&

°
=
°
=

°
-

Hypergradient Norm |vf]
°
Y

Hypergradient Norm |Vf]

o
R
Hypergradient Norm |Vf]

°
R

°
o
|

(a) Deterministic case  (b) Noise A/(0,0.01) (c) Noise M (0,1.0) (d) Noise N (0, 10)

Figure 1: Convergence results for synthetic experiments on upper-level non-convex, lower-
level uniform-convex bilevel optimization with varying uniform-convex parameter p =
[2,4,6,8] in the deterministic case and stochastic case with different types of Gaussian noise
N(0,0.01), M (0,1.0), N(0, 10) respectively.

Train_ACC vs. Epoch Test_ACC vs. Epoch Train_ACC vs. running time (s) Test_ACC vs. running time (s)
0.70 0.8 0.70

AR AR

0.65 0.65
0.7
0.60 0.60
et

7 W Eh A~
T

go.ss go.ss

9
Yo

“'o.50 E AT Stockio :‘

i Fos

#'0.50

0.45 == SABA = 0.a5
- ma-soBa

SUSTAIN 0.40

4 -~ MA-s0BA
0.40{ SUSTAIN 04 SuSTAIN

- vRBO

- - vRBO
— unigio

0351 § — unisio

0.35

[ 20 a

60 80 100 ) 20 80 100 [ 5000 10000 15000 20000 ) 5000 10000 15000 20000
ing time /s ing time /s

o a0 60
Epoch Epoch  runnin gtime/s  runnin g time /:

(a) Training ACC (b) Test ACC (¢) Training ACC vs. running time  (d) Test ACC vs. running time

Figure 2: Results of bilevel optimization on data hyper-cleaning with probability p = 0.1 and the
uniformly convex regularizer |w||2 with p = 3. Subfigure (a), (b) show the training and test accuracy
with the training epoch. Subfigures (c), (d) show the training and test accuracy with the running time.

parameter p leads to a deterioration in computational complexity. This observation aligns with our
theoretical results. Additional experiments for various values of p and other bilevel optimization
baselines (such as StocBiO (Ji et al., 2021)), TTSA (Hong et al., 2023) and MA-SOBA (Chen et al.,
2023)) are included in Appendix [E.1]

Data Hypercleaning. To verify the effectiveness of the proposed UniBiO algorithm, we conduct
data hypercleaning experiments (Shaban et al.,|2019) and compare with other baselines as formulated
in Eq. (3). To evaluate this approach, we apply our proposed bilevel algorithms and other baselines
to a noisy version of the Stanford Natural Language Inference (SNLI) dataset (Bowman et al.| [2015)
(under Creative Commons Attribution-ShareAlike 4.0 International License), a text classification task.
The model used is a three-layer recurrent neural network with an input dimension of 300, a hidden
dimension of 4096, and an output dimension of 3, predicting labels among entailment, contradiction,
and neutral. In our experimental setup, each training sample’s label is randomly altered to one of the
other two categories with probability 0.1. All the experiments are run on an single NVIDIA A6000
(48GB memory) GPU and a AMD EPYC 7513 32-Core CPU. We have also included the experiment
of p = 4 in Appendix [E.2] Our method achieves higher classification accuracy on both the training
and test sets compared with baselines, as illustrated in Figure ] Moreover, it demonstrates strong
computational efficiency. Further details on parameter selection and tuning are provided in Appendix

B
7 CONCLUSION

In this paper, we identify a tractable class of bilevel optimization problems that interpolates between
lower-level strong convexity and general convexity via lower-level uniform convexity. We develop a
novel implicit differentiation theorem under LLUC characterizing the hyperobjective’s smoothness
property. Based on this, we introduce UniBiO, a new stochastic algorithm that achieves O(e~?P16)
oracle complexity for finding e-stationary points. Experiments on an synthetic task and a data
hyper-cleaning task demonstrate the superiority of our proposed algorithm. One limitation is that our
algorithm design requires the prior knowledge of p, but in practice, such a knowledge of p may not
be available. Designing a universal bilevel optimization algorithm that adapts to p without explicit
knowledge in the spirit of [Nesterov|(2015) is an important challenge.



Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We provide Theorems [4.1] and [5.1]in main text, the proof of Theorem [4.T]in Section[B.3] and the
proof of Theorem [5.1]in Section

An anonymized code archive with training/evaluation scripts, configurations, seeds, and environment
files is included in the supplementary materials. The dataset SNLI is accessible on HuggingFace
under Creative Commons Attribution-ShareAlike 4.0 International License. @ We include
preprocessing/splitting scripts, and references to their dataset cards and licenses. These materials
sufficiently support the reproduction of our results.

REFERENCES

G Anandalingam and DJ White. A solution method for the linear static stackelberg problem using
penalty functions. IEEE Transactions on automatic control, 35(10):1170-1173, 1990.

Michael Arbel and Julien Mairal. Non-convex bilevel games with critical point selection maps.
Advances in Neural Information Processing Systems, 35:8013-8026, 2022.

Yossi Arjevani, Yair Carmon, John C Duchi, Dylan J Foster, Nathan Srebro, and Blake Woodworth.
Lower bounds for non-convex stochastic optimization. Mathematical Programming, 199(1-2):
165-214, 2023.

Site Bai and Brian Bullins. Tight lower bounds under asymmetric high-order h\" older smoothness
and uniform convexity. arXiv preprint arXiv:2409.10773, 2024.

J Frédéric Bonnans and Alexander Shapiro. Perturbation analysis of optimization problems. Springer
Science & Business Media, 2013.

Zalan Borsos, Mojmir Mutny, and Andreas Krause. Coresets via bilevel optimization for continual
learning and streaming. Advances in neural information processing systems, 33:14879-14890,
2020.

Samuel R Bowman, Gabor Angeli, Christopher Potts, and Christopher D Manning. A large annotated
corpus for learning natural language inference. arXiv preprint arXiv:1508.05326, 2015.

Jerome Bracken and James T McGill. Mathematical programs with optimization problems in the
constraints. Operations research, 21(1):37-44, 1973.

Lesi Chen, Jing Xu, and Jingzhao Zhang. On finding small hyper-gradients in bilevel optimization:
Hardness results and improved analysis. In The Thirty Seventh Annual Conference on Learning
Theory, pp. 947-980. PMLR, 2024.

Tianyi Chen, Yuejiao Sun, and Wotao Yin. Closing the gap: Tighter analysis of alternating stochastic
gradient methods for bilevel problems. Advances in Neural Information Processing Systems, 34:
25294-25307, 2021a.

Tianyi Chen, Yuejiao Sun, and Wotao Yin. A single-timescale stochastic bilevel optimization method.
arXiv preprint arXiv:2102.04671, 2021b.

Xuxing Chen, Tesi Xiao, and Krishnakumar Balasubramanian. Optimal algorithms for stochastic
bilevel optimization under relaxed smoothness conditions. arXiv preprint arXiv:2306.12067, 2023.

Ashok Cutkosky and Harsh Mehta. Momentum improves normalized sgd. In International conference
on machine learning, pp. 2260-2268. PMLR, 2020.

Mathieu Dagréou, Pierre Ablin, Samuel Vaiter, and Thomas Moreau. A framework for bilevel
optimization that enables stochastic and global variance reduction algorithms. Advances in Neural
Information Processing Systems, 35:26698-26710, 2022.

Constantinos Daskalakis, Stratis Skoulakis, and Manolis Zampetakis. The complexity of constrained
min-max optimization. In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of
Computing, pp. 1466-1478, 2021.

10



Under review as a conference paper at ICLR 2026

Stephan Dempe. Foundations of bilevel programming. Springer Science & Business Media, 2002.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of
deep networks. In International conference on machine learning, pp. 1126-1135. PMLR, 2017.

Luca Franceschi, Michele Donini, Paolo Frasconi, and Massimiliano Pontil. Forward and reverse
gradient-based hyperparameter optimization. In International Conference on Machine Learning
(ICML), pp. 1165-1173, 2017.

Luca Franceschi, Paolo Frasconi, Saverio Salzo, Riccardo Grazzi, and Massimiliano Pontil. Bilevel
programming for hyperparameter optimization and meta-learning. In International conference on
machine learning, pp. 1568-1577. PMLR, 2018.

Saeed Ghadimi and Guanghui Lan. Stochastic first-and zeroth-order methods for nonconvex stochastic
programming. SIAM Journal on Optimization, 23(4):2341-2368, 2013.

Saeed Ghadimi and Mengdi Wang. Approximation methods for bilevel programming. arXiv preprint
arXiv:1802.02246, 2018.

Xiaochuan Gong, Jie Hao, and Mingrui Liu. A nearly optimal single loop algorithm for stochastic
bilevel optimization under unbounded smoothness. In Forty-first International Conference on
Machine Learning, 2024a.

Xiaochuan Gong, Jie Hao, and Mingrui Liu. An accelerated algorithm for stochastic bilevel
optimization under unbounded smoothness. arXiv preprint arXiv:2409.19212, 2024b.

Zhishuai Guo, Quanqgi Hu, Lijun Zhang, and Tianbao Yang. Randomized stochastic variance-reduced
methods for multi-task stochastic bilevel optimization. arXiv preprint arXiv:2105.02266, 2021.

Jie Hao, Kaiyi Ji, and Mingrui Liu. Bilevel coreset selection in continual learning: A new formulation
and algorithm. Advances in Neural Information Processing Systems, 36, 2023.

Jie Hao, Xiaochuan Gong, and Mingrui Liu. Bilevel optimization under unbounded smoothness: A
new algorithm and convergence analysis. In The Twelfth International Conference on Learning
Representations, 2024.

Elad Hazan and Satyen Kale. Beyond the regret minimization barrier: optimal algorithms for
stochastic strongly-convex optimization. Journal of Machine Learning Research, 15(1):2489—
2512, 2014.

Mingyi Hong, Hoi-To Wai, Zhaoran Wang, and Zhuoran Yang. A two-timescale stochastic algorithm
framework for bilevel optimization: Complexity analysis and application to actor-critic. SIAM
Journal on Optimization, 33(1):147-180, 2023.

Feihu Huang. Optimal hessian/jacobian-free nonconvex-pl bilevel optimization. arXiv preprint
arXiv:2407.17823, 2024.

Anatoli Touditski and Yuri Nesterov. Primal-dual subgradient methods for minimizing uniformly
convex functions. arXiv preprint arXiv:1401.1792, 2014.

Arun Jambulapati, Yang P Liu, and Aaron Sidford. Improved iteration complexities for
overconstrained p-norm regression. In Proceedings of the 54th Annual ACM SIGACT Symposium
on Theory of Computing, pp. 529-542, 2022.

Kaiyi Ji, Junjie Yang, and Yingbin Liang. Bilevel optimization: Convergence analysis and enhanced
design. In International conference on machine learning, pp. 4882—4892. PMLR, 2021.

Prashant Khanduri, Siliang Zeng, Mingyi Hong, Hoi-To Wai, Zhaoran Wang, and Zhuoran Yang. A
near-optimal algorithm for stochastic bilevel optimization via double-momentum. Advances in
Neural Information Processing Systems (NeurlPS), 34:30271-30283, 2021.

Vijay Konda and John Tsitsiklis. Actor-critic algorithms. Advances in neural information processing
systems, 12, 1999.

11



Under review as a conference paper at ICLR 2026

Jeongyeol Kwon, Dohyun Kwon, Stephen Wright, and Robert D Nowak. A fully first-order method
for stochastic bilevel optimization. In International Conference on Machine Learning, pp. 18083—
18113. PMLR, 2023a.

Jeongyeol Kwon, Dohyun Kwon, Steve Wright, and Robert Nowak. On penalty methods
for nonconvex bilevel optimization and first-order stochastic approximation. arXiv preprint
arXiv:2309.01753, 2023b.

Guanghui Lan. An optimal method for stochastic composite optimization. Mathematical
Programming, 133(1-2):365-397, 2012.

Bo Liu, Mao Ye, Stephen Wright, Peter Stone, and Qiang Liu. Bome! bilevel optimization made
easy: A simple first-order approach. Advances in Neural Information Processing Systems, 35:
17248-17262, 2022.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture search.
International Conferrence on Learning Representations, 2018.

Risheng Liu, Pan Mu, Xiaoming Yuan, Shangzhi Zeng, and Jin Zhang. A generic first-order
algorithmic framework for bi-level programming beyond lower-level singleton. In International
Conference on Machine Learning (ICML), 2020.

Risheng Liu, Xuan Liu, Xiaoming Yuan, Shangzhi Zeng, and Jin Zhang. A value-function-based
interior-point method for non-convex bi-level optimization. In International Conference on
Machine Learning (ICML), 2021a.

Risheng Liu, Yaohua Liu, Shangzhi Zeng, and Jin Zhang. Towards gradient-based bilevel optimization
with non-convex followers and beyond. Advances in Neural Information Processing Systems, 34:
8662-8675, 2021b.

Zhaosong Lu and Sanyou Mei. First-order penalty methods for bilevel optimization. SIAM Journal
on Optimization, 34(2):1937-1969, 2024a.

Zhaosong Lu and Sanyou Mei. A first-order augmented lagrangian method for constrained minimax
optimization. Mathematical Programming, pp. 1-42, 2024b.

Yu Nesterov. Universal gradient methods for convex optimization problems. Mathematical
Programming, 152(1):381-404, 2015.

Amirreza Shaban, Ching-An Cheng, Nathan Hatch, and Byron Boots. Truncated back-propagation
for bilevel optimization. In International Conference on Artificial Intelligence and Statistics
(AISTATS), pp. 1723-1732, 2019.

Han Shen and Tianyi Chen. On penalty-based bilevel gradient descent method. arXiv preprint
arXiv:2302.05185, 2023.

Chaobing Song, Yong Jiang, and Yi Ma. Unified acceleration of high-order algorithms under h\"{o}
lder continuity and uniform convexity. arXiv preprint arXiv:1906.00582, 2019.

Karthik Sridharan and Ambuj Tewari. Convex games in banach spaces. In COLT, pp. 1-13, 2010.

Luis Vicente, Gilles Savard, and Joaquim Judice. Descent approaches for quadratic bilevel
programming. Journal of optimization theory and applications, 81(2):379-399, 1994.

Douglas J White and G Anandalingam. A penalty function approach for solving bi-level linear
programs. Journal of Global Optimization, 3:397-419, 1993.

David Woodruff and Qin Zhang. Subspace embeddings and\ell_p-regression using exponential
random variables. In Conference on Learning Theory, pp. 546-567. PMLR, 2013.

Junjie Yang, Kaiyi Ji, and Yingbin Liang. Provably faster algorithms for bilevel optimization.
Advances in Neural Information Processing Systems, 34:13670-13682, 2021.

12



Under review as a conference paper at ICLR 2026

Jingzhao Zhang, Tianxing He, Suvrit Sra, and Ali Jadbabaie. Why gradient clipping accelerates
training: A theoretical justification for adaptivity. International Conference on Learning
Representations, 2020.

C Zalinescu. On uniformly convex functions. Journal of Mathematical Analysis and Applications,
95(2):344-374, 1983.

13



Under review as a conference paper at ICLR 2026

A PROOFS IN SECTION[3]

A.1 DEFINITION

Definition A.1. dcfﬁfﬂ)l and ddv[gﬂ(,ﬁ?) are defined as the following: for any y, define z = [y]°P~!

and f(z, 20T ), Vyg(z, zop%l) is differentiable with z. Mathematically, there exist linear mappings
Ji, Jo such that for any z € R%, vector h € R% and any small constant §, the following statements
hold:

(@, [z + 8h)°7) — f(a,2°77) — (J1, 8h)

li =0
530 oA ’
) ) (10)
. Vyg(x, [z 4 0h]°7=1) = Vyg(x,2°7-1) — Jo6h
lim =0
50 [6R]|
.- _ df(zx, _ df(z,z Pl dVyg(zy) _ dVy (w,zoﬁ)
In addition, we define J; = d[yﬁop?i)l = 4 — ,and Jp = d[y]gop Y Lo .
A.2 EXAMPLES
Example 1. Let functions f and g be defined as:
1
flay) =v* glzy) = ' —ysina. (11)

Now we verify the assumptions.

* Assumption (i): Since %y‘l is a (1, 4)-uniform convex function , ysinz is a linear
function with y, so g(z,y) = +y* — ysinz is (1,4) uniform convex with y.

. Assumption(ii): IVyyg(z,y)|| = 3y* < 12+ 6||y® — sinz|| = 12 + 6|V, g9(x,y)|.
hence we have Ly = 12, ., = 6.

. Assumptlonn(m) Vy9(z,y) = y> —sinz, so |Vyg(z1,y) — Vyg(z2,y)|| = || sinze —
sinz|| < ||x1 — x2||. Therefore I, 1 = 1.

« Assumption B (v): Veyg(r,y) = —cosa, 50 [Vayg(wn,un) — Vayg(oz, )|l =
|| cosxe — cosz1|| < ||z1 — x2]|. Therefore [, o = 1.

. Assumption (v): Vyg(z,y) = y* — sinw, so %ﬁﬁjy) = 1 and ||%

dVyg(w2,y2)
dlyals | .
consistent with other assumptions, we can have [, 5 = 1.

Assumption(vi) ||dv(i”[§7(£‘y)\\ =1,50C=1.
Assumption[3.3](i): Vo f(z,y) = 0,505 = 0.

Assumption 3| (ii): df(yﬁo%) =1,s0 || 4 le]’f,’;) d{l[x]’ff) | =0,s0ls1 =0.

Assumption(iii):H dg[(ﬁ;%) | =1,s0lf0=1.

Assumption (iv): Vyg(z,y* () = (y*(x))® —sinz = 0, so y*(z) = (sinz)s,
therefore ®(x) = sinz and Ag < 2.

|| = 0. Therefore, I, 2 can take value 0 only for this assumption. To make [, o

Example 2. In the data hypercleaning task, choose £(w, ¢) in Eq. (3) to be

L(w; () = |ofw—ul", G = (i, 9:) 1€ nl (12)
Then the lower-level objective is
o, N) = = || (Xw = )+ e, (13)

14



Under review as a conference paper at ICLR 2026

where w is the lower-level variable and A is the upper-level variable, and

T —
1 Y1
A:diag(a()\l)l/p,...,a(/\n)l/p), X=: eRV4 = o | €RY, w e R4,
T -
Ly Yn

Write g(-, A\) = G(-) + R(-) with

Glw) == [AKw - B

R(w) := cl|uw?.

By Assumption (i), the sum of a (u1, p)-uniformly-convex function and a (s, p)-uniformly-
convex function is (u1 + a2, p)-uniformly-convex. We now identify pq and po.

By Eq. (16), we know that c[|w][? is (775275, p)-uniformly convex. Hence iy = <7527 -

By translation invariance of uniform convexity, it suffices to consider £ ||[AXw][5. Using the p-
minimum singular value
Ominp(M) = inf [[Mulp,
llullp=1
together with standard £,—(5 norm transitions for p > 2, we obtain the lower bound

1 Umin, (AX) P
~[|Axw|]) > (ndsz_l/p) [ (14)
Therefore G is (,ul , p) -uniformly convex with p; = %

Combining the two parts via assumption [3.2] (i), the function g in Eq. is (u, p)-uniformly convex

with
P (Omnn (M) e
ndl/2=1/p d/2=1/p"
This establishes LLUC for the hypercleaning lower-level objective and quantifies its modulus.

Example 3. Let p > 2 be an even integer, and let the functions f and g be defined as:

-1 y<—(2)7

1 1 1
flz,y) = ¢ sin(y?™h) yE[ %) pt (%)”‘1}, g(x,y)=];yp—ysinx- (15)
1 y>(5)7

Now we verify the assumptions.

—~

. Assumption (1): Note that %yp is a (1, p) uniform convex function, y sin z is a linear
function with y, so g(z,y) = %yp —ysinx is a (1, p) uniform convex with y.

« Assumption[3.2|(ii): |Vyy9(z,y)|| = (p—1)yP~2 <4(p—1)+2(p—1)||y?~! —sinz| =
4(p—1)+2(p — 1)||Vyg(z,y)||, hence we have Lo = 4(p — 1), L1 = 2(p — 1).

* Assumption 3.2 n (iii): Vyg(z,y) = y?~! —sinz, so |Vyg(z1,y) — Vyg(z2,y)|| =
| sinxg — sinz|| < ||z1 — x2||. Therefore I, 1 = 1.

* Assumptlon n (IV) vmyg(a7 y) = —cosz, SO vayg(xhyl) - vmyg(anyQ)H =
| cosza — cosz]| < ||z1 — a2||. Therefore Iy o = 1.

. Assumptlon(v): Vyg(z,y) = yP~1 —sinz, so %(p’?) = 1and H%

dVyg(z2, y2)
dlyz]°P—!
consistent with other assumptions, we can have [, 5 = 1.

Assumpt10n(v1) I ddv[;%p gl — 1 50C = 1.
Assumption n ®): Vaf(z,y) = 0,s01l51 = 0. To make [;; consistent with other

|| = 0. Therefore, [, 2 can take value 0 only for this assumption. To make [, o

p—
assumptions, we can have ly1 = (p — 1) (5) " 1.

15



Under review as a conference paper at ICLR 2026

] 0, y> ()=
e Assumption [3.3(ii): déﬁf;fi)l = qcos(y?7l), —(Z)FT <y < (%)
07 y < 7(%)1)?1

so from the mean-value theorem, we have

df (z1,91) _ df (z2, y2)
dlyr=t dlys]r!

—9 . _ T, =2
max  (p=Dy" sin(y" yi—v2ll < (0-1)(5) 7 m—vell
vel-(3)7T.(5)7T]

p—2
and hence Iy = (p—1) (%) 7.
. Assumption 3| Gii):|| dd[fﬁf,gy)l | <1,s0l70=1.

* Assumption(iv) Vyg(x y*(z)) = ( *(x))P~t —sinz = 0, so y*(x) = (sinx)p%l,

therefore () = sinsinz and Ay =

Example 4. Define x = (z1,...,24) € R,y = (y1,...,y4) € R% pis an even integer or a
fraction of even number divide by an old number. Then we consider the following function

d
zy) =Y |yl sgn(y:),  gla,y) = *Ilyllp Zyzsmx“
i=1

where sgn(-) is the sign function, p > 2 is even number.

Define y*(z) = (yi(x),...,y5(z)) = (yi,...,y}). Note that V,g(z,y*(z)) = 0,

therefore we have (lyf[P~tsgn(yi),...,|y5P " tsgn(y})) = (sinxy,...,sinzg) and (z) =
d p— d .

i [P sgn(y:) = 305, sina;.

All assumptions can be satisfied by choosing the problem-dependent parameters as the following:

pl op | Lo | Ln [lga[lga [C Ll Lo | A |
plag [1e-D[2e-D] 1 [T [1] 0 [vVa]ad]
Table 1: Parameter values as functions of p and d
. Assumption(i): g(z,y) is (11_1,p> uniform-convex due to:
d2 »p
1,1 1
- Z - p 11 9 (16)
pIIyllz pllpr e lyll2-

. Assumption(ii): Vyyg(z,y) = diag {(p D2 (p - 1)y§_2} and g(z,vy) is
(4(p —1),2(p — 1))-smooth w.r.t y:

IVyyg(z, p)ll2 = (p = DI[¥1°P"? |
< 4( —1)+2(p - D[y)°"" = sin(@))[|
< 4(p =1 +2(p - 1D[Vyg(@,y)l-

. Assumption(iii): The gradient V,g(z, y) = [y]°®~Y —sin(z) is 1-Lipschitz continuous
w.rt. .

* Assumption[3.2(iv) Vayg(z,y) = — cos(z)) is 1-jointly Lipschitz w.r.t. (z,y).

* Assumption[3.2{(v) and (vi): d[yyg @4) _ I is 0-jointly Lipschitz w.r.t. (z,y), and it satisfies

]O(P 1)
the uniform bound: ‘

dV,g(x,y)

e ||, ~ Amax(D =1

2

16



Under review as a conference paper at ICLR 2026

* Assumption[3.3](i): V, f(x,y) = 0 jointly Lipschitz w.r.t. (z,y).
. Assumption (ii) and (iii): ddf(& = 1 is 0-jointly Lipschitz and satisfies the uniform

[yleP—D ™
bound: ( )
df (z,y
— 7 < Vd
Hd[y]o(p_l) 2 \f

* Assumption[3.3|(iv): ®(xo) — inf & < 2d = Ag.

B PROOFS IN SECTION [4]

B.1 PROOF OF LEMMA[4.2D]

Lemma B.1 (Restatement of Lemma . y*(z) is holder continuous: for any x1,zo € R%, we
have

. . 1 lo1 \ 77
ly* (@s) — y*(@1)|| < lpllws — 21|77, where l:<pul) : (17)

Proof of Theorem|[B.1} Since g(z,-) is uniformly convex, for any y € R% we have the following
p-th order growth condition:

9(x1,9) > g(@1,y"(@1)) + (Vyg(@r,y™(21)),y — v1) + guy — P

M (18)
= g(z1,y" (1)) + Elly =y (z)[”-
In particular, if we let y = y*(z2), then
o1,y (22) = g,y (@) = Ll (a2) =y @)l (19)

Next, we follow the similar procedure as in proof of Proposition 4.32 in Bonnans & Shapiro| (2013).
We consider the difference function h(y) := g(x2,y) — g(x1,y), then we have

9(x1,y"(22)) — g(z1,y"(21)) = h(y™ (21)) — h(y"(22)) + g(22,y" (22)) — g(22,y" (21))
< h(y™(21)) = h(y*(22)) < lgallwe — 21l - [y (w2) — y™(21) ]
where in the first inequality we use g(z2, y*(22)) < g(x2,y*(21)), and in the second inequality we

use the fact that g is 4 1-smooth in  and mean value theorem to obtain (denote k(x1,z2) as the
Lipschitz constant of function h):

(20)

k(z1,22) < sup [[Vh(y)l = sup [[Vyg(z1,y) — Vyg(2, )|l < lgallzr — 22l 1)
yeR% yeR%

Combining Eq. (I9) and Eq. (20) yields
M * * * *
Elly (2) =y* (@ )II” <lgallze — 2l - ly*(z2) —y*(z)]-
Therefore, the Lemma is proved. O

B.2 A TECHNICAL LEMMA UNDER A DIFFERENT ASSUMPTION

dvyg(z.y)
dly]or—1

) > u, where Apmin(+) denotes the minimum eigenvalue of a matrix.

Lemma B.2 (Positive Definite Generalized Hessian). is an invertible matrix and

dVyg(z,
)\min(ﬁ(f—?{)
Remark: If we do not directly assume the generalized Hessian is positive definite, under the
aVu9(@y) i independent of y°(P—1), Lemma@provides a characterization of the
play

assumption that a[yJor=1
minimum eigenvalue of a generalized Hessian matrix, which s a crucial role in establishing our

implicit function theorem under the LLUC condition.

17



Under review as a conference paper at ICLR 2026

Proof. Define z = [y]°P~L. Since %ﬁ’i’) exists, then by Deﬁnition we have for any i € R%

and any z € R%, there exists a linear map J, := %(ff) € R%*dy guch that the following holds

1oy Va2 + 5h°7T) — Vg, 2°7T) — (J, 0h)
50 %]

Since J; is independent of z (by definition [AI), we can take z = 0 in Eq. (22), rearrange this
equality and take norm on both sides, we have

=0. (22)

i IV R 7T) = Vg, 0l | Ja3F

30 |6 50 ||oh|

(23)

By uniform convexity of g in terms of y, we have

7|5y = wllhll. 24

where the first inequality holds because of the uniform convexity, the second inequality holds by the
fact that ||y[| > [|y||2(p—1) for p > 2, and the last equality holds by the definition of 2(p — 1)-norm.

Combining Eq. (23) and Eq. (24), we have

IVyg(, [6h)°7T) = Vyg(x, 0)[| > wl|[6h)° 7 ||P~1 > pil[[5h)°

|| J20h]]
im — > L. 25
om0 Jlon =" 3)
Since h can be a vector with any direction, therefore Jo = %&f_’l{) is an invertible matrix and

dV ., g(x,1
)\min(W(pf{)) > M.

B.3 PROOF OF THEOREM [4.1]

Theorem B.3 (Restatement of Theorem [@.1). Suppose Assumption 3.2 and [3.3| hold. Then ® is
differentiable in x and can be computed as the following:

dVyg(@,y* ()] df (z,y" (x))
Vo(z) =V.f(z,y"(x)) — Vaeyg(z,y*(x { Y . (26)
(z) (z,y"(x)) v9(, y" (z)) dly (@)]71 dly ()P
In addition, the function ® satisfies the following properties:
V@ (1) = V(@) < Loy 1 — @2l 7T + Lo, 21 — 2] @7)

- 1)L » L
B(a1) £ B(e) + (VO(r), 1 — a2 + L0 oy st 4 By . 29

1

where lp = (Lllgt’l)p_l, L¢1 = lp(lﬂl + lf,2lfg,2 + lg’lif'l + lg,1l£,21lg,2 ), L¢2 = lf71 + 7“’2:9'2 +

lq‘llfl lq,llf,llq2
© + w2

Proof. Define y*(z) = [z*(x)]oﬁ Noting that V,g(z, y*(x)) = 0, we take derivative in terms of
z on both sides and use the chain rule, which yields

wrvorty A2 (x) dV,g(x, [ (2)] 7 T)
szg(ﬂf, [Z (35)] P )Jr dr dz*(x)

=0. (29)

Therefore,
. dz*(z) dVyg(z,y*(x))

Now we start to derive the properties of .

18



Under review as a conference paper at ICLR 2026

By Lemma E we know that )\min(%&i’)) > u > 0 holds for any y, therefore we plug in

y = y*(z) and know that 2¥4=:v (%) ¢ 5 invertible matrix. Hence we have

dz*(x)
dVyg(z, y*(ﬂf))] -
dz*(z) '

dz*(x)
dz

= Va,9(@,y* (@) [ G31)

Therefore, z*(x) is differentiable with = everywhere.
o %1
By Assumption (iii), we know that J; = %ﬁg)p) exists. Therefore, we can use chain
rule to directly derive hypergradient formula:
1

_df(z,y* () _ wnpontey 427 (@) df (, [z (2))°77)
D Vi f(x, [2"(x)]°7T) + - @)

= V. f(x,y" () — Vayg(z,y* (z)) [dvyg(af, y*(fc))} —df (2" (@)

Vo(z)

dz*(x)

= V" (@) - Vsl (@) | TR | D,
(32)

Therefore, the final hypergradient can be computed as:

V() = Vuf (5,5 (0) ~ Voo () | TN GHELEE )
Define .
v(x,y) == =Vayg(z,y) {dg[z]go(f’f/ )] j{y(]f,’,y)1~ (34)

Now we start to prove the properties of ¢. By Assumption (iii), we have for any x;, 7oR%, the
following inequality holds:

[Vyg(z1,y) = Vyg(@a, y)|| < lgallzr — 22l = [[Vayg(@, y)| < g1 (35)
so we have
dz* () || _ || dly* ()]t dVyg(@,y* (@)1 _ lga
= < | Vaygla,y* SR I <2 36
|27 = |G < 1o | [ 0
In addition, note that for any invertible matrices H; and H», the inequality holds:
|Hyt = H{ Y| = [|HyH(Hy — Ho)Hy | < [|Hy ||| Hy I Hy — Holl, (37)

therefore we have

[dvygm,y*(ml))}1_[dvyg<x2,y*<x2»] _ 1 dvyg<x1,y*<x1>>_dvyg<x2,y*<x2>>H
dly* ()71 A @) | || =2 | Ay @)t dly ()]
< le (21 — zall + 9" (1) — v* @)1
(38)
AV, g(z,y)

where the last inequality holds because of the I, »-jointly Lipschitz in (z, y) for the matrix
(i.e., Assumption[3.2](v)).
For the second part of hypergradient, we have

dlyl°p—1

[o(@1, y™ (1)) — v(w2, y" (2)) |

dvyg(xzay*(m))} ! df (w2, y" (22))

. dVyg(z1,y*(21))] " df (21,97 (z1))
Vayg(@2,y" (22)) [ dly* (z2)]oP—1 d[y* (x2)]°P—1 }

— Vayg(z1,y" (1)) [ dly* (z1)]°P1 dly* (z1)]°P 1

dvyg(bay*(m))} “df (w2, y" (22))

dvyg(l’%y*(@))} “df (w2, y" (22))
dly* (z2)]oP~! dly* (x2)]or~?

= [ Vovstiana o | Ay @ T | )

= Vayg(z1,y" (21)) {

19



Under review as a conference paper at ICLR 2026

e (SN S0 [t ] st

dvyg(iﬂzvy*(l’z))} “Hdf(z2,y" (22)) dvyg(l’%y*(m))} T df(z2,y" (22))

: dly*(z2)]°P=1 dly*(z2)]°P~1 dly*(z2)]°P~1 dly*(z2)]°r~1

Vasalan,y(@2) | - Voo @) |

« dVyg(w2,y* (22))] 7" df (22, y" (x2)) . dVyg(z1,y* (21))] 7" df (21,5 (21))
+ |[Vayg(z1,y (451)){ d[y*(mz)]ol’*l } d[y*(mg)]‘)?* = Vayg(z1,y (371))[ d[y*(m)]o;}q } d[y*(ml)]opfl
< V(o 02) — Vg @)
dVyg(z1,y" (1)) 7" df (@1, y" (1)) dVyg I%y df l’27 ))
o [ dly* (r)7? } dy ()] [ } -1
®) 1 df (x1,y" (21))

< 1019, g, (02)) = Vuglor, @)l +

{dvygm, (xn)]}l - {d%g(xz,y*(xz))}lH

dly* (w1)]oP—1 dly* (w1)]or—1 dly* (w2)]oP—1

dfélfl, (z1))  df(z2,y" (z2))
)]oP= 1 dly* (z2)]or~!

{d%g(m*(m))} o [dvygm,y*(xz))} H

av
+lg,1 [ yg(x27 op 1 :|

dly*(z2

(e) N .
< LUVayg(z2, 4" (22)) — Vayg(er,y™ (@)l + lgalso

; dy* ) Ay ea)
loa || df(z1,y"(z1))  df(z2,y"(22))
oy Gl ™l )]

(d)

< (fto y foalin oy 02Ul ) oy o 4y (o) = " (@2)), (9)

where (a) holds because of Assumption [3.3](iii), Lemma and Eq. (33); (b) holds because of
triangle inequality of the norm, (c) holds because of Assumption [3.3](iii) and Lemma[B.2} (d) holds
because of Assumption [3.2)(iv), Assumption [3.3](ii) and Eq. (38).

Therefore, the hypergradient satisfies the following property:

IVO(21) = VO(z2)[| = Vo f (21, 4" (21)) + 021,y (21)) = [Vaf (22, 4" (22)) + v(z2, 5" (z2)]|
Slpalllzr = zoll + ly* (1) — y™(22) ) + [[o(@1, 4" (21) — v(@2, ¥ (22))]]

l 701 2 l 711 1 lo1lrolya lrolg2 Iyl 1 Iyl ,ol 2 N .
< (g + 2092 g 9l | 9 T09 2 gy gy 4 (U + 1022 g Sl g DOLTD0R () — g () |
H 2 o H H
Lol 1,1l l,1lrol lrol L, 1l L. 1lsol 1
< (Ipa1+ f,0%g,2 + Q7Tuf,1 + g1;0g2)||171—132||—|—(lf1 fv(LgQ + gyluﬁl + 971;;,20 972))lp||1'1—1'2”ﬁ

(40)
Deﬁne L¢1 = lp(lf71+lf,0ljg,2+lg,llff,1 +lg,1ll§,20lg,2)and L¢2 = lf’1+lf,0;g,2+lg,1;f,1 +lg,1l;,201g,2.
Then we have

_1
[VO(z1) = VO(22)|| < Ly, |71 — 22[[ 77T + Ly, [|21 — 22]|- (41)

Furthermore, we have
1
(I)(],‘l) — ‘I’(.’EQ) — <V‘1)($2),J31 — .132)> = / <V‘1)(J?2 =+ t(l‘l — 332)) — V(b(xg),xl — $2>dt
0
1
< / ||V‘I)($2 + t({,Cl — {112)) — V@(:L‘g)””l‘l — .TQHdt
0
P 1 1 1
<l = a7 [ (Lot )it + o~ ol [ (Lont)de
0 0

(p—1)

L L
=X )k |z — mngﬁl 4 =222 |z — 962”2.
P 2

(42)

20



Under review as a conference paper at ICLR 2026

B.4 GENERALIZATION OF ASSUMPTIONS

If there exists a constant a such that d[d’: (r’oy )_1 , dvﬁg (f ’1{)1 exist and satisfy all of our assumptions,
y—al°P d[y—al°r

we can choose z = [y — a]°P~!, then y*(z) = [z*(:zr)]oplf1 + a and we can derive the same
hypergradient formula. Therefore we assume a = 0 without loss of generality. To show the fact that
the hypergradient formula is the same as in the case of a = 0, we have

_ Yy (@) : dz* (z) df (z, [+ (2)]°7 7 + a)

V() =V, f(z,[z*(@)])°7 T +a)+

dz dz dz*(x)
= Vo (2, [ ()77 +a) = Vayg(a, [ (2)]°7T +a) d(vyg(%gz;(g)}ow ta)| 4 [z;(;)(];;_l o)

= V. (@) = Vgl (o) | TS | S

B.5 HYPERGRADIENT BIAS
Lemma B.4 (Hypergradient Bias). Suppose we have an inexact estimate §(x) for the optimal lower-

~ e S -1 S
level variable y*(z). Define V®(x) = V, f(z,9(x)) — Vayg(z, §(z)) [ddv[;(g;)”ji(fl))} ;fg((gf]ﬁﬁjll.

Then we have

IV®(z) = V()| < L, [l§(z) — y* (2)]| 43)
lr.olg, lgaly, lg.1lf,0lg,
where Ly, = l1 + fa(;t s 1uf'1 + - ,izo 2.2,

Proof. Similar to the proof of Theorem [4.1} we can use almost identical arguments to prove that
V. f(z,y) +v(z,y) is Lipschitz in (z,y), where v(z, ) is defined in Eq. (34). In particular, for any
x1,%2,Y1, Y2, we can follow the similar analysis of Eq. @) and leverage the [ -joint Lipschitzness
of V. f(z,y) (ie., Assumption(i)) to show the following inequality holds:

IVaf(zi,y1) +v(z, 1) — Vo f(x2,y2) — v(z2, y2)||
SIVaf(z1,91) — Vaf(z2,y2)[| + vz, y1) — v(z2, y2)||
<la(ller — @2 + llyr — v2|l)

dvyg($27y2)} “Hdf (2, y2) dVyg(:rl,yl)} “Hdf(z1,y1)

7vz ,
* dgalort | dgaert eI ‘“)[ ot | g

Vayg(22,92)) {

<lpa(ller — @2 + lyr — v2ll) +

aten) [ ]

dVyg(xl,yl)} “df(z1,11)
dly:]or—! dlys]or—!

dvyg(wmyz)} “Hdf (2, 2)

- vzyg(ml’yl) |: d[yQ]Op_l d[y2]017—1

+

Vayg(r1,y1) {dvyg(w% y2):| -t df (z2,y2)

d[yz]or—1 d[ya]or—1 — Vayg(z1,91) [

l
<lpa(llzr — 22|l + llyr — v2ll) + 97'2(HI1 = 2|l + |ly1 — y2ll)
{dvyg(m»yz)] - {dvyg(-’vmyz)} -
dlya]or1 dlyz]°r—1

S (lf’()lg,Z + lg,llf,l + lgyllfé()lg,Q
jz I I
= Loy (llzr — 22| + [lyr — y21))-

df(z1,91)  df(z1,91)
dlya]or=t  dfyi]or?

lg,l

I

+lg,1ls0 +

) (1 = 22l + lyr = w2ll) + L (llzr — 22l + [lyr — v2l])

(44)
Therefore, we have

199(@) - VO@)| < Vo fla 3(2)) — Va Fla,y" @) + lofe, §(2)) = oo,y @)
< Uy ll9(2) -y (@) + ( Lolgz | loalpa lg’”;;flg’Q) l3(@) - v @)| 45)

I I
= Ly, |9(z) — y™(2)]|.

21




Under review as a conference paper at ICLR 2026

Therefore the proof is done. O

B.6 HYPERGRADIENT IMPLEMENTATION

Lemma B.5. Denote H as

Q-1 q

1
H:za H

q=0 j=1

;o LaAVyGlazy (D)
C  dlylr!

Under Theorems[3.2]to we have

EelH] - {dm,g(x,y*@))] -

Q
<1 (1 _ ﬁ) .
= c
Proof of Theorem@ We follow a similar proof as (Ghadimi & Wang|, 2018, Lemma 3.2). We have
1] 1. dV,G(z, y; ¢ D)\ ?
53 (-5

op—1

2\
Y
q=Q

where the second inequality uses triangle inequality, and the last inequality is due to Theorem[B2} [J

dly*(z)]r~

IN

Vg @)
Ef“ﬂ{ dly* ()71 }

Q

IA
Ql

( _1dvyG(:c,y;g(w>)>q

c d[y]er—1 = - (1 B E>Q’

I C

Remark: Lemma[B.4]provides the bias of the hypergradient due to the inaccurate estimate of the
lower-level variable. This lemma is useful for the algorithm design and analysis in Section[5} Also,

in Section we analyze the bias and variance of the estimated hypergradient @f (z,y,€) induced by
Neumann series and Algorithm[T]and[2]

B.7 SUFFICIENT AND NECESSARY CONDITION FOR THE DIFFERENTIABLITY ASSUMPTION

Lemma B.6 (Sufficient And Necessary Condition For the Differentiablity Assumption). Fixp > 2
and set o := ]ﬁ € (0,1). Define the sign—preserving, coordinatewise power map Sy, : R? — RY
by Sa(2) = sgn(z) ® |2|® so that z; = sgn(y;) |yi|P~" where y = So(z). Leth : R4 — R
be differentiable near 0 and define r(z) := h(S(z)). Then r(2) is differentiable at z = 0 with
Vr(0) = 0 if and only if

IRl _

lim =22 0
=0 [lyl[P—2

Proof. By definition,  is differentiable at 0 with Vr(0) = 0 iff lim,_, ¢ W =0.

Let y = S, (z). Then
d

lell = (3 w2 )",

=1

(Sufficiency). Suppose lim,_.o ””Zﬁ,ﬂ” = 0. Since h is differentiable, for each y there exists £ on

the line from 0 to y such that h(y) — h(0) = VA(£) Ty. Hence
r(z) =r(0)] _ |h(y) — h(0)|

Izl 121l

< [vae el

llz[I

Define M := max; |y;|, we have ||y|| < v/d M and ||z|| > M P71, so

U< VM < (V) 0,
z

22



Under review as a conference paper at ICLR 2026

Therefore . o
timsup TG = TOL o1 gy g VPO _

250 121l y—o ylP2
Thus r is differentiable at 0 with Vr(0) = 0.

(Necessity). Conversely, assume lim,_, g % = 0. By a standard result in calculus, we have

1

T Y 1 —(p—

PO [ onie)” il > ([ iwntaar) 1o,
||Z|| 2]l vd \Jo

where we used || z|| = (3 | [P~ D)2 < Vd ||ly||P~.

Since y = S, (%) is continuous in z, z — 0 iff y — 0. Hence taking liminf,_,( is equivalent to
taking lim inf,,_,q.

Taking lim inf, .o yields

1 h
0> — liminf IVAly )2”
Vd v=0 [lylPm
Since the ratio is nonnegative, it follows that lim,,_,¢ “H ﬁéy)” =0.

Finally, away from the origin, S,, is differentiable with Jacobian

DS, (z) = diag (o |zi|a_1)d

=1’

so for z # 0, the chain rule gives V7 (z) = DS, (2) " VA(S4(2)). O

B.8 OTHER USEFUL LEMMAS

Lemma B.7 (Variance). Under Theorems[3.2]t0[3.4) we have

- - - - 3
Eel|V f(z,y;§)—Ee[Vf(z,y; I* < of,  where of = U]%Jr? [(0F+130) (07 +207 )+ 072 ]
Proof of Theorem @ Following the proof of (Hong et al.,[2023, Lemma 1) gives the result. O

C PROOFS OF SECTION[5.3]

C.1 CONVERGENCE GUARANTEE FOR MINIMIZING SINGLE-LEVEL UNIFORMLY CONVEX
FUNCTIONS

In this section we consider the problem of minimizing single-level objective function 1/ : R? — R:

min ¥(w). (46)

weR?

Denote w* = arg min,,cga ¥ (w) as the minimizer of 1. Assume that we access Vi (w) through an
unbiased stochastic oracle, i.e., B[V (w; )] = Vip(w). We rely on the following assumption for
analysis in this section.

Assumption C.1. Assume function z/J is (u p)- umformly convex (see Theorem [3.2] n In addition, the
noise satisfies E [exp(|| Vi (w; ) — Vip(w)||?/o?)] < exp(1).

Lemma C.2. Under Theorem|C.1} if there exists a constant G such that |Vi(z)|| < G, then we
have
_1
P(x) = (a) < GpG/p) 7=

Proof of Theorem By convexity of ¢ and the Cauchy-Schwarz inequality, we have

Y(x) — (z*) < (Vp(z),z — z*) < Gllz — .
By (u, p)-uniform convexity of v,

W) — () > %nx — 2|

23



Under review as a conference paper at ICLR 2026

Combing the above inequalities together gives ||z — 2*|| < (pG/ /L)P%l. Therefore,

Y(a) = (@) < Gllz — ]| < GG/u)7™T.
O

Lemma C.3. Under Theorem for any given w*, let D be an upper bound on ||wy — w*|| and
assume there exists a constant G such that |V (w)| < G. Apply the update

W1 = wy — YV (wy; )

Sfor T iterations. Then for any 6 € (0, 1), with probability at least 1 — § we have

1 & . |lwy —w*||?  8(G+o)Dy/3log(2/6)
7 ;w(wt) —Y(w") < 29(G* + 0% log(2/0) + T+ 77 :

Proof of Theorem|[C.3] Define the filtration as H; = o(m1,...,m—1), where o(-) denotes the o-
algebra. With a minor abuse of notation, we use E;[-] = E[- | H;]. By Theorem |C.1] we have

. 2 2 ) _ 2
£ fosp (ST ] <, oy (LPV0L + [V0tm) - Totwol?)]

- (;) \/E {exp <|v¢<wt;g;>+—agw<wt>||2ﬂ < expl),

(47)
where the first inequality uses Young’s inequality, the second inequality is due to Jensen’s inequality.
Since E:[(Vp(wy; 1), we — w*)] = (Vib(wy), wy — w*), then

X = (VY(wi), wy — w*) — (Vp(wy; mp), wp — w™)

is a martingale difference sequence. Note that | X;| can be bounded as
[ Xe| < [V (wi)l[[[we = w* || + [V (we; 7o) |[[[wr — w™|| < 2GD + 2D|[ Vi (wy; m )],

where the last inequality uses ||w; — w*|| < ||ws — wq ||+ [Jw1 — w*|| < 2D since z¢, x* € B(wy, D).
This implies that

X? 4D?*(2G? + 2||Vip(wy; mp)||?)
. [e"p (64(@2 T 02>D2)] =B [exf’ ( 64(G2 + 0%)D? )]

1 [V (we; ) |12
< exp <8) \/]Et [GXP <4GQ—|—402 <exp(l),
where the first inequality uses Young’s inequality, the second inequality is due to Jensen’s inequality,
and the last inequality uses Eq. (47). By Theorem with probability at least 1 — /2, we have

S, Xi < 8(G 4 0)D+/3T 10g(2/5), which implies

8(G + o)D+/3log(2/4)
< s . @8)

L
T Z<V¢(wt)a wy — w") = (Vip(we; m ), we — w”)

Next,

T . i T .
o (zt_z vazi%,;t)n?ﬂ ey [exp (Zt_z LZTZ;T)HQ)H

E

4G? + 402 4G? + 402

=E |exp (Zt_l ||Vw(wt§77t)||2> ~exp(1)] ’

4G? + 402

24

—E |exp (EtT—_f ||V¢(1Ut;ﬂ't)||2> Er [exp <||V1/J(wT,7TT)||2

)]



Under review as a conference paper at ICLR 2026

where the last inequality uses Eq. @#7). Apply the above procedure inductively, we obtain

= \% ts Tt 2
Elex%zt:z I9o(ocm) ﬂ D)

By Markov’s inequality, with probability at least 1 — §/2, we have

ST IV (wes )| < 4G + 0% T log(2/6).

t=1

By Theorem|[C.6and Eq. (48)), we conclude that

1 ; 5 o |lwy —w*||?  8(G+o)Dy/3log(2/6)
T 2 V() ~ () S 2G4 %) log(2/8) + o i :

Lemma C.4. Define Ay and Vi, choose v, and T} as

. G(pG /) 7T G(pG/p) 7T 60%(G2 + o2
(49)

For any k, with probability at least (1 — §)*~1 we have Ay, < Vi 1og(2/9).

Proof of Theorem[C4, Denote ¢+ = log(2/5). We will prove the lemma by induction on k, i.e.,
A < Vi

Base Case. The claim is true for k = 1 since Ay < V¢ by Theorem|[C.2}

Induction. Assume that Ay, < V. for some k > 1 with probability at least (1 — 5)’“_1 and now we
prove the claim for k + 1. Since Ay > %Hw’f — w*||P by (u, p)-uniform convexity, which, combined
with the induction hypothesis Ay < V¢ implies that

lwi —w*|| < (pAR/p)?> = Dy (50)
Apply Theoremwith D = Dy, and hence with probability at least 1 — §,
Appr = P(wf™) —g(w*)

E_w*||?  8(G D3
SQ%(G2+02)L+HU)1 il + (G +0) D3

27T o
Ap/p)e | 20(G + o) (pAy/p) 7 /i
< (G 1oyt P 4
e ) 2y T, VI,
W@+ @Vie/wr  20(G + o) (pVit/p)? i
- 2k—2 2T - 9257 (k=1) T, 27(k—1)
Vi Vi Vi
- 12 300 3
b
< ka = Vi1,

where the first inequality uses Theorem [C.3] the second inequality is due to Eq. (50), the third
inequality uses the induction hypothesis and the definition of v and T}, and the fourth inequality is
due to the choice of ; and T} as in Eq. (50).

Factoring in the conditioned event Ay < Vj.¢, which happens with probability at least (1 — ) JLa

thus we obtain that Ay, < V41t with probability at least (1 — 6)*. O

25



Under review as a conference paper at ICLR 2026

Theorem C.5. Under Theorem given any § € (0,1), set § = 6 /kt for kT = |1 logQ((Tll)(T -
1) +1)|. Set the parameters 1, Ty and Dy as

1

G(pG /)7 60%(G* + 0?) (PG 5 .
MEuErer T @ o PreEmmUy log(2/0% [wi = |

(1)
in Algorithm[I} Then with probability at least 1 — 6, we have

2(2 2 2,%1 p%l 5 P
(602(G2 + 02)) = ;(p/u) log(2/9) _ (T*m),
T2-D
2 2 2 2p+1 ﬁ 5 1
(60%(G? + 02)) = i(p/u) log(2/9) _ (T—m).
T2-1

Y(wh) — Y(w*) <

lwy = w*| <

Proof of Theorem[C.3] Recall 7 = 2(p — 1)/p as defined in Algorithm|[I] By Theorem with
probability at least 1 — 6,

Dl ) = P(w*) = Agi 41 < Vir g1 log(2/3)

_ G(pCv‘/u);j1 log(2/9) < GG /)7 <<£> (27— 1)+ 1>’ log(2/5)
G(pG /)77 log(2/3) _ (60%(G? + o)) (p/ )71 log(2/6)
= T* T ’

where the second inequality uses the definition of k', the third inequality is due to 7 > 1, and the
last equality uses the definition of 7 and the choice of T} as in Eq. . Also, by (u, p)-uniform
convexity of ¢ we have

Y(wp ) = p(w*) > EIIw’f .
Combing the above inequalities yields the results. O

Lemma C.6 ((Hazan & Kale, 2014, Lemma 6)). Starting from an arbitrary point w, € R?, apply T
iterations of the update

w1 = wy — YV (wye; 7).

Then for any point w* € RY, we have

T T * |2
<7 g [wr —w]
t:ZI<V7/)(wt,7Tt) <5 g [Vap(we; m)||” + Ty
Lemma C.7 ((Hazan & Kale| 2014, Lemma 14)). Let X;,..., X1 be a martingale difference
sequence, i.e., B[ X;] = 0 for all t. Suppose that there exists o1, . . ., o7 such that E;[exp(X?/o?)] <

exp(1). Then with probability at least 1 — 6, we have

T T
Zth 3log(1/90) Z
t=1 t=1

C.2 PROOF OF LEMMA[3.Z]
We will use a short hand y* = y*(x).
Lemma C.8. Under Theorem[3.2} if y* € B(y; R) for some R > 0, then for all §j € B(y; R),
2(2L1R+1) _ 1)L1
Lo

IVyg(z,7)l <

26



Under review as a conference paper at ICLR 2026

Proof of Theorem[C.8| For any y € B(y; R), let y; = y* and y; = ¥, then there exists yp, ¥, - - -, ¥}
with j = [L1||g — y*||] such that ||y} — yj_4|| < 1/L; for i = 1,...,5. We will prove
|Vyg(x,yh)|| < (2¢ —1)L1/Ly for all i < j by induction.

Base Case. For y{, by Theorem 3.2] we have

0
IVyg(x,y1) = Vyg(z,yo)ll < (Lo + Lal|Vyg(z, yo) lllys — woll < I

where the last inequality uses y;, = y*. This implies that ||V, g(z,y1)|| < Lo/L.

Induction. Assume that ||V, g(z,y})|| < (2° — 1)Lo/L1 holds for some i < j — 1. Then for y]
we have

! / / ! 2" LO
IVyg(@, yiy1) = Vg, y)ll < (Lo + LallVyg(z, yi) lllvips — vill < —— I,

where the last inequality uses the induction hypothesis. By triangle inequality and the induction
hypothesis we obtain ||V, g(x,y, )| < (271 — 1)L1/Lo. Therefore, we conclude that for any

y € Bly; R),
(29 — 1)L, B (Q[Ll\lﬂ—y*\ﬂ — 1)L, - (2CLR+D) _ )L,

o _
V.9t 9)] < i <SR

where the last inequality uses |7 — y*|| < 2R since g, y* € B(y; R). O

Lemma C.9 (Restatement of Theorem . For any given § € (0,1) and € > 0, set 6 = 6 /(Tk")
for kT = [ Llog,((& =)(27 = 1) + 1), where 7 = 2(p — 1)/p is defined in Algorithm Choose

{og} {Kea Ry, 1} {K:}as

(et Ly min { (pGiy /)77 1og(2/8). o — 3|} =0
t Ly >y min { —— 1} t>1"
Lo b= AL, I =
(52)
- M _60(G?topy) o 60°(GF + a3 )(p/ ) (log(2/9))2 7
YT UG ez T a (min{c/SLy,, 1/2L, ) 20D
(53)
For any sequence {Z} such that Ty = xo and ||Z11 — T¢|| = n for n satisfying
1 € 1 Pl
S| ming ——, 57— 54
= (meelsinm)) o0

let {7} be the output produced by Algorithm[2| Then with probability at least 1 — 6, for all t € [T
we have ||y — g7 || < min{e/4Lg4,,1/L1}.

Proof of Theorem|C.9} Fort = 0, by Theorems and@ and the choices of a1, Ko,1, Rp,1 as in
Eq. and Eq. (53)), with probability at least 1 — 0/7 we have ||§1 — 4| < min{e/8Ly,,1/2L1}.
For1 <t < I, we have

A

19 = G2l = 192 — 771l < l3n — ol +leyz 1= G5 < min{e/8Lg,, 1/2L0} + Tyl &1 — &7

= min{e/8Ly,,1/2L1} + Ilpnﬁ < min{e/4Ly,,1/L1},

where the first inequality uses triangle inequality, the second inequality is due to ¢ < I and

Theorem the last inequality uses the choice of 1 as in Eq. . For t > I, apply
Theorems and @ with the choices of ay 1, Ky 1, R:1 as in Eq. and Eq. @) then
follow the above procedure inductively, we obtain with probability at least 1 — ¢ that for all ¢,
9 = 97| < min{e/4Ly,,1/L1}. O

27



Under review as a conference paper at ICLR 2026

C.3 PROOF OF LEMMA[3.3]

Corollary C.10 (Restatement of Theorem [5.3). Let {x;} and {y;} be the iterates generated by
Algorlthml 2| For any given 6 € (0,1) and € > 0, under the same parameter setting in Theorem
with probability at least 1 — § (denote this event as £) we have ||y, — y; || < min{e/4Ly,,1/L.} for
allt > 1.

Proof of Theorem[C.10} By line 8 of Algorithm[2] we have ||z¢41 — x| = 1. Setting {Z;} = {xt}
yields the result.

C.4 PROOF OF LEMMA [3.4]
Lemma C.11. Under Theoremsand define e; == my — V®(xy), then we have

- 1)L » L
D(xi11) < P(xy) — n||VO(zy) || + 2n||ee]| + (pp)d)lml + %nz.

Furthermore,
T T
A 1)L 1 L
Syl < G 1 (E ey 1 By 23l
=1 t=1

Proof of Theorem|[C.11} By Theorem[.I] we have
(-1

L L
1 ”xtJrl _ xt”ﬁ + @2

B ze+1 — T/t||2

D(z41) < P(xy) + (VO(21), Tp31 — T1) +

m — 1)L » L
—‘I)(xt)—ﬁ<mt—et,| t >+(p ) ¢1nﬁ+ﬁn2

my P 2
m p—1)L »_ L
= O(z¢) — nllm| +77<et, i >+ ( ) AR e N
o] » 2
— 1)L oL
< B(a) — | V0w + el + ] + LD Eo i 4 Lo
— 1)Ly, » L
< B(a0) — 1V (e0)| + 20l + LIyt 1 Lone

(55)
where the first equality uses the update rule (line 8) of Algorithm 2] the second inequality is due to
Cauchy—Schwarz inequality, and the last inequality uses triangle inequality. Rearranging Eq. (]3_’5])
and taking summation yields the result.

Lemma C.12 (Restatement of Theorem[5.4). Under Theorems[3.2]t0[3.4)and event &, we have

1 Tlgilto A\ Q@ T 1
1= TL LQ—*) 7(1: L4 )
Bo1+TLg, mln{4L T }+ " c) T 1= \(enl” + Lg,n

Proof of Theorem|[C.12] Define ¢; = Vf(ze,ye; &) — V(x,) and S(a,b) = V®(a) — VO(b). By
Theorem[4.1] we have

1S (e, i) = [[@(2t) = R(@e41) | < L, |2t —2esa]| 777 + Lo, [|we —2e41 || < Lyn»—T +Lqégg-)
For all t > 1, we have the following recursion:
€41 = Ber + (1 — B)érr1 + BS(ze, Tpy1)- (57

Unrolling the recursion gives

t—1
€1 =Ber+(1-8 ZﬂEtH z+5Zﬁl (Tp—iy Tr1—4)-
i=0 i=0

28



Under review as a conference paper at ICLR 2026

By triangle inequality and Eq. (56), we have

t—1 t—1
i~ 1 i
levsall < Bllerll + (1= 8) | 3 Bewsa || + 8 (Lo + Loun) 35
=0 1=0
t—1 (58)
= 1
< B Jer |+~ B)| - Berr—i]| + 72 (Loun™T + Lym)
—~— i=0 -8
(4)
(B)

Bounding (A). Observe that ; = €;. Taking expectation and using Jensen’s inequality, we have

Ellefl = Elé < VE[&l? < o1

Bounding (B). By triangle inequality, we have

t—1 t—1

IN

=0 =0

o1 L¢2 . { € 1 } lg 1lf 0 ( 1% Q
< + ming ——,— » + ——"—(1— —) ,
VI—B 1-8 Ly, Lif Tu(i-p)\  C
where the second inequality uses Jensen’s inequality and the fact that for i # j, & and Ej are
uncorrelated, and the last inequality is due to Theorem [B.7]and Theorem [C.10]

Returning to Eq. (58), we obtain

C

1 lg1l Q 1
Elleg1]l < 801+ /1 — Bor + Ly, m1n{4L } + 2l10 (1 - ﬁ) + % (Lmﬁpil +L¢>277) :

"Ly jz

Summing from ¢t = 1 to 7" yields

ZlElletll

1=-p
O

AL4, Iy

D PROOF OF MAIN THEOREM [5.1]

Theorem D.1 (Restatement of Theorem- Under Theorems|[3.2)t0[3.4 for any given § € (0,1)
and € > 0, set 6 = 6/(Tk") for kt = | L log, (& =) (27 =1)+1)|, where 7 = 2(p—1)/p is defined
in Algorithm[l| Choose {ay 1}, {K¢1},{Re1}, {Kt} as

t—1 t—1 t—1
E|Y Béii|| SE|Y B (VI (@0 y:&) — BV (@i y&))|| +E E:B%Edﬁﬂxumfﬁﬁ—V@@ﬂﬂ
=0 =0 1=0

l
ST BRIV f(wi,yis &) — BelV (@i g E)NI2+ D B (L@Hyl vill + ‘”/j “(1-

pehIeiI) _ 2L = min { (pG/n) 77 108(2/3), lyo — il =0
Gy = LO R —
t L4 - ) t,1 min e 1}
Lo = Ly, Ly
~(59)
(th/u)P ' _ 60%(GE +071) _ 60*(GF +a3.1)(p/n)* (log(2/8))*P Y
TG o2, T G? © T T (min{e/2Ly,, 1/2L, 1) D)
(60)

In addition, choose 8, n, I and Q as

lﬂmin{l 6162} 7N = comin (e~min{16 p 15})1:1 %
, U% ’ L¢1 ’(p_l)L¢17lpL¢2 , L¢'2 ’L¢2

29

I

C

)

1 Tlyql Q T 1
1—B01—|—TL¢2m1n{ ‘ }—FM(l—N) + (L¢177Pj+L¢277).



Under review as a conference paper at ICLR 2026

I= ﬁ O=In (41;161}20) /1n (1 _ %) . (62)

G189 Then with probability at least 1 — ¢ over the randomness in F,, we have

ne *
+ Zle E|V®(x:)|] < ¢, where the expectation is taken over the randomness in Fryy. The
total oracle complexity is O(e=°P+).

Let T =

Proof of Theorem|D.1] We apply Theorems [C.11]and[C.12]to obtain that, under event &,

T
1 A¢ (p—l)L¢ _1 L¢>
—_ E ) — A b Sy 2 E
7 2 EIve)] Tn+( Sy }j Jecl

IN

Ay (p—l)L¢1 1 Ly, o1 . €
< = 2 Plpp-1 —— +2y/1— 2L —_
T77+( » nr-1 + 5 1l +T(1—/3)+ v1—Bo1 + 2Ly, min i

2 lgalyo A
b 1) )
+ 5( é1M + Lg,n [ C
Co 2c0071€
— 4+ — 42 2 2

(Cl+ +2+01A¢L¢2+ Vel + = +62 +c2+4)

<e

where the third inequality uses the choice of 7, 3 and @ as in Eq. and Eq. (62), the last inequality
is due to the choice of small enough constants ¢y, ¢ and large enough constant C;.

Moreover, the total oracle complexity is (assume target accuracy € is small enough):

[T/1] _
T+ Z O (72 4+ 70 = O (7). (63)

E ADDITIONAL EXPERIMENTS

E.1 MORE EXPERIMENTS FOR SYNTHETIC DATA

Hypergradient Norm Comparison when p=4 Hypergradient Norm Comparison when p=12 Hypergradient Norm Comparison when p=20
10 10

14 o 14
5 a8 »

Hypergradient Norm V@]
e
9

Hypergradient Norm [v@]

1
°

o 100 200 300 400 500 [ 100 200 300 400 500 o 100 zoo 300 400 500
teration fteration lteration

(@p=14 (b) p=12 (©)p=20

Figure 3: Results of bilevel optimization on the synthetic example 2 when p = {4,12,20}. All
algorithms are initialized at (2o, yo) = (0.001,0.001), and the upper-level variable is updated for
T = 500 iterations. The performance of the algorlthms was evaluated through the ground-truth
hypergradient given by V®(x) = sin(x) cos(sin(z)). For all algorithms, learning rates are optimally
tuned with a grid search over the range [0.01, 1].

In this section, we conducted extensive synthetic experiments to rigorously compare UniBiO
against prominent LLSC-based algorithms, including StocBiO (Ji et al. [2021)), TTSA (Hong
et al., 2023), and MA-SOBA (Chen et al., [2023)), under a deterministic setting. All experiments
were initialized at (zo,y0) = (0.001,0.001), with the upper-level iteration number fixed at
T = 500. Algorithm performance was evaluated through the ground-truth hypergradient given
by V&(x) = sin(x) cos(sin(z)) across varying p € {4,12,20}.

30

2

1

6 L1

|



Under review as a conference paper at ICLR 2026

Parameter Settings: For UniBiO and StocBiO, we set Neumann series iterations as (¢ = 10.
Momentum for UniBio and MA-SOBA was fixed at 0.9. The optimal upper- (1 L) and lower-level
learning rates (1), 1,) for each algorithm were determined through a grid search over the range [0.01, 1].
Specifically the learning rates are: UniBiO (nyr, = 0.02, nrr, = 1.0); StocBiO (nyr = 0.5, npr =
01), TTSA (nUL = 01, nLL = 01), MA-SOBA (T]UL = 107 nLL = 001, N = 001) Other
fixed parameters included: UniBio (I = 10, Ny =5, D, = 1, T,, = 100), StocBiO (the number of
inner iterations T3, = 5), and MA-SOBA (the auxiliary variable z is initialized at zg = 0).

E.2 MORE EXPERIMENTS FOR DATA HYPER-CLEANING

Train_ACC vs. Epoch Test_ACC vs. Epoch Train_ACC vs. running time (s) Test_ACC vs. running time (s)
0.70 3 0.70 5

0.65 0.65

0.60 0.60
Y oss Y oss

+'0.50
e

+'0.50

&

0.45{ ) 0.45

0.401 - 4 0.40

0.35{ { 0ss] 4l

80 100 [ 5000 10000 15000 20000 ) 5000 10000 15000 20000

a0 60 a0 60
Epoch Epoch running time /s running time /s

(a) Training ACC (b) Test ACC (C) Training ACC vs. running time  (d) Test ACC vs. running time

Figure 4: Results of bilevel optimization on data hyper-cleaning with noise p = 0.1 and p = 4.
Subfigure (a), (b) show the training and test accuracy with the training epoch. Subfigure (c), (d) show
the training and test accuracy with the running time.

°
& 10! -
= - P=2, running time~=0.225 Estimated convergence r(p)
H T P=6, running time=1.72s ‘a‘_
% _____ p=8, running time=7.03s T 0.6
£ 100 2
g o 0.5
n
o
> .4
£ 3°
T1o0? ©
9 — - gos3
I == p=2,r=0.64 -~ p=6,r=0.30 -
- -
] p=a — =8 0 0.2
g o4, r=0.45 —— 'prs,r=0as o
< Too Tot To? 2 3 4 5 6 71 8
Outer Iteration t (log) P
(a) Hypergradient decay rate and upper bound. (b) Estimated slopes (p) for different p.

Figure 5: Log—log plot of the convergence behavior of the averaged hypergradient norm under
different uniform-convexity parameters p.

E.3 ESTIMATION OF THE CONVERGENCE RATE FOR DIFFERENT p

We adopt the same configuration as in the synthetic experiment under deterministic setting (i.e.,
no gradient noise) with outer iteration 7' = 500 iterations in Algorithm 2] Recall that our theory
guarantees a power-law decay of the averaged hypergradient:

t
1 »
D IV, ()] S 7.
i=1
Taking logarithms on both sides yields
1<
log{ 3 2_ 98zl | < —r(p) log(®) + €.

where the slope —r(p) characterizes an upper bound on the convergence rate, and C' is a universal
constant.

31



Under review as a conference paper at ICLR 2026

In Figure[5|a), the solid curve represents the empirically observed sequence of averaged hypergradient
norms, whereas the dashed curve corresponds to the fitted power-law upper bound, obtained via a
linear regression on the log—log plot. We also report the runtime for different values of p.

Figure b) reports the resulting fitted curves and the estimated slopes for p € {2,4,6,8}. As p
increases, the slope magnitude decreases, indicating slower convergence. This is consistent with our
complexity results as shown in Theorem [5.1]

An additional observation is that the empirical convergence rates are strictly faster than our theoretical
worst-case bound O (e ~3P*+2) outer iterations required to find an e-stationary point (see Equation ).
This suggests either that our example is not a hard instance or that the current complexity bound may
not be tight; we leave a tighter characterization for future work. Note that there is an extra O (e~57*6)
inner iterations complexity which is reflected in the runtime result in Figure ] In particular, the
averaged inner iterations for various p = [2,4, 6, 8] are [75, 172, 737, 3059], which means that larger
p significantly increases the inner-loop iterations (i.e., the choice of K as chosen in Theorem [C.3))
used in the subroutine Epoch-SGD (i.e., Algorithm[T).

F HYERPARAMETER SETTING

For a fair comparison, we carefully tune the hyperparameters for each baseline, including upper-
and lower-level step sizes, the number of inner loops, momentum parameters, etc. For the data
hyper-cleaning experiments, the upper-level learning rate 7 and the lower-level learning rate -y are
selected from range [0.001, 0.1]. The best (7, ) are summarized as follows: Stocbio: (0.01,0.002),
TTSA: (0.001, 0.02), SABA: (0.05,0.02), MA-SOBA: (0.01,0.01), SUSTAIN: (0.05,0.05), VRBO:
(0.1,0.05), UniBiO: (0.05,0.02). The number for neumann series estimation in StocBiO and VRBO
is fixed to 3, while it is uniformly sampled from {1, 2, 3} in TTSA, and SUSTAIN. The batch size is
set to be 128 for all algorithms except VRBO, which uses larger batch size of 256 (tuned in the range
of {63,128,256,512,1024}) at the checkpoint step and 128 otherwise. UniBiO uses the periodic
update for low-level variable and sets the iterations N = 3 and the update interval I = 2. The
momentum parameter 3 is fixed to 0.9 in MA-SOBA and UniBiO.

G THE USE OF LARGE LANGUAGE MODELS (LLMS)

LLMs are not involved in our research methodology or analysis. Their use is limited to polish the
writing.

32



	Introduction
	Related Work
	Preliminaries
	The Lower-Level Uniform Convexity Problem Class
	Examples

	Implicit Differentiation Theorem under LLUC
	Proof Sketch

	Algorithm and Convergence Analysis
	Algorithm Design
	Main Results
	Proof Sketch

	Experiments
	Conclusion
	Proofs in Section 3
	Definition
	Examples

	Proofs in Section 4
	Proof of Lemma 4.2
	A Technical Lemma Under a Different Assumption
	Proof of Theorem 4.1
	Generalization of Assumptions
	Hypergradient Bias
	Hypergradient Implementation
	Sufficient and Necessary Condition for the Differentiablity Assumption
	Other Useful Lemmas

	Proofs of Section 5.3
	Convergence Guarantee for Minimizing Single-level Uniformly Convex Functions
	Proof of lemma 5.2
	Proof of lemma 5.3
	Proof of lemma 5.4

	Proof of Main Theorem 5.1
	Additional Experiments
	More Experiments for Synthetic Data
	More Experiments for Data Hyper-cleaning
	Estimation of the Convergence Rate for Different p

	Hyerparameter Setting
	The Use of Large Language Models (LLMs)

