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ABSTRACT

Bilevel optimization is a hierarchical framework where an upper-level optimization
problem is constrained by a lower-level problem, commonly used in machine
learning applications such as hyperparameter optimization. Existing bilevel
optimization methods typically assume strong convexity or Polyak-Łojasiewicz
(PL) conditions for the lower-level function to establish non-asymptotic
convergence to a solution with small hypergradient. However, these assumptions
may not hold in practice, and recent work (Chen et al., 2024) has shown that bilevel
optimization is inherently intractable for general convex lower-level functions with
the goal of finding small hypergradients.
In this paper, we identify a tractable class of bilevel optimization problems that
interpolates between lower-level strong convexity and general convexity via lower-
level uniform convexity. For uniformly convex lower-level functions with exponent
p ≥ 2, we establish a novel implicit differentiation theorem characterizing the
hyperobjective’s smoothness property. Building on this, we design a new stochastic
algorithm, termed UniBiO, with provable convergence guarantees, based on an
oracle that provides stochastic gradient and Hessian-vector product information
for the bilevel problems. Our algorithm achieves Õ(ϵ−5p+6) oracle complexity
bound for finding ϵ-stationary points. Notably, our complexity bounds match
the optimal rates in terms of the ϵ dependency for strongly convex lower-level
functions (p = 2), up to logarithmic factors. Our theoretical findings are validated
through experiments on synthetic tasks and data hyper-cleaning, demonstrating the
effectiveness of our proposed algorithm.

1 INTRODUCTION

Bilevel optimization (Bracken & McGill, 1973; Dempe, 2002) is a hierarchical optimization
framework where an upper-level optimization problem is constrained by a lower-level optimzation
problem. Bilevel optimization plays a crucial role in various machine learning applications, including
meta-learning (Finn et al., 2017), hyperparameter optimization (Franceschi et al., 2018), data
hypercleaning (Franceschi et al., 2017; Shaban et al., 2019), continual learning (Borsos et al.,
2020; Hao et al., 2023), neural network architecture search (Liu et al., 2018), and reinforcement
learning (Konda & Tsitsiklis, 1999). The bilevel optimization problem can be defined as:

min
x∈Rdx

ϕ(x) := f(x, y∗(x)), y∗(x) ∈ argmin
y∈Rdy

g(x, y), (1)

where f and g are referred to as upper-level and lower-level functions respectively. A common
assumption in bilevel optimization is that the lower-level function is either strongly convex (Ghadimi
& Wang, 2018; Hong et al., 2023; Ji et al., 2021; Chen et al., 2021a; 2023; Hao et al., 2024; Kwon
et al., 2023a) or satisfies the Polyak-Łojasiewicz (PL) condition (Liu et al., 2022; Kwon et al., 2023b;
Shen & Chen, 2023; Huang, 2024), which facilitates the design of algorithms with non-asymptotic
convergence guarantees for finding a solution with a small hypergradient. However, these assumptions
do not always hold in practice.

Recent work (Chen et al., 2024) has explored the relaxation of these conditions but has primarily
yielded negative results. Specifically, they show that for general convex lower-level problems, bilevel
optimization can be intractable with the goal of finding a point with a small hypergradient: the
hyperobjective function can be discontinuous and may lack stationary points. This stark contrast
between lower-level strong convexity (LLSC) and mere lower-level convexity (LLC) naturally raises
the following question:
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Can we identify an intermediate class of bilevel optimization problems that bridges the
gap between LLSC and LLC, enabling the design of efficient algorithms of finding small
hypergradients in polynomial time?

In this paper, we provide a positive answer to this question by introducing a function class that
satisfies a property called lower-level uniform convexity (LLUC)1. This property serves as a natural
interpolation between LLSC and LLC, controlled by an exponent p. Uniform convexity (Zǎlinescu,
1983; Iouditski & Nesterov, 2014) is a refined notion of convexity characterized by p ≥ 2, where
p = 2 corresponds to strong convexity.

Finding small hypergradients under LLUC presents several challenges. First, for uniformly convex
lower-level functions, the Hessian of the lower-level objective may be singular, making it impossible
to compute hypergradients directly using the standard implicit differentiation theorem applicable
under LLSC (Ghadimi & Wang, 2018). Second, the LLUC property inherently conflicts with the
standard smoothness assumptions for the lower-level function (i.e., Lipschitz-continuous gradient in
terms of the lower-level variable), which are crucial for the theoretical analysis of existing bilevel
optimization algorithms (Ghadimi & Wang, 2018; Hong et al., 2023; Ji et al., 2021; Kwon et al.,
2023a; Hao et al., 2024). Consequently, addressing bilevel optimization under LLUC necessitates the
development of a fundamentally different algorithmic framework and novel analysis techniques.

In this work, we tackle these challenges with two key innovations. First, we develop a novel
implicit differentiation theorem under LLUC, which characterizes the smoothness property of the
hyperobjective, where the degree of smoothness depends on the uniformly convex exponent p.
Second, to overcome the lack of standard smoothness assumptions for the lower-level function, we
propose a new stochastic algorithm called UniBiO (Uniformly Convex Bilevel Optimization). After a
warm-start stage for the lower-level variable, UniBiO employs a normalized momentum update for
the upper-level variable and a multistage stochastic gradient descent with a shrinking ball strategy to
update the lower-level variable. Notably, the lower-level updates are required only periodically rather
than at every iteration. Our main contributions are summarized as follows.

• We identify a tractable class of bilevel optimization problems that interpolates between LLSC
and LLC by leveraging the LLUC. Under this problem class, we develop a novel implicit
differentiation theorem that provides an explicit hypergradient formula and establishes its
smoothness property. This theorem is of independent interest and could be applied to other
hierarchical optimization settings (e.g., multilevel and minimax optimization).

• We design a new stochastic algorithm named UniBiO, the first algorithm designed for bilevel
optimization under LLUC. We prove that UniBiO achieves the oracle complexity Õ(ϵ−5p+6)
for finding an ϵ-stationary point for the hyperobjective in the stochastic setting, where
the oracle provides either stochastic gradients or Hessian-vector products. Notably, this
oracle complexity matches the optimal complexity for strongly convex lower-level functions
(p = 2) up to logarithmic factors.

• We conduct experiments on both an synthetic task and data hypercleaning, which validate
our theory and show the effectiveness of our proposed algorithm.

2 RELATED WORK

Bilevel Optimization with Lower-Level Strong Convexity. Early research on bilevel optimization
primarily focused on asymptotic convergence guarantees (Vicente et al., 1994; Anandalingam &
White, 1990; White & Anandalingam, 1993). A major breakthrough came with Ghadimi & Wang
(2018), which established the first non-asymptotic convergence guarantees for finding a solution
with a small hypergradient under the assumption that the lower-level function is strongly convex.
This work laid the foundation for a series of subsequent studies that improved either the complexity
or the simplicity of algorithm design (Hong et al., 2023; Chen et al., 2021b; Ji et al., 2021; Kwon
et al., 2023a; Hao et al., 2024; Gong et al., 2024a; Chen et al., 2021a; Khanduri et al., 2021; Dagréou
et al., 2022; Guo et al., 2021; Yang et al., 2021; Gong et al., 2024b). These works critically rely on
the implicit differentiation theorem from Ghadimi & Wang (2018), which is applicable under the
assumption of lower-level strong convexity. In contrast, our work does not assume LLSC, rendering
the standard implicit differentiation technique from Ghadimi & Wang (2018) inapplicable.

1The definition of LLUC is given in Assumption 3.2 (i).
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Bilevel Optimization with Lower-Level Nonconvexity. Bilevel optimization with nonconvex lower-
level functions is generally intractable without additional assumptions (Daskalakis et al., 2021).
One common approach assumes that the lower-level function satisfies the Polyak-Łojasiewicz (PL)
condition (Liu et al., 2022; Kwon et al., 2023b; Shen & Chen, 2023; Huang, 2024; Chen et al.,
2024). Another line of work leverages sequential approximation minimization techniques (Liu et al.,
2021a;b; 2020) to solve bilevel problems without assuming lower-level strong convexity, though
these methods typically offer only asymptotic convergence guarantees. Additionally, Arbel & Mairal
(2022) employs Morse theory to extend implicit differentiation in the presence of multiple lower-level
minima caused by nonconvexity. In contrast, our work focuses on a class of uniformly convex
lower-level problems.

Bilevel Optimization with General Lower-level Convexity. Despite the negative results of Chen
et al. (2024) under LLC from the hypergradient perspective, there is a line of work which investigates
algorithms converging to ϵ-KKT solution of a corresponding constrained optimization problem (Lu
& Mei, 2024a;b). In contrast, our work focuses on finding an solution with small hypergradient, not
an ϵ-KKT solution for a corresponding constrained problem.

Optimization for Uniformly Convex Functions. For an single-level optimization problem under
uniform convexity, the work of Iouditski & Nesterov (2014) established first-order algorithms with
optimal complexity upper bounds for nonsmooth functions with bounded gradients. Under a high-
order smoothness assumption, the work of Song et al. (2019) designed high-order methods for
uniformly convex functions. In addition, the work of Bai & Bullins (2024) derived lower bounds
for a class of optimization problems characterized by high-order smoothness and uniform convexity.
In contrast, our work focuses on updating the lower-level variable using first-order methods under
LLUC, without bounded gradients or smoothness assumptions.

3 PRELIMINARIES

Define ∥ · ∥ as the Euclidean norm (spectral norm) when the argument is a vector (an square matrix).
Define ⟨·, ·⟩ as the inner-product in Euclidean space. Denote ⊙ by the Hadamard (element-wise)
product. For any a ∈ Rd, We adopt the notation [a]◦ρ = (aρ1, . . . , a

ρ
d) for a ∈ Rd to denote the

element-wise power of a vector., where ρ > 0 can be any positive number (e.g., integers or non-
integers). We use asymptotic notation Õ(·), Θ̃(·), Ω̃(·) to hide polylogarithmic factors in terms of
1/ϵ. Define f : Rdx × Rdy 7→ R as the upper-level function, and g : Rdx × Rdy 7→ R as the
lower-level function. We consider the stochastic optimization setting: we only have noisy observation
of f and g: f(x, y) = Eξ∼Df

[F (x, y; ξ)] and g(x, y) = Eζ∼Dg
[G(x, y; ζ)], where Df and Dg are

underlying data distributions for upper-level function and lower-level functions respectively. We need
the following definition of the differentiability in the normed vector space.

Definition 3.1 (Differentiability in Normed Vector Spaces). Let (X, ∥·∥X) and (Y, ∥·∥Y ) be normed
vector spaces, let E ⊆ X and x0 ∈ E be an accumulation point of E. The function ℓ : E → Y is
defined to be differentiable at x0 if there exists a continuous linear function J : X → Y (depending
on f and x0) such that:

lim
x→x0

ℓ(x)− ℓ(x0)− J(x− x0)
∥x− x0∥X

= 0. (2)

In addition, J is defined as the derivative of h in terms of x at the point x0, i.e., J := dℓ(x)
dx |x=x0

.

In the following, we will introduce the problem class of LLUC with corresponding assumptions in
Section 3.1, and provide some examples within the problem class in Section 3.2.

3.1 THE LOWER-LEVEL UNIFORM CONVEXITY PROBLEM CLASS

In this section, we introduce the assumptions that define the LLUC problem class. In particular, we
identity the assumptions for both upper-level function f , lower-level function g and the hyperobjective
Φ. We make the following assumptions throughout this paper.

Assumption 3.2. The following conditions hold for the lower-level function g for some p ≥ 2. (i) For
every x, g(x, y) is (µ, p)-uniformly-convex with respect to y: g(x, y2) ≥ g(x, y1)+⟨∇yg(x, y1), y2−
y1⟩ + µ

p ∥y2 − y1∥p holds for any y1, y2. (ii) g(x, y) is (L0, L1)-smooth in y for any given x:
∥∇2

yyg(x, y)∥ ≤ L0 + L1∥∇yg(x, y)∥ for any y and any x. (iii) ∇yg(x, y) is lg,1-Lipschitz in

3
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x: ∥∇yg(z1) − ∇yg(z2)∥ ≤ lg,1∥x1 − x2∥ for any z1 = (x1, y), z2 = (x2, y) ∈ Rdx+dy . (iv)
∇2

xyg(x, y) is lg,2-Lipschitz jointly in (x, y): ∥∇2
xyg(z1)−∇2

xyg(z2)∥ ≤ lg,2∥z1−z2∥ for any z1 =

(x1, y1), z2 = (x2, y2) ∈ Rdx+dy . (v) d∇yg(x,y)
d[y]◦p−1 exists (d∇yg(x,y)

d[y]◦p−1 is defined in definition A.1) and

lg,2 jointly Lipschitz continuous with (x, y):
∥∥∥d∇yg(x1,y1)

d[y1]◦p−1 − d∇yg(x2,y2)
d[y2]◦p−1

∥∥∥ ≤ lg,2∥z1− z2∥ holds for

any z1 = (x1, y1), z2 = (x2, y2) ∈ Rdx+dy , where ∥d∇yg(x,y)
d[y]◦p−1 ∥ := sup∥z∥=1,z∈Rdy ∥d∇yg(x,y)

d[y]◦p−1 z∥.

We assume that the generalized Jacobian satisfies λmin

(
d∇yg(x,y)

d[y]◦(p−1)

)
≥ µ > 0. (vi) ∥d∇yg(x,y)

d[y]◦p−1 ∥ ≤ C
for some C > 0.

Remark: Assumption 3.2 specifies the key conditions imposed on the lower-level function. In
particular: (i) establishes uniform convexity (Zǎlinescu, 1983; Iouditski & Nesterov, 2014), a
generalization of strong convexity that offers greater flexibility. (ii) introduces a relaxed smoothness
condition (Zhang et al., 2020), which differs from the standard L-smooth assumption. The standard
L-smooth condition is incompatible with uniform convexity when the domain is unbounded, making
this relaxation more appropriate. (iii) and (iv) are standard assumptions commonly adopted in bilevel
optimization (Ghadimi & Wang, 2018; Hong et al., 2023; Ji et al., 2021; Kwon et al., 2023a). (v)
and (vi) impose differentiability of ∇yg(x, y) with respect to [y]◦p−1 (as defined in definition 3.1,
with the complete definition in definition A.1). These two conditions are essential for developing
the implicit differentiation theorem under LLUC in Section 4. Note that the assumption (v) can be
replaced by the assumption that d∇yg(x,y)

d[y]◦p−1 is independent of [y]◦p−1, and more details can be found in
Appendix B.2. When p = 2, the uniformly convex function becomes strongly convex, the generalized
Hessian becomes the standard Hessian matrix ∇yyg(x, y), which is positive definite.
Assumption 3.3. The following conditions hold for the upper-level function f for some p ≥ 2:
(i) ∇xf(x, y) is lf,1-jointly Lipschitz in (x, y): ∥∇xf(z1) − ∇xf(z2)∥ ≤ lf,1∥z1 − z2∥ for any
z1 = (x1, y1), z2 = (x2, y2) ∈ Rdx+dy ; (ii) df(x,y)

d[y]◦p−1 exists and lf,1-jointly Lipschitz in (x, y):

∥ df(x1,y1)
d[y1]◦p−1 − df(x2,y2)

d[y2]◦p−1

∥∥ ≤ lf,1∥z1 − z2∥ for any z1 = (x1, y1) ∈ Rdx+dy , z2 = (x2, y2) ∈ Rdx+dy ;

(iii) ∥ df(x,y)
d[y]◦p−1 ∥ ≤ lf,0 for any x ∈ Rdx and any y ∈ Rdy . (iv) There exists ∆ϕ ≥ 0 such that

Φ(x0)− infx Φ(x) ≤ ∆ϕ.

Remark 1: Assumption 3.3 characterizes the assumptions we need for the upper-level function f and
the hyperobjective Φ. In particular: (i) and (iv) are standard assumptions in the nonconvex and bilevel
optimization literature (Ghadimi & Lan, 2013; Ghadimi & Wang, 2018; Hong et al., 2023; Ji et al.,
2021; Kwon et al., 2023a). (ii) and (iii) impose differentiability of f(x, y) in terms of [y]◦p−1 (as
defined in Definition A.1), which is satisfied for a class of functions satisfying growth condition (See
Appendix B.7 for more details). These two conditions are also crucial for the implicit differentiation
theorem under LLUC in Section 4.

Remark 2: If the differentiability assumption in Assumption 3.2 (v) (vi) and Assumption 3.3 (ii) (iii)
hold with respect to the variable [y − a]◦p−1 with some vector a ∈ Rdy , the analysis of the implicit
differentiation theorem in Section 4 is the same as in the case of a = 0. Without loss of generality,
we simply assume a = 0 for the clean presentation. More details are illustrated in Appendix B.4.
Assumption 3.4. We access stochastic estimators through an unbiased oracle and they satisfy:
Eξ∼Df [∥∇xF (x, y; ξ)−∇xf(x, y)∥2] ≤ σ2

f , Eζ∼Dg [exp(∥∇yG(x, y; ζ)−∇yg(x, y)∥2/σ2
g,1)] ≤ exp(1),

Eζ∼Dg [∥∇xyG(x, y; ζ)−∇xyg(x, y)∥2] ≤ σ2
g,2,

Eξ∼Df

[∥∥∥∥dF (x, y; ξ)

d[y]◦p−1
− df(x, y)

d[y]◦p−1

∥∥∥∥2
]
≤ σ2

f , Eζ∼Dg

[∥∥∥∥d∇yG(x, y; ζ)

d[y]◦p−1
− d∇yg(x, y)

d[y]◦p−1

∥∥∥∥2
]
≤ σ2

g,2. (3)

Remark: Theorem 3.4 states that the stochastic oracle has bounded variance, which is a standard
assumption in nonconvex stochastic optimization (Ghadimi & Lan, 2013; Ghadimi & Wang, 2018; Ji
et al., 2021). Additionally, it assumes that the stochastic first-order oracle for the lower-level problem
is light-tailed, a common requirement for high-probability analysis in lower-level optimization (Lan,
2012; Hazan & Kale, 2014; Hao et al., 2024; Gong et al., 2024a). Our unique assumptions under
LLUC are presented in Eq. (3), assuming bounded variance for generalized derivative and generalized
Hessian for upper-level and lower-level functions. When p = 2, these assumptions recover the
standard ones in bilevel optimization under LLSC (Ghadimi & Wang, 2018; Hong et al., 2023).
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We use Neumann series approach (Ghadimi & Wang, 2018; Ji et al., 2021) to approximate the
hypergradient. Define

∇̂f(x, y; ξ̄) := ∇xF (x, y; ξ)−∇xyG(x, y; ζ
(0))

 1

C

Q−1∑
q=0

q∏
j=1

(
I − 1

C

d∇yG(x, y; ζ
(q,j))

d[y]◦p−1

) dF (x, y; ξ)
d[y]◦p−1

,

(4)
where ∇̂f(x, y; ξ̄) is the stochastic approximation of hypergradient∇Φ(x) and the randomness ξ̄ is
defined as ξ̄ := {ξ, ζ(0), ζ̄(0), . . . , ζ̄(Q−1)} with ζ̄(q) := {ζ(q,1), . . . , ζ(q,q)}.

3.2 EXAMPLES

In this section, we provide two examples of bilevel optimization problems where the lower-level
problem is uniformly convex. More examples can be found in Appendix A.2.

Example 1. f(x, y) = y3, g(x, y) = 1
4y

4 − y sinx. In this example, the LLUC holds with p = 4.

Example 2 (Data Hypercleaning). The data hypercleaning task (Shaban et al., 2019) aims to learn a
set of weights λ to the noisy training dataset Dtr, such that training a model on the weighted training
set can leads to a strong performance on the clean validation set Dval. The noisy set is defined as
Dtr := {xi, ȳi}, where each label ȳi is independently flipped to a different class with probability
0 < p̃ < 1. This problem can be formulated as a bilevel optimization task:

min
λ

1

|Dval|
∑

ξ∈Dval

L(w∗(λ); ξ), s.t. w∗(λ) ∈ argmin
w

1

|Dtr|
∑

ζi∈Dtr

σ(λi)L(w; ζi) + c∥w∥pp,

(5)
where w represents the model parameters, and σ(x) = 1

1+e−x is the sigmoid function. Note that the
LLUC condition holds when the lower-level problem is a ℓp norm regression (Woodruff & Zhang,
2013; Jambulapati et al., 2022) problem for p ≥ 2, with/without a uniformly convex regularizer
∥w∥pp (Sridharan & Tewari, 2010).

If we choose L(w; ξ) in Equation (5) to be L(w; ζi) = |x⊤i w − ȳi|p, where ζi = (xi, ȳi) is the i-th
training sample. In this case, the lower-level problem in Equation (5) becomes

g(w, λ) =
1

n
∥Λ(Xw − ȳ)∥pp + c∥w∥pp, Λ = diag(σ(λ1)1/p, . . . , σ(λn)1/p), (6)

X = [x⊤1 ; . . . ;x
⊤
n ] ∈ Rn×d, ȳ = [ȳ1, . . . , ȳn]

⊤ ∈ Rn×1, w ∈ Rd.

We know that g(w, λ) is a sum of two uniformly convex functions, and hence is uniformly convex by
Assumption 3.2 (i): the summation of a (µ1, p) and (µ2, p)-uniformly-convex functions is (µ1+µ2, p)-
uniformly-convex. The specific value of µ1 and µ2 can be found in Appendix A.2.

The detailed proof is included in Appendix A.2. The key characteristic is that the lower-level function
g is not a strongly convex function in terms of y when p > 2.

4 IMPLICIT DIFFERENTIATION THEOREM UNDER LLUC

In this section, we present the implicit differentiation theorem under the LLUC condition. A key
technical challenge arises from the singular Hessian of the lower-level function, which renders
the standard implicit function theorem (Ghadimi & Wang, 2018) inapplicable in our setting. To
overcome this, our theorem explicitly exploits the uniform convexity of the lower-level function and
its high-order differentiability to establish the differentiability of the hyperobjective, along with its
smoothness property. The formal statement is given in Theorem 4.1.
Theorem 4.1 (Implicit Differentiation Theorem under LLUC). Suppose Assumption 3.2 and 3.3 hold.
Then Φ is differentiable in x and can be computed as the following:

∇Φ(x) = ∇xf(x, y
∗(x))−∇xyg(x, y

∗(x))

[
d∇yg(x, y

∗(x))

d[y∗(x)]◦p−1

]−1
df(x, y∗(x))

d[y∗(x)]◦p−1
. (7)

In addition, the function Φ satisfies the following properties:

∥∇Φ(x1)−∇Φ(x2)∥ ≤ Lϕ1∥x1 − x2∥
1

p−1 + Lϕ2∥x1 − x2∥, (8)

5
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Φ(x1) ≤ Φ(x2) + ⟨∇Φ(x2), x1 − x2⟩+
(p− 1)Lϕ1

p
∥x1 − x2∥

p
p−1 +

Lϕ2

2
∥x1 − x2∥2. (9)

where lp =
(

plg,1
µ

) 1
p−1

, Lϕ1
= lp(lf,1 +

lf,2lg,2
µ +

lg,1lf,1
µ +

lg,1lf,1lg,2
µ2 ), Lϕ2

= lf,1 +
lf,2lg,2

µ +
lg,1lf,1

µ +
lg,1lf,1lg,2

µ2 .

Remark: Theorem 4.1 provides an explicit formula Eq. (7) to calculate the hypergradient, as
well as the smoothness property of Φ characterized in Eq. (8). In addition, it includes the
descent inequality Eq. (9), which plays a crucial role in the algorithmic analysis under LLUC
in Section 5. Notably, when p = 2, this theorem recovers the standard implicit function theorem
under LLSC (Ghadimi & Wang, 2018). Intuitively, as p increases, the lower-level function deviates
further from strong convexity, and hence the smoothness property of the hyperobjective becomes
worse. The proof of Theorem 4.1 is included in Appendix B.3.

4.1 PROOF SKETCH

In this section, we provide a proof sketch for the proof of Theorem 4.1. The key idea is to prove two
things under Assumptions 3.2 and 3.3: (1) the optimal lower-level variable is Hölder continuous in
terms of upper-level variable, which is stated in Lemma 4.2; (2) the generalized Hessian after the
change of variable (i.e., y is replaced to [y]◦p−1) has a positive minimum eigenvalue and hence is
invertible, which is stated in Lemma B.2. These two lemmas can be regarded as counterparts of the
implicit differentiation theorem under LLSC (Ghadimi & Wang, 2018).

Lemma 4.2 (Hölder Continuity of the Lower-Level Optimal Solution Mapping). y∗(x) is hölder
continuous: for any x1, x2 ∈ Rdx , we have ∥y∗(x2) − y∗(x1)∥ ≤ lp∥x2 − x1∥

1
p−1 , where lp is

defined in Theorem 4.1.

Remark: This lemma shows that the optimal lower-level variable y∗(x) is Hölder continuous in
terms of the upper-leval variable x, with the exponent 1

p−1 . When p = 2, this lemma recovers the
standard Lipschitz continuous condition of y∗(x) under LLSC (Ghadimi & Wang, 2018). It is worth
nothing that the existing bilevel optimization algorithms with nonasymptotic convergence guarantees
to ϵ-stationary point all require the Lipschitzness of y∗(x) (Ghadimi & Wang, 2018; Hong et al.,
2023; Ji et al., 2021; Kwon et al., 2023b; Chen et al., 2024).

Building on Lemma 4.2,we are ready to show the hyperobjective is differentiable everywhere and
establish the smoothness property of the hyperobjective. The detailed proof of Theorem 4.1 is
included in Appendix B.3.

5 ALGORITHM AND CONVERGENCE ANALYSIS

5.1 ALGORITHM DESIGN

In this section, we introduce our algorithm design techniques, leveraging our implicit differentiation
theorem under LLUC. A natural approach is as follows: for a fixed upper-level variable x, one can
iteratively update the lower-level variable until it sufficiently approximates y∗(x), ensuring an accurate
hypergradient estimation. The upper-level variable x can then be updated accordingly. However, this
naive method may suffer from a high oracle complexity. To design an algorithm with better oracle
complexity, our algorithm updates the upper-level variable by normalized momentum, while the
lower-level variable is updated by an variant of Epoch-SGD (Hazan & Kale, 2014) periodically. The
algorithm is similar to the BO-REP algorithm in Hao et al. (2024), but with a crucial distinction: while
BO-REP is designed for strongly convex lower-level problems and relaxed smooth hyperobjectives,
our UniBiO algorithm is tailored for uniformly convex and relaxed smooth lower-level problems with
Hölder-smooth hyperobjectives. Therefore, despite conceptual similarities in the update mechanism,
UniBiO requires significantly different hyperparameter choices, such as the learning rate, periodic
update intervals, and the number of iterations.

The detailed description of our algorithm is illustrated in Algorithm 2. The algorithm starts from a
warm-start stage, where the lower-level variable is updated by the epoch-SGD algorithm for a certain
number of iterations under the fixed upper-level variable x0 (line 3). After that, the algorithm follows
a periodic update scheme for the lower-level variable, performing an update every I iterations (line

6
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Algorithm 1 EPOCH-SGD
1: Input: function ψ, γ1, T1, D1, and total time T
2: Initialize: w1

1 , set τ = 2(p− 1)/p and k = 1

3: while
∑k

i=1 Ti ≤ T do
4: for t = 1, . . . , Tk do
5: wk

t+1 = Πw∈B(wk
1 ,Dk)

(wk
t − γk∇ψ(wk

t ;π
k
t ))

6: end for
7: wk+1

1 = 1
Tk

∑Tk

t=1 w
k
t

8: Tk+1 = 2τTk, γk+1 = γk/2, Dk+1 = Dk/2
1
p .

9: k ← k + 1
10: end while
11: Return wk

1

Algorithm 2 UNIBIO
1: Input: η, β, {αt,1}, {Kt,1}, {Rt,1}, {Kt}, T
2: Initialize: x1, y0,m−1 = 0
3: y1 = EPOCH-SGD(g(x0, ·), α0,1,K0,1, R0,1,K0)
4: for t = 1, . . . , T do
5: if t is a multiple of I then
6: yt = EPOCH-SGD(g(xt, ·), αt,1,Kt,1, Rt,1,Kt)
7: end if
8: mt = βmt−1 + (1− β)∇̂f(xt, yt; ξ̄t), where ∇̂f(x, y; ξ̄) is defined in Eq. (4)
9: xt+1 = xt − η mt

∥mt∥
10: end for

4 ∼ 6), while the upper-level variable is updated at each iteration using a normalized stochastic
gradient with momentum (lines 7 ∼ 8). For the lower-level update, our method employs a variant of
Epoch-SGD (described in Algorithm 1), which integrates stochastic gradient descent updates with a
shrinking ball strategy.

5.2 MAIN RESULTS

Before presenting the main result, we first introduce a few notations. Denote σ(·) as the σ-algebra
generated by the random variables in the arguments. Define Ft := σ(ξ̄1, . . . , ξ̄t−1) for t ≥ 1, let Fy

be the filtration used to update {yt}Tt=0. We use C1 to denote large enough constant.
Theorem 5.1. Under Assumptions 3.2, 3.3 3.4 , for any given δ ∈ (0, 1) and ϵ > 0, we choose
αt,1 = O(1), Kt,1 = O(1), Rt,1 = O(1), Kt = Õ(ϵ−2p+2), I = O(ϵ−2), Q = Õ(1), 1 − β =

Θ(ϵ2), and η = Θ(ϵ3p−3) (see Theorem D.1 for exact choices). Let T =
C1∆ϕ

ηϵ . Then with probability

at least 1− δ over the randomness in Fy , we have 1
T

∑T
t=1 E∥∇Φ(xt)∥ ≤ ϵ, where the expectation

is taken over the randomness in FT+1. The total oracle complexity is Õ(ϵ−5p+6).

Remark: The full statement of Theorem 5.1 is included in Section D. Theorem 5.1 shows that our
algorithm UniBiO requires Õ(ϵ−5p+6) oracle complexity for finding an ϵ-stationary point. To the
best of our knowledge, this is the first nonasymptotic result under LLUC. In addition, when the lower
function is strongly convex (p = 2), the complexity bound becomes Õ(ϵ−4), which matches the
optimal rate in terms of the ϵ dependency (Arjevani et al., 2023) for stochastic bilevel optimization
under LLSC (Dagréou et al., 2022; Chen et al., 2023). It remains unclear whether the complexity
result in terms of ϵ is tight for p > 2.

5.3 PROOF SKETCH

In this section, we present a sketch of the proof for Theorem 5.1. The complete proof can be found in
Appendix D. The key idea of the proof resembles the proof of Hao et al. (2024), but our proof is under
a different problem setting (i.e., Hölder smooth hyperobjective and uniformly convex lower-level
function). Define y∗t = y∗(xt). Note that Algorithm 2 uses normalized momentum update, therefore
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∥xt+1 − xt∥ = η. By the Hölder continuity of y∗(x) (guaranteed by Lemma 4.2), we know that
∥y∗t+1 − y∗t ∥ ≤ lpη

1
p−1 . Therefore the optimal lower-level variable moves slowly across iterations

when η is small. Hence, the periodic update for the lower-level variable can still be a good estimate
for the optimal lower-level variable if the length of the period I is not too large. Lemma 5.2 and 5.3
are devoted to control the lower-level error, while Lemma 5.4 is devoted to control the cummulative
hypergradient bias over time. Given these lemmas, one can leverage the descent inequality Eq. (9)
developed in Theorem 4.1 to establish the convergence rate. The following lemmas are based on
Theorems 3.2 to 3.4. The detailed proofs of this section can be found in Section C.
Lemma 5.2. Under the same parameter setting as in Theorem 5.1, for any sequence {x̃t} such that
x̃0 = x0 and ∥x̃t+1− x̃t∥ = η, let {ỹt} be the output produced by Algorithm 2 with input {x̃t}. Then
with probability at least 1− δ, for all t ∈ [T ] we have ∥ỹt − ỹ∗t ∥ ≤ min{ϵ/4Lϕ2

, 1/L1}.

Remark: Lemma 5.2 establishes a bound on the lower-level tracking error for any slowly varying
sequence {x̃t} under LLUC. A key advantage of this result is that it provides lower-level guarantees
independently of the randomness in the upper-level variables, avoiding potential randomness
dependency issues. Similar techniques have been employed in Hao et al. (2024). The main difficulty
of the proof comes from a high probability analysis for handling the convergence analysis of epoch-
SGD for the lower-level variable under lower-level uniform convexity and relaxed smoothness. The
complete proof of Lemma 5.2 can be found in the proof of Lemma C.9 in the Appendix.
Corollary 5.3. Under the same setting as in Theorem 5.1, let {xt} and {yt} be the iterates generated
by Algorithm 2. Then with probability at least 1− δ (denote this event as E) we have ∥yt − y∗t ∥ ≤
min{ϵ/4Lϕ2

, 1/L1} for all t ≥ 1.

Remark: Corollary 5.3 is a direct application of Lemma 5.2. We replace the any sequence {x̃t} to
the actual sequence xt in the Algorithm 2 and obtains the same bound. The reason is that the actual
sequence in Algorithm 2 satisfies the condition in Lemma 5.2.

Lemma 5.4. Define ϵt := mt − ∇Φ(xt). Under event E , we have
∑T

t=1 E∥ϵt∥ ≤
σ1

1−β +

T
√
1− βσ1 + Tϵ

4 +
Tlg,1lf,0

µ

(
1− µ

C

)Q
+ T

1−β

(
Lϕ1

η
1

p−1 + Lϕ2
η
)

.

Remark: Lemma 5.4 characterizes the cumulative bias of the hypergradient over time. When 1− β
is small (e.g., Θ(ϵ2) in Theorem 5.1) and η is small (e.g., η = Θ(ϵ3p−3)), the cummulative bias grow
with a sublinear rate in terms of T . This lemma can be regarded as a generalization of the analysis of
normalized momentum for smooth functions (Cutkosky & Mehta, 2020) to bilevel problems with
Hölder-smooth functions.

6 EXPERIMENTS

Synthetic Experiment. We consider the following synthetic experiment in the bilevel optimization
problem illustrated in Example 3 in Appendix A: g(x, y) = 1

py
p − y sinx, and f(x, y) =

1

(
y > (π2 )

1
p−1

)
−1

(
y < −(π2 )

1
p−1

)
+sin(yp−1)1

(
|y| ≤ (π2 )

1
p−1

)
, where 1(·) is the indicator

function, p ≥ 2 is an even number. The goal of this experiment is to verify the complexity results
established in Theorem 5.1. In theory, we expect that larger p will make our algorithm UniBiO
converge slower.

We conduct our experiments by implementing our proposed algorithms with varying values of
p = [2, 4, 6, 8]. The number of upper-level iterations is fixed at T = 500, while the number of lower-
level iterations is set to 100. To consider the effects of stochastic gradients, we introduce Gaussian
noise with different variances on the gradients, specifically N (0, 10), N (0, 1), and N (0, 0.01).
Other fixed parameters are set as β = 0.9, I = 2, T1 = 5, and D1 = 1, with initialization at
the point (x0, y0) = (1, 1). We tune the learning rates from (0.01, 0.1) for both upper-level and
lower-level for every p ∈ [2, 4, 6, 8]. The best learning rate choices for upper-level variable are
η = [0.05, 0.03, 0.02, 0.01] for p = [2, 4, 6, 8], respectively, while the best lower-level learning rate
for every p is α = [1, 1, 1, 1] corresponding to p = [2, 4, 6, 8].

Figure 1 presents the results for the deterministic setting (a) and the stochastic settings (b) (c) (d)
with Gaussian noise with variances 0.01, 1 and 10 respectively. Our experimental results empirically
validate the theoretical analysis of our algorithm, demonstrating that an increase in the lower-level
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0 100 200 300 400 500
Iterations

0.0

0.2

0.4

0.6

0.8

1.0

H
yp

er
gr

ad
ie

nt
 N

or
m

 
f

Hypergradient Norm under Different p Values

p=2
p=4
p=6
p=8

(b) Noise N (0, 0.01)
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(c) Noise N (0, 1.0)
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(d) Noise N (0, 10)

Figure 1: Convergence results for synthetic experiments on upper-level non-convex, lower-
level uniform-convex bilevel optimization with varying uniform-convex parameter p =
[2, 4, 6, 8] in the deterministic case and stochastic case with different types of Gaussian noise
N (0, 0.01),N (0, 1.0),N (0, 10) respectively.
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(c) Training ACC vs. running time
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Figure 2: Results of bilevel optimization on data hyper-cleaning with probability p̃ = 0.1 and the
uniformly convex regularizer ∥w∥pp with p = 3. Subfigure (a), (b) show the training and test accuracy
with the training epoch. Subfigures (c), (d) show the training and test accuracy with the running time.

parameter p leads to a deterioration in computational complexity. This observation aligns with our
theoretical results. Additional experiments for various values of p and other bilevel optimization
baselines (such as StocBiO (Ji et al., 2021), TTSA (Hong et al., 2023) and MA-SOBA (Chen et al.,
2023)) are included in Appendix E.1.

Data Hypercleaning. To verify the effectiveness of the proposed UniBiO algorithm, we conduct
data hypercleaning experiments (Shaban et al., 2019) and compare with other baselines as formulated
in Eq. (5). To evaluate this approach, we apply our proposed bilevel algorithms and other baselines
to a noisy version of the Stanford Natural Language Inference (SNLI) dataset (Bowman et al., 2015)
(under Creative Commons Attribution-ShareAlike 4.0 International License), a text classification task.
The model used is a three-layer recurrent neural network with an input dimension of 300, a hidden
dimension of 4096, and an output dimension of 3, predicting labels among entailment, contradiction,
and neutral. In our experimental setup, each training sample’s label is randomly altered to one of the
other two categories with probability 0.1. All the experiments are run on an single NVIDIA A6000
(48GB memory) GPU and a AMD EPYC 7513 32-Core CPU. We have also included the experiment
of p = 4 in Appendix E.2. Our method achieves higher classification accuracy on both the training
and test sets compared with baselines, as illustrated in Figure 4. Moreover, it demonstrates strong
computational efficiency. Further details on parameter selection and tuning are provided in Appendix
F.

7 CONCLUSION

In this paper, we identify a tractable class of bilevel optimization problems that interpolates between
lower-level strong convexity and general convexity via lower-level uniform convexity. We develop a
novel implicit differentiation theorem under LLUC characterizing the hyperobjective’s smoothness
property. Based on this, we introduce UniBiO, a new stochastic algorithm that achieves Õ(ϵ−5p+6)
oracle complexity for finding ϵ-stationary points. Experiments on an synthetic task and a data
hyper-cleaning task demonstrate the superiority of our proposed algorithm. One limitation is that our
algorithm design requires the prior knowledge of p, but in practice, such a knowledge of p may not
be available. Designing a universal bilevel optimization algorithm that adapts to p without explicit
knowledge in the spirit of Nesterov (2015) is an important challenge.

9
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REPRODUCIBILITY STATEMENT

We provide Theorems 4.1 and 5.1 in main text, the proof of Theorem 4.1 in Section B.3, and the
proof of Theorem 5.1 in Section D.

An anonymized code archive with training/evaluation scripts, configurations, seeds, and environment
files is included in the supplementary materials. The dataset SNLI is accessible on HuggingFace
under Creative Commons Attribution-ShareAlike 4.0 International License. We include
preprocessing/splitting scripts, and references to their dataset cards and licenses. These materials
sufficiently support the reproduction of our results.
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A PROOFS IN SECTION 3

A.1 DEFINITION

Definition A.1. df(x,y)
d[y]◦p−1 and d∇yg(x,y)

d[y]◦p−1 are defined as the following: for any y, define z = [y]◦p−1

and f(x, z◦
1

p−1 ),∇yg(x, z
◦ 1

p−1 ) is differentiable with z. Mathematically, there exist linear mappings
J1, J2 such that for any z ∈ Rdy , vector h ∈ Rdy and any small constant δ, the following statements
hold:

lim
δ→0

f(x, [z + δh]◦
1

p−1 )− f(x, z◦
1

p−1 )− ⟨J1, δh⟩
∥δh∥

= 0,

lim
δ→0

∇yg(x, [z + δh]◦
1

p−1 )−∇yg(x, z
◦ 1

p−1 )− J2δh
∥δh∥

= 0

(10)

In addition, we define J1 = df(x,y)
d[y]◦p−1 = df(x,z

◦ 1
p−1 )

dz , and J2 =
d∇yg(x,y)
d[y]◦p−1 =

d∇yg(x,z
◦ 1
p−1 )

dz .

A.2 EXAMPLES

Example 1. Let functions f and g be defined as:

f(x, y) = y3, g(x, y) =
1

4
y4 − y sinx. (11)

Now we verify the assumptions.

• Assumption 3.2 (i): Since 1
4y

4 is a (1, 4)-uniform convex function , y sinx is a linear
function with y, so g(x, y) = 1

4y
4 − y sinx is (1, 4) uniform convex with y.

• Assumption 3.2 (ii): ∥∇yyg(x, y)∥ = 3y2 ≤ 12 + 6∥y3 − sinx∥ = 12 + 6∥∇yg(x, y)∥,
hence we have L0 = 12, L1 = 6.

• Assumption 3.2 (iii): ∇yg(x, y) = y3− sinx, so ∥∇yg(x1, y)−∇yg(x2, y)∥ = ∥ sinx2−
sinx1∥ ≤ ∥x1 − x2∥. Therefore lg,1 = 1.

• Assumption 3.2 (iv): ∇xyg(x, y) = − cosx, so ∥∇xyg(x1, y1) − ∇xyg(x2, y2)∥ =
∥ cosx2 − cosx1∥ ≤ ∥x1 − x2∥. Therefore lg,2 = 1.

• Assumption 3.2 (v): ∇yg(x, y) = y3 − sinx, so d∇yg(x,y)
d[y]◦3 = 1 and ∥d∇yg(x1,y1)

d[y1]◦3
−

d∇yg(x2,y2)
d[y2]◦3

∥ = 0. Therefore, lg,2 can take value 0 only for this assumption. To make lg,2
consistent with other assumptions, we can have lg,2 = 1.

• Assumption 3.2 (vi):∥d∇yg(x,y)
d[y]◦3 ∥ = 1, so C = 1.

• Assumption 3.3 (i): ∇xf(x, y) = 0, so lf,1 = 0.

• Assumption 3.3 (ii): df(x,y)
d[y]◦3 = 1, so ∥df(x1,y1)

d[y1]◦3
− df(x2,y2)

d[y2]◦3
∥ = 0, so lf,1 = 0.

• Assumption 3.3 (iii):∥df(x,y)d[y]◦3 ∥ = 1, so lf,0 = 1.

• Assumption 3.3 (iv): ∇yg(x, y
∗(x)) = (y∗(x))3 − sinx = 0, so y∗(x) = (sinx)

1
3 ,

therefore Φ(x) = sinx and ∆Φ ≤ 2.

Example 2. In the data hypercleaning task, choose L(w, ζ) in Eq. (5) to be

L(w; ζi) =
∣∣x⊤i w − ȳi∣∣p, ζi = (xi, ȳi) i ∈ [n]. (12)

Then the lower-level objective is

g(w, λ) =
1

n

∥∥Λ (Xw − ȳ)
∥∥p
p
+ c ∥w∥pp, (13)
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where w is the lower-level variable and λ is the upper-level variable, and

Λ = diag
(
σ(λ1)

1/p, . . . , σ(λn)
1/p
)
, X =

x
⊤
1
...
x⊤n

 ∈ Rn×d, ȳ =

ȳ1...
ȳn

 ∈ Rn, w ∈ Rd.

Write g(·, λ) = G(·) +R(·) with

G(w) :=
1

n

∥∥Λ(Xw − ȳ)∥∥p
p
, R(w) := c∥w∥pp.

By Assumption 3.2 (i), the sum of a (µ1, p)-uniformly-convex function and a (µ2, p)-uniformly-
convex function is (µ1 + µ2, p)-uniformly-convex. We now identify µ1 and µ2.

By Eq. (16), we know that c∥w∥pp is
(

cp
d1/2−1/p , p

)
-uniformly convex. Hence µ2 = cp

d 1/2−1/p .

By translation invariance of uniform convexity, it suffices to consider 1
n∥ΛXw∥

p
p. Using the p-

minimum singular value
σmin,p(M) := inf

∥u∥p=1
∥Mu∥p,

together with standard ℓp–ℓ2 norm transitions for p ≥ 2, we obtain the lower bound

1

n

∥∥ΛXw∥∥p
p
≥
(
σmin,p(ΛX)

)p
nd1/2−1/p

∥w∥p2. (14)

Therefore G is
(
µ1, p

)
-uniformly convex with µ1 =

p
(
σmin,p(ΛX)

)p
nd 1/2−1/p .

Combining the two parts via assumption 3.2 (i), the function g in Eq. (13) is (µ, p)-uniformly convex
with

µ =
p
(
σmin,p(ΛX)

)p
nd 1/2−1/p

+
cp

d 1/2−1/p
.

This establishes LLUC for the hypercleaning lower-level objective and quantifies its modulus.

Example 3. Let p ≥ 2 be an even integer, and let the functions f and g be defined as:

f(x, y) =


−1 y < −

(
π
2

) 1
p−1

sin(yp−1) y ∈
[
−
(
π
2

) 1
p−1 ,

(
π
2

) 1
p−1

]
1 y >

(
π
2

) 1
p−1

, g(x, y) =
1

p
yp − y sinx. (15)

Now we verify the assumptions.

• Assumption 3.2 (i): Note that 1
py

p is a (1, p) uniform convex function, y sinx is a linear
function with y, so g(x, y) = 1

py
p − y sinx is a (1, p) uniform convex with y.

• Assumption 3.2 (ii): ∥∇yyg(x, y)∥ = (p−1)yp−2 ≤ 4(p−1)+2(p−1)∥yp−1− sinx∥ =
4(p− 1) + 2(p− 1)∥∇yg(x, y)∥, hence we have L0 = 4(p− 1), L1 = 2(p− 1).

• Assumption 3.2 (iii): ∇yg(x, y) = yp−1 − sinx, so ∥∇yg(x1, y) − ∇yg(x2, y)∥ =
∥ sinx2 − sinx1∥ ≤ ∥x1 − x2∥. Therefore lg,1 = 1.

• Assumption 3.2 (iv): ∇xyg(x, y) = − cosx, so ∥∇xyg(x1, y1) − ∇xyg(x2, y2)∥ =
∥ cosx2 − cosx1∥ ≤ ∥x1 − x2∥. Therefore lg,2 = 1.

• Assumption 3.2 (v): ∇yg(x, y) = yp−1 − sinx, so d∇yg(x,y)
d[y]◦p−1 = 1 and ∥d∇yg(x1,y1)

d[y1]◦p−1 −
d∇yg(x2,y2)
d[y2]◦p−1 ∥ = 0. Therefore, lg,2 can take value 0 only for this assumption. To make lg,2

consistent with other assumptions, we can have lg,2 = 1.

• Assumption 3.2 (vi):∥d∇yg(x,y)
d[y]◦p−1 ∥ = 1, so C = 1.

• Assumption 3.3 (i): ∇xf(x, y) = 0, so lf,1 = 0. To make lf,1 consistent with other

assumptions, we can have lf,1 = (p− 1)
(
π
2

) p−2
p−1 .
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• Assumption 3.3 (ii): df(x,y)
d[y]◦p−1 =


0, y > (π2 )

1
p−1

cos(yp−1), −(π2 )
1

p−1 ≤ y ≤ (π2 )
1

p−1

0, y < −(π2 )
1

p−1

so from the mean-value theorem, we have∥∥∥∥df(x1, y1)d[y1]◦p−1
− df(x2, y2)

d[y2]◦p−1

∥∥∥∥ ≤ max
y∈[−(π

2 )
1

p−1 ,(π
2 )

1
p−1 ]

(p−1)yp−2 sin(yp−1)∥y1−y2∥ ≤ (p−1)(π
2
)

p−2
p−1 ∥y1−y2∥,

and hence lf,1 = (p− 1)
(
π
2

) p−2
p−1 .

• Assumption 3.3 (iii):∥ df(x,y)
d[y]◦p−1 ∥ ≤ 1, so lf,0 = 1.

• Assumption 3.3 (iv): ∇yg(x, y
∗(x)) = (y∗(x))p−1 − sinx = 0, so y∗(x) = (sinx)

1
p−1 ,

therefore Φ(x) = sin sinx and ∆ϕ = 2.

Example 4. Define x = (x1, . . . , xd) ∈ Rd , y = (y1, . . . , yd) ∈ Rd, p is an even integer or a
fraction of even number divide by an old number. Then we consider the following function

f(x, y) =

d∑
i=1

|yi|p−1sgn(yi), g(x, y) =
1

p
∥y∥pp −

d∑
i=1

yi sinxi,

where sgn(·) is the sign function, p ≥ 2 is even number.

Define y∗(x) = (y∗1(x), . . . , y
∗
d(x)) := (y∗1 , . . . , y

∗
d). Note that ∇yg(x, y

∗(x)) = 0,
therefore we have (|y∗1 |p−1sgn(y∗1), . . . , |y∗d|p−1sgn(y∗d)) = (sinx1, . . . , sinxd) and Φ(x) =∑d

i=1 |y∗i |p−1sgn(yi) =
∑d

i=1 sinxi.

All assumptions can be satisfied by choosing the problem-dependent parameters as the following:

p µ L0 L1 lg,1 lg,2 C lf,1 lf,0 ∆ϕ

p 1

d
1
2
− 1

p
4(p− 1) 2(p− 1) 1 1 1 0

√
d 2d

Table 1: Parameter values as functions of p and d

• Assumption 3.2 (i): g(x, y) is
(

1

d
1
2
− 1

p
, p

)
uniform-convex due to:

1

p
∥y∥p2 ≥

1

p
∥y∥pp ≥

1

pd
1
2−

1
p

∥y∥p2. (16)

• Assumption 3.2 (ii): ∇yyg(x, y) = diag
{
(p− 1)yp−2

1 , . . . , (p− 1)yp−2
d

}
and g(x, y) is

(4(p− 1), 2(p− 1))-smooth w.r.t y:

∥∇yyg(x, y)∥2 = (p− 1)∥[y]◦(p−2)∥∞
≤ 4(p− 1) + 2(p− 1)∥[y]◦(p−1) − sin(x))∥∞
≤ 4(p− 1) + 2(p− 1)∥∇yg(x, y)∥∞
≤ 4(p− 1) + 2(p− 1)∥∇yg(x, y)∥2.

• Assumption 3.2 (iii): The gradient∇yg(x, y) = [y]◦(p−1)−sin(x) is 1-Lipschitz continuous
w.r.t. x.

• Assumption 3.2 (iv) ∇xyg(x, y) = − cos(x)) is 1-jointly Lipschitz w.r.t. (x, y).

• Assumption 3.2 (v) and (vi): d∇yg(x,y)

d[y]◦(p−1) = I is 0-jointly Lipschitz w.r.t. (x, y), and it satisfies
the uniform bound: ∥∥∥∥d∇yg(x, y)

d[y]◦(p−1)

∥∥∥∥
2

= λmax(I) = 1.

16
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• Assumption 3.3 (i): ∇xf(x, y) = 0 jointly Lipschitz w.r.t. (x, y).

• Assumption 3.3 (ii) and (iii): df(x,y)
d[y]◦(p−1) = 1 is 0-jointly Lipschitz and satisfies the uniform

bound: ∥∥∥∥ df(x, y)

d[y]◦(p−1)

∥∥∥∥
2

≤
√
d

• Assumption 3.3 (iv): Φ(x0)− inf Φ ≤ 2d = ∆ϕ.

B PROOFS IN SECTION 4

B.1 PROOF OF LEMMA 4.2

Lemma B.1 (Restatement of Lemma 4.2). y∗(x) is hölder continuous: for any x1, x2 ∈ Rdx , we
have

∥y∗(x2)− y∗(x1)∥ ≤ lp∥x2 − x1∥
1

p−1 , where lp =

(
plg,1
µ

) 1
p−1

. (17)

Proof of Theorem B.1. Since g(x, ·) is uniformly convex, for any y ∈ Rdy we have the following
p-th order growth condition:

g(x1, y) ≥ g(x1, y∗(x1)) + ⟨∇yg(x1, y
∗(x1)), y − y1⟩+

µ

p
∥y − y1∥p

= g(x1, y
∗(x1)) +

µ

p
∥y − y∗(x1)∥p.

(18)

In particular, if we let y = y∗(x2), then

g(x1, y
∗(x2))− g(x1, y∗(x1)) ≥

µ

p
∥y∗(x2)− y∗(x1)∥p. (19)

Next, we follow the similar procedure as in proof of Proposition 4.32 in Bonnans & Shapiro (2013).
We consider the difference function h(y) := g(x2, y)− g(x1, y), then we have

g(x1, y
∗(x2))− g(x1, y∗(x1)) = h(y∗(x1))− h(y∗(x2)) + g(x2, y

∗(x2))− g(x2, y∗(x1))
≤ h(y∗(x1))− h(y∗(x2)) ≤ lg,1∥x2 − x1∥ · ∥y∗(x2)− y∗(x1)∥

(20)

where in the first inequality we use g(x2, y∗(x2)) ≤ g(x2, y∗(x1)), and in the second inequality we
use the fact that g is lg,1-smooth in x and mean value theorem to obtain (denote κ(x1, x2) as the
Lipschitz constant of function h):

κ(x1, x2) ≤ sup
y∈Rdy

∥∇h(y)∥ = sup
y∈Rdy

∥∇yg(x1, y)−∇yg(x2, y)∥ ≤ lg,1∥x1 − x2∥ (21)

Combining Eq. (19) and Eq. (20) yields
µ

p
∥y∗(x2)− y∗(x1)∥p ≤ lg,1∥x2 − x1∥ · ∥y∗(x2)− y∗(x1)∥.

Therefore, the Lemma is proved.

B.2 A TECHNICAL LEMMA UNDER A DIFFERENT ASSUMPTION

Lemma B.2 (Positive Definite Generalized Hessian). d∇yg(x,y)
d[y]◦p−1 is an invertible matrix and

λmin(
d∇yg(x,y)
d[y]◦p−1 ) ≥ µ, where λmin(·) denotes the minimum eigenvalue of a matrix.

Remark: If we do not directly assume the generalized Hessian is positive definite, under the
assumption that d∇yg(x,y)

d[y]◦p−1 is independent of y◦(p−1), Lemma B.2 provides a characterization of the
minimum eigenvalue of a generalized Hessian matrix, which plays a crucial role in establishing our
implicit function theorem under the LLUC condition.

17
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Proof. Define z = [y]◦p−1. Since d∇yg(x,y)
d[y]◦p−1 exists, then by Definition A.1, we have for any h̄ ∈ Rdy

and any z ∈ Rdy , there exists a linear map J2 :=
d∇yg(x,y)
d[y]◦p−1 ∈ Rdy×dy such that the following holds

lim
δ→0

∇yg(x, [z + δh̄]◦
1

p−1 )−∇yg(x, z
◦ 1

p−1 )− ⟨J2, δh̄⟩
∥δh̄∥

= 0. (22)

Since J2 is independent of z (by definition A.1), we can take z = 0 in Eq. (22), rearrange this
equality and take norm on both sides, we have

lim
δ→0

∥∇yg(x, [δh̄]
◦ 1

p−1 )−∇yg(x, 0)∥
∥δh̄∥

= lim
δ→0

∥J2δh̄∥
∥δh̄∥

. (23)

By uniform convexity of g in terms of y, we have

∥∇yg(x, [δh̄]
◦ 1

p−1 )−∇yg(x, 0)∥ ≥ µ∥[δh̄]◦
1

p−1 ∥p−1 ≥ µ∥[δh̄]◦
1

p−1 ∥p−1
2(p−1) = µ∥δh̄∥. (24)

where the first inequality holds because of the uniform convexity, the second inequality holds by the
fact that ∥y∥ ≥ ∥y∥2(p−1) for p ≥ 2, and the last equality holds by the definition of 2(p− 1)-norm.

Combining Eq. (23) and Eq. (24), we have

lim
δ→0

∥J2δh̄∥
∥δh̄∥

≥ µ. (25)

Since h̄ can be a vector with any direction, therefore J2 =
d∇yg(x,y)
d[y]◦p−1 is an invertible matrix and

λmin(
d∇yg(x,y)
d[y]◦p−1 ) ≥ µ.

B.3 PROOF OF THEOREM 4.1

Theorem B.3 (Restatement of Theorem 4.1). Suppose Assumption 3.2 and 3.3 hold. Then Φ is
differentiable in x and can be computed as the following:

∇Φ(x) = ∇xf(x, y
∗(x))−∇xyg(x, y

∗(x))

[
d∇yg(x, y

∗(x))

d[y∗(x)]◦p−1

]−1
df(x, y∗(x))

d[y∗(x)]◦p−1
. (26)

In addition, the function Φ satisfies the following properties:

∥∇Φ(x1)−∇Φ(x2)∥ ≤ Lϕ1
∥x1 − x2∥

1
p−1 + Lϕ2

∥x1 − x2∥, (27)

Φ(x1) ≤ Φ(x2) + ⟨∇Φ(x2), x1 − x2⟩+
(p− 1)Lϕ1

p
∥x1 − x2∥

p
p−1 +

Lϕ2

2
∥x1 − x2∥2. (28)

where lp =
(

plg,1
µ

) 1
p−1

, Lϕ1
= lp(lf,1 +

lf,2lg,2
µ +

lg,1lf,1
µ +

lg,1lf,1lg,2
µ2 ), Lϕ2

= lf,1 +
lf,2lg,2

µ +
lg,1lf,1

µ +
lg,1lf,1lg,2

µ2 .

Proof. Define y∗(x) = [z∗(x)]◦
1

p−1 . Noting that ∇yg(x, y
∗(x)) = 0, we take derivative in terms of

x on both sides and use the chain rule, which yields

∇xyg(x, [z
∗(x)]◦

1
p−1 ) +

dz∗(x)

dx

d∇yg(x, [z
∗(x)]◦

1
p−1 )

dz∗(x)
= 0. (29)

Therefore,

∇xyg(x, y
∗(x)) +

dz∗(x)

dx

d∇yg(x, y
∗(x))

dz∗(x)
= 0. (30)

Now we start to derive the properties of Φ.
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By Lemma B.2, we know that λmin(
d∇yg(x,y)
d[y]◦p−1 ) ≥ µ > 0 holds for any y, therefore we plug in

y = y∗(x) and know that d∇yg(x,y
∗(x))

dz∗(x) is a invertible matrix. Hence we have

dz∗(x)

dx
= −∇xyg(x, y

∗(x)

[
d∇yg(x, y

∗(x))

dz∗(x)

]−1

. (31)

Therefore, z∗(x) is differentiable with x everywhere.

By Assumption 3.3 (iii), we know that J1 = df(x,[z∗(x)]
◦ 1
p−1 )

dz∗(x) exists. Therefore, we can use chain
rule to directly derive hypergradient formula:

∇Φ(x) = df(x, y∗(x))

dx
= ∇xf(x, [z

∗(x)]◦
1

p−1 ) +
dz∗(x)

dx

df(x, [z∗(x)]◦
1

p−1 )

dz∗(x)

= ∇xf(x, y
∗(x))−∇xyg(x, y

∗(x))

[
d∇yg(x, y

∗(x))

dz∗(x)

]−1
df(x, y∗(x))

dz∗(x)

= ∇xf(x, y
∗(x))−∇xyg(x, y

∗(x))

[
d∇yg(x, y

∗(x))

d[y∗(x)]◦p−1

]−1
df(x, y∗(x))

d[y∗(x)]◦p−1
.

(32)
Therefore, the final hypergradient can be computed as:

∇Φ(x) = ∇xf(x, y
∗(x))−∇xyg(x, y

∗(x))

[
d∇yg(x, y

∗(x))

d[y∗(x)]◦p−1

]−1
df(x, y∗(x))

d[y∗(x)]◦p−1
. (33)

Define

v(x, y) := −∇xyg(x, y)

[
d∇yg(x, y)

d[y]◦p−1

]−1
df(x, y)

d[y]◦p−1
. (34)

Now we start to prove the properties of Φ. By Assumption 3.2 (iii), we have for any x1, x2Rdx , the
following inequality holds:

∥∇yg(x1, y)−∇yg(x2, y)∥ ≤ lg,1∥x1 − x2∥ =⇒ ∥∇xyg(x, y)∥ ≤ lg,1. (35)

so we have∥∥∥∥dz∗(x)dx

∥∥∥∥ =

∥∥∥∥d[y∗(x)]◦p−1

dx

∥∥∥∥ ≤ ∥∇xyg(x, y
∗(x)∥

∥∥∥∥∥
[
d∇yg(x, y

∗(x))

dz∗(x)

]−1
∥∥∥∥∥ ≤ lg,1

µ
. (36)

In addition, note that for any invertible matrices H1 and H2, the inequality holds:

∥H−1
2 −H−1

1 ∥ = ∥H
−1
1 (H1 −H2)H

−1
2 ∥ ≤ ∥H

−1
1 ∥∥H

−1
2 ∥∥H1 −H2∥, (37)

therefore we have∥∥∥∥∥
[
d∇yg(x1, y

∗(x1))

d[y∗(x1)]◦p−1

]−1

−
[
d∇yg(x2, y

∗(x2))

d[y∗(x2)]◦p−1

]−1
∥∥∥∥∥ ≤ 1

µ2

∥∥∥∥d∇yg(x1, y
∗(x1))

d[y∗(x1)]◦p−1
− d∇yg(x2, y

∗(x2))

d[y∗(x2)]◦p−1

∥∥∥∥
≤ lg,2

µ2
(∥x1 − x2∥+ ∥y∗(x1)− y∗(x2)∥) ,

(38)
where the last inequality holds because of the lg,2-jointly Lipschitz in (x, y) for the matrix d∇yg(x,y)

d[y]◦p−1

(i.e., Assumption 3.2 (v)).

For the second part of hypergradient, we have

∥v(x1, y
∗(x1))− v(x2, y

∗(x2))∥

=

∥∥∥∥∥∇xyg(x2, y
∗(x2))

[
d∇yg(x2, y

∗(x2))

d[y∗(x2)]◦p−1

]−1
df(x2, y

∗(x2))

d[y∗(x2)]◦p−1
−∇xyg(x1, y

∗(x1))

[
d∇yg(x1, y

∗(x1))

d[y∗(x1)]◦p−1

]−1
df(x1, y

∗(x1))

d[y∗(x1)]◦p−1

∥∥∥∥∥
=

∥∥∥∇xyg(x2, y
∗(x2))

[
d∇yg(x2, y

∗(x2))

d[y∗(x2)]◦p−1

]−1
df(x2, y

∗(x2))

d[y∗(x2)]◦p−1
−∇xyg(x1, y

∗(x1))

[
d∇yg(x2, y

∗(x2))

d[y∗(x2)]◦p−1

]−1
df(x2, y

∗(x2))

d[y∗(x2)]◦p−1
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+∇xyg(x1, y
∗(x1))

[
d∇yg(x2, y

∗(x2))

d[y∗(x2)]◦p−1

]−1
df(x2, y

∗(x2))

d[y∗(x2)]◦p−1
−∇xyg(x1, y

∗(x1))

[
d∇yg(x1, y

∗(x1))

d[y∗(x1)]◦p−1

]−1
df(x1, y

∗(x1))

d[y∗(x1)]◦p−1

∥∥∥
≤

∥∥∥∥∥∇xyg(x2, y
∗(x2))

[
d∇yg(x2, y

∗(x2))

d[y∗(x2)]◦p−1

]−1
df(x2, y

∗(x2))

d[y∗(x2)]◦p−1
−∇xyg(x1, y

∗(x1))

[
d∇yg(x2, y

∗(x2))

d[y∗(x2)]◦p−1

]−1
df(x2, y

∗(x2))

d[y∗(x2)]◦p−1

∥∥∥∥∥
+

∥∥∥∥∥∇xyg(x1, y
∗(x1))

[
d∇yg(x2, y

∗(x2))

d[y∗(x2)]◦p−1

]−1
df(x2, y

∗(x2))

d[y∗(x2)]◦p−1
−∇xyg(x1, y

∗(x1))

[
d∇yg(x1, y

∗(x1))

d[y∗(x1)]◦p−1

]−1
df(x1, y

∗(x1))

d[y∗(x1)]◦p−1

∥∥∥∥∥
(a)

≤ lf,0
µ

∥∇xyg(x2, y
∗(x2))−∇xyg(x1, y

∗(x1)∥

+ lg,1

∥∥∥∥∥
[
d∇yg(x1, y

∗(x1))

d[y∗(x1)]p−1

]−1
df(x1, y

∗(x1))

d[y∗(x1)]◦p−1
−

[
d∇yg(x2, y

∗(x2))

d[y∗(x2)]p−1

]−1
df(x2, y

∗(x2))

d[y∗(x2)]◦p−1

∥∥∥∥∥
(b)

≤ lf,0
µ

∥∇xyg(x2, y
∗(x2))−∇xyg(x1, y

∗(x1)∥+ lg,1

∥∥∥∥df(x1, y
∗(x1))

d[y∗(x1)]◦p−1

∥∥∥∥
∥∥∥∥∥
[
d∇yg(x1, y

∗(x1))

d[y∗(x1)]◦p−1
]

]−1

−
[
d∇yg(x2, y

∗(x2))

d[y∗(x2)]◦p−1

]−1
∥∥∥∥∥

+ lg,1

∥∥∥∥∥
[
d∇yg(x2, y

∗(x2))

d[y∗(x2)]◦p−1

]−1
∥∥∥∥∥
∥∥∥∥df(x1, y

∗(x1))

d[y∗(x1)]◦p−1
− df(x2, y

∗(x2))

d[y∗(x2)]◦p−1

∥∥∥∥
(c)

≤ lf,0
µ

∥∇xyg(x2, y
∗(x2))−∇xyg(x1, y

∗(x1)∥+ lg,1lf,0

∥∥∥∥∥
[
d∇yg(x1, y

∗(x1))

d[y∗(x1)]◦p−1

]−1

−
[
d∇yg(x2, y

∗(x2))

d[y∗(x2)]p−1

]−1
∥∥∥∥∥

+
lg,1
µ

∥∥∥∥df(x1, y
∗(x1))

d[y∗(x1)]◦p−1
− df(x2, y

∗(x2))

d[y∗(x2)]◦p−1

∥∥∥∥
(d)

≤
(
lf,0lg,2

µ
+

lg,1lf,1
µ

+
lg,1lf,0lg,2

µ2

)
(∥x1 − x2∥+ ∥y∗(x1)− y∗(x2)∥) , (39)

where (a) holds because of Assumption 3.3 (iii), Lemma B.2 and Eq. (35); (b) holds because of
triangle inequality of the norm, (c) holds because of Assumption 3.3 (iii) and Lemma B.2; (d) holds
because of Assumption 3.2 (iv), Assumption 3.3 (ii) and Eq. (38).

Therefore, the hypergradient satisfies the following property:

∥∇Φ(x1)−∇Φ(x2)∥ = ∥∇xf(x1, y
∗(x1)) + v(x1, y

∗(x1))− [∇xf(x2, y
∗(x2)) + v(x2, y

∗(x2)]∥
≤ lf,1(∥x1 − x2∥+ ∥y∗(x1)− y∗(x2)∥) + ∥v(x1, y∗(x1)− v(x2, y∗(x2))∥

≤ (lf,1 +
lf,0lg,2
µ

+
lg,1lf,1
µ

+
lg,1lf,0lg,2

µ2
)∥x1 − x2∥+ (lf,1 +

lf,0lg,2
µ

+
lg,1lf,1
µ

+
lg,1lf,0lg,2

µ2
))∥y∗(x1)− y∗(x2)∥

≤ (lf,1 +
lf,0lg,2
µ

+
lg,1lf,1
µ

+
lg,1lf,0lg,2

µ2
)∥x1 − x2∥+ (lf,1 +

lf,0lg,2
µ

+
lg,1lf,1
µ

+
lg,1lf,0lg,2

µ2
))lp∥x1 − x2∥

1
p−1

(40)
Define Lϕ1

:= lp(lf,1+
lf,0lg,2

µ +
lg,1lf,1

µ +
lg,1lf,0lg,2

µ2 ) and Lϕ2
:= lf,1+

lf,0lg,2
µ +

lg,1lf,1
µ +

lg,1lf,0lg,2
µ2 .

Then we have

∥∇Φ(x1)−∇Φ(x2)∥ ≤ Lϕ1∥x1 − x2∥
1

p−1 + Lϕ2∥x1 − x2∥. (41)

Furthermore, we have

Φ(x1)− Φ(x2)− ⟨∇Φ(x2), x1 − x2)⟩ =
∫ 1

0

⟨∇Φ(x2 + t(x1 − x2))−∇Φ(x2), x1 − x2⟩dt

≤
∫ 1

0

∥∇Φ(x2 + t(x1 − x2))−∇Φ(x2)∥∥x1 − x2∥dt

≤ ∥x1 − x2∥
p

p−1

∫ 1

0

(Lϕ1
t

1
p−1 )dt+ ∥x1 − x2∥2

∫ 1

0

(Lϕ2
t)dt

=
(p− 1)Lϕ1

p
∥x1 − x2∥

p
p−1 +

Lϕ2

2
∥x1 − x2∥2.

(42)
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B.4 GENERALIZATION OF ASSUMPTIONS

If there exists a constant a such that df(x,y)
d[y−a]◦p−1 ,

d∇yg(x,y)
d[y−a]◦p−1 exist and satisfy all of our assumptions,

we can choose z = [y − a]◦p−1, then y∗(x) = [z∗(x)]◦
1

p−1 + a and we can derive the same
hypergradient formula. Therefore we assume a = 0 without loss of generality. To show the fact that
the hypergradient formula is the same as in the case of a = 0, we have

∇Φ(x) = df(x, y∗(x))

dx
= ∇xf(x, [z

∗(x)]◦
1

p−1 + a) +
dz∗(x)

dx

df(x, [z∗(x)]◦
1

p−1 + a)

dz∗(x)

= ∇xf(x, [z
∗(x)]◦

1
p−1 + a)−∇xyg(x, [z

∗(x)]◦
1

p−1 + a)

[
d(∇yg(x, [z

∗(x)]◦
1

p−1 + a)

dz∗(x)

]−1
df(x, [z∗(x)]◦

1
p−1 + a)

dz∗(x)

= ∇xf(x, y
∗(x))−∇xyg(x, y

∗(x))

[
d∇yg(x, y

∗(x))

d[y∗(x)]◦p−1

]−1
df(x, y∗(x))

d[y∗(x)]◦p−1
.

B.5 HYPERGRADIENT BIAS

Lemma B.4 (Hypergradient Bias). Suppose we have an inexact estimate ŷ(x) for the optimal lower-

level variable y∗(x). Define ∇̂Φ(x) = ∇xf(x, ŷ(x))−∇xyg(x, ŷ(x))
[
d∇yg(x,ŷ(x))
d[ŷ(x)]◦p−1

]−1
df(x,ŷ(x))
d[ŷ(x)]◦p−1 .

Then we have
∥∇̂Φ(x)−∇Φ(x)∥ ≤ Lϕ2∥ŷ(x)− y∗(x)∥ (43)

where Lϕ2
= lf,1 +

lf,0lg,2
µ +

lg,1lf,1
µ +

lg,1lf,0lg,2
µ2 .

Proof. Similar to the proof of Theorem 4.1, we can use almost identical arguments to prove that
∇xf(x, y) + v(x, y) is Lipschitz in (x, y), where v(x, y) is defined in Eq. (34). In particular, for any
x1, x2, y1, y2, we can follow the similar analysis of Eq. (39) and leverage the lf,1-joint Lipschitzness
of ∇xf(x, y) (i.e., Assumption 3.3 (i)) to show the following inequality holds:

∥∇xf(x1, y1) + v(x1, y1)−∇xf(x2, y2)− v(x2, y2)∥
≤ ∥∇xf(x1, y1)−∇xf(x2, y2)∥+ ∥v(x1, y1)− v(x2, y2)∥
≤ lf,1(∥x1 − x2∥+ ∥y1 − y2∥)

+

∥∥∥∥∥∇xyg(x2, y2))

[
d∇yg(x2, y2)

d[y2]◦p−1

]−1
df(x2, y2)

d[y2]◦p−1
−∇xyg(x1, y1)

[
d∇yg(x1, y1)

d[y1]◦p−1

]−1
df(x1, y1)

d[y1]◦p−1

∥∥∥∥∥
≤ lf,1(∥x1 − x2∥+ ∥y1 − y2∥) +

∥∥∥∥∥∇xyg(x2, y2))

[
d∇yg(x2, y2)

d[y2]◦p−1

]−1
df(x2, y2)

d[y2]◦p−1
−∇xyg(x1, y1)

[
d∇yg(x2, y2)

d[y2]◦p−1

]−1
df(x2, y2)

d[y2]◦p−1

∥∥∥∥∥
+

∥∥∥∥∥∇xyg(x1, y1)

[
d∇yg(x2, y2)

d[y2]◦p−1

]−1
df(x2, y2)

d[y2]◦p−1
−∇xyg(x1, y1)

[
d∇yg(x1, y1)

d[y1]◦p−1

]−1
df(x1, y1)

d[y1]◦p−1

∥∥∥∥∥
≤ lf,1(∥x1 − x2∥+ ∥y1 − y2∥) +

lg,2
µ

(∥x1 − x2∥+ ∥y1 − y2∥)

+ lg,1lf,0

∥∥∥∥∥
[
d∇yg(x2, y2)

d[y2]◦p−1

]−1

−
[
d∇yg(x2, y2)

d[y2]◦p−1

]−1
∥∥∥∥∥+

lg,1
µ

∥∥∥∥df(x1, y1)

d[y1]◦p−1
− df(x1, y1)

d[y1]◦p−1

∥∥∥∥
≤

(
lf,0lg,2

µ
+

lg,1lf,1
µ

+
lg,1lf,0lg,2

µ2

)
(∥x1 − x2∥+ ∥y1 − y2∥) + lf,1(∥x1 − x2∥+ ∥y1 − y2∥)

= Lϕ2(∥x1 − x2∥+ ∥y1 − y2∥).
(44)

Therefore, we have

∥∇̂Φ(x)−∇Φ(x)∥ ≤ ∥∇xf(x, ŷ(x))−∇xf(x, y
∗(x))∥+ ∥v(x, ŷ(x))− v(x, y∗(x))∥

≤ lf,1∥ŷ(x)− y∗(x)∥+
(
lf,0lg,2
µ

+
lg,1lf,1
µ

+
lg,1lf,0lg,2

µ2

)
∥ŷ(x)− y∗(x)∥

= Lϕ2
∥ŷ(x)− y∗(x)∥.

(45)
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Therefore the proof is done.

B.6 HYPERGRADIENT IMPLEMENTATION

Lemma B.5. Denote H as

H :=
1

C

Q−1∑
q=0

q∏
j=1

(
I − 1

C

d∇yG(x, y; ζ
(q,j))

d[y]◦p−1

)
.

Under Theorems 3.2 to 3.4, we have∥∥∥∥∥Eξ̄[H]−
[
d∇yg(x, y

∗(x))

d[y∗(x)]◦p−1

]−1
∥∥∥∥∥ ≤ 1

µ

(
1− µ

C

)Q
.

Proof of Theorem B.5. We follow a similar proof as (Ghadimi & Wang, 2018, Lemma 3.2). We have∥∥∥∥∥Eξ̄[H]−
[
d∇yg(x, y

∗(x))

d[y∗(x)]◦p−1

]−1
∥∥∥∥∥ ≤ 1

C

∥∥∥∥∥∥
∞∑

q=Q

(
I − 1

C

d∇yG(x, y; ζ
(q,j))

d[y]◦p−1

)q
∥∥∥∥∥∥

≤ 1

C

∞∑
q=Q

∥∥∥∥∥
(
I − 1

C

d∇yG(x, y; ζ
(q,j))

d[y]◦p−1

)q
∥∥∥∥∥ ≤ 1

µ

(
1− µ

C

)Q
,

where the second inequality uses triangle inequality, and the last inequality is due to Theorem B.2.

Remark: Lemma B.4 provides the bias of the hypergradient due to the inaccurate estimate of the
lower-level variable. This lemma is useful for the algorithm design and analysis in Section 5. Also,
in Section 5, we analyze the bias and variance of the estimated hypergradient ∇̂f(x, y, ξ̄) induced by
Neumann series and Algorithm 1 and 2.

B.7 SUFFICIENT AND NECESSARY CONDITION FOR THE DIFFERENTIABLITY ASSUMPTION

Lemma B.6 (Sufficient And Necessary Condition For the Differentiablity Assumption). Fix p ≥ 2
and set α := 1

p−1 ∈ (0, 1). Define the sign–preserving, coordinatewise power map Sα : Rd → Rd

by Sα(z) = sgn(z) ⊙ |z|α so that zi = sgn(yi) |yi| p−1 where y = Sα(z). Let h : Rd → R
be differentiable near 0 and define r(z) := h(Sα(z)). Then r(z) is differentiable at z = 0 with
∇r(0) = 0 if and only if

lim
y→0

∥∇h(y)∥
∥y∥ p−2

= 0.

Proof. By definition, r is differentiable at 0 with ∇r(0) = 0 iff limz→0
|r(z)−r(0)|

∥z∥ = 0.

Let y = Sα(z). Then

∥z∥ =
( d∑

i=1

|yi|2(p−1)
)1/2

.

(Sufficiency). Suppose limy→0
∥∇h(y)∥
∥y∥p−2 = 0. Since h is differentiable, for each y there exists ξ on

the line from 0 to y such that h(y)− h(0) = ∇h(ξ)⊤y. Hence

|r(z)− r(0)|
∥z∥

=
|h(y)− h(0)|

∥z∥
≤ ∥∇h(ξ)∥∥y∥

∥z∥
.

Define M := maxi |yi|, we have ∥y∥ ≤
√
dM and ∥z∥ ≥M p−1, so

∥y∥
∥z∥
≤
√
dM−(p−2) ≤ (

√
d) p−1 ∥y∥−(p−2).
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Therefore

lim sup
z→0

|r(z)− r(0)|
∥z∥

≤ (
√
d) p−1 lim sup

y→0

∥∇h(y)∥
∥y∥p−2

= 0.

Thus r is differentiable at 0 with ∇r(0) = 0.

(Necessity). Conversely, assume limz→0
|r(z)−r(0)|

∥z∥ = 0. By a standard result in calculus, we have

|r(z)− r(0)|
∥z∥

=

∣∣∣∣∫ 1

0

∇h(ty)⊤ y

∥z∥
dt

∣∣∣∣ ≥ 1√
d

(∫ 1

0

∥∇h(ty)∥ dt
)
∥y∥−(p−2),

where we used ∥z∥ = (
∑
|yi|2(p−1))1/2 ≤

√
d ∥y∥p−1.

Since y = Sα(z) is continuous in z, z → 0 iff y → 0. Hence taking lim infz→0 is equivalent to
taking lim infy→0.

Taking lim infy→0 yields

0 ≥ 1√
d
lim inf
y→0

∥∇h(y)∥
∥y∥p−2

.

Since the ratio is nonnegative, it follows that limy→0
∥∇h(y)∥
∥y∥p−2 = 0.

Finally, away from the origin, Sα is differentiable with Jacobian

DSα(z) = diag
(
α |zi|α−1

)d
i=1

,

so for z ̸= 0, the chain rule gives ∇r(z) = DSα(z)
⊤∇h(Sα(z)).

B.8 OTHER USEFUL LEMMAS

Lemma B.7 (Variance). Under Theorems 3.2 to 3.4, we have

Eξ̄∥∇̂f(x, y; ξ̄)−Eξ̄[∇̂f(x, y; ξ̄)]∥2 ≤ σ2
1 , where σ2

1 = σ2
f+

3

µ2

[
(σ2

f + l2f,0)(σ
2
g,2 + 2l2g,1) + σ2

f l
2
g,1

]
.

Proof of Theorem B.7. Following the proof of (Hong et al., 2023, Lemma 1) gives the result.

C PROOFS OF SECTION 5.3

C.1 CONVERGENCE GUARANTEE FOR MINIMIZING SINGLE-LEVEL UNIFORMLY CONVEX
FUNCTIONS

In this section we consider the problem of minimizing single-level objective function ψ : Rd → R:

min
w∈Rd

ψ(w). (46)

Denote w∗ = argminw∈Rd ψ(w) as the minimizer of ψ. Assume that we access ∇ψ(w) through an
unbiased stochastic oracle, i.e., Eπ[∇ψ(w;π)] = ∇ψ(w). We rely on the following assumption for
analysis in this section.
Assumption C.1. Assume function ψ is (µ, p)-uniformly convex (see Theorem 3.2). In addition, the
noise satisfies Eπ[exp(∥∇ψ(w;π)−∇ψ(w)∥2/σ2)] ≤ exp(1).
Lemma C.2. Under Theorem C.1, if there exists a constant G such that ∥∇ψ(x)∥ ≤ G, then we
have

ψ(x)− ψ(x∗) ≤ G(pG/µ)
1

p−1 .

Proof of Theorem C.2. By convexity of ψ and the Cauchy-Schwarz inequality, we have

ψ(x)− ψ(x∗) ≤ ⟨∇ψ(x), x− x∗⟩ ≤ G∥x− x∗∥.
By (µ, p)-uniform convexity of ψ,

ψ(x)− ψ(x∗) ≥ µ

p
∥x− x∗∥p.
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Combing the above inequalities together gives ∥x− x∗∥ ≤ (pG/µ)
1

p−1 . Therefore,

ψ(x)− ψ(x∗) ≤ G∥x− x∗∥ ≤ G(pG/µ)
1

p−1 .

Lemma C.3. Under Theorem C.1, for any given w∗, let D be an upper bound on ∥w1 − w∗∥ and
assume there exists a constant G such that ∥∇ψ(w)∥ ≤ G. Apply the update

wt+1 = wt − γ∇ψ(wt;πt)

for T iterations. Then for any δ ∈ (0, 1), with probability at least 1− δ we have

1

T

T∑
t=1

ψ(wt)− ψ(w∗) ≤ 2γ(G2 + σ2) log(2/δ) +
∥w1 − w∗∥2

2γT
+

8(G+ σ)D
√

3 log(2/δ)√
T

.

Proof of Theorem C.3. Define the filtration as Ht := σ(π1, . . . , πt−1), where σ(·) denotes the σ-
algebra. With a minor abuse of notation, we use Et[·] = E[· | Ht]. By Theorem C.1, we have

Et

[
exp

(
∥∇ψ(wt;πt)∥2

4G2 + 4σ2

)]
≤ Et

[
exp

(
∥∇ψ(wt)∥2 + ∥∇ψ(wt;πt)−∇ψ(wt)∥2

2G2 + 2σ2

)]
≤ exp

(
1

2

)√
Et

[
exp

(
∥∇ψ(wt;πt)−∇ψ(wt)∥2

G2 + σ2

)]
≤ exp(1),

(47)
where the first inequality uses Young’s inequality, the second inequality is due to Jensen’s inequality.
Since Et[⟨∇ψ(wt;πt), wt − w∗⟩] = ⟨∇ψ(wt), wt − w∗⟩, then

Xt := ⟨∇ψ(wt), wt − w∗⟩ − ⟨∇ψ(wt;πt), wt − w∗⟩

is a martingale difference sequence. Note that |Xt| can be bounded as

|Xt| ≤ ∥∇ψ(wt)∥∥wt − w∗∥+ ∥∇ψ(wt;πt)∥∥wt − w∗∥ ≤ 2GD + 2D∥∇ψ(wt;πt)∥,

where the last inequality uses ∥wt−w∗∥ ≤ ∥wt−w1∥+∥w1−w∗∥ ≤ 2D since xt, x∗ ∈ B(w1, D).
This implies that

Et

[
exp

(
X2

t

64(G2 + σ2)D2

)]
≤ Et

[
exp

(
4D2(2G2 + 2∥∇ψ(wt;πt)∥2)

64(G2 + σ2)D2

)]
≤ exp

(
1

8

)√
Et

[
exp

(
∥∇ψ(wt;πt)∥2
4G2 + 4σ2

)]
≤ exp(1),

where the first inequality uses Young’s inequality, the second inequality is due to Jensen’s inequality,
and the last inequality uses Eq. (47). By Theorem C.7, with probability at least 1− δ/2, we have∑T

t=1Xt ≤ 8(G+ σ)D
√

3T log(2/δ), which implies

1

T

T∑
t=1

⟨∇ψ(wt), wt − w∗⟩ − ⟨∇ψ(wt;πt), wt − w∗⟩ ≤
8(G+ σ)D

√
3 log(2/δ)√

T
. (48)

Next,

E

[
exp

(∑T
t=1 ∥∇ψ(wt;πt)∥2

4G2 + 4σ2

)]
= E

[
ET

[
exp

(∑T
t=1 ∥∇ψ(wt;πt)∥2

4G2 + 4σ2

)]]

= E

[
exp

(∑T−1
t=1 ∥∇ψ(wt;πt)∥2

4G2 + 4σ2

)
ET

[
exp

(
∥∇ψ(wT ;πT )∥2

4G2 + 4σ2

)]]

= E

[
exp

(∑T−1
t=1 ∥∇ψ(wt;πt)∥2

4G2 + 4σ2

)
· exp(1)

]
,
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where the last inequality uses Eq. (47). Apply the above procedure inductively, we obtain

E

[
exp

(∑T
t=1 ∥∇ψ(wt;πt)∥2

4G2 + 4σ2

)]
≤ exp(T ).

By Markov’s inequality, with probability at least 1− δ/2, we have

T∑
t=1

∥∇ψ(wt;πt)∥2 ≤ 4(G2 + σ2)T log(2/δ).

By Theorem C.6 and Eq. (48), we conclude that

1

T

T∑
t=1

ψ(wt)− ψ(w∗) ≤ 2γ(G2 + σ2) log(2/δ) +
∥w1 − w∗∥2

2γT
+

8(G+ σ)D
√

3 log(2/δ)√
T

.

Lemma C.4. Define ∆k and Vk, choose γ1 and T1 as

∆k = ψ(wk)−ψ(w∗), Vk =
G(pG/µ)

1
p−1

2k−1
and γ1 =

G(pG/µ)
1

p−1

24(G2 + σ2)
, T1 =

602(G2 + σ2)

G2
.

(49)
For any k, with probability at least (1− δ̃)k−1 we have ∆k ≤ Vk log(2/δ̃).

Proof of Theorem C.4. Denote ι := log(2/δ̃). We will prove the lemma by induction on k, i.e.,
∆k ≤ Vkι.
Base Case. The claim is true for k = 1 since ∆1 ≤ V1ι by Theorem C.2.

Induction. Assume that ∆k ≤ Vkι for some k ≥ 1 with probability at least (1− δ̃)k−1 and now we
prove the claim for k+1. Since ∆k ≥ µ

p ∥w
k
1 −w∗∥p by (µ, p)-uniform convexity, which, combined

with the induction hypothesis ∆k ≤ Vkι implies that

∥wk
1 − w∗∥ ≤ (p∆k/µ)

1
p = Dk. (50)

Apply Theorem C.3 with D = Dk and hence with probability at least 1− δ̃,

∆k+1 = ψ(wk+1
1 )− ψ(w∗)

≤ 2γk(G
2 + σ2)ι+

∥wk
1 − w∗∥2

2γkTk
+

8(G+ σ)Dk

√
3ι√

Tk

≤ 2γk(G
2 + σ2)ι+

(p∆k/µ)
2
p

2γkTk
+

20(G+ σ)(p∆k/µ)
1
p
√
ι√

Tk

≤ γ1(G
2 + σ2)ι

2k−2
+

(pVkι/µ)
2
p

2γ1T1 · 2
p−2
p (k−1)

+
20(G+ σ)(pVkι/µ)

1
p
√
ι√

T12τ(k−1)

≤ Vkι

12
+
Vkι

300
+
Vkι

3

≤ Vkι

2
= Vk+1ι,

where the first inequality uses Theorem C.3, the second inequality is due to Eq. (50), the third
inequality uses the induction hypothesis and the definition of γk and Tk, and the fourth inequality is
due to the choice of γ1 and T1 as in Eq. (50).

Factoring in the conditioned event ∆k ≤ Vkι, which happens with probability at least (1− δ̃)k−1,
thus we obtain that ∆k+1 ≤ Vk+1ι with probability at least (1− δ̃)k.
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Theorem C.5. Under Theorem C.1, given any δ ∈ (0, 1), set δ̃ = δ/k† for k† = ⌊ 1τ log2((
T
T1
)(2τ −

1) + 1)⌋. Set the parameters γ1, T1 and D1 as

γ1 =
G(pG/µ)

1
p−1

24(G2 + σ2)
, T1 =

602(G2 + σ2)

G2
, D1 = min

{(
pG

µ

) 1
p−1

log(2/δ̃), ∥w1
1 − w∗∥

}
(51)

in Algorithm 1. Then with probability at least 1− δ, we have

ψ(wk
1 )− ψ(w∗) ≤ (602(G2 + σ2))

p
2(p−1) (p/µ)

1
p−1 log(2/δ̃)

T
p

2(p−1)

= O
(
T− p

2(p−1)

)
,

∥wk
1 − w∗∥ ≤ (602(G2 + σ2))

1
2(p−1) (p/µ)

1
p−1 log(2/δ̃)

T
1

2(p−1)

= O
(
T− 1

2(p−1)

)
.

Proof of Theorem C.5. Recall τ = 2(p − 1)/p as defined in Algorithm 1. By Theorem C.4, with
probability at least 1− δ̃,

ψ(wk†+1
1 )− ψ(w∗) = ∆k†+1 ≤ Vk†+1 log(2/δ̃)

=
G(pG/µ)

1
p−1 log(2/δ̃)

2k† ≤ G(pG/µ)
1

p−1

((
T

T1

)
(2τ − 1) + 1

)− 1
τ

log(2/δ̃)

≤ T
1
τ
1 G(pG/µ)

1
p−1 log(2/δ̃)

T
1
τ

=
(602(G2 + σ2))

p
2(p−1) (p/µ)

1
p−1 log(2/δ̃)

T
p

2(p−1)

,

where the second inequality uses the definition of k†, the third inequality is due to τ ≥ 1, and the
last equality uses the definition of τ and the choice of T1 as in Eq. (51). Also, by (µ, p)-uniform
convexity of ψ we have

ψ(wk†+1
1 )− ψ(w∗) ≥ µ

p
∥wk†+1

1 − w∗∥p.

Combing the above inequalities yields the results.

Lemma C.6 ((Hazan & Kale, 2014, Lemma 6)). Starting from an arbitrary point w1 ∈ Rd, apply T
iterations of the update

wt+1 = wt − γ∇ψ(wt;πt).

Then for any point w∗ ∈ Rd, we have

T∑
t=1

⟨∇ψ(wt;πt), wt − w∗⟩ ≤ γ

2

T∑
t=1

∥∇ψ(wt;πt)∥2 +
∥w1 − w∗∥2

2γ
.

Lemma C.7 ((Hazan & Kale, 2014, Lemma 14)). Let X1, . . . , XT be a martingale difference
sequence, i.e., Et[Xt] = 0 for all t. Suppose that there exists σ1, . . . , σT such that Et[exp(X

2
t /σ

2
t )] ≤

exp(1). Then with probability at least 1− δ, we have

T∑
t=1

Xt ≤

√√√√3 log(1/δ)

T∑
t=1

σ2
t .

C.2 PROOF OF LEMMA 5.2

We will use a short hand y∗ = y∗(x).

Lemma C.8. Under Theorem 3.2, if y∗ ∈ B(y;R) for some R > 0, then for all ȳ ∈ B(y;R),

∥∇yg(x, ȳ)∥ ≤
(2(2L1R+1) − 1)L1

L0
.
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Proof of Theorem C.8. For any ȳ ∈ B(y;R), let y′0 = y∗ and y′j = ȳ, then there exists y′0, y
′
1, . . . , y

′
j

with j = ⌈L1∥ȳ − y∗∥⌉ such that ∥y′i − y′i−1∥ ≤ 1/L1 for i = 1, . . . , j. We will prove
∥∇yg(x, y

′
i)∥ ≤ (2i − 1)L1/L0 for all i ≤ j by induction.

Base Case. For y′1, by Theorem 3.2 we have

∥∇yg(x, y
′
1)−∇yg(x, y

′
0)∥ ≤ (L0 + L1∥∇yg(x, y

′
0)∥∥y′1 − y′0∥ ≤

L0

L1
,

where the last inequality uses y′0 = y∗. This implies that ∥∇yg(x, y
′
1)∥ ≤ L0/L1.

Induction. Assume that ∥∇yg(x, y
′
i)∥ ≤ (2i − 1)L0/L1 holds for some i ≤ j − 1. Then for y′i+1

we have

∥∇yg(x, y
′
i+1)−∇yg(x, y

′
i)∥ ≤ (L0 + L1∥∇yg(x, y

′
i)∥∥y′i+1 − y′i∥ ≤

2iL0

L1
,

where the last inequality uses the induction hypothesis. By triangle inequality and the induction
hypothesis we obtain ∥∇yg(x, y

′
i+1)∥ ≤ (2i+1 − 1)L1/L0. Therefore, we conclude that for any

ȳ ∈ B(y;R),

∥∇yg(x, ȳ)∥ ≤
(2j − 1)L1

L0
=

(2⌈L1∥ȳ−y∗∥⌉ − 1)L1

L0
≤ (2(2L1R+1) − 1)L1

L0
,

where the last inequality uses ∥ȳ − y∗∥ ≤ 2R since ȳ, y∗ ∈ B(y;R).

Lemma C.9 (Restatement of Theorem 5.2). For any given δ ∈ (0, 1) and ϵ > 0, set δ̃ = δ/(Tk†)
for k† = ⌊ 1τ log2((

Kt

Kt,1
)(2τ − 1) + 1)⌋, where τ = 2(p − 1)/p is defined in Algorithm 1. Choose

{αt,1}, {Kt,1}, {Rt,1}, {Kt} as

Gt =


(2(2L1∥y0−y∗

0∥+1) − 1)
L1

L0
t = 0

L1

L0
t ≥ 1

, Rt,1 =


min

{
(pGt/µ)

1
p−1 log(2/δ̃), ∥y0 − y∗0∥

}
t = 0

min

{
ϵ

4Lϕ2

,
1

L1

}
t ≥ 1

,

(52)

αt,1 =
Gt(pGt/µ)

1
p−1

24(G2
t + σ2

g,1)
, Kt,1 =

602(G2
t + σ2

g,1)

G2
t

, Kt =
602(G2

t + σ2
g,1)(p/µ)

2(log(2/δ̃))2(p−1)

(min{ϵ/8Lϕ2
, 1/2L1})2(p−1)

.

(53)
For any sequence {x̃t} such that x̃0 = x0 and ∥x̃t+1 − x̃t∥ = η for η satisfying

η ≤
(

1

Ilp
min

{
ϵ

8Lϕ2

,
1

2L1

})p−1

, (54)

let {ỹt} be the output produced by Algorithm 2. Then with probability at least 1− δ, for all t ∈ [T ]
we have ∥ỹt − ỹ∗t ∥ ≤ min{ϵ/4Lϕ2 , 1/L1}.

Proof of Theorem C.9. For t = 0, by Theorems C.5 and C.8 and the choices of α0,1,K0,1, R0,1 as in
Eq. (52) and Eq. (53), with probability at least 1− δ/T we have ∥ỹ1 − ỹ∗0∥ ≤ min{ϵ/8Lϕ2 , 1/2L1}.
For 1 ≤ t ≤ I , we have

∥ỹt − ỹ∗t ∥ = ∥ỹ1 − ỹ∗t ∥ ≤ ∥ỹ1 − ỹ∗0∥+
t∑

i=1

∥ỹ∗i−1 − ỹ∗i ∥ ≤ min{ϵ/8Lϕ2 , 1/2L1}+ Ilp∥x̃i−1 − x̃i∥
1

p−1

= min{ϵ/8Lϕ2
, 1/2L1}+ Ilpη

1
p−1 ≤ min{ϵ/4Lϕ2

, 1/L1},

where the first inequality uses triangle inequality, the second inequality is due to t ≤ I and
Theorem 4.2, the last inequality uses the choice of η as in Eq. (54). For t ≥ I , apply
Theorems C.5 and C.8 with the choices of αt,1,Kt,1, Rt,1 as in Eq. (52) and Eq. (53), then
follow the above procedure inductively, we obtain with probability at least 1 − δ that for all t,
∥ỹt − ỹ∗t ∥ ≤ min{ϵ/4Lϕ2 , 1/L1}.
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C.3 PROOF OF LEMMA 5.3

Corollary C.10 (Restatement of Theorem 5.3). Let {xt} and {yt} be the iterates generated by
Algorithm 2. For any given δ ∈ (0, 1) and ϵ > 0, under the same parameter setting in Theorem C.9,
with probability at least 1− δ (denote this event as E) we have ∥yt − y∗t ∥ ≤ min{ϵ/4Lϕ2

, 1/L1} for
all t ≥ 1.

Proof of Theorem C.10. By line 8 of Algorithm 2, we have ∥xt+1 − xt∥ = η. Setting {x̃t} = {xt}
yields the result.

C.4 PROOF OF LEMMA 5.4

Lemma C.11. Under Theorems 3.2 and 3.3, define ϵt := mt −∇Φ(xt), then we have

Φ(xt+1) ≤ Φ(xt)− η∥∇Φ(xt)∥+ 2η∥ϵt∥+
(p− 1)Lϕ1

p
η

p
p−1 +

Lϕ2

2
η2.

Furthermore,

T∑
t=1

∥∇Φ(xt)∥ ≤
∆ϕ

η
+ T

(
(p− 1)Lϕ1

p
η

1
p−1 +

Lϕ2

2
η

)
+ 2

T∑
t=1

∥ϵt∥.

Proof of Theorem C.11. By Theorem 4.1, we have

Φ(xt+1) ≤ Φ(xt) + ⟨∇Φ(xt), xt+1 − xt⟩+
(p− 1)Lϕ1

p
∥xt+1 − xt∥

p
p−1 +

Lϕ2

2
∥xt+1 − xt∥2

= Φ(xt)− η
〈
mt − ϵt,

mt

∥mt∥

〉
+

(p− 1)Lϕ1

p
η

p
p−1 +

Lϕ2

2
η2

= Φ(xt)− η∥mt∥+ η

〈
ϵt,

mt

∥mt∥

〉
+

(p− 1)Lϕ1

p
η

p
p−1 +

Lϕ2

2
η2

≤ Φ(xt)− η∥∇Φ(xt) + ϵt∥+ η∥ϵt∥+
(p− 1)Lϕ1

p
η

p
p−1 +

Lϕ2

2
η2

≤ Φ(xt)− η∥∇Φ(xt)∥+ 2η∥ϵt∥+
(p− 1)Lϕ1

p
η

p
p−1 +

Lϕ2

2
η2,

(55)
where the first equality uses the update rule (line 8) of Algorithm 2, the second inequality is due to
Cauchy–Schwarz inequality, and the last inequality uses triangle inequality. Rearranging Eq. (55)
and taking summation yields the result.

Lemma C.12 (Restatement of Theorem 5.4). Under Theorems 3.2 to 3.4 and event E , we have

T∑
t=1

E∥ϵt∥ ≤
σ1

1− β
+ T

√
1− βσ1 + TLϕ2

min

{
ϵ

4Lϕ2

,
1

L1

}
+
T lg,1lf,0

µ

(
1− µ

C

)Q
+

T

1− β

(
Lϕ1

η
1

p−1 + Lϕ2
η
)
.

Proof of Theorem C.12. Define ϵ̂t = ∇̂f(xt, yt; ξ̄t)−∇Φ(xt) and S(a, b) = ∇Φ(a)−∇Φ(b). By
Theorem 4.1, we have

∥S(xt, xt+1)∥ = ∥Φ(xt)−Φ(xt+1)∥ ≤ Lϕ1
∥xt−xt+1∥

1
p−1 +Lϕ2

∥xt−xt+1∥ ≤ Lϕ1
η

1
p−1 +Lϕ2

η.
(56)

For all t ≥ 1, we have the following recursion:

ϵt+1 = βϵt + (1− β)ϵ̂t+1 + βS(xt, xt+1). (57)

Unrolling the recursion gives

ϵt+1 = βtϵ1 + (1− β)
t−1∑
i=0

βiϵ̂t+1−i + β

t−1∑
i=0

βiS(xt−i, xt+1−i).
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By triangle inequality and Eq. (56), we have

∥ϵt+1∥ ≤ βt∥ϵ1∥+ (1− β)

∥∥∥∥∥
t−1∑
i=0

βiϵ̂t+1−i

∥∥∥∥∥+ β
(
Lϕ1η

1
p−1 + Lϕ2η

) t−1∑
i=0

βi

≤ βt ∥ϵ1∥︸︷︷︸
(A)

+(1− β)

∥∥∥∥∥
t−1∑
i=0

βiϵ̂t+1−i

∥∥∥∥∥︸ ︷︷ ︸
(B)

+
β

1− β

(
Lϕ1

η
1

p−1 + Lϕ2
η
)
.

(58)

Bounding (A). Observe that ϵ1 = ϵ̂1. Taking expectation and using Jensen’s inequality, we have

E∥ϵ1∥ = E∥ϵ̂1∥ ≤
√
E∥ϵ̂1∥2 ≤ σ1.

Bounding (B). By triangle inequality, we have

E

∥∥∥∥∥
t−1∑
i=0

βiϵ̂t+1−i

∥∥∥∥∥ ≤ E

∥∥∥∥∥
t−1∑
i=0

βi(∇̂f(xi, yi; ξ̄i)− Et[∇̂f(xi, yi; ξ̄i)])

∥∥∥∥∥+ E
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t−1∑
i=0

βi(Et[∇̂f(xi, yi; ξ̄i)]−∇Φ(xi))

∥∥∥∥∥
≤

√√√√t−1∑
i=0

β2iE∥∇̂f(xi, yi; ξ̄i)− Et[∇̂f(xi, yi; ξ̄i)]∥2 +
t−1∑
i=0

βi

(
Lϕ2
∥yi − y∗i ∥+

lg,1lf,0
µ

(
1− µ

C

)Q)

≤ σ1√
1− β

+
Lϕ2

1− β
min

{
ϵ

4Lϕ2

,
1

L1

}
+

lg,1lf,0
µ(1− β)

(
1− µ

C

)Q
,

where the second inequality uses Jensen’s inequality and the fact that for i ̸= j, ξ̄i and ξ̄j are
uncorrelated, and the last inequality is due to Theorem B.7 and Theorem C.10.

Returning to Eq. (58), we obtain

E∥ϵt+1∥ ≤ βtσ1 +
√

1− βσ1 + Lϕ2
min

{
ϵ

4Lϕ2

,
1

L1

}
+
lg,1lf,0
µ

(
1− µ

C

)Q
+

β

1− β

(
Lϕ1

η
1

p−1 + Lϕ2
η
)
.

Summing from t = 1 to T yields

T∑
t=1

E∥ϵt∥ ≤
σ1

1− β
+ T

√
1− βσ1 + TLϕ2

min

{
ϵ

4Lϕ2

,
1

L1

}
+
T lg,1lf,0

µ

(
1− µ

C

)Q
+

T

1− β

(
Lϕ1

η
1

p−1 + Lϕ2
η
)
.

D PROOF OF MAIN THEOREM 5.1

Theorem D.1 (Restatement of Theorem 5.1). Under Theorems 3.2 to 3.4, for any given δ ∈ (0, 1)

and ϵ > 0, set δ̃ = δ/(Tk†) for k† = ⌊ 1τ log2((
Kt

Kt,1
)(2τ −1)+1)⌋, where τ = 2(p−1)/p is defined

in Algorithm 1. Choose {αt,1}, {Kt,1}, {Rt,1}, {Kt} as

Gt =


(2(2L1∥y0−y∗

0∥+1) − 1)
L1

L0
t = 0

L1

L0
t ≥ 1

, Rt,1 =


min

{
(pGt/µ)

1
p−1 log(2/δ̃), ∥y0 − y∗0∥

}
t = 0

min

{
ϵ

Lϕ2

,
1

L1

}
t ≥ 1

,

(59)

αt,1 =
Gt(pGt/µ)

1
p−1

24(G2
t + σ2

g,1)
, Kt,1 =

602(G2
t + σ2

g,1)

G2
t

, Kt =
602(G2

t + σ2
g,1)(p/µ)

2(log(2/δ̃))2(p−1)

(min{ϵ/2Lϕ2
, 1/2L1})2(p−1)

.

(60)
In addition, choose β, η, I and Q as

1−β = min

{
1,
c1ϵ

2

σ2
1

}
, η = c2 min

{(
ϵ ·min

{
1− β
Lϕ1

,
p

(p− 1)Lϕ1

,
1− β
lpLϕ2

})p−1

,
(1− β)ϵ
Lϕ2

,
ϵ

Lϕ2

}
,

(61)
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I =
1

1− β
, Q = ln

(
µϵ

4lg,1lf,0

)/
ln
(
1− µ

C

)
. (62)

Let T =
C1∆ϕ

ηϵ . Then with probability at least 1 − δ over the randomness in Fy, we have
1
T

∑T
t=1 E∥∇Φ(xt)∥ ≤ ϵ, where the expectation is taken over the randomness in FT+1. The

total oracle complexity is Õ(ϵ−5p+6).

Proof of Theorem D.1. We apply Theorems C.11 and C.12 to obtain that, under event E ,

1

T

T∑
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E∥∇Φ(xt)∥ ≤
∆ϕ

Tη
+

(
(p− 1)Lϕ1

p
η

1
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+ 2
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1
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η
)
+
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(
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C

)Q
≤
(

1

C1
+ c

1
p−1

2 +
c2
2

+
2c2σ1ϵ

C1∆ϕLϕ2

+ 2
√
c1 +

1

2
+ 2c

1
p−1

2 + 2c2 +
1

4

)
ϵ

≤ ϵ,

where the third inequality uses the choice of η, β and Q as in Eq. (61) and Eq. (62), the last inequality
is due to the choice of small enough constants c1, c2 and large enough constant C1.

Moreover, the total oracle complexity is (assume target accuracy ϵ is small enough):

O

T +

⌈T/I⌉∑
j=0

KjIQ

 = Õ
(
ϵ−3p+2 + ϵ−5p+6

)
= Õ

(
ϵ−5p+6

)
. (63)

E ADDITIONAL EXPERIMENTS

E.1 MORE EXPERIMENTS FOR SYNTHETIC DATA

(a) p = 4 (b) p = 12 (c) p = 20

Figure 3: Results of bilevel optimization on the synthetic example 2 when p = {4, 12, 20}. All
algorithms are initialized at (x0, y0) = (0.001, 0.001), and the upper-level variable is updated for
T = 500 iterations. The performance of the algorithms was evaluated through the ground-truth
hypergradient given by∇Φ(x) = sin(x) cos(sin(x)). For all algorithms, learning rates are optimally
tuned with a grid search over the range [0.01, 1].

In this section, we conducted extensive synthetic experiments to rigorously compare UniBiO
against prominent LLSC-based algorithms, including StocBiO (Ji et al., 2021), TTSA (Hong
et al., 2023), and MA-SOBA (Chen et al., 2023), under a deterministic setting. All experiments
were initialized at (x0, y0) = (0.001, 0.001), with the upper-level iteration number fixed at
T = 500. Algorithm performance was evaluated through the ground-truth hypergradient given
by ∇Φ(x) = sin(x) cos(sin(x)) across varying p ∈ {4, 12, 20}.
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Parameter Settings: For UniBiO and StocBiO, we set Neumann series iterations as Q = 10.
Momentum for UniBio and MA-SOBA was fixed at 0.9. The optimal upper- (ηUL) and lower-level
learning rates (ηLL) for each algorithm were determined through a grid search over the range [0.01, 1].
Specifically the learning rates are: UniBiO (ηUL = 0.02, ηLL = 1.0); StocBiO (ηUL = 0.5, ηLL =
0.1); TTSA (ηUL = 0.1, ηLL = 0.1); MA-SOBA (ηUL = 1.0, ηLL = 0.01, ηz = 0.01). Other
fixed parameters included: UniBio (I = 10, N1 = 5, D1 = 1, Ty = 100), StocBiO (the number of
inner iterations Ty = 5), and MA-SOBA (the auxiliary variable z is initialized at z0 = 0).

E.2 MORE EXPERIMENTS FOR DATA HYPER-CLEANING
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Figure 4: Results of bilevel optimization on data hyper-cleaning with noise p̃ = 0.1 and p = 4.
Subfigure (a), (b) show the training and test accuracy with the training epoch. Subfigure (c), (d) show
the training and test accuracy with the running time.
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Figure 5: Log–log plot of the convergence behavior of the averaged hypergradient norm under
different uniform-convexity parameters p.

E.3 ESTIMATION OF THE CONVERGENCE RATE FOR DIFFERENT p

We adopt the same configuration as in the synthetic experiment under deterministic setting (i.e.,
no gradient noise) with outer iteration T = 500 iterations in Algorithm 2. Recall that our theory
guarantees a power-law decay of the averaged hypergradient:

1

t

t∑
i=1

∥∇Φp(xi)∥ ≲ t−r(p).

Taking logarithms on both sides yields

log

(
1

t

t∑
i=1

∥∇Φp(xi)∥

)
≤ −r(p) log(t) + C,

where the slope −r(p) characterizes an upper bound on the convergence rate, and C is a universal
constant.
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In Figure 5(a), the solid curve represents the empirically observed sequence of averaged hypergradient
norms, whereas the dashed curve corresponds to the fitted power-law upper bound, obtained via a
linear regression on the log–log plot. We also report the runtime for different values of p.

Figure 5(b) reports the resulting fitted curves and the estimated slopes for p ∈ {2, 4, 6, 8}. As p
increases, the slope magnitude decreases, indicating slower convergence. This is consistent with our
complexity results as shown in Theorem 5.1.

An additional observation is that the empirical convergence rates are strictly faster than our theoretical
worst-case boundO(ϵ−3p+2) outer iterations required to find an ϵ-stationary point (see Equation (63)).
This suggests either that our example is not a hard instance or that the current complexity bound may
not be tight; we leave a tighter characterization for future work. Note that there is an extra Õ(ϵ−5p+6)
inner iterations complexity which is reflected in the runtime result in Figure 5. In particular, the
averaged inner iterations for various p = [2, 4, 6, 8] are [75, 172, 737, 3059], which means that larger
p significantly increases the inner-loop iterations (i.e., the choice of Kt as chosen in Theorem C.5)
used in the subroutine Epoch-SGD (i.e., Algorithm 1).

F HYERPARAMETER SETTING

For a fair comparison, we carefully tune the hyperparameters for each baseline, including upper-
and lower-level step sizes, the number of inner loops, momentum parameters, etc. For the data
hyper-cleaning experiments, the upper-level learning rate η and the lower-level learning rate γ are
selected from range [0.001, 0.1]. The best (η, γ) are summarized as follows: Stocbio: (0.01, 0.002),
TTSA: (0.001, 0.02), SABA: (0.05, 0.02), MA-SOBA: (0.01, 0.01), SUSTAIN: (0.05, 0.05), VRBO:
(0.1, 0.05), UniBiO: (0.05, 0.02). The number for neumann series estimation in StocBiO and VRBO
is fixed to 3, while it is uniformly sampled from {1, 2, 3} in TTSA, and SUSTAIN. The batch size is
set to be 128 for all algorithms except VRBO, which uses larger batch size of 256 (tuned in the range
of {63, 128, 256, 512, 1024}) at the checkpoint step and 128 otherwise. UniBiO uses the periodic
update for low-level variable and sets the iterations N = 3 and the update interval I = 2. The
momentum parameter β is fixed to 0.9 in MA-SOBA and UniBiO.

G THE USE OF LARGE LANGUAGE MODELS (LLMS)

LLMs are not involved in our research methodology or analysis. Their use is limited to polish the
writing.
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