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Abstract
Across the primate cortex, neurons that perform
similar functions tend to be spatially grouped to-
gether. In high-level visual cortex, this widely
observed biological rule manifests itself as a mod-
ular organization of neuronal clusters, each tuned
to a specific object category. The tendency toward
short connections is one of the most widely ac-
cepted views of why such an organization exists
in the brains of many animals. Yet, how such a
feat is implemented at the neural level remains un-
clear. Here, using artificial deep neural networks
as test beds, we demonstrate that a topograph-
ical organization similar to that in the primary,
intermediate, and high-level human visual cortex
emerges when units in these models are laterally
connected and their weight parameters are tuned
by top-down credit assignment. Importantly, the
emergence of the modular organization in the ab-
sence of explicit topography-inducing learning
rules and objectives questions their necessity and
suggests that local lateral connectivity alone may
be sufficient for the formation of the topographic
organization across the cortex.

1. Introduction
Functional organization, arrangement of neurons across the
cortical sheet according to their functional similarity, stands
out as a ubiquitous phenomenon in neuroscience research,
manifesting in topographic maps within various brain re-
gions such as the visual system, auditory cortex, parietal
cortex, sensorimotor areas, and entorhinal cortex (Hubel &
Wiesel, 1962; Harvey et al., 2013; Humphries et al., 2010;
Obenhaus et al., 2022; Gu et al., 2018; Wong et al., 1978).
These organized patterns have played a critical role in ad-
vancing our understanding of both the functionality and
potential dysfunctions of the cortex, the roots of which can
be traced back to the groundbreaking work of Wilder Pen-
field in the 1950s and 1960s (Penfield & Rasmussen, 1950).
Using electrical stimulation, Dr. Penfield made one of the
first attempts in producing a global functional map of the
human cortex, thereby unveiling the intricate ways in which
the brain governs perception and action.

Building upon this foundational work, subsequent studies,

notably those by Hubel and Wiesel (Hubel & Wiesel, 1962),
provided a more detailed view of the topographical organi-
zation within the visual cortex, particularly emphasizing the
structured arrangement of cortical columns based on orien-
tation selectivity and ocular dominance. These observations
were later extended to higher stages of the ventral visual
cortex with the discovery of neuronal clusters that were
selective for faces, scenes, and body parts among others
(Margalit et al., 2023).

The ubiquitous cortical topography in primates has high-
lighted two profound questions in the past decades: “Why
are neurons spatially organized in this highly regular fash-
ion?” and, “What are the neural mechanisms underlying
such multi-scale topography across the cortex?”. A leading
theory, widely accepted as a plausible answer to the why
question is the Wiring Cost Minimization (WCM) (Jacobs
& Jordan, 1992), which explains topographical organization
as the product of an evolutionary process that minimizes
the amount of nerve volume connecting neurons across and
within cortical areas. Based on this theory, various models
have been proposed to answer the ”how” question of corti-
cal topography using a variety of computational approaches
for inducing position-dependent covariation between unit
responses. Among those, several models use position-aware
update rules (Kohonen, 1982), while others use learning
objective functions that either enforce cortex-like position
dependent pairwise response/weight correlations (Lee et al.,
2020; Margalit et al., 2023; Lu et al., 2023), or directly
penalize the weight connections between distant units (Lu
et al., 2023). Each of these approaches have recapitulated
aspects of the topographical organization when adopted to
simulate the organization of neurons in the visual cortex. For
example, many of these models have replicated category-
selective neuronal clusters such as face and place selective
areas in the primate inferotemporal cortex. However, the
formation of such clusters is not uniquely predicted by any
one approach and can similarly be replicated by a number
of computational approaches.

Moreover, these prior models face certain limitations. First,
several of these models have limited scope in terms of their
correspondence with the brain [i.e. which cortical regions,
ref to (Blauch et al., 2022; Lee et al., 2020) or the variety of
object selective categories that could be explained (Blauch
et al., 2022). Second, a number of these models which rely
on self-organizing principles factorize learning into separate
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stages of representation learning and topography induction
and assume sequential or independent mechanisms govern-
ing the two without explicit descriptions (Durbin & Mitchi-
son, 1990; Doshi & Konkle, 2023). Third, all topographical
models exhibit substantially diminished performance on eco-
logically relevant tasks such as object categorization (Blauch
et al., 2022; Durbin & Mitchison, 1990; Doshi & Konkle,
2023), questioning the utility of topographical organization.
Finally, most prior models rely on strong assumptions about
the underlying biological network that are often not entirely
met or remain unspecified.

There is a substantial evidence that certain aspects of the
topographical organization begin to shape prior to eye open-
ing (Smith et al., 2018). For example, experiments using
different animal models like cats, macaques, and ferrets
have demonstrated that ocular dominance columns and long-
range correlational structures already exist prior to birth and
without any visual experiences (Swindale, 1996). These
maps continue to further develop after birth and converge
to their mature state. Importantly, sensory deprivation or
restrictions could lead to strong degradation in the result-
ing cortical map (Hubel et al., 1977). Moreover, there is a
large body of literature that using tracing techniques have
documented the details of the synaptic connectivity across
neurons in primary visual cortex of many animal species
(Muir et al., 2011; Muir & Douglas, 2011). Three key in-
sights from these work are: 1) neurons in the primary visual
cortex are far more likely to establish lateral connections
when they have similar functional selectivity; 2) the like-
lihood of lateral connections often decay with increasing
cortical distance, although there exists patches of distant
neurons with strong lateral connections; 3) patchy lateral
connectivity patterns called (aka Daisy patterns) have been
reported in almost all animal species with strong topograph-
ical cortices and is virtually non-existent in animals with
weak organization such as in rodents (Muir et al., 2011).

These results could be interpreted in one of two ways: 1)
that neurons with similar selectivity find and establish lateral
connections between themselves or; 2) that distinct patterns
of selectivity emerge as a function of innate lateral connec-
tivity. The former possibility requires the neurons to have
the capacity to trace other neurons with similar functionality
and establishing synapses in between while the latter states
that neuronal selectivity across the neural network emerges
as a function of learning in a neural network with prespec-
ified constraints in connectivity (e.g. enforced via genetic
encoding).

2. Locally Laterally Connected Neural
Networks (LLCNNs)

Our work introduces Local Laterally Connected Neural Net-
work (LLCNN) (Fig. 1), a topographical neural network

model designed to overcome existing limitations. The LL-
CNN implements the hypothesis that local lateral connec-
tions are sufficient for the emergence of topographic or-
ganization in deep neural networks which challenges the
prevalent consensus of the wiring length cost hypothesis.
Drawing inspiration from the well-established concept of
local lateral connectivity (LLC) (Muir et al., 2011) ubiq-
uitous in species with pronounced topographical organiza-
tion within the cortex, we seamlessly integrated LLC into
the layers of a convolutional neural network. Notably, our
approach not only induces a naturally emerging smooth to-
pographic organization but also facilitates the learning of
robust representations as an intrinsic byproduct of computa-
tion.

In particular, our model achieves the following outcomes: 1)
replicates the arrangement of neurons in the early visual cor-
tex, aligning with orientation, spatial frequency, and color
(Fig. 2,3); 2) forms object-selective clusters in deep layers
analogous to those found in the human inferotemporal cor-
tex (Fig. 4, 5); 3) predicts unit selectivity in inferotemporal
regions with previously uncharted object-selectivity (Fig.
6); 4) enhances the trade-off between object recognition per-
formance and cortex-like topography compared to previous
models (Fig. 7); and 5) exhibits notable improvement in
robustness against adversarial noise (Fig. 7), suggesting a
potential functional role for LLC in learning robust represen-
tations. Our results underscore the efficacy of incorporating
local lateral connectivity in artificial neural network mod-
els for reproducing cortex-like topographical organization.
Importantly, this achievement is realized without the neces-
sity for specific topography-inducing learning objectives or
rules, showcasing the model’s inherent capacity to develop
such organization.
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Figure 1. Local Laterally Connected Neural Networks (LLC-
NNs) There are not only connections across layers but also lateral
connections within layers in visual cortex. We incorporated 3
types of lateral connections (i.e. Mean, Gaussian and Mexicanhat)
into LLCNNs to induce the modular organization.
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3. Results
3.1. V1 Topography

Some of the earliest and most established investigations of
cortical topography have been performed on the primary
visual cortex of cats, macaque monkeys and other primates
(Hubel & Wiesel, 1962; Blasdel & Salama). Broadly, these
studies have described the organization of cortex as a pe-
riodic map whose periodicity is governed by a number of
sensory-dependent features including ocular dominance, ec-
centricity, visual angle, orientation selectivity, and spatial
frequency.

Given the abundance of prior experimental work in this
area, we first examined whether and to what degree the
LLCNN model could replicate the same organization in its
early layers that best matched the primary visual cortex. We
evaluated the selectivity of each unit in each model layer
to the stimulus orientation, spatial frequency, and color.
For this, we used a stimulus set consisting of gratings with
different orientations (0-180 degree), spatial frequencies (1-
14Hz), and chromaticity (black/white vs. colored) (Margalit
et al., 2023).

We then visualized the selectivity map of units within each
layer for each stimulus factor (Fig. 2A). The resulting maps
demonstrated smoothly transitioning unit selectivity along
the two spatial axes of the simulated cortical sheet for all
three stimulus features. We observed that the change in
unit selectivity increased to a value of 1 with increasing
distance between unit pairs (Fig. 2C), where 1 is the selec-
tivity change expected from random arrangement of units.
Likewise, the pairwise response correlation decreased expo-
nentially (Pearson correlation, Fig. 2B). The observed decay
in pairwise unit correlation with increasing distance in the
early layers of the LLC model suggests that proximal units
exhibit a more congruent response to a set of sine grating
stimuli than their distant counterparts, akin to prior observa-
tions from the macaque primary visual cortex (Muir et al.,
2011). Furthermore, the smooth maps extended across the
layers of the LLCNN further mimicking the smooth transi-
tioning of these feature selectivity in the brain across cortical
areas (e.g. V1 to V2).

It was also reported that 60-75% of laterally connected neu-
rons in the primary visual cortex of tree shrew (Bosking
et al., 1997), cat (Schmidt et al., 1997), and macaque mon-
keys (Malach et al., 1993) have orientation selectivity that
falls within ±45◦ of the preferred orientation of the neuron
at the injection site. We investigated the distribution of dif-
ference in orientation selectivity between each unit and its
neighboring units and found that 60% of neighboring units
have selectivity within 45◦ of the center unit (Fig. 2D).

While there are substantial differences in selectivity maps
across individuals, these changes are still obey particular

rules. Notably, using two-photon imaging in macaque’s
primary visual cortex, it was shown that the selectivity map
gradients (directions on the cortical surface along which
the feature tuning changes) of orientation and spatial fre-
quency were markedly skewed towards orthogonality. We
investigated whether the gradients of orientation and spatial
frequency selectivity in the LLCNN model followed the
same pattern. We computed the gradients of selectivity to
each feature and computed the angle between the two gra-
dients at intersection points (Fig. 2E). Our results showed
a strong tendency towards crossings at angles close to 90◦,
echoing the prior findings in the primate primary visual
cortex.
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Figure 2. V1 Topography Early LLC model layers replicate hall-
marks of visual processing in the primate primary visual cortex.
We first evaluated the topographical similarity of our model with
that in the primate V1 by evaluating unit responses to sine grating
images of varying orientation, spatial frequency, and color, similar
to reference (Margalit et al., 2023). We observed: A) smoothly
changing selectivity when considering each of the three factors; B)
the similarity decayed exponentially with distances ; C) difference
in feature selectivity as a function of distance in an early layer;
D) distribution of orientation difference within the laterally con-
nected area. The proportion of orientation difference ±45◦ is 60%
which aligns with the experimental observation from (Muir et al.,
2011); E) a tendency towards orthogonal angles between spatial
frequency and orientation gradients similar to prior experimental
work (Nauhaus et al., 2012)

We also visualize the V1 topography from locally connected
LLCNNs which does not have covariance across spatial
locations (Fig. 3). The first layer with lateral connectivity
size equal to the whole map still exhibit smooth and patchy
topography in V1. We can observe the emergence of linear
sections, singularities, and pinwheels, similar to those found
in the visual cortex (Bosking et al., 1997).

3.2. IT Topography

Neurons assume increasingly selectivity to increasingly
more complex visual patterns the later in the ventral vi-
sual pathway they are with neurons in the human an non-
human primate’s inferotemporal cortex exhibiting selectiv-
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singularity

Singularity     Linear section

(Bosking, William H., et al. 1997)

Figure 3. V1 Topography in locally-connected model The emer-
gence of linear sections, singularities and pinwheels (Bosking
et al., 1997) in the early layer of LLCNN with locally connected
convolution

ity to specific object categories such as faces, body parts,
and scenes. In the high level visual cortex, the princi-
ple of cortical topography manifests as distinct cortical
patches of category-selective neurons, a phenomenon ob-
served in diverse species, including macaque monkeys and
humans. Moreover, areas involved in processing specific
object classes are shown to arrange into partly parallel path-
ways (Bao et al., 2020).

We first investigated whether units in deeper layers of our
neural network similarly cluster into category-selective
bands with similar category-selectivity as in the human
brain. For this, we quantified selectivity of each model
unit to each of a number of object categories previously
reported in recent literature (Bao et al., 2020; Allen et al.,
2022) and visualized them on the simulated cortical sheet
of the model (Fig. 4A), concerning six distinct categories
of images, namely face, scene, body, characters, objects,
no-man’s land (Bao et al., 2020) as well as to animacy and
size (Konkle & Caramazza, 2013).

We found distinct unit clusters selective to each of the
probed categories across the deeper layers of the network.
Most category-selective clusters were significantly stretched
along the posterior-anterior axis of the simulated cortical
sheet and were arranged into semi-continuous pathways ex-
panding across multiple layers of the network (Fig. 4A).
The degree of elongation along the posterior-anterior axis
changed as a function of the decay rate of the lateral con-
nectivity window size, with faster decay rates leading to
less elongation (Fig. 4D). Likewise, the size of category-
selective patches co-varied wit the size of the lateral connec-
tivity window (Fig. 4E).

Face- and scene-selective pathways were notably non-
overlapping and positioned on the opposite sides of the
axis orthogonal to posterior-anterior axis of the simulated
cortical sheet (Fig. 4A). Likewise, the model displayed

two parallel streams that encoded animacy of objects and
their size (Fig. 5), similar to prior observations from human
visual cortex (Konkle & Caramazza, 2013).

All model variations, regardless of their lateral connectivity
function displayed continuously changing selectivity maps
that were significantly smoother than the non-topographical
model (Fig. 4C). Similar to our findings in the early model
layers, pairwise unit response correlations in these layers
also followed an exponentially decaying trend as a function
of simulated physical distances between the units (Fig. 4B).
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Figure 4. IT Topography We next investigated the similarity of
topographical organization in deeper layers of the network and
IT cortex by quantifying unit selectivity using t-value measure
(Margalit et al., 2023) Unit responses were assessed concerning six
distinct categories of images, namely face, scene, body, characters,
objects, no-man’s land (Bao et al., 2020). We observed that A,D)
continuous and smooth patches selective each of the six categories
emerged in the deeper layers of the model (blocks 3-4) that were
extended along the shallow-deep axis of the model, similar to
typical elongation of category selective patches along the posterior-
anterior axis of ventral visual cortex; B) Pairwise unit correlations
decayed exponentially as a function of distance; D) the patch
elongation was decreased as a function of how fast the lateral
connection range was decayed; E) patch sizes were modulated by
the range of lateral connectivity.

3.3. Using topographical models to reveal selectivity at
uncharted cortical landscape

We expected our model to not only reproduce the previously
known category selective patches in the brain but also to
predict the selectivity in cortical regions with unspecified
selectivity. For this, we used the LLCNN model to predict
the activity in the parts of the human IT cortex that falls in
between two well-known category selective regions, FFA
and PPA, using the NSD dataset. We calculated the Pearson
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Figure 5. Parallel streams of animacy and size patch The model
displayed two parallel streams that encoded animacy and size of
objects, similar to prior observations from human visual cortex
(Konkle & Caramazza, 2013)

correlation maps between LLCNNs units (Gaussian) and
each of the three patches (FFA1, PPA, and the patch in be-
tween them). Interestingly, we found that the intermediate
patch was most highly correlated with units in the model
that fall in between model’s FFA1 and PPA patches (Fig.
6A). Furthermore, we quantified the similarity of the inter-
mediate model patch with that in the brain by measuring the
patch correlation between the responses from models and
their human counterparts (Fig. 6B) which showed strong
similarity in all three model variations and specially in the
Gaussian model.

3.4. Behavioral performance and Robustness

While the model displayed a significant drop ( 20%) in
its object recognition performance compared to its non-
topographical counterpart, its accuracy was still substan-
tially higher than the state-of-the-art topographical model
(Margalit et al., 2023) (TDANN=43.9%, Gaussian=53%,
ResNet18=69.57%; Fig. 7C).

In addition, we also found that LLCNN gives rise to more
robust representation. The neural network with lateral con-
nections displayed strong resilience to pixel perturbations
(Fig. 7A) compared to the non-topographical model that
also increased with larger lateral connection range (Fig. 7B;
AutoAttack ϵL2 = 1).

Moreover, the wiring length of LLCNNs was also signifi-
cantly minimized compared to ResNet18 and baseline topo-
graphic models, suggesting that optimization of the locally
laterally connected models on the object recognition objec-
tive leads to minimization of wiring cost as a byproduct (Fig.
7D), exceeding other topographical models such as TDANN
(Margalit et al., 2023). We speculate that this may arise
from the continuous padding in LLCNN, which encourages
the formation of a continuous category-selective pathways
across different layers, thereby significantly reducing the
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Figure 6. Predicting activity in the intermediate parts of the
human IT cortex. A) identifying an intermediate cortical patch
between FFA1 and PPA from NSD dataset. B) correlation maps
between LLC units (Gaussian) and each patch.

wiring length across layers compared to TDANN.

4. Discussion
Local lateral connectivity is ubiquitously found across the
cortex and specific patterns of lateral connectivity has pre-
viously been proposed as a reliable indicator of cortical
topography in adult animals of different species. We incor-
porated local lateral connections into deep convolutional
neural networks and showed that DNNs with these lateral
connections can closely simulate the topographical orga-
nization of neurons across the hierarchy of human visual
cortex.

Topographical organization without topography-
inducing learning rules and objectives. In the past
several years, a number of models have been proposed that
aim to incorporate cortex-like topographical organization
into deep neural network models. These models make
use of auxiliary learning objectives or learning rules that
encourage higher covariance across model units in closer
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proximity (Margalit et al., 2023; Blauch et al., 2022; Lee
et al., 2020; Finzi et al., 2023; Lu et al., 2023). One of the
oldest and most widely used topographical models is the
Kohonen’s self-organizing feature maps which proposes a
positionally-aware competitive learning rule to encourage
developing topographically organized units within a layer
of ANNs. SOFMs were shown to successfully replicate the
organization of feature selectivity in the early visual cortex
and more recently in the high-level visual cortex (Durbin
& Mitchison, 1990; Doshi & Konkle, 2023). Motivated by
the wiring cost minimization theory of cortical topography
Blauch et al.(Blauch et al., 2022) developed a model of
cortical topography that operated by tuning the DNN
parameters to minimze the total wiring cost in the network.
Other recent work considered a more direct approach
and defined a similarity based objective functions that
encouraged the unit responses or connectivity patterns to
follow a brain-like topographical organization (Margalit
et al., 2023; Yamins et al., 2013; Lee et al., 2020; Finzi
et al., 2023; Lu et al., 2023).
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Figure 7. Behavioral performance and Robustness We com-
pared the performance of the LLCNN with that of baseline models.
A,B) The neural networks with lateral connections showed stronger
resilience to AutoAttacks with L2 perturbations compared to the
non-topographical model, and larger lateral size gives rise to larger
robustness. C)LLCNN exhibits a better tradeoff between accuracy
and topography compared to other baselines. D) The significant
reduce in wiring length of LLCNN.

Our work demonstrates that by including local lateral con-
nections into common DNNs such as convolutional net-
works, cortex-like topography could emerge without adopt-
ing any proprietary learning objectives or learning rules.
Compared to previous approaches, LLCNNs are more bi-
ologically plausible in that they solely rely on a simple
architectural motif that has been widely observed in the ani-
mal brains and do not introduce any additional assumptions
about the neural circuits or the learning process.

Top-down influence on shaping the topographical orga-
nization. Much of the literature on studying how topograph-

ical organization is shaped in the cortex revolves around the
bottom-up and lateral connections. Likewise, most models
of cortical topography that have been used to simulate the
organization of neurons according to their selectivity have
also made use of local learning rules or objectives (Von der
Malsburg, 1973; Kohonen, 1982). Yet, our present work
as well as other recent modeling work have highlighted the
potential role of top-down credit assignment mechanisms
on shaping the cortical topographical organization. While
the biological plausibility of the backpropagation algorithm
used in this work is still under debate, several biologically-
aligned variations of this algorithm have been proposed in
recent years (Alexandre Payeur et al., 2022).

Towards globally topographic neural network models.
Earlier models of cortical topography including some of
the recent deep neural network implementations had lim-
ited scope in their topographical organization. For exam-
ple, models such as Malsberg’s and Swindale’s were only
designed to replicate the properties of the primary visual
cortex (Von der Malsburg, 1973; Willshaw & Von Der Mals-
burg, 1976) while several recent topographic DNN models
(Blauch et al., 2022; Lee et al., 2020) simulated topography
in only one layer of the network. More recent work (Mar-
galit et al., 2023; Finzi et al., 2023) has addressed this issue
by applying the organization rules in all or most layers of
the network leading to network architectures in which units
within each layer are topographically organized.

Yet, it is known that in animals with topographically or-
ganized cortices, such organization is not limited to each
region independent of others and at least some aspects of
cortical topography continuously change across the bound-
aries of classical cortical regions such as V1 and V2. For
example the eccentricity and spatial angle respects a con-
tinuum across these areas (Arcaro et al., 2009). Building
on the ubiquity of local lateral connectivity in the cortex,
the present work takes a step further towards developing
models with globally shaped topographical organization by
positioning units across all layers of the neural network
within a global coordinate system where the same connec-
tivity structure is consistently applied across all of them.

Topographical organization beyond category-selective
patches. There are many computational models of cortical
topography available, with some of them dating back to
1970s (Von der Malsburg, 1973; Willshaw & Von Der Mals-
burg, 1976). Many of these models consisted of single
differential equations that worked with abstract inputs that
coded for stimulus features such as orientation or patterns of
bright/dark dots overlaid on small arrays (Swindale, 1996).
Consequently, these models were only validated on their
ability to reproduce observed aspects of the cortical topog-
raphy in early visual areas like V1.

More modern variations of these models, implemented in
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deep neural networks, were also proposed in the last few
years. These models have extended the potential of these
models to explain the organization of neurons in higher
stages of visual processing (Margalit et al., 2023; Doshi &
Konkle, 2023). However, these models are primarily tested
on whether they contain previously discovered category-
selective patches and are only occasionally used to generate
new predictions about the brain.

In this work, we explored a new direction for using these
models for generating predictions. Namely, we used LL-
CNN models to discover selectivity at cortical landscape
at intermediate points between known category-selective
patches. We believe that existing and upcoming topographi-
cal models constitute invaluable tools for making new dis-
coveries about the organization of the cortex in large parts
of the visual cortex that are under explored.

Topography as a consequence of circuit motif that im-
proves robustness. The question of why cortex is topo-
graphically organized has peaked the minds of neuroscien-
tist for decades. Cortical columns and their highly regular
arrangements on the cortical surface arguably do not serve
any computational roles (Horton & Adams, 2005). Yet, the
functional modularity as a function of topographical orga-
nization has been proposed to lead to bias towards short
connections which is a valuable possible evolutionary goal
(Jacobs & Jordan, 1992). Indeed, several computational
modeling studies have shown that minimization of cross-
unit connections in neural networks leads to the emergence
of cortex-like topographical organization, suggesting that
the orderly arrangement of the cortex results from evolution-
ary pressures aimed to optimize the limited space within
the skull, constructing a brain that minimizes the volume of
nerves needed to connect neurons across different regions
(Jacobs & Jordan, 1992; Blauch et al., 2022).

Our results provide an alternative and perhaps complemen-
tary view to this theory. They show that cortex-like topogra-
phy could emerge as a byproduct of top-down learning in
neural networks with local lateral connectivity and without
any explicit incentive for such arrangement. In turn, this to-
pographical organization yields substantial reduction in the
overall connection volume. Moreover, neural networks with
lateral connections lead to formation of neural ensembles
that are not only clustered together but also that are compu-
tationally interconnected. Consequently, robustness to input
perturbations in LLCNNs are substantially improved. This
view of neural computation based on neural ensembles is
closely related to classic approaches in machine learning
such as bagging, boosting, and random forests showing that
ensembles of weak processing units construct stronger and
more robust information processing units.

Topography as modular learning. Moreover, the func-
tional organizational framework is analogous to the modular

learning in deep learning (Pfeiffer et al., 2023). This con-
nection offers a potential solution by organizing parameters
into distinct, independently accountable regions. The pro-
found link between causal representations and modularity
is noteworthy. Structural causal models commonly assume
the breakdown of knowledge about causal influences into
independent mechanisms (Parascandolo et al., 2018) — a
concept that highlights the strong connection between cause-
and-effect models and modularity.

Topographical organization improves interpretability.
Additionally, because of their modular structure, LLCNNs
have the capability to alleviate the notorious challenges
associated with polysemanticity, thereby enhancing the in-
terpretability of deep learning. Decomposing topographic
neural networks into smaller modules (Olah et al., 2020)
offers a promising avenue for improving interpretability. By
understanding the function of each component, and how they
interact, we could reason about the behavior of the entire
network. Identifying and analyzing the correct components
is the initial step in this process, and the feature-selective
patches in topographic models facilitate the localization of
target components. Furthermore, many neurons exhibit pol-
ysemanticity, responding to mixtures of seemingly unrelated
inputs. This polysemanticity complicates the understanding
of network behavior in terms of individual neuron activ-
ity. Topographic neural models present a potential solution
by encouraging a significantly higher number of selective
units. This feature makes topographic models a promising
approach for identifying an interpretable set of features.

The link between topographical organization and fault
tolerant computation.

A natural comparison can be made between kernel average
pooling in neural networks and the majority voting mecha-
nisms in von Neumann’s fault-tolerant automata (Von Neu-
mann, 1956). Both methods enhance robustness and fault
tolerance through redundancy and aggregation.

In neural networks, particularly those employing kernel aver-
age pooling, the local lateral connectivity (LLC) encourages
the formation of multiple redundant neurons with similar
functions. This redundancy mirrors the self-repair mecha-
nisms found in biological systems (Zlokapa et al., 2022).
Just as majority voting in von Neumann’s automata ensures
reliable computation despite faulty components by relying
on the consensus of multiple redundant elements, kernel
average pooling mitigates the impact of noisy or corrupted
inputs through averaging.

This approach suggests that neural networks with LLC and
kernel average pooling can achieve higher resilience and
maintain performance under ablation tests better than non-
topographical counterparts. The inherent redundancy and
fault tolerance in these models allow them to carry out

7



Under review at ICML 2024 AI for Science workshop

reliable computations even when individual components are
compromised.

5. Methods
Architecture We used the ResNet18 architecture (He et al.,
2016) for all model variations in our work. In contrast to
the original ResNet18, we arranged the model units (i.e.
convolutional kernels) on a 2D plane that simulated the 2D
surface of the cortex (i.e. simulated cortical sheet). The
arrangement was systematic both within and across layers
of the network, grounding each unit in a physical space
that allowed defining physical distance between each pair
of units both within a layer and across (Fig. 1), thereby
breaking the symmetry not only among units within kernels
but also among kernels themselves. This was inspired by
the continuous physical proximity of neurons within cortical
areas that are hierarchically close (e.g. V1 and V2).

We considered the computations performed by the local
lateral connections to be primarily captured by the following
equation:

yt+1 = Wy ⊛ yt + σ(Wx ∗ xt + b) (1)

where xt and yt denote the input to and output from a given
network layer, Wx the kernel weights of the convolution op-
eration ∗ applied along the spatial dimensions of the input,
and Wy the local lateral connection kernel of the Kernel
Pooling (KP) operation ⊛ (Bashivan et al., 2022) applied
along the kernel dimensions of yt. This approach mirrors
the principles of spatial pooling operation but applied along
the kernel dimension(s) of the layer activations. For simplic-
ity, in our simulations, we consider a single-step variation
Eq. 1 where the output is computed only once and not itera-
tively for multiple steps. Therefore, the convolutional layer
with this simplified kernel pooling essentially computes the
following equation:

y = Wy ⊛
(
σ(W ∗ x+ b)

)
(2)

To allow embedding of units from different layers within
the same simulated cortical sheet, despite the differences in
the number of kernels within each layer, we replaced the
traditional zero padding with Continuous Padding which
involved appending the size-matched activation from the
preceding layer to the current layer’s activation before apply-
ing the KP operation. Several variations of the KP models
were trained including: 1) Kernel Average Pooling (Mean):
Computes the average of unit activations within the region of
the feature map covered by the filter; 2,3) Kernel Gaussian
Pooling (Gaussian), Kernel Mexican-hat Pooling (Mexican-
hat): Computes the weighted average of the unit activation
within the filter regions based on a Gaussian and Mexican-
hat weighting function respectively; 4) Learnable average

pooling where the KP parameters Wy are considered as
learnable parameters and are optimized along with other
network parameters on minimizing the objective function

More details on methodology can be found in the Appendix.
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A. Appendix
LLC model with locally connected layer We additionally trained a variation of LLC model where we replaced the
first convolutional layer of the network is replaced with a locally-connected layer. Unlike convolution layers, which
share weights across the spatial dimensions, locally connected layers employ independent sets of weights at each spatial
location, enhancing the expressiveness of the preference map, particularly within V1. However, it’s noteworthy that this
modification significantly intensifies GPU memory usage. Therefore, in our implementation, we opt to replace only one
layer with a locally-connected layer in each model to manage memory constraints. Following prior observations reporting
the arrangement of neural selectivity according to eccentricity and polar angle (Arcaro et al., 2009), we arranged the layer
weights corresponding to different patches on the simulated cortical sheet following a similar pattern .

Training Each neural network model was trained on the Imagenet dataset (Deng et al., 2009) for 100 epochs. We used the
Adam optimizer (Kingma & Ba, 2014) for computing the parameter updates from gradients and a scheduler with an initial
learning rate of 0.1. We considered training models with fixed-size (fixed sized LC) and exponentially decaying (decayed
LC) lateral connection size. In the fixed sized-LC mode, the size of the lateral connection kernel Wy was predetermined and
held constant as 0.1 and 0.23 during training while in the decayed-LC mode, we began training using a maximally-sized
lateral connection kernel Wy which was equal to the size of the layer map and exponentially decayed the size throughout
training. Empirically, we observed that the decayed-LC training leads to the emergence of topographical organization at
increasingly finer scales.

Objective function We trained the neural network models using supervised or unsupervised learning objectives. The
preferred supervised networks were solely trained to minimize the object classification cross-entropy loss on the ImageNet
dataset. For the unsupervised training, we considered a non-contrastive approach which has been shown to produce rich
visual representations across various architectures (Chen et al., 2020).

A.1. V1

Preference map For analyses presented in Fig. 4, we quantified the orientation, spatial frequency and chromaticity of
selectivity of units in layers of each neural network model. We used a stimulus set consisting of grating stimuli of various
orientations, spatial frequencies and colors (black/white vs. red/cyan). For each unit, we identified the orientation, spatial
frequency, and color that elicited the highest response in that unit and considered that as the preferred stimulus property
within each category. To visualize the preferred stimulus property maps, we assigned a color to each unit in the map that
indicated the preferred stimulus, which maximizes unit activation strength. The unit size encodes the stimulus selectivity. To
quantitatively measure orientation selectivity, we employed the circular variance as in Ringach et al. (Ringach et al., 2002),
where lower values signify sharper and more selective tuning, approaching 0.

Pairwise preference difference For the analysis presented in Fig. 2 and 4, we quantified the change in unit preferences as a
function of pairwise distance between units. For this, we first quantified the preferred stimulus value for each unit (A.1) and
then computed all pairwise unit preference differences within all units in each layer. We divide the difference values by the
chance value obtained by random resampling of unit pairs. In this fashion, ∆ preference equals to 1 indicating the value
expected by random. We then plot the average absolute difference in pairwise stimulus preferences as a function of the
pairwise distances on the simulated cortical sheet (Margalit et al., 2023).

Pairwise correlation Prior work (Margalit et al., 2023) quantified the rate of pairwise neural correlations as a function
of cortical distance between recording sites which shows an exponentially decaying pattern across different brain areas.
To replicate this in the model, we quantified the pairwise correlation between units within each unit in each model layer
across all stimuli in the NSD dataset. We then compute the average pairwise Pearson correlation between model units within
each layer and plot those values against the pairwise distances on the simulated cortical sheet. In contrast to the pairwise
preference difference analysis which solely compares the unit activity at their maximum activation for a specific stimulus
type, this analysis comprehensively compares entire patterns of unit activity in response to all types of stimuli.

Distribution of orientation differences It is known that the orientation selectivity of 60-75% of laterally connected neurons
falls within 45◦ of the selectivity of the source neuron (Muir et al., 2011). To investigate this in our model, we calculated the
distribution of delta orientation selectivity between each unit and its neighboring units within each neural network layer.

Orthogonality As previously demonstrated (Nauhaus et al., 2012), orientation and spatial frequency gradient directions on
the surface of cortex were highly skewed towards orthogonality. To quantify this in our model, we first mapped the contours
of orientation and spatial frequency preference maps within each model layer. We then superimposed the contour maps
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of the two attributes and identified the cross sections and quantified the angles between them using opencv. Finally, we
visualized the distribution of angles at the intersections of these maps.

V4 Best stimulus set We determined the inputs from MEI (Walke et al., 2018), contour and shape datasets which elicited
the maximum units activations, and visualized them in the simulated cortical sheets with units’ physical positions.

A.2. IT

Selectivity map We evaluated the model units in terms of their selectivity to faces, body parts, scenes, word forms, no-man’s
land, and other objects. For this we used the functional localizer stimulus set (fLoc) (Stigliani et al., 2015) to quantify
similarity to all categories except no man’s land which was quantified on the stimulus set from (Bao et al., 2020). In addition
to selectivity to these categories we also we quantified the selectivity to animate and inanimate objects as well as object size
using (Konkle & Caramazza, 2013).

Selectivity was measured by computing the t-value measure adopted from (Margalit et al., 2023), where we measure the
difference of responses to the target category in contrast to other categories (e.g. face vs. other objects) and normalize
the difference by amount variance in each distribution. In this way, the higher the t value is between two distribution of
responses the larger and more significant is the difference between the two distributions. Accordingly, higher t values could
be interpreted as stronger selectivity of units for a particular class of objects.

t =
µon − µoff√
σ2
on

Non
+

σ2
off

Noff

(3)

where µon and µoff are averages, and σon and σoff are standard deviations of on and off categories respectively, N denotes
the number of samples within categories

We then visualize the t-values for each neuron overlaid on the map of simulated cortical sheet where, each unit’s color and
size both denote the selectivity of that unit towards the target category.

Smoothness To compute the smoothness of topography, we define the smoothness score by comparing the maximum and
minimum correlation.

Elongation Most category-selective patches in human cortex are elongated along the posterior-anterior axis of the temporal
cortex. We qualitatively observed that the when training LLC networks with progressively decaying lateral connectivity, the
corresponding category-selective patches in the model also exhibit elongation along the posterior-anterior axis (shallow to
deep layers) of the model. To quantify this phenomenon, we evaluated the elongation of patches at different rates of decay
during training. We defined the patch elongation ratio as the length of the patch measured along the posterior-anterior axis
divided by the length of patch along the lateral direction which is defined as the axis orthogonal to the posterior-anterior axis.

Patch size To quantify the relationship between the patch size and local lateral connectivity size, we evaluate the size of
category patches in models with different kernel pooling sizes. Using a t-value threshold of 5, we determine the size of
candidate patches in the selectivity map by counting the number of activated units within contiguous regions.

Patch to patch similarity After identifying the model patch corresponding to each category-selective brain patch, we
measured the representational similarity between each pair using Pearson correlation. For this, we computed the correlation
between each unit’s average activation in the model patch and the average fMRI response in the corresponding visual cortex
patch when both are activated by the same stimuli from the Natural Scene Dataset (NSD) (Allen et al., 2022).

Identifying the category selective patches corresponding to each brain area We determined the corresponding visual
cortex patches of category patch in models by identifying the maximum patch-to-patch similarity. The visual cortex patches
that exhibited the highest similarity to the category patch were considered as corresponding patches in the model.

A.3. Intermediate Patch Analysis

Unit correlation map To create the unit correlation maps, we calculated the Pearson correlation between each model unit’s
activity and the corresponding fMRI responses within the target patch to the full set of stimuli from the NSD dataset. We
then visualized the unit correlations using a heatmap plot where the degree of correlation was displayed by the assigned
color to each unit.
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Intermediate patch correspondence In evaluating topographical models of cortex in terms of their alignment with high
level visual cortex, these models are commonly inspected for existence of category-selective unit clusters within their
layers. While essential, this type of analysis is restricted to known category-selective patches and does not probe whether
the topography of these models matches that of the brain outside of these patches. To expand our assessment, we employ
an intermediate patch analysis which aims to demonstrate the model’s capability to predict the unknown intermediate
patch between two category patches in the visual cortex. To perform this analysis we chose two highly consistent category
selective brain regions, namely the Fusiform Face Area (FFA) and Parahippocampal Place Area (PPA) in each subject’s
brain. We then found the center voxel of each patch in that subject and calculate the straight line that connects the two points
across the surface of the cortex. We then identify the middle point on that line and define an area of 10 by 15 voxels around
that point as the intermediate patch. We follow a similar procedure in the model to identify the model’s intermediate patch
and compute the correlation between the two corresponding intermediate patches in the model and the brain in each model.

As a secondary analysis, we also quantify the topographical match between the model and the brain by calculating the
degree of curvature a model exhibits when one moves along the trajectory on the model’s simulated cortical sheet that best
corresponds to the straight line on the cortex. For this, we compute a sequence of 5 intermediate patch centroid fMRI values
in the brain and correlate them with the model unit activity. Consequently, we identify a series of corresponding intermediate
patches within the models. Our assumption is that if the topography is similar, the transition of these intermediate patches in
models should follow a linear trajectory, with a curvature of the shortest path connecting these intermediate patches being 0.
To quantify the accuracy of this prediction, we assess the curvature of the shortest path from the face to the place patch
within our models.

A.4. Behavioral performance and Robustness

Object recognition performance. We utilized the ImageNet test dataset (Deng et al., 2009), comprising over 5000 labeled
images across 1000 classes, for evaluating our model. Images were preprocessed with standard transformations. Evaluation
metrics included Top-1 and Top-5 accuracies.

Wiring length To quantify wiring length, we followed the approach from Margalit et al. (Margalit et al., 2023) where units
with the highest responses in each layer are first identified and subsequently, the length of inter-layer connectivity necessary
to link these identified units are calculated according to their physical distances on the simulated cortical sheet. Specifically,
for a given stimulus, we pinpoint the top 5% most responsive units in each of the four adjacent sub-layers. The inter-layer
connectivity is established using the k-means clustering algorithm, with connections continuously added until the total
”inertia” of the k-means clustering falls below a specified threshold. The total wiring length is then determined as the sum of
the lengths of each individual inter-layer connectivity and the intra-layer connectivity which connects the centroids across
layers. It is important to note a distinction from a previous study (Margalit et al., 2023), where the average wiring length
across all shift directions was reported. In our model, the anterior and posterior directions are explicitly defined, eliminating
the need for direction shifting in our analysis.

Robustness We evaluated the model’s robustness to natural and synthetic input perturbations. For adversarial robustness,
we evaluated the model’s performance under the AutoAttack (Croce & Hein, 2020) with L2 perturbation epsilon from 0 to
2.5 which is a complex and reliable ensemble attack consisting of several white-box and black-box attacks. To measure the
relationship between robustness and laterally connectivity size, we evaluated the model’s performance with varying lateral
size under AutoAttack.
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