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Abstract—Accurate forecasting of the number of infections is 
an important task that can allow health care decision makers to 
allocate medical resources efficiently during a pandemic. Two 
approaches have been combined, a stochastic model by Vega et al. 
for modelling infectious disease and Long Short-Term Memory 
using COVID-19 data and government’s policies. In the proposed 
model, LSTM functions as a nonlinear adaptive filter to modify the 
outputs of the SIR model for more accurate forecasts one to four 
weeks in the future. Our model outperforms most models among 
the CDC models using the United States data. We also applied the 
model on the Canadian data from two provinces, Saskatchewan 
and Ontario where it performs with a low mean absolute 
percentage error. 

Keywords—COVID-19, Long Short-Term Memory, 
epidemiological model, policy pruning 

I. INTRODUCTION 
Controlling the dynamic waves of a pandemic, recently 

COVID-19 turns out to be a very difficult task as the spread of 
the aforementioned is influenced by numerous factors such as 
governments’ policies. Real-world events during a pandemic 
time are generated with a lot of complexity in the form of linear 
and non-linear representations. Since the outbreak of the 
pandemic, despite the rapid expansion of the virus worldwide, 
governments and health institutions have played a significant 
role to contain and limit the negative effects on their populations. 
Most of these efforts, known as responses, have been translated 
into policies that range from containment and closure policies, 
and vaccination policies to health system policies. These policies 
have contributed significantly to combat the COVID-19 
exponential growth in some countries where they were strictly 
imposed. Apart from policy measures, many scientific 
approaches have been implemented as part of these efforts to 
predict the number of infected people in the near, medium, and 
long future in order to support government timely decisions in 
terms of resource allocations. In [1], Vega et al. outline these 
approaches in three groups, mainly compartmental models [2], 
[3], statistical methods [4], [5], and machine learning-related 
approaches [6], [7]. Compartmental models, for example, The 
Susceptible-Infected-Removed (SIR), is one of the mathematical 
models in epidemiology grounded on the principles of basic 
differential equations for modeling infectious diseases. Several 

works have tried to combine the stochastic nature of the SIR 
model with advanced mathematical methods in statistics and 
machine learning in order to improve the forecasts of new 
infections [8], [9], [10].  

In this paper, firstly, we have proposed a policy pruning 
analysis within the neural network model in order to understand 
the impact of three types of policy on the dynamic trends of the 
infected number of people from one to four weeks in the future. 
Secondly, we have trained a Long Short-Term Memory (LSTM) 
model that was combined with a basic SIR model while 
considering the policy that was in place in order to make 
forecasts one to four weeks in the future. This model has 
produced the least error compared to the CDC baseline model. It 
has also been compared to the SIMLR (Machine Learning Inside 
the SIR model) model in [1] which uses a stochastic Markov 
chain approach. The model has achieved one of the least errors 
in terms of near-future forecasts of newly infected people. Unlike 
the SIMLR model, the LSTM-based model leverages neural 
network capabilities with long-term dependencies as well as 
policy data in order to make predictions up to four weeks in the 
future.  

The term dependency is crucial in this specific work, as it is 
related to the current effects of policies that have been in place 
for two to three weeks. This assumption is confirmed with the 
pruning analysis of policy, which has revealed that policies in 
effect during the first week do not have any additional impact in 
predicting the new number of infected people one week in the 
future. However, the effect substantially grows as time moves on, 
from two to four week-ahead predictions, the model obviously 
relies on the effect of the policy in order to capture the trends of 
the pandemic.  

In Fig. 1 below, we show the impact of policies in driving the 
number of infections amidst the pandemic by removing a single 
policy such as vaccination, stay-at-home policy, etc. at a time in 
the machine learning model like SIMLR and recording their 
performance across time. Compared to the result in Fig. 4, which 
runs the original model without any alteration, we show what we 
call “policy pruning” by removing two policies mainly the 
vaccination policy and stay-at-home requirement from the model, 
and have noticed that the model error significantly increases from 
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mean error 33 to 37, and it is clear that the SIMLR model relied 
on those policies at week 14 and 23 to make more accurate 
forecasts. 

The possibilities of including different policies in a 
mathematical model to analyze their impact on the trends of the 
pandemic is a crucial task though challenging. In most cases 
there is a scarcity of data at the beginning of the outbreak, 
therefore researchers need to rely on domain knowledge, which 
when inaccurate will lead to inaccurate results from the model. 

This paper brings two contributions. First, we show the 
effects of policy implementation in the forecasts of the number 
of newly infected people. Our model shows that the policies in 
place during the current week do not contribute much to the 
short-term predictions but the effects become more considerable 
in the long-term predictions. Second, instead of relying on a 
stochastic approach, we proposed the use of the LSTM model 
that is combined with the time-varying SIR model in order to 
make more accurate forecasts one to four weeks in the future. 

II. SIR MODEL WITH TIME-VARYING PARAMETERS

Within a homogenous and constant population, modeling 
infectious diseases can be done by a basic mathematical model 
commonly known as The Susceptible-Infected-Recovered (SIR) 
compartmental model [11]. In this classic sense, the population 
is divided into three distinct groups. The susceptible group is a 
subpopulation of individuals that have not yet been in contact 
with the disease but they can acquire it when they come in 
contact with the second group. This group is the Infected, a set 
of individuals that contracted the disease and are capable of 
transmitting it. The last group is the Recovered (or the Removed), 
which is the number of individuals that have gained immunity 
against the disease, or in worst scenarios have died from the 

infection [12]. The differential equations that govern this model 
are as follows: 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −
𝛽𝛽𝑆𝑆(𝑡𝑡)𝐼𝐼(𝑡𝑡)

𝑁𝑁
(1) 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=
𝛽𝛽𝑆𝑆(𝑡𝑡)𝐼𝐼(𝑡𝑡)

𝑁𝑁
− γ𝐼𝐼(𝑡𝑡) (2) 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝛾𝛾𝛾𝛾(𝑡𝑡) (3) 

both the transmission rate (β) and the recovery rate (γ) control 
the dynamic transition between the susceptible group and the 
recovered, and N = S + I + R, the total population under a 
constant assumption. In a basic approach with fixed parameters, 
this model can perform poorly in order to allow near-future 
predictions. However, the parameters β and γ can be optimized 
to reflect the change in the trend for more accurate predictions in 
the long future. This experiment applies the optimization 
algorithm as illustrated in [1] in order to find the optimal 
parameter of the SIR model.  

Given the differential equations from Eqs. (1), (2), and (3), a 
basic SIR model can be rewritten with the following Eqs. (4), (5), 
and (6), respectively: 

𝑆𝑆𝑡𝑡 = −β
𝑆𝑆𝑡𝑡−1𝐼𝐼𝑡𝑡−1

𝑁𝑁
+ 𝑆𝑆𝑡𝑡−1 (4) 

𝐼𝐼𝑡𝑡 = β
𝑆𝑆𝑡𝑡−1𝐼𝐼𝑡𝑡−1

𝑁𝑁
− γ𝐼𝐼𝑡𝑡−1 + 𝐼𝐼𝑡𝑡−1 (5) 

𝑅𝑅𝑡𝑡 = γ𝐼𝐼𝑡𝑡−1 + 𝑅𝑅𝑡𝑡−1 (6) 

As in the previous differential equations, 𝑆𝑆𝑡𝑡 , 𝐼𝐼𝑡𝑡 , 𝑅𝑅𝑡𝑡  refer to 
the number of Susceptible, Infected, and Removed people, 
respectively, at a specific discrete time t. The parameters β and γ 
(the transmission rate and the recovery rate, respectively) control 
the flow of the transition between different groups. Since the SIR 
model is linear to these parameters under a constant N. the 
equation can be solved in a linear equation of the following type: 

�𝑆𝑆𝑡𝑡𝐼𝐼𝑡𝑡
� = �

−
𝑆𝑆𝑡𝑡−1𝐼𝐼𝑡𝑡−1

𝑁𝑁
0

𝑆𝑆𝑡𝑡−1𝐼𝐼𝑡𝑡−1
𝑁𝑁

−𝐼𝐼𝑡𝑡−1
� �βγ� + �𝑆𝑆𝑡𝑡−1𝐼𝐼𝑡𝑡−1

� (7) 

𝑅𝑅𝑡𝑡 = 𝑁𝑁 − 𝑆𝑆𝑡𝑡 − 𝐼𝐼𝑡𝑡 (8) 

If a sequence of states denoted as 𝓍𝓍1 ,…,𝓍𝓍𝑛𝑛  where 𝓍𝓍𝑡𝑡 =
[𝑆𝑆𝑡𝑡  𝐼𝐼𝑡𝑡]𝑇𝑇,  the optimal parameters of the model are estimated in the 
Eq. (9): 

(β∗, γ∗) = 𝑎𝑎𝑎𝑎𝑎𝑎min
β,γ

� ||𝑥𝑥𝑖𝑖 − 𝑥𝑥�𝑖𝑖  ||2 + 𝜆𝜆1(β − β0)2
𝑛𝑛

𝑖𝑖=1
+ 𝜆𝜆2(γ − γ0)2 

(9) 

• 𝑥𝑥�𝑖𝑖 : a sequence of predicted values derived from the
Eqs. (7) and (8)

Figure 1. Policy pruning from the SIMLR model 
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• 𝜆𝜆1 𝑎𝑎𝑎𝑎𝑎𝑎 𝜆𝜆2  : regularization terms derived as
1
𝜎𝜎𝛽𝛽
2  𝑎𝑎𝑎𝑎𝑎𝑎 1

𝜎𝜎𝛾𝛾2
, respectively. 

• 𝛽𝛽0 𝑎𝑎𝑎𝑎𝑎𝑎 𝛾𝛾0:  prior parameters from Gaussian priors.

The optimization algorithm in Eq. (9) computes the optimal 
values of the transmission rate and the recovery rate that justifies 
the number of COVID-19 cases, deaths and recovered people at 
a specific time frame. For example, given a daily sequence of 
data 𝓍𝓍1, …, 𝓍𝓍n where n = 7 (weekly), a pair of β1, γ1 is computed 
by fitting a simple ridge regression model to the previous weekly 
sequence. for the pair (β2, γ2), 𝓍𝓍8, …, 𝓍𝓍14 are fitted to the model, 
the process goes on until the last week of sequences. The values 
of β and γ are continuously updated on a weekly basis to predict 
the number of new infected people in the following week.  

III. RELATED WORKS

Since the outbreak of COVID-19 in China, predicting the 
trends of the disease became one of the central themes in research 
as it contributes to the effective decision-making process and 
directs the allocation of medical resources [13-19]. In [20], the 
US Center for Disease and Prevention Control (CDC) shortly 
after the outbreak introduced a contest for accurate predictions of 
the number of newly infected people and deaths for effective 
control of the epidemic in the short, medium, and long terms. At 
the time of writing this paper, the repository contains 122 models 
submitted by different research groups from all over the world, 
for example [21], [22], [23]. Ref. [1] proposed a probabilistic 
graphical model that incorporated machine learning inside the 
SIR model for forecasting the number of newly infected people 
within one to four weeks in advance. The basic idea behind their 
work is to use machine learning to learn complex patterns of the 
model that augments the capabilities of the SIR model by using 
prior expert knowledge. Although relying on expert knowledge 
could lead to inaccurate results when this knowledge is 
misrepresented or inaccurate, their model outperformed several 
state-of-the-art models in the CDC repository, including the 
CDC baseline model. 

Another line of work relevant to this study is [24], which 
incorporates machine learning into the epidemiological 
compartmental model SEIR (Susceptible-Exposed-Infected-
Recovered) to forecast the trend of COVID-19. One major 
limitation of this work is a decline in terms of the performance 
of the model when there is a change in the number of new 
infections. In [1], this change in trend (e.g., the number of new 
infections declining) was hypothesized to be related to the 
government policies in place at a specific point in time. However, 
our study suggests that this reflection in government policies 
does not seem to play an important role in 1-week ahead 
prediction but they gradually reflect the trend as the prediction 
window moves to 2, 3, etc. weeks ahead. Another important work 
proposed by [10] proposes a time-varying parameter of the SIRD 
(Susceptible-Infected-Recovered-Dead) model using deep 
learning to improve forecasting accuracy. Unlike our research, 
they used mobility data from cellphones and positive test rates to 
capture the dynamic waves of the pandemic. 

In this research, we compare the results of our model with the 
CDC baseline model on the United States’ COVID-19 data. As 
for the Canadian provinces, we use the SIMLR as the baseline 
model. 

IV. METHODS

The use of the Long Short-Term Memory (LSTM) model 
proposed in this research is built on top of the SIR model. We 
use both a stochastic modelling and deep learning approach. In 
the first approach, candidate features are extracted from two 
types of datasets. First, government policies mainly the 
workplace closing, stay-at-home requirement and vaccination 
policy for the US, and for Canada the last policy is replaced by 
cancel public event. Second, the number of confirmed COVID-
19 cases. In the second approach, the LSTM model functions as 
a nonlinear adaptive filter to modify the outputs of the SIR model 
to make more accurate predictions. 

A. Data and Preprocessing 
The Oxford COVID-19 Government Response Tracker 

(OxCGRT) [25] keeps track of the policies implemented by 
different governments during the pandemic sorted into the 
following groups: containment and closure policies, economic 
policies, health system policies, vaccination policies, and 
miscellaneous policies. In this research, we have used three 
policies for both the US data at the national level and the 
Canadian provinces. Each policy in the database is encoded with 
an ordinal number ranging from 0 (not implemented) to 1, 2, 3, 
or 4 (the higher the value, the stricter a given policy was enforced 
at a specific point of time), or a continuous value that represents 
a monetary amount (e.g., funding for research). For this work, 
each policy was transformed into a 3-dimensional vector wherein 
each value represents the probability estimation of whether a 
policy is relaxed, unchanged (remains the same since 
implemented) or strictly enforced at a given time. 

The COVID-19 Data Repository by the Center for Systems 
Science and Engineering (CSSE) from Johns Hopkins University 
[26] was used to extract the cumulative number of reported 
infections, which was transformed into the number of new daily 
infections. The last-mentioned feature was used for both US and 
Canada. In addition, workplace closing, stay-at-home 
requirement, cancel public events and vaccination policies were 
used with the last two policies for Canadian provinces and US, 
respectively. Finally, in order to make the data consistent for the 
model, the normalization was applied to the time series by 
subtracting the mean from the series and dividing it by the 
variance. We combined the time series data with the policy data 
to make more accurate predictions from one to four weeks in the 
future. The goal is to allow the LSTM model to be able to learn 
from the policies implemented at a specific time that drive the 
number of new infections in the following weeks. 

B. Proposed model 
Our model is a combination of the time-varying parameters 

SIR model that we previously covered and the LSTM network. 
As for the LSTM model, it is a variant of recurrent neural 
network that was introduced by Hochreiter and Schmidhuber 
[27]. LSTM is a widely adopted artificial neural network 
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algorithm in areas such as speech recognition, sequence models, 
time series prediction, etc. 

The basic idea behind the LSTM network is to solve the 
problem of vanishing gradient encountered in classic RNN 
models. LSTM turns out to be a robust alternative in terms of 
handling long-term dependencies. We shortly introduce the 
LSTM cell in the following equations: 

𝐶̃𝐶𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑐𝑐[𝑎𝑎𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑐𝑐) (10) 

𝛤𝛤𝑢𝑢 = 𝜎𝜎(𝑊𝑊𝑢𝑢[𝑎𝑎𝑡𝑡−1, 𝑥𝑥𝑡𝑡−1] + 𝑏𝑏𝑢𝑢 (11) 

𝛤𝛤𝑓𝑓 = 𝜎𝜎(𝑊𝑊𝑓𝑓[𝑎𝑎𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑓𝑓) (12) 

𝛤𝛤𝑜𝑜 = 𝜎𝜎(𝑊𝑊𝑜𝑜[𝑎𝑎𝑡𝑡−1, 𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑜𝑜) (13) 

𝐶𝐶𝑡𝑡 = 𝛤𝛤𝑢𝑢 ∗ 𝐶̃𝐶𝑡𝑡 + 𝛤𝛤𝑓𝑓 ∗ 𝐶𝐶𝑡𝑡−1 (14) 

𝑎𝑎𝑡𝑡 = 𝛤𝛤𝑜𝑜 ∗ 𝜎𝜎 (𝐶𝐶𝑡𝑡) (15) 

In Eq. (10), 𝐶̃𝐶𝑡𝑡  is a candidate feature that computes the 
activation function 𝜎𝜎 (ReLu in this case) of the parameters 𝑊𝑊𝑐𝑐 
and 𝑎𝑎𝑡𝑡−1, which is the activation of the previous timestep and 𝑥𝑥𝑡𝑡 
which represents a point, e.g., the number of daily infected 
people at discrete time t. {𝛤𝛤𝑢𝑢 ,𝛤𝛤𝑓𝑓 ,𝛤𝛤𝑜𝑜 ,} stands for the update gate, 
forget, and output gates, respectively. 𝐶𝐶<𝑡𝑡> is a memory cell that 
computes the element-wise product of those gates, and decides 
on the information to remember or discard. Finally, 𝑎𝑎𝑡𝑡 computes 
the activation of the current timestep. This model is proposed on 
top of the Markov stochastic model, and has the advantage of 
being trained with a number of policies that are relevant to the 
tendency of new infections. 

Initially, a stochastic SIR model with time-varying 
parameters computes the number of susceptible, infected and 
removed people, and returns the output which is fed into the 
LSTM model to make more accurate forecasts of the number of 
infected people one to four weeks ahead of time. The LSTM 
model makes new prediction by using three types of input, the 
output from the SIR model, the output from the SIR model 
when the policy is either relaxed, strict or there is no change 
at all and the SLOW (Same as the Last Observed Week) output  
from [1] which relies on βt+1 and γt+1 (predicted parameters), such 
that the predicted number of new cases at week t + 1 is identical 
to the one at week t. in short, this is only the copy of the 
prediction of the week at t -1 (last week). The output of the LSTM 
model is a scalar, which is an estimation of the predicted number 
of cases within the range of time specified above. Fig. 2 depicts 
in a visual approach the proposed LSTM model:  

The LSTM network structure used in this experiment 
contains four layers. The first layer has 64 units which is divided 
by two in the following layers. The ReLu activation function was 
used, and the model was trained using the Adam optimizer with 
a mean squared error loss function. 

C. Evaluation of the model 
The performance of this model was evaluated in terms of the 

mean absolute percentage error (MAPE) from the data of the 
United States and two of the provinces of Canada (Saskatchewan 
and Ontario) in a window of one to four weeks in advance. For 
comparison and consistency purpose, since we compare the 
performance with SIMLR model, we have used the same time 
frame, which is 39 weeks from July 26, 2020 to May 1, 2021. In 
addition, this period is ideal as most publicly available models in 
the CDC repository had submitted their predictive points that we 
could use to compare the performance. The evaluation metric is 
presented in the equation below: 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =  
1
𝑛𝑛
��

𝑦𝑦𝑡𝑡 − 𝑦𝑦�𝑡𝑡
𝑦𝑦𝑡𝑡

�
𝑛𝑛

𝑡𝑡=1

 (16) 

V. RESULTS 
In Fig. 3, we compare the performance of the proposed model 

(LSTM-TVP-SIR) with the publicly available models submitted 
at the CDC repository from the COVID-19 Forecast Hub. 
Predictions are submitted as either point forecasts or quantile 
forecasts. The comparison is made with models that consistently 
submitted point forecasts from July 26, 2020 to May 1, 2021. The 
models that simply submitted quantile forecasts were not 
considered. It is remarkable that our proposed model performs 
better than the baseline model (in red), and reports a consistently 
lower MAPE than most models in the US data at the country  

level. In Fig. 4 the performance of the proposed model is 
compared with the SIMLR model using the United States data 

for one to four weeks in the future. Although the difference in 
terms of MAPE is significantly low across time, our proposed 
model seems to capture the waves of infections without strong 

Figure 2. Comparison of the proposed model with CDC models 

Figure 2. The Architecture of the Proposed Model 

Figure 3. Comparison of the proposed model with CDC models. 
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fluctuations which are found in the SIMLR model in the long run, 
at week 14 for example in a four-week ahead forecast. 

The MAPE of both models are reported in the Table I. It is 
significantly noticeable that wherever the SIMLR model shows 
strong fluctuations, our proposed model seems to capture the 
reality (in blue) closely well. However, the result shows that 
SIMLR slightly performs better in whole at the country level. 
This can be attributed to the fact that policies are generally 
enforced at state level rather than at country level. Therefore, 
different states may have implemented different policies at 
different times, which can be a major limitation of this approach. 

In Table II and Table III, we compare the result of our model 
with the data from two of Canadian provinces, Saskatchewan and 
Ontario. On average, the proposed model works better than the 
SIMLR model. Unlike the US case, the result of the Canadian 
provinces turns out to be low, and increasingly lower than the 
competing model from one to four weeks ahead. 

VI. CONCLUSION

Predicting the number of new infections during the pandemic 
is a crucial task as it contributes to the effective decision-making 
process and helps to direct the allocation of medical resources 
efficiently. Therefore, making accurate forecasts can require 
more complex processes to consider such as the governments’ 

Figure 4. Comparison of SIMLR Model and our proposed model on the US Data (Country level) 

TABLE I. MEAN ABSOLUTE PERCENTAGE ERROR FOR US DATA 

MAPE 
Weeks ahead SIMLR MODEL LSTM MODEL 

1 9.7 10.4 
2 16.0 17.1 
3 23.3 24.6 
4 34.9 35.5 

TABLE II. MEAN ABSOLUTE PERCENTAGE ERROR FOR CANADIAN PROVINCE: 
SASKATCHEWAN 

MAPE 
Weeks ahead SIMLR MODEL LSTM MODEL 

1 15.4 14.4 
2 30. 28.6 
3 38.6 36.8 
4 47.1 49.4 

TABLE III. MEAN ABSOLUTE PERCENTAGE ERROR: ONTARIO  

MAPE 
Weeks ahead SIMLR MODEL LSTM MODEL 

1 14.1 12.8 
2 28.9 27.2 
3 42.2 39.5 
4 55.4 51.2 
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policies. In addition, representing these policies in mathematical 
models turn out to be a more intricate task.  By leveraging both 
the power of a stochastic model and neural network architecture, 
we trained an LSTM model that performed better in capturing 
the dynamic waves of the pandemic while relying on the policies 
implemented by the government. In a short-term prediction, e.g. 
one week, the effects of the policy can be slightly noticeable as 
in the case of SIMLR model but their effect substantially 
becomes visible in the long run predictions, two to four weeks 
ahead. 

 The proposed method based on the model by [1] with LSTM 
filtering has significantly performed better than the COVID-hub 
baseline model including several other models from the CDC 
repository. We have also compared our model with the SIMLR 
model using the Canadian data from two provinces, 
Saskatchewan and Ontario. Our model performs slightly better 
in the first-mentioned province but in the second, the difference 
is remarkable where our proposed model performs better than 
SIMLR model once more. 

Real-world data come in many complex forms, more research 
needs to be done to develop mathematical models of infectious 
diseases that capture more accurately this complexity. 
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