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Abstract

Current camouflaged object detection methods predominantly follow discrimina-
tive segmentation paradigms and heavily rely on predefined categories present
in the training data, limiting their generalization to unseen or emerging camou-
flage objects. This limitation is further compounded by the labor-intensive and
time-consuming nature of collecting camouflage imagery. Although Large Vision-
Language Models (LVLMs) show potential to improve such issues with their
powerful generative capabilities, their understanding of camouflage scenes is still
insufficient. To bridge this gap, we introduce MMCSBench, the first comprehen-
sive multimodal benchmark designed to evaluate and advance LVLM capabilities
in camouflage scenes. MMCSBench comprises 22,537 images and 76,843 corre-
sponding image-text pairs across five fine-grained camouflage tasks. Additionally,
we propose a new task, Camouflage Efficacy Assessment (CEA), aimed at quanti-
tatively evaluating the camouflage effectiveness of objects in images and enabling
automated collection of camouflage images from large-scale databases. Extensive
experiments on 26 LVLMs reveal significant shortcomings in models’ ability to
perceive and interpret camouflage scenes. These findings highlight the fundamental
differences between natural and camouflaged visual inputs, offering insights for
future research in advancing LVLM capabilities within this challenging domain.

1 Introduction

Fine-grained cognitive understanding in automated visual perception stands as a core challenge
toward achieving Artificial General Intelligence (AGI) [22,169]]. Previous challenging Al research in
automated visual perception, exemplified by Camouflaged Object Detection (COD) [68), 112,46, [36],
primarily relies on discriminative models under conventional deep learning paradigms. These
methods typically treat COD as a sample segmentation task, successfully identifying ‘what’ to
segment but failing to grasp the contextual relationships that explain ‘why’ an object is camouflaged
within its scene. This superficial understanding severely restricts their real-world applicability and
generalization to new categories and scenarios [54]]. Furthermore, systematically identifying and
collecting camouflage images from large-scale natural datasets highly relies on laborious manual
selection, hindering this field’s development due to data scarcity. Currently, the largest benchmark
dataset, COD10K [12], contains only 5,786 images with camouflaged objects for training and testing.

Recent advances in Large Vision-Language Models (LVLMs) [16,162] present promising new avenues
for tackling these challenges. Their inherent generative flexibility and ability to process multimodal
inputs allow for nuanced, human-like guidance via language instructions. Notably, their demonstrated
strength in understanding complex visual relationships [70, [71} 45} [18, 21]] suggests they could
potentially grasp the crucial scene-object context (the ‘why’) missed by traditional COD approaches.
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Figure 1: Performance of existing LVLMs in understanding camouflage scenes and grounding
segmentation. Figure (a) demonstrates the camouflaged object recognition capabilities of GPT-
4.1 [1]] and Gemini2.5-Pro [55]]. Figure (b) presents the instruction-following abilities of existing
grounding segmentation models, LISA [24] and GlaMM [49]], in relation to camouflaged objects.

However, directly applying existing LVLMs to camouflage scenes remains significantly challenging.
Existing LVLM benchmarks [29, 37] primarily target general natural scenes containing clear and
salient objects, lacking sufficient adaptability to highly camouflaged scenes. As illustrated in Fig.
when specifically applied to camouflage scenes, the relevant data scarcity is likely to lead to increased
model hallucination and degraded instruction-following performance. Therefore, establishing a
dedicated benchmark for camouflage scenes is imperative, not only to systematically evaluate
LVLMs’ true capabilities in these challenging scenarios but also to leverage generative LVLMs for
fundamentally understanding camouflage mechanisms.

Current LVLMs face severe challenges when evaluating camouflage scenes, as they lack sufficient
learning data for detecting such scenes. To address this critical gap, we introduce MMCSBench,
the first-ever multimodal camouflage scene benchmark specifically designed for LVLMs. We first
collect a large number of camouflage images, and then manually and meticulously annotate high-
quality camouflage attribute descriptions for them. These annotations are structured based on seven
key dimensions: quantity, category, color, size, position, camouflage strategy,
and camouflage target. Using these captions along with GPT-4V [1]], we generate fine-grained
visual and multiple-choice questions, which five experts then answered to obtain the corresponding
ground truth text. Ultimately, this process resulted in the curation of 22,537 images from five public
datasets, constructing 76,843 image-text pairs across five fine-grained tasks for camouflage scene
understanding, as shown in Fig. [2| Additionally, we select 1,034 images for 3045 instance-level and
part-level segmentation to form the camouflaged image grounding segmentation task. Collectively,
MMCSBench bridges the evaluation gap in existing COD datasets and establishes a unified benchmark
for LVLMs to advance understanding and generalization in camouflaged environments.

Beyond evaluating LVLM capabilities, we also aim to alleviate the tedious work of camouflage
image collection and improve this field. To this end, we introduce a novel and challenging task
within the MMCSBench: Camouflage Efficacy Assessment (CEA). The CEA task aims to teach
LVLMs to quantify the concealment of objects in any natural images, and leverage their generalization
capabilities to enable the evaluation of unseen species. Furthermore, CEA can generate detailed
textual descriptions regarding camouflage mechanisms (such as object-background relationships,
key camouflage features), promoting the generation of multimodal camouflage resources. These
capabilities also offer LVLMs a pathway to automatically evaluate the quality of existing and future
camouflage datasets. Enabled by the CEA task, we further provided over SOK high-quality camouflage
images, offering resources for the development of the camouflage community.

With MMCSBench, we present CamoVLM for camouflage scenes understanding. CamoVLM
bridges understanding and grounding segmentation, enabling fine-grained textual characterization of
camouflage environments. Details of CamoVLM in appendix Section D] Our key contributions are:

* We provide MMCSBench, the first comprehensive benchmark tailored for evaluating and ad-
vancing LVLM capabilities in camouflage scenes, filling a critical gap in existing resources.

* We propose the camouflage efficacy assessment task, offering a method for quantitative
camouflage evaluation and paving the way for automated, large-scale collection and annota-
tion of multimodal camouflage data. With CEA, we provide 50K+ collected high-quality
camouflage images for future research.
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Figure 2: Data statistics for the MMCSBench. The figure on the left illustrates the benchmark’s
data composition, showing the included tasks and the amount of data allocated to each one. The
right table presents related statistics, specifically detailing information about quantity, number of
categories, and text length within each task.

» Through extensive experiments on MMCSBench, we provide a comprehensive evaluation of
existing LVLMs, revealing significant weaknesses in their perception of camouflage scenes
and offering crucial insights to guide future research towards more capable LVLMs.

2 Related Work

LVLM Benchmarks. The rapid advancement of LVLMs underscores the critical need for effective
benchmarking [7} 28, 166} 35] to identify model limitations and steer future development. While exist-
ing benchmarks like MME [13], MMBench [37]], and MVBench [29]] primarily evaluate perceptual
and reasoning capabilities within natural scenes, they largely overlook camouflage scenarios. Such
environments, often characterized by object occlusion and contextual ambiguity, present distinct
challenges for LVLMs concerning both scene understanding and object detection. Furthermore,
current benchmarks frequently concentrate on specific capabilities—for instance, LISA’s [24] em-
phasis on reasoning segmentation or Video-MME’s [[14] focus on video understanding—rather than
assessing broad, domain-general requirements. In contrast, domains such as medicine 23\ |65]], which
involve tasks with structural parallels to camouflaged object segmentation, have seen advancements
through more systematic benchmarking efforts like Fmbench [32]] and MedEval [19]. Consequently,
introducing the first LVLM benchmark specifically tailored to the camouflage domain is essential for
addressing a significant gap and propelling progress in this field.

Table 1: Comparison between MMCSBench and existing COD benchmarks. We conduct a
comprehensive comparison based on several aspects: the number of tasks, whether training data is
included, the number of images, texts, masks, and the ability to understand camouflage.

Benchmark | Modality  Task Training? ImageNum. TextNum. Mask Num. Answerable?
CODI10K [12] Image 1 v 10,000 0 5,786 4
NC4K [43] Image 1 4 4,121 0 4,121 b 4
CHAMELEON [52] Image 1 b 4 76 0 76 4
CAMO [26] Image 1 v 1,250 0 1,250 b 4
COD-TAX [67] Image, Text 1 v 4,040 4,040 0 4
OVCamo [47] Image, Text 1 4 11,483 11,483 11,483 4
MMCSBench | Image, Text 5 4 22,537 76,843 3,045 4

COD and Benchmarks. Camouflaged Object Detection (COD) 6} 18] 53] 42] aims to identify and
segment hidden camouflaged objects in a given scene. Fan et al. [12] were the first to organize
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Figure 3: Annotation presentation of MMCSBench. For the CAC task, we manually annotate from
seven different perspectives. For VQA and MCQ images, we use GPT-4V to generate fine-grained
question-answer pairs based on the camouflage attribute captions. For the IGS, we not only annotate
the hard-to-observe parts of objects but also generate fine-grained descriptions, where [SEG] serves
as a segmentation identifier to extract segmentation tokens from LVLMSs. For the CEA task, we use
five levels and a 100-point scale to evaluate the level of camouflage for each image.

and propose COD10K as a benchmark for COD in training segmentation models. Since then, a
number of COD benchmarks have been introduced, with the most common ones being NC4K
[43], CHAMELEON [52], CAMO [26] and OVCamo [47]]. As shown in Table [T} we compare
MMCSBench with these datasets in terms of task, modality, and quantity. Moreover, during the
construction of MMCSBench, we found that collecting camouflaged images is a highly challenging
task, requiring manual inspection of a large number of images to determine whether a camouflaged
object is present. This difficulty is the main reason why existing COD datasets are small and why the
field has developed slowly.

3 MMCSBench for Camouflage Scene Understanding

3.1 Task Settings

In this work, we construct MMCSBench to train and evaluate existing LVLMs on their understanding
of camouflage scenarios. To achieve a comprehensive and fine-grained evaluation, we design five
different multimodal tasks as shown in Fig. B} Camouflage Attribute Captioning (CAC), fine-
grained Visual Question Answering (VQA), Multiple-Choice Questions (MCQ), Image Grounding
Segmentation (IGS), and Camouflage Efficacy Assessment (CEA) for evaluating the degree of
camouflage effectiveness. The detailed explanations for each task are as follows:

* CAC: Given a camouflage image, LVLMs are required to identify and describe the basic
attributes of the camouflaged object, such as quantity, category, size, color, and location.
Additionally, they need to understand the relationship between the object and its environment,
as well as the camouflage strategies adopted and the purpose of the camouflage.

* VQA: Unlike conventional VQA tasks [35, 37], VQA in camouflage scenes re-
quires LVLMs to provide accurate answers to fine-grained questions. For ex-
ample, a question should be "How many claws of the camouflaged object are
gripping the branch in the image?" rather than "What is the category of
the camouflaged object?", as the latter has already been addressed in CAC task.

e MCQ: Similar to VQA, MCQ in camouflage scenes also requires fine-grained cognition.
However, the key difference is that MCQ provides four answer choices. Additionally,
LVLMs are required to provide a detailed explanation for their chosen option.



* IGS: Compared to text generation tasks, pixel-level segmentation tasks require a more
detailed understanding of camouflage scenes. In the proposed IGS task, we provide part-level
masks along with corresponding prompts, such as "Segment the most camouflaged
part of the spider", with the expected response being "Its six legs [SEG]".

* CEA: Given any image, whether camouflaged or not, the CEA task requires LVLMs to assess
the camouflage level of the object using five categories: Exposed, Normal, Partial,
Seamless, and Imperceptible, as shown in Fig. 3] Additionally, they must quantify
the camouflage score on a scale of 0-100 (the higher the more camouflaged) and provide a
detailed explanation about the camouflaged object and its surrounding environment.

3.2 Benchmark Construction

Images Collection. Searching for and collecting camouflaged images from numerous natural images
is extremely tedious and time-consuming. We would like to express our gratitude to the work
of previous researchers [12}, 43| 52} 26], whose contributions provided a wealth of high-quality
camouflaged object images that supported the construction of MMCSBench and also motivated us to
develop an automated collecting method. Specifically, we collected and selected a total of 10,511
camouflaged images from the COD10K [12]], NC4K [43], CHAMELEON [52]], and CAMO [26]]
datasets, covering various scenes and different categories of objects. Furthermore, for the CEA task,
we incorporate 10,553 natural images from the DUTS dataset [[58] and 1473 landscape images to
mitigate data bias caused by the high camouflage levels in the collected COD datasets.

CAC, VQA and MCQ Tasks Generation. Image understanding within LVLMs centers on image
captioning, a fundamental task for VLM [57, [3]. For this, we first construct detailed captions for
camouflaged images. Given the poor performance of the existing LVLMs on camouflage scenes, we
manually annotate these captions, ensuring fine-grained textual representations that emphasize object
details and their environmental context. The accuracy of these captions is vital, as they form the
foundational data for other tasks. Each caption undergoes collaborative refinement by three expert
annotators, resulting in 10,511 high-quality camouflaged attribute descriptions for the CAC task.
Building upon these captions, we establish datasets for VQA and MCQ tasks. Unlike conventional
datasets, our approach necessitates fine-grained questions designed to deepen LVLMs’ understanding
of camouflage scenes. Using images and their corresponding captions as input, we employ GPT-4V
[L] to generate diverse VQA and MCQ questions. For each image, we generate 3 VQA pairs and
3 MCQ sets, which then undergo rigorous filtering to remove inaccurate, ambiguous, and logically
flawed questions. These filtered questions are then answered by 5 camouflage experts. Integrating
their answers yields 20,968 VQA pairs and 19,787 MCQ sets. Fig. [3]illustrates examples of these
annotations. We provide more MMCSBench examples in Section [B|of the appendix.

IGS Task Generation. Unlike CAC, VQA, and MCQ tasks, the IGS task requires specifying
segmentation prompts, text responses, and pixel-level masks. Therefore, we select 900 images
containing multiple instances from 10,511 images for separate instance-level annotation, resulting in
2,012 instance masks. Additionally, we select 534 images containing fine-grained objects for part-
level annotation (e.g., "head, claws, tail"), obtaining 1,033 part masks, and generate corresponding
descriptions using GPT-4V. Similar to LISA [24] and GeoPixel [2], we insert segmentation identifiers
[SEG] into the responses, enabling the extraction of segmentation tokens from LVLM’s output via
identifier ID. These tokens are then fed into the model’s built-in segmentation network.

CEA Task Generation. The proposed CEA task aims to teach LVLMs to recognize the degree of
camouflage of objects in any given image, addressing the issue of insufficient training data in the
camouflage domain. A prerequisite for this task is to establish a quantitative criterion for each image.
Based on the work of Lamdouar et al. [25]], we propose to use multi-dimensional feature similarity
and edge visibility to assess the camouflage score. This score Cj is calculated from the color (.S,),
texture (S;), and edge fusion (S.) similarities between foreground and background. These metrics,
based on [25]], capture key camouflage aspects of the given image. Specifically, the S, is:

1
|Hr — Hp||2 ) 7 n

Scl7M:17 H h,, H h,, . 17—
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h,s,v

where Hr(h, s,v) and Hg(h, s,v) denote the normalized HSV color histograms of the foreground
and background, respectively, and || - ||2 represents the Lo norm used to measure the Euclidean
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Figure 4: Examples of camouflage scores for different images and the overall distribution of
camouflage scores for images in MMCSBench. The x-axis represents the computed camouflage
score Cs. We visualize the score distributions separately for camouflaged images and natural images.

distance between histograms. For texture similarity Sy, we employ Local Binary Patterns (LBP) to
capture micro-texture differences:

1 Npins=30
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where Pr and Pgp are the normalized LBP histogram distributions. The formula computes a diver-
gence score comparing these two distributions to quantify texture dissimilarity. To evaluate the degree
of edge integration between the object and the background, we introduce edge fusion similarity Se:

Se(lv M, E) = Z (1 — tanh <|,le| Z (Ilfab(xvy) - M”ch)Q)) ) (3)

ce€{L,a,b} (z,y)ERy

where R ; denotes the fusion region formed by dilating the object edges into the background in the
CIELab color space. The score C; is a weighted sum of the three scores: Cs = aS. + 3S; + vSe
(where weights «, (3, and ~ are 0.5, 0.3, and 0.2; weight analysis in appendix Section[C.4).

Since regression learning is more challenging for LVLMs, we classify the computed camouflage
scores (0-100) into five distinct levels, as shown in Fig. @ This figure presents the score distributions
for camouflage and natural images, where the x-axis indicates the camouflage score and the y-axis
represents the proportion of samples. The score distributions not only reveal clear discriminability be-
tween camouflaged and natural images but also exhibit regular trends (e.g., approximating normality),
suggesting consistency in our scoring mechanism. Moreover, in the CEA task, we require LVLMs to
simultaneously learn the target’s camouflage level and specific score. They must also provide detailed
descriptions relating the object’s camouflage to its boundary region and the overall environment, thus
fostering the application of CAC within the field of multimodal camouflage.

Notably, training the CEA task solely with images containing confirmed objects is inadequate. This
causes the LVLM to strongly hallucinate, mistakenly perceiving highly camouflaged objects within
pure natural images and assigning them high camouflage scores. To mitigate this, we gathered
1,473 landscape images as negative examples for training together. This helps the LVLM first
determine the presence or absence of highly camouflaged objects before assessing the camouflage
level. Corresponding captions for these images are "This is a landscape image, with no
particularly distinctive objects", followed by scenery details. Examples in Section[C.2]

CEA with 50K+ Camouflage Images. Using Qwen2.5-VL-72B [4] fine-tuned on the CEA task,
we performed automated camouflage image detection and collection on the COCO [31]], WildFish
[73]], iNat [56], and AK [44] datasets, obtaining 54,468 camouflaged images and their text captions.
Overall, we are the first work to achieve automated collection of camouflage images, providing
valuable experience and data for the camouflage community. The samples are in Section[C.3]



Table 2: Performance of different LVLMs on MMCSBench. "Human Eval.’ indicates results from
professional annotators. 1 denotes higher is better, | denotes lower is better. The best values are
bolded and the second-best are underlined.

CAC VQA MCQ CEA

LVLM
BLEUTMETEOR?RougeL|BLEUTMETEOR? RougeL1{{ACCt BLEUTMETEOR1|ACCtMAE| BLEUT
Models without Supervised Fine-tuning
o GPT-4.1 [1] 1239 25.82 22,65 | 1329  23.81 22.05 |72.75 16.89  38.66 [62.51 10.93 12.07
® Gemini2.5-Pro (05-06) [55] 14.82  33.28 30.88 | 15.83  31.93 34.08 |75.38 19.73  39.89 |66.88 8.67 15.90
®Qwen2.5-VL-72B [4] 10.87 2336 22.08 | 11.70  23.07 21.15 |73.08 14.08  40.96 |60.87 12.66 11.55
Models with Supervised Fine-tuning (Grouped by Size)
© OVIS2-2B [41] 11.54  33.11 26.85 | 14.62  38.43 37.36 |58.82 1292 2646 |64.72 13.46 1547
@ InternVL3-2B [72] 17.06  40.04 3125 | 19.00 44.25 41.71 |73.88 25.64 43.80 |68.05 10.24 17.88
®Qwen2.5-VL-3B [4] 1569  40.57 3035 | 19.06  44.69 4145 |72.41 2499  43.08 |69.34 891 19.27
® Molmo-7B [11] 19.13 4285 3527 | 2061  46.22 43.89 |76.42 2638 4457 [68.53 7.80 18.55
®LLAVA1.5-7B [33] 19.87 4346 36.34 | 21.32  46.78 44.40 |77.28 26.50  45.24 |65.31 9.86 17.20
© LLAVA-NEXT-8B [34] 19.84  43.44 36.29 | 21.33  46.78 44.41 |77.56 26.99 4523 |66.26 8.72 17.42
@ InternVL2.5-8B [9] 18.06  42.14 3430 | 20.74  46.43 4421 |76.58 26.59  44.80 |71.88 6.59 19.34
e InternVL3-8B [72] 1844 4215 3330 | 20.68  46.45 44.05 |76.02 2621 4463 |72.36 6.53 19.69
® Qwen2.5-Omni-7B [63] 1823 42.77 34.09 | 19.56  45.22 42,13 |75.22 2631 4402 |72.36 648 20.18
® Qwen2.5-VL-7B [4] 18.09 4252 33.87 | 1925  45.10 41.83 |75.20 25.71  43.61 |72.84 6.32 20.25
© GLM-4V-9B [17] 18.53 4275 3527 | 2061  46.32 43.59 |76.42 2638 4457 |70.25 7.53 18.55
®LLAVA1.6-34B [33] 20.31  45.68 38.09 | 2236  46.98 4523 |81.23 27.04 4631 |73.26 5.69 20.35
e InternVL3-38B [72] 19.42  44.10 3582 | 2517  49.32 48.18 [80.72 26.92 4528 |72.17 643 19.49
®Qwen2.5-VL-32B [4] 19.64  44.29 36.07 | 20.03  45.68 4232 |78.92 26.02  43.88 |74.22 5.74 20.52
NVLM-D-72B [10] 21.65  47.12 3845 | 21.03  47.25 46.38 |81.15 2645 5027 |74.62 547 20.88
LLAVA-OV-72B [27] 20.85  46.32 38.18 | 20.76  46.25 4592 |83.45 26.67 5138 |76.28 525 22.07
InternVL3-78B [72] 21.07 4659 3794 | 2632 50.27 49.83 |83.37 27.08 56.84 |76.94 4.98 2149
Qwen2.5-VL-72B [4] 21.51  46.90 3827 | 2029  46.82 44.01 |82.78 26.74 5472 |76.31 5.02 21.52
Human Eval. - - -] - - - [8532 - - [79.56 3.62

4 Experiments

4.1 Experimental Settings

Benchmark Settings. We aim to evaluate the understanding of LVLMs in camouflage scenes.
However, directly evaluating these models on MMCSBench yields unsatisfactory results, as shown in
Table 2] This suboptimal performance stems partly from the poor ability of these LVLMs to recognize
camouflage, and partly from difficulties in adhering to the required output formats for text. Therefore,
we fine-tune these LVLMs using 1% of the MMCSBench data (sampled with balance across five
CEA levels) to tailor them for camouflage images, and subsequently test their performance on the
remaining 99% data. This is also advantageous for evaluating the effectiveness of LVLMs on unseen
camouflage categories and environments. Details about the training and testing, as well as higher
training percentages (10%, 50%) performance, can be found in Section [E.T|and [E.4]of the appendix.
The 50K+ camouflage images collected via the CEA task can be seen in Section|C.3]

Metrics. For text generation tasks such as CAC, VQA, MCQ, and CEA, we adopt standard evaluation
metrics including BLEU-4 [48]], METEOR [35], and RougeL [30] to assess the quality of the generated
text. Specifically, for MCQ and CEA tasks, we additionally use accuracy to evaluate the correctness
of option selection and camouflage level. For the predicted camouflage score, we employ the Mean
Absolute Error (MAE) to measure the deviation from ground truth values. For IGS task, we use
BLEU-4, mean Intersection over Union (mloU) [39] and Recall as evaluation metrics.

Baseline LVLMs. From the perspective of task categorization, MMCSBench includes text generation
tasks like CAC, VQA, MCQ, and CEA, as well as the segmentation task IGS. Since most LVLMs
do not have grounding segmentation capabilities, we divide the evaluation into two parts. For text
generation tasks, the evaluated LVLMs include GPT-4.1 [1], Gemini2.5-Pro [55], Qwen2.5-VL [4],
OVIS2 [41]], LLAVA1.5(1.6) [33]], LLAVA-NEXT [34]], InternVL3 [72]], Molmo][/11], Qwen-Omni
[63], GLM-4V [17]], NVLM-D [10] and LLAVA-OV [27]. For the IGS task, we select models
specifically designed for grounding segmentation, including LISA [24], PixelLM [50], GeoPixel
[2l], GlaMM [49]], and SegL.LM [61]]. These models are fine-tuned on MMCSBench training set and
compared against the proposed CamoVLM. Details can be found in Section [E|of appendix.



Human Evaluation. In this work, we conduct a human evaluation to compare the actual performance
of existing LVLMs in camouflage scenarios. Specifically, we ask five expert evaluators to select
answers for the options in both MCQ and CEA tasks, and use the average performance of the five
evaluators as the human evaluation performance. The results "Human Eval." are shown in Table[2]

Performance on Text Generation Tasks. Table [2| compares how different LVL.Ms performed
on the four text generation tasks. It’s clear that supervised fine-tuning gives a major boost over
zero-shot models like GPT-4.1. Among the zero-shot group, Gemini2.5-Pro generally came out
on top, but still fell well short of the fine-tuned models. Even the small 2-3B models improved on
zero-shot results, with InternVL3-2B and Qwen2.5-VL-3B being the front-runners here, trading
the lead depending on the metric. In the 7-8B tier, the LLAVA models (1.5 and NEXT) handled
generation tasks and MCQ accuracy well, while Qwen2.5-VL-7B stood out on the CEA metrics
(ACC, MAE, BLEU). The InternVL models (2.5 and 3) were also competitive, notably grabbing the
second-best CEA MAE. Moving up to 32-38B models, LLAVA1.6-34B showed strength in CAC and
MCQ, InternVL3-38B led in VQA, and Qwen2.5-VL-32B did well on CEA accuracy and BLEU.
The largest 72B+ models delivered the top scores overall. NVLM-D-72B was strongest in CAC;
InternVL3-78B excelled across VQA and MCQ text generation, also hitting the best CEA accuracy
(76.94%) and MAE (4.98); and LLAVA-OV-72B took the top spot for MCQ accuracy (83.45%) and
CEA BLEU. Qwen2.5-VL-72B often landed in second place. However, even these top-performing
models lag significantly behind human evaluations (85.32% MCQ Acc, 79.56% CEA Acc), indicating
substantial room for improvement for current LVLMs in understanding complex camouflage scenarios.

Performance on IGS Task. Table 3: Performance of different grounding segmentation
models on the MMCSBench IGS task. The results shown are

Existing  grounding  meth-
for methods that have all been fine-tuned.

ods struggle in camouflaged
scenes due to high-resolution

input requirements and no Model | MLLM | BLEUT mloUt Recallf
specific multimodal alignment LISA [24] LLAVA1-7B 17.80 60.08 48.09
design. Thus, we introduce PixelLM [50] LLAVA1-7B 17.92 60.27 48.74

CamoVLM. Its dedicated GeoPixel [2]] Xcomposer2-7B 18.98 64.26 50.52
segmentation capability en- GLaMM [49] LLAVAL1.5-7B 18.53 62.05 49.73
hances feature alignment via SeglLILM [61]] LLAVA1.5-7B 18.61 62.80 50.19

a lookup-matching strategy. CamoVLM | Qwen2.5-VL-7B | 19.36 65.81 52.88
This strategy generates tailored
attention masks,  enabling
precise instruction following and accurate grounding in challenging camouflaged environments.

Table [3] presents the performance of various

grounding segmentation models on the chal- Taple 4:  Generalization performance of
lenging MMCSBench IGS task. All models  CamoVLM on IGS task. Performance (BLEU,
were fine-tuned on the training subset. The re-  y[oU, Recall) is shown for test sets with N unseen

sults show that our proposed CamoVLM consis- object categories (N=10, 20, 30, 40, 50), compared
tently outperforms the compared existing meth- 4 3 baseline on seen categories.
ods across all evaluation metrics: BLEU (for

text generation), mloU, and Recall (for seg- Setting | BLEUT mloUt Recallt
mentation accuracy). Specifically, CamoVLM

achieves 19.36 BLEU, 65.81 mloU, and 52.88 BL | 1978 6626  53.07
Recall. Compared to the next best performing N=10 19.37 66.06 52.94
model, GeoPixel, CamoVLM demonstrates a N=20 20.06 66.39 53.21
notable improvement, leading by 0.38 in BLEU, N=30 19.30 66.00 52.79
1.55 in mloU, and 2.36 in Recall. This high- N=40 19.51 66.09 52.87
lights CamoVLM’s improved capability in both N=50 19.26 65.83 52.80

interpreting fine-grained instructions and accu-
rately segmenting camouflaged objects or parts
within complex scenes.
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Figure 5: Generalization performance of Qwen2.5-VL-7B on CAC, VQA, MCQ, and CEA tasks.
"BL" is the baseline performance on seen categories.

4.2 More Experiments

Generalization to Unseen Camouflaged Categories. Evaluating the generalization capability of
LVLMs after fine-tuning on MMCSBench in camouflage scenarios is crucial, especially their ability
to recognize object categories not previously encountered. To this end, we design an experiment to
explore the understanding and grounding performance of Qwen2.5-VL-7B and our CamoVLM when
encountering unseen camouflaged object categories. Specifically, for the BaseLine (BL), we select 50
classes from MMCSBench for training and validation, meaning the baseline’s validation set consists
entirely of seen categories. Subsequently, we evaluate their performance on different validation sets
composed of 10, 20, 30, 40, or 50 unseen categories. Fig. [5|and Table @ respectively show the models’
understanding and grounding capabilities on these different sets of unseen categories.

From Fig. [f|and Table[d we can observe that as the number of unseen categories increases, there is no
obvious trend of performance degradation. This indicates that integrating LVLMs for understanding
camouflage scenes is effective and can improve their performance in unknown scenarios. Notably,
there is a significant variation in the number of samples across different CEA levels. To address this,
we employed a camouflage level balancing strategy during training, ensuring an equal number of
training samples for each camouflage level.

Validation of CEA for Automated Camouflage Image Discovery. The primary objective of CEA
task is to identify camouflaged images within extensive datasets, while assessing its robustness across
unseen object categories. Thus, we evaluate LVLMs fine-tuned on MMCSBench across the COD
datasets PCOD [60] and PlantCamo [64], alongside the natural image datasets COCO [31]] and
ImageNet-S [15]]. These datasets, encompassing a diverse range of object categories, serve as a robust
benchmark to effectively assess the capabilities of LVLMs for the CEA task.

Table 5: Evaluating fine-tuned InternVL3 models on the CEA task using external datasets.
Metrics include MAE for camouflage score prediction and error rates for identifying Seamless (Err
@4) and Imperceptible (Err @5) levels.

PCOD [60 CamoPlant [64 COCO [31 ImageNet-S [15
MAE| Er @4, Em @5, MAE| Er@4, Emr@5] MAE| Em @4, Er@5] MAE| Er @4 Em@5)
InternVL3-1B 1128  928%  3.28% 1102 1005% 358% 1152 931%  415% 1253  950%  3.62%

LVLM

InternVL3-2B 10.31 8.72% 2.33% 11.46 7.98% 3.42% 11.03 8.63% 2.36% 10.92 8.32% 2.48%
InternVL3-8B 6.11 6.62% 1.74% 6.36 7.69% 2.41% 5.95 6.81% 2.04% 6.30 7.77% 1.53%
InternVL3-38B  5.79 6.02% 0.95% 6.24 6.51% 1.19% 5.51 5.32% 0.89% 5.89 6.48% 1.26%

InternVL3-78B  5.21 4.20% 0.27% 5.60 4.32% 0.48% 4.98 4.14% 0.35% 5.02 3.90% 0.37%

In Table [5] we present the performance of the InternVL3 series of models on these four datasets.
Notably, we specifically highlight the error rates of these models on Level 4 Seamless and Level
5 Imperceptible (Err @4, and Err @ 5), to align with our primary goal of detecting camouflaged
images. As we can see, the performance consistently improves with model scale, and critically, larger
models like InternVL3-78B achieve high accuracy in identifying the most challenging Seamless
(Level 4) and Imperceptible (Level 5) camouflage instances. Notably, error rates for detecting Level
5 camouflage (Err @5) were below 1% on dedicated camouflage datasets and remained low ( 1%)
even on large-scale natural datasets like ImageNet-S. These results strongly validate CEA’s potential



as an efficient tool for automatically identifying and assessing camouflaged images within extensive
datasets, thereby facilitating the expansion of data resources for the camouflage community.

5 Conclusion

Conclusion. We introduced MMCSBench, the first multimodal benchmark for LVLM camouflage
understanding. With over 75,000 novel image-text pairs across five tasks, it addresses a key eval-
uation gap. We also proposed the CamoVLM baseline. Experiments show fine-tuning improves
LVLM performance, yet a significant gap to human accuracy persists, underscoring the challenge.
MMCSBench offers a valuable resource to drive research in fine-grained visual understanding and
advance LVLM capabilities.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state the main contributions (MMCS-
Bench benchmark, CEA task, CamoVLM baseline, LVLM evaluation) and scope, which
align with the methods, experiments, and results presented throughout the paper (e.g.,
Section 1, Section 3, Section 4).

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The paper includes a dedicated "Limitations" section discussing potential
data bias arising from the use of public datasets that might have been part of the evaluated
LVLMs’ pre-training data.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,

model well-specification, asymptotic approximations only holding locally). The authors

should reflect on how these assumptions might be violated in practice and what the

implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We do not report theoretical results in the dataset. We have provided assump-
tions regarding the analysis shown in the paper.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper details the benchmark construction (Sec 3.2), tasks (Sec 3.1),
evaluation metrics (Sec 4.1), and baseline models (Sec 4.1). Key implementation details
like data splits and fine-tuning strategy are mentioned (Sec 4.1), with further specifics stated
to be provided in the appendix (e.g., Sec[E] Sec[D).

Guidelines:

The answer NA means that the paper does not include experiments.

If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The paper states that the MMCSBench dataset and additional collected images
will be open-sourced (Sec 4.1). As this is a benchmark paper, providing the dataset is central
and assumed to come with instructions. Code for the CamoVLM baseline is implicitly part
of the contribution.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

 Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper specifies the core experimental setup including data splits (1%
train / 99% test), balancing strategy, and evaluation metrics (Sec 4.1). It states that detailed
information, presumably including hyperparameters and optimizer details, is available in
the appendix (Sec [E).

Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
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Answer: [Yes]
Justification: We have included graphs with complete distributions of the data.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We have provided details of the computing resources and also performance
of models w.r.t time of inference. Other experiments are mentioned in the supplementary
material.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: The research involves the creation of a benchmark using public datasets, auto-
mated data generation methods (with human verification/annotation), and model evaluation.
Based on the description, the work appears to conform to the NeurIPS Code of Ethics.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.
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* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Our paper is motivated with the intent of offering large scale social impact. We
have highlighted the role of our work in the context of its impact on research, conservation
and even public policies. We discuss more social impact in Section [5]

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: The dataset is carefully curated with all considerations to responsibilities
towards protection of the animals. We declare to find no possible avenue of misuse for the
given dataset.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
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13.

14.

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The assets are not publicly available at this stage. They will be made available
with CC-BY 4.0 License upon acceptance.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: We have included documentation of all assests given in the dataset.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: No crowd sourcing or working with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.
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15.

16.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: We do not have human subjects or crowd sourcing.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: The core methodological contributions focus on the benchmark’s structure,
task definitions (including the novel CEA task), and the proposed evaluation framework.

LLMs are primarily subjects of evaluation or utilized as tools within the data curation
process, rather than constituting the central novel methodology developed in this research.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix for MMCSBench

* Section[A] (Motivation). More Results of Representative LVLMs on Camouflage Scenes:
We demonstrate the performance of representative existing Large Vision-Language Models
(LVLMs) in camouflage scenarios to highlight the necessity of constructing a dedicated
camouflage dataset.

* Section B[ (Contribution 1 Benchmark). More MM CSBench Samples: We present more
image samples from the MMCSBench dataset, accompanied by their corresponding textual
descriptions and segmentation mask labels.

* Section[C|(Contribution 2 CEA Task). CEA Task Supplement: We showcase more images
at different levels to demonstrate the grading effect of CEA. Furthermore, we explain the
hyperparameters in S, and introduce the 50K+ high-quality camouflage images obtained
via CEA, further proving the practicality and applicability of the proposed CEA task.

* Section [D|(CamoVLM Baseline). CamoVLM for Camouflage Scene Understanding: We
offer a detailed description of the proposed CamoVLM model and present its segmentation
performance. However, we reiterate that CamoVLM is not positioned as the core technical
innovation of this paper.

* Section |[E| (Experiment). Implementation Details of Training and Testing: We provide
further details on training and testing, including LoRA settings, prompts, and hyperparameter
settings.

Broader Impacts

MMCSBench provides a valuable benchmark and dataset to accelerate Al research in fine-grained
visual understanding, particularly for challenging camouflage scenes. This work fosters innovation
towards more capable Al systems, with no foreseen negative societal consequences.

Limitations

We acknowledge certain limitations. First, incorporating camouflaged images into pretraining rather
than fine-tuning might yield better results; however, considering training efficiency, we focused on
fine-tuning and still achieved strong performance. Second, CamoVLM details are placed in the
appendix to keep the main text focused on the MMCSBench. Third, the quantitative CEA score uses
specific features and weights; exploring alternatives is a direction for future work.

A More Results of Representative LVL.Ms on Camouflage Scenes

In Fig. [p]and Fig. [7} we show more results of existing LVLMs (Qwen-Max, GPT-4.1, Gemini2.5-Pro)
on camouflage scenarios. As can be seen from Fig. [6] it remains difficult for these LVLMs to
simply identify camouflaged targets without any prompts; not only might they fail to identify the
camouflaged target, but they might still provide incorrect answers even after being prompted about
the existence of a camouflaged target. For multiple-choice questions, because information about
the target’s existence and category is provided in the question, these LVLMs are able to provide the
correct answer with some probability, which is consistent with our numerical results in Table

Overall, existing large-scale LVLMs struggle to achieve the same performance in recognizing
camouflage scenarios as they do on natural images, thus leading to weakened reasoning capabilities.
The introduction of MMCSBench can improve LVLMs’ understanding of camouflage scenarios and
provides a new direction for the future development of LVLM:s.

B More MMCSBench Examples

In this section, we present further examples of samples and their corresponding annotations from
the MMCSBench dataset. These examples are organized according to task, as illustrated in Fig.
which showcases instances for both Camouflaged Attribute Captioning (CAC) and Visual Question
Answering (VQA) tasks.
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Q: Does the image contain a camouflaged object?

According to the image content, there are no visible
@ camouflage targets in this image. The main focus of @
Qwen25 | the image is plants, and there are no signs of any
camouflage creatures in the background.

This image shows a close-up of a plant with small
green buds and slender leaves. It doesn't appear to @
contain any obvious camouflage or hidden targets.
The focus is on the plant itself.

GPT-4.1

Q: What kind of camouflage object is this?

@ This is a moss/leaf-shaped camouflage target. It is
designed to blend seamlessly into environments with
greenery, such as forests, jungles, or areas with
abundant moss and foliage. The goal is to challenge
participants to spot hidden targets in a realistic setting.

Qwen2.5

The image appears to contain a camouflage target in the @
form of a leaf insect or a stick insect. These insects
are known for their remarkable ability to blend into
Gpr41 | their surroundings by mimicking the appearance of
leaves, twigs, and moss.

Figure 6: Poor performance of mainstream LVLMs in camouflage scenarios. We evaluate GPT-
4.1 and Qwen2.5-Max on their ability to describe objects in camouflage scenes.

ﬂ Q: What distinctive marking can be found on the cephalothorax of the
s . spider camouflaged as a leaf?

| A. Asingle dot in the center

B. A cross pattern resembling the veins of a leaf

C. A circular pattern resembling an eye

D. A jagged edge resembling torn leaf sections

B. A cross pattern resembling the veins of a leaf @

GPT-4.1

* B. A cross pattern resembling the veins of a leaf @

Gemini2.5-Pro

°| Q: Which aspect of the animal’ s head contributes to its ability to
camouflage within the rocky environment?

A. The distinct white feathers around its eyes.

B. The uniform dark coloration of its ears.

C. The varied shades and textures of its fur.

D. The symmetrical distribution of markings on its face.

O B *CQ

A GPT-4.1 Gemini2.5-Pro

Q: Which specific part of the bird” s anatomy is visible in the sharpest
& detail and stands out most prominently against the blurred background?
A. The heron’ s beak

B. The heron’ s wings

2 C.The heron’ s legs

D. The heron’ s feet

A. The heron’ s beak @

GPT-4.1

* B. The heron’ s wings @

Gemini2.5-Pro

Figure 7: Poor performance of mainstream LVLMs in camouflage scenarios. We evaluate GPT-4.1
and Gemini2.5-Pro on their performance on multiple-choice questions in camouflage scenes. Notably,
these LVLMs are able to improve their results when explicit cues are included in the prompt.
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CAC Task Q: How is the camouflaged target integrated into its environment? Q: How is the camouflaged target integrated into its environment?

A :The image reveals a single camouflaged target, Quantity age features a single camouflaged target, which is a leafy
which is a stick insect, resting on a moss-covered tree seadragon, a marine creature known for its exceptional ability to
trunk that exhibits shades of brown, gray, and green. Category blend in with aquatic vegetanon The primary colors of the

These colors allow the target to merge into its target are various shades of yellow and green, closely matching
surroundings effortlessly. The size of the stick insect Color the surrounding aquatic plants, allowing it to remain nearly k&g
is relatively small, occupying approximately 5% of indistinguishable from its environment.In terms of size, the leafy 1

the image area, and positioned along the right side of* Size seadragon-oceupies»1 0% of the total image arca, making i
4 . the tree trunk at an upright angle, where it is partially Position relatively small compared to the overall scene. Its position is 1
obscured by “the bark and moss. The target remains motionless, slightly off-center, nestled among the vibrant yellow seaweed, where it is pama]]y
demonstrating a static state. Employing a disguise that mimics the Camouflage obscured by the foliage. The target appears to be in a static state, gently swaying
texture and color variations of the tree bark, the target's camouflage strategy with the water—currents-»The camouflage technique employed involves both
technique effectively mimics its environment's surface patterns. This coloration and structural mimicry, as the seadragon's body resembles the shape
adaptive feature serves not only to shield the stick insect from potential Camoufiace and texture of the surrounding seaweed, enhancing its concealment. This
predators but also to enhance its survival within a habitat rich in purpose adaptation serves the purpose of avoiding predation while also allowing it to
similar textures and colors. ambush prey effectively within its habitat.
Q1: How many legs are visibly extended from the yellow spider? Q1: What is the dominant color of the leopards' fur,

specifically around the eyes and mouth area?
A1l: The color around the leopards' eyes and mouth area is a
light creamy beige, contrasting with the darker spots and
providing a highlight that emphasizes their facial features.
' Q2: How many distinct spots are visible on the body of
the leopard on the left side, in line with the chest area?

VQA Task
] 1: The yellow spider has a total of six legs visibly extended; four legs ¥
¥ (7 re placed outward on either side of the body, with two additional legs

/  extending backward.

Q2: What is the shape and orientation of the flower petals surrounding
the yellow spider?

A2: The flower petals are clongated and have a pointed tip, arranged in a g

radial pattern around the center of the flower. They are oriented outwardly
at various angles, creating a bushy appearance.

A2: There are {ive distinct spots visible on the body of the
- leopard on the left side, specifically in line with the chest
area, contributing to its unique coat pattern.

Figure 8: Examples of CAC and VQA tasks in MM CSBench. For the CAC task, our way of asking
questions is fixed.

B.1 Examples for CAC Task

For the CAC task, annotations are meticulously produced through extensive manual effort. Recog-
nizing the limitations of automated methods in capturing the subtleties of camouflage, we relied on
human annotators to ensure high fidelity. A rigorous annotation protocol was established, mandating
detailed descriptions of the camouflaged object(s) based on seven key aspects: quantity present, object
category, estimated size, dominant colors, spatial position within the frame, the specific camouflage
technique employed (e.g., background matching, mimicry, disruptive coloration), and the inferred
camouflage purpose (e.g., predator avoidance, ambush predation). This multi-faceted approach was
designed to yield a comprehensive characterization of the camouflaged entity. Furthermore, beyond
describing the object itself, descriptions detailing its interaction with the immediate surrounding
environment were explicitly mandated. This involved noting how the object integrates with specific
background elements (like foliage, bark, or substrate), utilizes shadows, or adopts postures that
enhance its concealment, thereby providing crucial context about how the camouflage functions. Our
curated collection comprises a substantial total of 10,511 unique camouflaged images, resulting in
10,511 corresponding image-text pairs specifically generated for the CAC task. Each pair serves as a
rich, fine-grained textual representation intended to ground the complex visual characteristics of the
camouflaged subjects.

B.2 Examples for VQA Task

For the VQA task, we utilized the comprehensive descriptions generated during the CAC annotation
phase as input prompts. These prompts were subsequently processed by GPT-4V to automatically gen-
erate challenging, fine-grained question-answer pairs. An exemplary question generated through this
process, shown in the figure, is: How many legs are visibly extended from the yellow
spider?. Accurately answering such questions necessitates that LVLMs possess a sophisticated,
pixel-level understanding of the visual content.

B.3 Examples for MCQ Task

Fig. [0 showcases data samples from the Multiple-Choice Question (MCQ) and Image Grounding
Segmentation (IGS) tasks integrated within the MMCSBench. In the MCQ component, we maintain a
focus on the intricate details of target objects, moving beyond simplistic questions. Furthermore, these
questions are specifically designed to evaluate the sophisticated reasoning capabilities of Large Vision-
Language Models (LVLMs). For instance, one question asks, which specific part of the
lizard’s anatomy is prominently displayed?. Successfully answering this necessitates
that the LVLM not only comprehends the visual information but also infers the most conspicuous
anatomical feature of the lizard within the image context. Another example involves identifying the
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MCQ Task

Q: In the image, which specific part of the lizard's anatomy is
prominently displayed while it is positioned in the branches, and
what unique feature is visible on that part?

A. The tail, showcasing a gradient coloring transition.

B. The foot, exhibiting claw details with a slight curvature.

C. The eye, displaying a distinct reflective quality.

D. The dorsal ridge, highlighting elongated scales that catch the light.

B C. The eye, displaying a distinct
W reflective quality.

Explanation: The lizard's eye can
be seen vividly focused on in the
image, exhibiting a reflective
quality that highlights its glossy
> surface. This reflective

e - /7 characteristic is achieved through
a combination of the eye's structure and the surrounding lighting,
making it stand out against the more muted colors of the lizard's body.
The eye is also slightly open, emphasizing its alertness and enhancing
the overall detail captured in the pixel-level examination of the image.

Q: Which specific feature of the octopus's body is most
prominently camouflaged against the coral background?
A. The shape of its head

B. The color pattern on its body

C. The position of its eyes

D. The arm positioning

B. The color pattern on its
body
Explanation: The octopus's
body, particularly its grayish,
mottled color pattern, closely
matches the sandy, coral-laden
seabed, making it difficult to
V"‘ distinguish from surrounding
environment. Indispensable for
its camouflage, this specific color pattern allows the organism to
achieve a remarkable, flawless integration with its background
environment. This ability to seemingly vanish is not just advantageous,
it represents a crucial survival mechanism essential for its existence.

IGS Task

Q: Segment the fish's head and fin on the right.
I Instance-level

A,

Q: Segment the gecko's head.

A: The image shows the head
[SEG] of a camouflaged gecko
visible amidst its natural bark
environment. The head is the
focal point, featuring a textured
surface with a prominent eye
and part of the snout. The rest
of the body is obscured, making

.

g :”.'

P
s
A: The image depicts the upper section of a camouflaged fish,
specifically its head [SEG] and a portion of its fin [SEG]. The
fin is extended laterally and partially visible, while the head
showcases the pronounced features such as eyes and dorsal
protrusions that were outlined in the full image on the left.

only the head [SEG] clearly

distinguishable.

Figure 9: Examples of MCQ and IGS tasks in MMCSBench. For the MCQ task, we require
LVLMs to provide detailed explanations for their options. For the IGS task, we specifically annotated
body parts, rather than just instance level.

region that is most prominently camouflaged against the coral background. This type
of query probes the model’s ability to discern the area of a camouflaged object that, paradoxically,
remains the most visually salient or is least effectively concealed against its surroundings. Addressing
such challenges correctly requires LVLMs to possess both fine-grained perceptual recognition and
advanced reasoning skills pertinent to camouflage scenarios.

B.4 Examples for IGS Task

Turning to the IGS task, Fig. ] also illustrates examples incorporating both instance-level masks
and our meticulously annotated part-level masks. In the left-hand example, which depicts two fish,
the instruction given is Segment the fish’s head and fin on the right. This command
requires the model to perform spatial discrimination between the two fish instances and subsequently
associate the designated region with a [SEG] token in its output. This token facilitates the downstream
segmentation network in accurately delineating the specified parts. The example on the right
demonstrates a part-level segmentation directive: Segment the gecko’s head. Executing this
instruction accurately demands that the LVLM precisely identifies specific anatomical regions of
the target. This capability is particularly crucial in camouflaged environments where occlusions
frequently occur and can obscure the complete form of the object.

B.5 Examples for CEA Task

For the CEA task, Fig. [T0] presents illustrative examples corresponding to four distinct levels of
camouflage effectiveness: Normal, Partial, Seamless, and Imperceptible. Each example
is accompanied by its assigned score and a textual explanation justifying the designated camouflage
level. For the Camouflage Effectiveness Assessment (CEA) task, akin to the CAC task, we utilize
a standardized prompt for querying all images, as depicted in the top-left corner of Fig. [T0} As
demonstrated in the figure, clear differentiations exist in the degree of camouflage across these levels.
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A: CAMO LEVEL: Level 4: Scamless
@ CAMO SCORE: 03
EXPLANATION: The object, a tapir, utilizes its dark coloratior

to blend effectively with the dark forest floor. Its boundaries arg

CEA Task

Q: What level of camouflage does the figure in the image have?
A. Level 1: Exposed.

B. Level 2: Normal.

C. Level 3: Partial.

D. Level 4: Seamless.

E. Level 5: Imperceptible.

And you need give a specific CAMO SCORE.

further obscured by surrounding twigs and branches, integrating if
into the cluttered environment. While shadows mimic its shape,
its slightly shinier coat contrasts with dull surroundings, making
its effective camouflage noticeable with moderate effort

A: CAMO LEVEL: Level 5: Imperceptible

CAMO SCORE: 84

EXPLANATION: Two playful creatures blend seamlessly with
the forest backdrop using similar moss/bark textures and a

A: CAMO LEVEL: Level 2: Normal
CAMO SCORE: 29
EXPLANATION: The object in

S § with matching green/brown color palette. Their irregular shapes
izza topped with sausage
que’stmn‘lsa F ‘h ‘}‘llb»l‘“ ds i it h” 8¢ mimic ndturd] elements, further enhancing camouflage. Soft
and parsicy, which biends into the hghtmg adds difficulty, making them nearly impossible to spot without guidance, achieving a Level

environment of a restaurant table setting. 5 camouflage rating.
The boundaries of the pizza crust and the

7 A: CAMO LEVEL: Level 4: Partial
| CAMO SCORE: 57

toppings have some similarities in color

and texture with the wooden table, creating a partial camouflage effect. = - P
co o S -~ EXPLANATION: The object is a crab attempting to blend into
The golden-brown crust and herbs can resemble wood or other table : ) LT
. . the sandy beach. Its coloration somewhat matches the sand, and
elements, which helps to obscure the pizza somewhat. However, the £ . .
§ o Ko - itsshell pattern mimics the texture, allowing boundaries to merge
brighter colors of the cheese and the distinctive shapes of sausage bits :

b partially. However, its distinct shape and features like legs
make it recognizable with sc >ffort. The contrast between the vivid SIS, G Ry 3 -
t 1 tt bdued back 1 aid lentif ¢ = B become recognizable, especially under certain light or viewing
oppings and the subdued background aids 1n identitying the pizza

i X . y I > angles. Furthermore, the crab's glossier surface contrasts with the matte sand «hmnmmg
despite the overall blending that occurs with the plate and table.

camouflage efficacy. Spotting it is thus moderately difficult, requiring careful observation.

Figure 10: Examples of the CEA task in MMCSBench. In this figure, we show four different levels.
It can be seen from the figure that the camouflage scores obtained by our algorithm can effectively
represent the degree of camouflage of different targets.

Notably, at the Normal level, the presence and category of the target object are readily apparent, with
its boundaries being sharply defined and easily discernible. As the camouflage level progresses to
Partial and Seamless, the target’s inconspicuousness increases. This includes instances where
objects actively attempt concealment within their environment, such as a crab partially burying
itself in the sand. Upon reaching the highest level, Imperceptible, the target becomes virtually
impossible to detect visually.

Overall, the Seamless and Imperceptible levels represent instances of highly effective cam-
ouflage that are particularly significant for the development and evaluation of robust camouflage
analysis systems. Consequently, our evaluation methodology places a specific emphasis on analyzing
performance metrics, such as error rates, for these two challenging tiers.

B.6 WordCloud for MMCSBench

Fig. [IT] presents word cloud visualizations for the five tasks within MMCSBench across both the
training and testing sets. Taking the CAC task as an example, we can clearly see keywords such
as "camouflage", "surrounding", "color", "texture", "purpose”, and "predator”. This indicates that
the CAC task focuses on describing object details, their surrounding environment, and camouflage
strategies. The VQA task features more keywords related to object details, such as "color", "eye", and
"body", suggesting that this task places greater emphasis on questions and answers regarding specific
parts or details of the object, which highlights the fine-grained nature of our MMCSBench. Overall,
the different tasks within MMCSBench have distinct focuses, allowing for the effective evaluation of
existing LVLMs’ performance in camouflage scenes.

C CEA Task Supplement

C.1 More CEA Level Visualization

In Fig. [12] we present images of different CEA levels to demonstrate the effectiveness of our
camouflage score C; evaluation. As can be seen from the figure, as the camouflage level increases,
the degree of camouflage and complexity of the images further rise. By calculating the camouflage
score C, we can effectively assess the camouflage effectiveness of different object images, thereby
training the LVLM.

C.2 Landscape Visualization

In this section, we present a collection of 1473 landscape images that we have gathered in Fig. [[3]
These images span various types of scenery, such as seascapes, deserts, clouds, forests, and grasslands,
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Figure 11: Word cloud display of each task in MMCSBench. For each task, the word cloud we
generated only includes the answer part.

Figure 12: Display of images at different CEA levels. From top to bottom, the camouflage levels
are 1-5. It can be seen from the figure that the lower the level, the simpler the overall image, while
the higher the camouflage level, the more complex the background environment.
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Figure 13: Pure landscape image display. We collected images from different perspectives such as
sky, ocean, land, and grass, to broadly represent the living environments of various animals.

representing major habitats for different species. As can be observed from these images, they contain
neither prominent objects nor camouflaged objects. Using these images for training CEA tasks can
effectively prevent LVLMs from making the critical error of misinterpreting pure landscape images
as containing highly camouflaged objects.

C.3 50K+ Automatically Collected Camouflage Images

Fig. [T4 demonstrates our automatic camouflage image detection and collection on the COCO [31],
WildFish [[73]], iNat [56], and AK [44] datasets. The specific details are as follows:

1. We first fine-tuned Qwen2.5-VL-72B using 40% of the CEA data. Within this 40% subset,
we aimed to maintain consistency in the number of samples across different camouflage
levels. Additionally, we incorporated 1,473 collected pure landscape images into the training
process.

2. We utilized the fine-tuned Qwen2.5-VL-72B to automatically assess the camouflage level
of images within the COCO, WildFish, iNat, and AK datasets. We exclusively selected
samples classified with the Imperceptible camouflage level.

3. For video stream data originating from the AK dataset, we calculated the Structural Similarity
Index (SSIM) between images from the same video stream. To ensure sample diversity,
images exhibiting an SSIM score greater than 0.5 were removed.

4. After de-duplication, we get the final 50K+ dataset.

Ultimately, this process resulted in the compilation of a dataset containing 54,468 camouflaged
images, accompanied by their corresponding generated descriptions.

C.4 Weight Analysis of «, 5 and v in C

To address the potential subjectivity in camouflage efficacy assessment and the varying importance
of color, texture, and edge cues across different camouflage scenarios, we conducted a sensitivity
analysis on the weights assigned to each component of the CEA score (C) in Table[6] Specifically,
we explored the impact of different weight combinations (« for color similarity S, 5 for texture
similarity S¢, and ~y for edge fusion similarity S.) on the overall C and its correlation with LVLM
performance. Our experiments further aimed to ensure that the distribution distinctions between
camouflaged and natural images were consistently maintained across different weight settings. The
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Figure 14: Display of collected 50K+ camouflage images. We fine-tuned Qwen2.5-VL-72B
using the CEA task to enhance its understanding of camouflaged and non-camouflaged scenes.
By incorporating pure landscape images, we enabled it to differentiate between different levels of
camouflage. Subsequently, we automatically collected images from large-scale public datasets, and
after deduplication, we formed a dataset of 50K+ camouflage images. During the filtering process,
we only collected images that Qwen2.5-VL-72B assessed as being at camouflage level 5.
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Figure 15: Statistics of different categories in 50K+ camouflage images. As you can see, similar to
the previous dataset COD10K, the images we counted also showed a long-tailed distribution, because
certain categories are naturally disguised, such as chameleons. Some categories were only extreme in
certain cases.

results, detailed below, demonstrate that while individual C; values may shift slightly with weight
adjustments, the relative ranking of camouflage effectiveness, the distribution separation, and the
subsequent evaluation of LVLM performance remain largely consistent, thus justifying the robustness
of our chosen weighting scheme. This approach aligns with methodologies used in prior work to
establish reliable camouflage assessment metrics.

Table 6: Sensitivity Analysis of CEA Score Weights. «, /3, and  represent the weights for color
similarity (S.), texture similarity (5;), and edge fusion similarity (S.), respectively; C denotes the
overall CEA score; p is the Spearman rank correlation coefficient.

Weight Scheme } . We‘g’hts . } Avg. C, p with Baseline } cpaen2y LIS
Baseline 05 03 02| 4901 2117 1.00 72.84 6.32
Color 07 015 0.15| 49.52 20.56 0.93 71.50 6.47
Texture 015 07 015 | 5174 18.87 0.87 72.65 6.25
Edge 015 0.5 07 | 42.93 19.62 0.86 7272 6.30
Equal 13 13 13| 4921 2130 0.91 7175 6.85

D CamoVLM for Camouflage Scene Understanding

Previous approaches, such as LISA [24] and GeoPixel [2], commonly employ the Segment Anything
Model (SAM) as their segmentation network. However, SAM encounters difficulties with fine-
grained segmentation in camouflage scenes. It often necessitates high-resolution inputs and multiple
iterations for mask refinement, leading to significant resource consumption. More critically, SAM
lacks an effective mechanism for multimodal alignment, which can result in incorrect instruction
comprehension and the misidentification of non-target regions.

To address these limitations, we introduce CamoVLM, a large vision-language model specifically
designed for camouflage scene understanding, as illustrated in Fig. [T6] CamoVLM adheres to the
established framework of grounding LVLMs and comprises two key components: (1) An LVLM
branch, utilizing Qwen2.5-VL-7B [39], dedicated to tasks such as CAC, VQA, CEA and MCQ. (2)
A grounding segmentation branch, CamoPixelModel, engineered for precise object segmentation.
Our segmentation branch builds upon existing COD models and incorporates a proposed lookup
matching strategy to enhance the alignment between visual features and segmentation tokens. This
method generates an attention mask tailored to the prompted region, enabling the decoder to follow
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The right image displays the camouflaged

Prompt *\/I tail [SEG] of the lizard depicted in full on

C it i " LLM e > the left. The visible part is the curved

I 0l L L o N section of the tail [SEG], positioned
camouflaged parts? Tokens amidst the foliage.

Camouflage Attribute Captioning

Visual Question Answering

Multiple-Choice Question

Grounding Segment

Please describe the given image.

| found one chameleon displays a
vibrant green color, allowing it to

Can you identify the presence of any color

variations on the tail of the chameleon?
4R,

What is most visible on the head of it?

(a) Large mouth (b) Colorful crest

Can you segment based on the

%m most recognizable part?
o

blend seamlessly into its survoundings. | & Y€5 the tail exhibits subtle (c) Prominent eyes (d) Long whiskers This is its
The lizard has a streamlined body | 97adients from vibrant green P NS hcad [SEG]
shape, featuring a tapered tail and a | 4¢ the base to a lighter shade ’ﬁ%f (¢) Prominent eyes =y and its uppel
distinct head with bulging eyes- towards the tip. ~ torso [SEG].

Figure 16: Overall framework diagram of the proposed CamoVLM. CamoVLM includes an
LVLM branch and a segmentation branch. The LVLM branch passes the token obtained by the [SEG]
identifier to the segmentation branch, thereby performing instruction segmentation and IGS tasks.
Simultaneously, the LVLM branch can handle CAC, VQA, MCQ, and CEA tasks.

instructions with greater precision. The subsequent sections will provide a detailed explanation of
both the LVLM and segmentation branches.

D.1 LVLM and [SEG] Token

For tasks such as CAC, VQA, CEA and MCQ, we can conveniently train them with existing LVLMs.
However, for IGS tasks, a special token is required to guide the LVLM in generating tokens specifically
for segmentation.

Inspired by LISA’s [24] paradigm of injecting segmentation capabilities into LVLMs, CamoVLM
adopts a similar mechanism to enable joint reasoning and segmentation for camouflage scene under-
standing. The core idea involves integrating a special token [SEG] into the LVLM’s vocabulary to
trigger segmentation mask generation while preserving the model’s language comprehension and
reasoning abilities.

Given an input visual image x, and a text instruction x;, the LVLM branch (Qwen2.5-VL-7B)
processes them to generate a textual response ¥;. When the instruction requires segmentation (e.g.,
"Segment the camouflaged insect on the tree"), the model outputs the [SEG] token behind the token
"insect". Formally:

Vi = Frvim (X, X¢), 4)
where Frv s represents the LVLM. The hidden embedding h,.4 corresponding to the [SEG] token
is extracted from the final layer of the LVLM. This embedding is then projected into a segmentation-
aware feature h,., via a lightweight MLP layer :

hseg = ’Y(hseg)- (5)

D.2 Grounding Segmentation and LUM

CamoPixelModel. To effectively address the cross-modal mismatch challenges inherent in camou-
flage scenes, we developed CamoPixelModel to serve as the segmentation branch of CamoVLM.
CamoPixelModel adopts a U-Net-like architecture [51]], comprising an encoder, our proposed match-
ing strategy, and a decoder. It processes both the input image and the segmentation token.

Given an input image x, CamoPixelModel employs ConvNeXt [38] as its encoder (Fg) to extract
hierarchical feature representations:

Vm - .FE(X)v m € {1a27374}7 (6)

where F 5 captures multi-scale visual features V™. These extracted features subsequently undergo
processing via the LookUp Matching strategy (detailed below), which aligns them with segmentation
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tokens, thereby enhancing region-specific understanding. Finally, the decoder integrates the [SEG]
token embeddings, facilitating precise mask generation and improving adherence to instructions. This
structured approach enables CamoPixelModel to achieve superior pixel-level segmentation accuracy
compared to models like SAM, while concurrently maintaining computational efficiency.

LookUp Matching Strategy. Camouflaged objects inherently blend into their surroundings due to
similarities in texture, color, and pattern. This poses a significant challenge for achieving precise
feature alignment between textual instructions and visual content. To overcome this fundamental
difficulty, we propose the LUM strategy, a specialized cross-modal alignment mechanism tailored for
camouflage scenarios.

Specifically, LUM operates by processing visual features at multiple patch scales. This multi-scale
approach assists the model in locating objects, as specified by the prompt, within the relevant feature
regions. Given the visual features V™ and the segmentation token embedding hy, the module
extracts patches at various scales:

Pl = @ (Us, (V™) ;) € RV 51 €8 ={s1,50,...,n}, (7

where P:’; denotes the patch at position (4, j) with size sj. The operation U, unfolds the feature
map V™ to extract s; X s patches. ® represents a projection function mapping the patch into the
embedding space, and S defines the set of configurable patch sizes, enabling multi-scale feature
alignment.

Subsequently, to perform the lookup matching between patches P”‘ and the embedding hy,, a
cross-attention mechanism is applied to compute scores for each patch

hg,
Tg) : hseg7 (8)
where Af’“j signifies the cross-attention output for patch (i, j) at scale si. This step calculates
attention scores between visual patches and segmentation tokens via scaled dot-product attention.

S
A7% = softmax(

Finally, the enhanced feature map V@ is produced by integrating the multi-scale attention results
with the original features:

n
7 =9V e | RA™)), ©)
k=1

where @ indicates channel-wise concatenation, R is a reshaping operation that restores the spatial
dimensions of the attention maps, G denotes a convolutional compression layer designed to fuse
the attention-enhanced features, and v represents the ReLLU activation function. This integration of
multi-scale patch information empowers the model to effectively locate camouflaged regions across
various levels of granularity.

Decoder. After applying the LUM strategy, we obtain text-aligned hierarchical features V. Sub-
sequently, a hierarchical decoder is employed to perform progressive fusion of multi-scale features
from deep to shallow layers. For detailed decoder architecture, please refer to [68]]. The decoded
features ultimately generate the output based on text prompts, as visualized in Fig. [I6]

E Implementation Details of Training and Testing

E.1 Implementation Details

In our study, all Large Vision-Language Models (LVLMs) are fine-tuned using the Low-Rank
Adaptation (LoRA) methodology [20]]. Specifically, the LoRA rank (r) is set to 8, and the scaling
factor «v is configured to 16. Throughout the fine-tuning process, both the visual encoder and the LLM
backbone remain unfrozen, allowing their parameters to be updated. The batch size is dynamically
adjusted between 1 and 4, contingent upon the parameter size of the specific model, to optimize
GPU memory utilization. All models are trained for a single epoch. We employ the AdamW [40]]
optimizer, and the learning rate is scheduled using a cosine decay strategy, annealing from an initial
value of 1 x 10~* down to 0.

Regarding data selection, we construct a training subset corresponding to 1% of the total available
data, as shown in Table[/| For the CEA task, we ensure an equal distribution of samples across its
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five distinct levels within this subset. This CEA-specific data is then augmented with an equivalent
volume of pure scenic images, along with text-image pairs sourced from other auxiliary tasks. For
the IGS task, we utilize 50% of its available data for training, as preliminary experiments indicate
that using only 1% is insufficient for adequate model convergence. All experiments are conducted on
a system equipped with 8 NVIDIA A6000 GPUs, accommodating LVLMs of varying scales.

When training text generation tasks, CAC, VQA, MCQ and CEA, we use the cross-entropy loss
function. When training IGS tasks, we use both the binary cross-entropy loss function and the IoU
loss function. By default, the weight of each loss function is 1.

Table 7: Number of Training Samples for Different Tasks in MMCSBench.
Task  Number of Training Samples

CAC 125
VQA 250
MCQ 232
CEA 210
IGS 1523

E.2 Testing Details for No fine-tuned LVLMs

When directly querying models such as GPT-4.1, Gemini 2.5-Pro, and Qwen2.5-VL-72B with
camouflage-related questions, their responses often lack the standardized format consistent with
our desired output. Therefore, we introduce specific prompts to constrain their output, compelling
them to respond in a standardized manner, which allows for a more authentic validation of their
understanding in camouflage scenarios.

Specifically, for the CAC task, we append the prompt Please describe in one paragraph
the quantity, category, size, position, color, camouflage strategy, and
camouflage purpose. to the question How is the camouflaged target integrated
into its enviromment?. For the MCQ task, after the LVLMs provide their answers, we
also prompt them with Please provide a paragraph explaining your choice. to elicit
justifications. For the CEA task, we similarly require them to provide a specific score, constrained to
be within 100, informing the LVLMs that a higher score indicates a higher degree of camouflage.

It is important to note that this prompting strategy is specifically applied to non-fine-tuned LVLMs to
encourage them to generate standardized outputs, which are subsequently used for metric calculation.
Fine-tuned LVLMs, having adapted to the standardized output format during their training, do not
require such elaborate prompting.

E.3 Training Performance on Different Tasks

Fig. shows the training performance of our MMCSBench. Specifically, for a given image, we
present the Qwen2.5-VL-7B outputs alongside the ground truth texts for various tasks.

E.4 Training Performance with Different Number of Samples

To investigate the impact of training data size on LVLM performance within camouflage scenes, we
conducted experiments using Qwen2.5-VL-7B with varying percentages of the MMCSBench dataset.
We evaluated performance on the CAC, VQA, MCQ, and CEA tasks using 2%, 5%, 10%, 20%, and
50% of the training data, comparing the results to the baseline 1% training scenario, as shown in
Table[8] Our findings indicate that increasing the training data generally improves performance, but
with diminishing returns observed beyond 10% or 20%, where performance plateaus. This saturation
effect can be attributed to several factors, including potential redundancy within the dataset itself,
limitations in the model’s capacity to extract increasingly nuanced features from larger data volumes,
the inherent complexity of the camouflage understanding task, and the constraints imposed by the
fine-tuning methodology. Furthermore, we observed that the overall distribution of camouflage
scores remained relatively consistent across different training set sizes, suggesting that while the
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Learned

The image featurcs @ i Vhich s a Teafy seadragon, a
marine creature known for its exceptional ability to blend in with aquatic
vegetation. The primary colors of the target are various shades of yellow
oreen, closely matching the surrounding aquatic plants, allowing it to remain
nearly indi from its envi . In terms of size, the leafy
seadragon occupies approximately 10% of the (o) irea, making it
relatively small compared to the overall scene. ghtly of

) ced, where it is partially obscured by the
foliage. The target appears to be in a static state, gently swaying with the water
currents. The
structural mimicry, as the seadragon's body resembles the shape and texture of the
surrounding seaweed, enhancing its concealment. Thi
hile als

I image

ts position is s “center

estled among the vibrant yellow se:

camouflage technique employed involves both coloration and

within its habitat

Q: What distinct features can be observed on the head of the
camouflaged sea creature in the first image?

Learned

A: The head of the camouflaged sca creature displays o scrics of

long, elongated appendages that resemble delicate branches or

leaves, with a slight curvature at the tip and a subtle color gradien
transitioning fro v to a lighter shade towards the base.
Label

A: The creature has a long, slender snout that extends forward,

resembling a small branch. There are two prominent eye spots
located just above the snout, and the head is decorated
fc, enhancing its

ith fronds

that mimic the surrounding yellow plan

Label

The image depicts a single camouflaged target, Which is 11l scaliorse, a species
adept at blending into its surroundings. Its primary coloration includes varying

shades of vellow and hints of ereen, mirroring the vibrant yellow scagrass that

Q: How many distinct branch-like appendages can be seen
extending from the body of the sea creature in the second image?

Learned

surrounds it, aiding  its within  the

environment. The seahorse occupies approximately 5% of the overall image area,
making it relatively small yet perfectly integrated within the bright backdrop.
hily to ge, the target is only
partially obscured by lush aquatic vegetation, highlighting its ability to remain
undetected. It appears to be in a static posture, with its slender body angled among

Positioned s rd the center-left quadrant of the im

| |the foliage. The camouflage technique employed by the seahorse involves its

abilit shape and ¢ > marine plants around it, allowing it to
evade predators seamlessly. The purpose of this camouflage is primarily
¢, as it helps the seahorse to avoid detection from both prey and potential
threats in its habitat.

A There are at least five distinct branch-like appendages
extending from the body of the sca creature, resembling delicate

leaves or branches.

Label

A: The sea creature has multiple branch-like appendages, with at
prominent fronds extending outward from its dorsal
region, effectively resembling the surrounding algae and
enhancing its ability to blend in with its environment.

CAC

VQA

Q: In the underwater scene, what is the specific shape of the tail of
the seahorse-like creature known s the leafy seadragon?

A. A straightened cylindrical shape

B. An clongated, curled shape resembling a question mark

C. A flat ribbon-like shape

D. A forked, split shape

Learned
B. An clon
nExplanation: The tail of the leafy seadragon exhibits an clongated
nd cu form resembles a question . which is
characteristic of this species. This unique shape aids in its
camouflage among aquatic vegetation, allowing it to blend
seamlessly into its environment. The other options do not
accurately describe the distinctive morphology of the seadragon's
tail.

ated, curled shape resembling a question mark\

Q: What level of camouflage does the figure in the image have?
A. Level I: Exposed.

B. Level 2: Normal

C. Level 3: Partial.

D. Level 4: Seamless.

E. Level 5: Imperceptible.

And you need give a specific CAMO SCORE.

Q: Segment the scadragon's nose.

Learned

Learned

CAMO LEVEL: Level 3: PartialnCAMO SCORE: 59\nEXPLANATION: The
object in question is a leafy seadragon, which is known for its remarkable ability
to blend into its aquatic environment. Its boundaries are somewhat effective at
blending with the surrounding yellow seaweed and coral, but there are noticeable
differences in texture and shape that make it partially distinguishable. While the
coloration matches well with the yellow hues of the nearby flora, the seadragon's
elongated body and unique appendages create visual contrasts that can catch the
eye.

A: The image shows a partial view of the
camouflaged scadragon, specifically its
SEG], which is distinet from the
surrounding coral structures. The nose is
clongated and slightly curved, blending
seamlessly with the coral's texture and
shape.

nose

Label Label Label
B. An elongated, curled shape resembling a question mark\ CAMO LEVEL: Level 3: PartialnCAMO SCORE: 54\nEXPLANATION: The A: The image shows a partial view of a
nExplanation: The leafy seadragon has a distincily ¢ -0 and| |object in question is a leafy seadragon, a marine fish known for its remarkable

curled tail that mimics s found in its
environment. This unique shape allows the creature to grasp and
stabilize itself among seaweed or other plants as it swims, which is
effectively represented in the image. The curled form is not only
practical for its survival but also contributes to its camouflage

among the vegetation.

camouflage that mimics the underwater vegetation in its habitat. The boundaries
of the seadragon effectively blend with the yellow green texture of the
surrounding seaweed, making it somewhat challenging to locate at first glance.
However, there are some visual differences, such as the seadragon's unique shape
and distinct features like its fins, which can catch the eye when viewed against the
foliage.

MCQ

CEA

camouflaged seadragon, with its head,
specifically the nose [SEG, visible amidst
a leafy underwater environment. This
seadragon is well-camouflaged due to its |
slender form and patterning that blend

seamlessly with the surrounding scene

IGS

Figure 17: The performance of Qwen2.5-VL-7B on five tasks using the same camouflaged image.
We used one image to test the performance of Qwen2.5-VL-7B on CAC, VQA, MCQ, CEA, and
IGS tasks. In the figure, we present "Learned" to denote the output of Qwen2.5-VL-7B and "Label"
to denote our annotated ground truth text. It can be observed that Qwen2.5-VL-7B exhibits good
performance across different tasks. For example, in CAC, it can accurately predict the category,
quantity, position, and camouflage strategy, even though there are errors in size estimation. In VQA
and MCQ tasks, it can answer correctly. Notably, in the CEA task, it can accurately judge the
degree of camouflage and the score (59 vs. 54), and in the IGS task, it also demonstrates accurate

segmentation.

model’s ability to precisely predict scores may improve, its overall understanding of camouflage
levels stabilizes early in the training process.

Table 8: Qwen2.5-VL-7B Performance with Varying Training Data Percentage. There may be
many reasons for the change in metrics, including a reduction in the amount of data in the test set.

Train Data % ‘ CAC ‘ VOA ‘ MCQ ‘ CEA

‘ BLEU METEOR RougeL ‘ BLEU METEOR RougeL ‘ ACC BLEU METEOR ‘ ACC MAE BLEU
1% (Baseline) | 18.09 42.52 33.87 19.25 45.10 41.83 7520 2571 43.61 72.84 632 20.25
2% 18.71 43.15 34.45 19.95 45.68 42.28 76.15  26.12 44.18 73.62  6.18  20.68
5% 19.28 43.92 35.21 20.62 46.29 43.17 7723 26.67 4491 7419 597 2114
10% 19.45 4428 35.68 20.91 46.52 43.42 7778  26.94 4524 7443 585 2131
20% 19.51 44.35 35.75 20.98 46.59 43.49 77.82 2698 45.29 7448 581 2138
50% 19.53 44.38 35.78 21.01 46.62 43.52 77.85 27.01 45.32 7451 578 2141
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