
Investigating Dialogue Act Classification through Cross-Corpora
Fine-Tuning of Pretrained Language Models

Anonymous ACL submission

Abstract

Fine-tuning pre-trained language models001
(PLMs) has achieved significant performance002
improvements in natural language understand-003
ing tasks such as dialogue act classification.004
However, most of these models are evaluated005
and benchmarked on standard datasets, and of-006
ten do not perform well in practical, real-world007
scenarios such as our scenario of interest: di-008
alogues of collaborative human learning, in009
which two learners work together to solve a010
problem in a classroom. To address this chal-011
lenging scenario, we fine-tuned variants of the012
RoBERTa and LLaMA-2 models for dialogue013
act classification within using cross-corpora014
model fine-tuning approaches on two corpora015
of collaborative learning dialogues. Our experi-016
ments show that fine-tuning PLMs using cross-017
corpora approaches has the potential to improve018
classification performance, especially when a019
corpus has limited representation of certain dia-020
logue acts. This work highlights the potential of021
using this approach for future domain-specific022
dialogue act classification tasks.023

1 Introduction024

In recent years, pretrained language models (PLMs)025

have revolutionized the field of natural language026

processing, largely driven by their improved per-027

formance when fine-tuned for downstream tasks028

(Devlin et al., 2019; Yang et al., 2019; Radford029

et al., 2019; Raffel et al., 2020; Zhuang et al., 2021;030

Touvron et al., 2023b). PLMs are now serving031

as an effective starting point for many NLP tasks,032

including dialogue act classification (Saha et al.,033

2019b; Li et al., 2020). However, most of these034

models are evaluated and benchmarked on stan-035

dard dialogue datasets, and they may not perform036

well in real-world scenarios. Our scenario of inter-037

est is dialogue act classification in the context of038

collaborative learning, in which two learners work039

together to solve a problem within a classroom.040

In the context of collaborative learning, dialogue041

acts serve important modeling goals: they repre- 042

sent the pragmatics of utterances, offer many cues 043

for assessing the effectiveness of collaboration, and 044

provide insight into the kinds of dialogue behaviors 045

that impact learning, performance, and problem- 046

solving abilities (Chi and Wylie, 2014; Borge et al., 047

2019; Snyder et al., 2019). There is a great need 048

to leverage the robust capabilities of PLMs for dia- 049

logue acts classification on collaborative learning 050

dialogue corpora. 051

With that in mind, our work investigates the 052

results of fine-tuning RoBERTa (Zhuang et al., 053

2021), known for state-of-the-art performance in 054

classification tasks, and the recently released open- 055

sourced LLaMA-2 (Touvron et al., 2023b), which 056

to the best of our knowledge has not been used for 057

dialogue act classification. However, fine-tuning 058

these PLMs for dialogue act classification within 059

the context of collaborative learning is challenging 060

for several reasons: the availability of annotated 061

collaborative learning dialogue datasets is highly 062

limited, and there is high domain-specificity of the 063

language present in these corpora. 064

To address these challenges, we apply a cross- 065

corpora approach, which involves leveraging the 066

properties of one dataset to improve the perfor- 067

mance of another related dataset (Webb and Fer- 068

guson, 2010). We conducted experiments using 069

the cross-corpora fine-tuning approaches on both 070

RoBERTA and LLaMA-2 models to investigate 071

the following research questions: RQ1) How does 072

fine-tuning PLMs using cross-corpora fine-tuning 073

impact the performance of dialogue act classifi- 074

cation in the context of collaborative learning?, 075

and RQ2) What dialogue acts can be learned from 076

one domain to another during cross-corpora fine- 077

tuning? 078

The novel contributions of this work are as fol- 079

lows: (1) We provide evidence for the application 080

of cross-corpora fine-tuning approaches for dia- 081

logue act classification; and (2) We show results 082
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of cross-corpora fine-tuned models outperforming083

baselines in scenarios with limited dialogue act084

representation.085

2 Experimental Settings086

2.1 Annotated Corpora087

We evaluate the cross-corpora approach on two088

collaborative dialogue corpora.089

Corpus I: A transcribed spoken corpus compris-090

ing 6205 utterances from 18 video recordings of 36091

paired middle school learners engaged in collabo-092

rative coding activities. Its 15 dialogue acts were093

manually annotated with a Cohen’s kappa of 0.83.094

Corpus II: A textual corpus comprising 3401095

utterances from the textual chats of 68 sessions of096

136 paired high school learners during collabora-097

tive computational music remixing. It features 16098

fine-grained dialogue acts manually annotated with099

a Cohen’s kappa 0.76.100

The original labeling of each corpus produced101

sparsity issues for some dialogue acts, so we102

mapped the original labeling onto six main classes103

(Table 1).104

DA class # of samples # of samples
(Corpus I) (Corpus II)

QUESTION 1107 83

RESPONSE 331 580

STATEMENT 2555 937

FEEDBACK 203 258

SUGGESTION 809 1023

OTHER 865 520

Table 1: Distribution of the DA classes Across the Two
Datasets

For cross-corpora training and testing, we split105

the datasets into approximately 80/20 splits strati-106

fying by pairs and labels to ensure a proportional107

distribution of the dialogue acts and that no indi-108

vidual paired session’s utterances were present in109

both training and test set.110

For our experiments, we fine-tuned two PLMs,111

RoBERTabase and the LLaMA-2 7B model.112

RoBERTa (Zhuang et al., 2021), Robustly Op-113

timized BERT approach, builds on the original114

BERT and modifies the pretraining strategies, such115

as using byte-pair encoding (Kudo and Richardson,116

2018; Wang et al., 2020), modifying BERT’s static117

MLM objective to a dynamic MLP, removing the118

next-sentence pretraining objectives and modifying119

key training parameters. Recently, RoBERTa has120

been found to outperform other traditional deep 121

learning and BERT models for DA classification 122

tasks (Duran et al., 2023) 123

LLaMA-2 (Touvron et al., 2023b) is a collec- 124

tion of newly released open-source LLMs based 125

on the LLaMA (Touvron et al., 2023a) by Meta 126

GenAI. The release of these open-source LLaMA- 127

2 models creates opportunities for the research 128

community to fine-tune the actual weights and bi- 129

ases of the models with transparency and visibility 130

to the model architecture and pretraining process. 131

However, like most recent LLMs, LLaMA-2 is a 132

decoder-only transformer model developed mainly 133

for generative tasks. As such, we used a crossen- 134

tropy loss function (Equation 1) between neural 135

model’s output logits and target labels, averaged 136

over the mini-batch size N for the classification 137

task where log(pn,c) is the natural logarithm of the 138

predicted probability that observation n belongs to 139

class c, yn,c is the binary indicator for the true class 140

label for each sample n and class c. 141

L = − 1

N

N∑
n=1

C∑
c=1

yn,c log(pn,c) (1) 142

4-bit Quantization of LLaMA-2: Despite the 143

open access to LLaMA-2 models, the high com- 144

putational demands pose significant challenges. 145

For instance, fine-tuning a LLaMA-2 7B model 146

requires approximately 112GB of GPU memory, 147

exceeding the capacity of consumer GPUs. To mit- 148

igate this, there has been a growing interest in pa- 149

rameter efficient fine-tuning (PEFT) (Houlsby et al., 150

2019) quantization approaches. Recently, 4-bit 151

quantization has shown optimal performance result- 152

ing in reduced latency and memory use (Dettmers 153

and Zettlemoyer, 2023). Equation 2 shows the for- 154

mula for quantizing a 32-bit Floating Point (FP32) 155

tensor into a Int4 tensor with magnitude of [-7,7]. 156

XInt4 = round

(
7

absmax(XFP32)
×XFP32

)
(2) 157

2.2 Baseline models 158

We considered six baselines for our experiments, 159

where each baseline involved fine-tuning a PLM 160

on a specific corpus and evaluating it using the 161

same corpus’s test set. We trained and evalu- 162

ated RoBERTa base and LLaMA-2 7B models on 163

each corpus. Additionally, to evaluate the perfo- 164

mance associated with data balancing, we trained 165

and evaluated additional RoBERTa models with 166
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datasets augumented by upsampling using the Ran-167

dom Oversampling (ROS) approach (Mohammed168

et al., 2020).169

2.3 Cross-corpora fine-tuned models170

For our cross-corpora fine-tuning, we conducted ex-171

periments based on three cross-corpora conditions172

as follows:173

• Robertabase/ LLaMA-7B_(C1+C2) : We fine-174

tuned using a combination of Corpus I and Cor-175

pus II training set.176

• (Robertabase/ LLaMA-7B_(C1)→C2 : We fine-177

tuned using Corpus I training set, then fine-tuned178

the resulting model on Corpus II training set.179

• Robertabase/ LLaMA-7B_(C2)→C1 : We fine-180

tuned using Corpus II training set, then fine-tuned181

the resulting model on Corpus I training set.182

All implementation is done in PyTorch (Paszke183

et al., 2019). For each fine-tuning experiment with184

both variants of RoBERTa, we set the following hy-185

perparameters: we used a batch size of 16 with an186

AdamW Optimizer with a learning rate of 1 e-5 and187

weight decay of 0.01. We trained for 20 epochs,188

with early stopping set at 10. For LLaMA-2 7B189

model, we use the bitandbytes (Dettmers et al.,190

2022) library for the model quantization config-191

uration. We attempted to use QLoRA (Dettmers192

et al., 2023) with LoRA (Hu et al., 2021), which193

enabled us to fine-tune only about 1% of the param-194

eters, but we faced the challenge of fine-tuning the195

LoRA and the 4bit model with the second corpus196

for our cross-corpora fine-tuning approaches, so we197

used the QLoRA configuration without LoRA, fine-198

tuning about 3.9% of the parameters. We trained199

the quantized model for 10 epochs using a batch200

size of 4 with a learning rate of 2 e-4 and a max-201

imum sequence length of 512. To save memory,202

we use a paged 32-bit AdamW optimizer(Kingma203

and Ba, 2014) and weight decay of 0.05 and mixed204

precision (Micikevicius et al., 2017). All training205

was done using single NVIDIA A100 GPU.206

3 Results and Discussion207

To evaluate the performance of the fine-tuned mod-208

els, we report the overall Accuracy and F1 (macro)209

score, which is the arithmetic mean of individual210

class F1 scores giving equal weight to all classes211

(Table 2). We also report macro-averaged recall212

and F1 scores for each class (Table 3).213

Table 2: DA classification results (accuracy (Acc) and
F1 scores) for fine-tuned models compared to baselines.

Datasets Corpus I (C1) Corpus II (C2)
Model Acc F1 Acc F1
Baseline models
RoBERTa_c1 0.750 0.678 - -
RoBERTa_c2 - - 0.684 0.587
ups_RoBERTa_c1 0.686 0.622 - -
ups_RoBERTa_c2 - - 0.677 0.625
LLaMA-2-7B_c1 0.697 0.609 - -
LLaMA-2-7B_c2 - - 0.669 0.600
Cross-corpora models
RoBERTa_c1+c2 0.726 0.626 0.630 0.568
RoBERTa_c1->c2 - - 0.697 0.635
RoBERTa_c2->c1 0.756 0.683 - -
ups_RoBERTa_c1+c2 0.719 0.631 0.643 0.586
ups_RoBERTa_c1->c2 - - 0.699 0.645
ups_RoBERTa_c2->c1 0.674 0.629 - -
LLaMA-2-7B_c1+c2 0.677 0.592 0.597 0.548
LLaMA-2-7B_c1->c2 - - 0.647 0.590
LLaMA-2-7B_c2->c1 0.716 0.628 - -

3.1 Comparison to baseline models 214

To answer RQ1, we compared the results of the 215

cross-corpora fine-tuned models to the baselines, 216

displayed in Table 2. As hypothesized, having 217

more than one domain-related dataset incorporated 218

in the model fine-tuning improves the model perfor- 219

mance, especially in the cross-corpora fine-tuning 220

where we learning from a model based on dataset 221

from a similar domain fine-tuned on a PLM. Our 222

cross-corpora approach using RoBERTa had the 223

best performance on the both test sets. Our best 224

performing models achieved an F1 score of 0.683 225

on the corpus I test set, and an F1 score of 0.645 226

on the corpus II test set. 227

3.2 Comparison across DA classes 228

To answer RQ2, we compared the results of the 229

cross-corpora fine-tuned models for each individ- 230

ual DA class to examine which of the DAs were 231

learned across corpora. The main motivation of 232

our approach is that cross-corpora learning helps to 233

improve the recall of dialogue acts that are scarce 234

in a given corpus. Table 3 shows the impact of 235

our cross-corpora approach in improving the recall 236

especially in cases with limited DA available in the 237

corpus. In particular, when we trained the models 238

on a dataset with a larger amount of a give DA, it 239

significantly improves the performance when eval- 240

uated on a dataset with a smaller amount of the 241

given DA. Our results show that all models that 242

were fine-tuned with Corpus I, which have a signif- 243

icant amount of QUE tags compared to Corpus II, 244

when evaluated on the Corpus 2 data, showed an 245

improvement in detecting the QUE tag. Similarly, 246
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Dialogue Acts
QUE RES STMT SU FDBK OTH

Model R F1 R F1 R F1 R F1 R F1 R F1
Corpus 1
RoBERTa_c1 0.927 0.882 0.697 0.775 0.878 0.790 0.546 0.611 0.529 0.439 0.443 0.570
LLaMA-2_c1 0.873 0.859 0.708 0.663 0.794 0.747 0.596 0.598 0.353 0.316 0.371 0.469
RoBERTa_c1+c2 0.902 0.871 0.831 0.715 0.781 0.769 0.794 0.667 0.235 0.242 0.351 0.493
LLaMA-2_c1+c2 0.824 0.837 0.742 0.695 0.785 0.736 0.546 0.535 0.294 0.312 0.356 0.438
RoBERTa_c2->c1 0.951 0.884 0.685 0.753 0.846 0.795 0.681 0.671 0.529 0.429 0.438 0.567
LLaMA_c2->c1 0.883 0.860 0.719 0.656 0.819 0.767 0.610 0.637 0.353 0.343 0.397 0.503
Corpus 2
RoBERTa_c2 0.167 0.242 0.767 0.671 0.697 0.670 0.824 0.784 0.561 0.547 0.468 0.608
LLaMA-2_c2 0.333 0.421 0.677 0.684 0.693 0.643 0.709 0.722 0.421 0.440 0.654 0.667
RoBERTa_c1+c2 0.500 0.245 0.744 0.669 0.550 0.584 0.745 0.746 0.561 0.587 0.487 0.578
LLaMA-2_c1+c2 0.500 0.250 0.677 0.682 0.573 0.547 0.626 0.686 0.544 0.544 0.545 0.578
RoBERTa_c1->c2 0.417 0.476 0.759 0.692 0.638 0.653 0.856 0.795 0.544 0.530 0.545 0.664
LLaMA-2_c1->c2 0.333 0.432 0.692 0.702 0.693 0.629 0.687 0.692 0.439 0.439 0.596 0.648

Table 3: Evaluation results for individual DA classes on the two collaborative learning corpora for the RoBERTA
base and 4-bit quantized LLaMA-2 7B model using cross corpora fine-tuning approach. Recall scores are reported
to show the model’s ability to correctly identify the actual DAs.

since Corpus II has more SU tag, when it is used in247

cross-corpora fine-tuning and evaluated on Corpus248

I, the significantly improves the correct detection249

of the SU tag.250

4 Related Work251

In recent years, the introduction of the Trans-252

formers architecture by Vaswani et al. (Vaswani253

et al., 2017) has paved the way for high-performing254

transformer-based language models, such as BERT255

(Devlin et al., 2018) and GPT (Floridi and Chiri-256

atti, 2020), which have demonstrated remarkable257

performance in various NLP tasks. These models258

have been used on dialogue datasets such as SWBD259

(Jurafsky, 1997) and MRDA (Shriberg et al., 2004)260

to establish benchmarks for DA classification mod-261

els. Due to the improved performance by BERT262

on DA classification, researchers have also exper-263

imented with BERT-based models and compared264

their performance to the original BERT (Saha et al.,265

2020a; Qin et al., 2021; Li et al., 2022). As a result266

of the improved performance of BERT-based mod-267

els compared to earlier deep learning models like268

RNN and LSTM, more researchers have applied269

these models to several real-world datasets such as,270

speech acts classification with the Twitter corpus271

(Saha et al., 2020b), achieving SOTA performance272

of 75.97% on the Twitter dataset collected by (Saha273

et al., 2019a). More recently, researchers have also274

explored the robustness of BERT-based models on275

social media data (Vielsted et al., 2022).276

In contrast to encoder-based models like BERT,277

researchers have also explored decoder-only, like278

GPT-2, and their potential to perform DA classifica-279

tion, showcasing their extended capabilities (Weng 280

et al., 2020). Recently, researchers have used Di- 281

aloGPT (Zhang et al., 2019), a dialogue PLM built 282

upon GPT-2, for classifying dialogue acts in K-12 283

classroom data (Kumaran et al., 2023). With more 284

powerful variants of GPT, such as GPT-3.5 (Floridi 285

and Chiriatti, 2020), GPT-4 (OpenAI, 2023) and 286

LLaMA-2 (Touvron et al., 2023b), there is an in- 287

creasing opportunity to further the work on DA 288

classification and train better models. 289

5 Conclusion and Future Work 290

DA classification is an important task in dialogue 291

analysis especially in the context of collaborative 292

learning. However due to insufficient available 293

labeled datasets, it is challenging to train high per- 294

forming DA classification models. Our work aims 295

to address these challenges by investigating cross- 296

corpora fine-tuning to improve the performance of 297

the models and and to evaluate the ability to better 298

detect DAs in cases where a domain-related corpus 299

has less of a give tag. Further, we explored the 300

newly released LLaMA-2 model for DA classifica- 301

tion tasks. We applied quantization to reduce the 302

size of model and fine-tuned a subset of the model 303

parameters, and still achieved on-par results. 304

In the future, we would like to do perform addi- 305

tional experiments with a third dataset within the 306

same domain, that is not included in the training. 307

We would also like to explore more fine-tuning 308

techniques for DA classification using PLMs. Also, 309

we would consider multi-modal inputs for predict- 310

ing DAs such as audio and video with the textual 311

inputs. 312
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6 Limitations313

Data variability and imbalance: Our experiments314

used very similar datasets, however one was speech315

recordings transcribed to text, making it more ro-316

bust than the textual interaction data. Students317

tends to talk more than type. Furthermore, there318

are some slight difference in the type of dialogue in-319

teractions between middle school and high school320

learners, which can be also reflected in the dia-321

logue. Although these resulted in significant data322

imbalance, our metaclasses groupings and strati-323

fied splitting of the train/test data helped reduce the324

data imbalance.325

Closed-source data: Our data is primarily col-326

lected from K-12 participants, some of whom are327

minors, resulting in challenges to sharing our data328

due to data restrictions and privacy concerns.329

Computational resource limitations: due to330

computing limitations, we were unable to inves-331

tigate the scaling behavior of the LLMs, such in-332

vestigating with different precision and with larger333

models like LLaMA-13B. Further experiments and334

studies are need in the future to investigate the im-335

pact of fine-tuning significantly larger PLMs.336

7 Ethics Statement337

Our research work focuses on analyzing dialogue338

data collected during collaborative learning activ-339

ities in K-12 settings. For these reasons, the ethi-340

cal implications of our work include ensuring the341

privacy of our participants and protection of data342

collected. Our research studies were conducted343

with relevant Institutional Review Board (IRB) ap-344

proval that included written parental consent and345

student assent. All the researchers involved in the346

study are trained and certifies on human subject347

data research, and all the data are stored in dedi-348

cated secure machines with restricted access. Our349

data analysis included the development of DA tax-350

onomy and the annotation of corpora. All annota-351

tors were Ph.D. students trained in dialogue act an-352

notation following well-known steps for dialogue353

act annotation, including the iterative refinement354

of DA labels and establishing inter-rate agreement355

(Landis and Koch, 1977). In addition, we recognize356

that pretrained language models can perpetuate and357

amplify biases present in training data, and we are358

cautious of some potential biases during the fine-359

tuning. We are aware of the environmental impact360

associated with training large language models. We361

minimized this impact by efficiently using compu-362

tational resources and by choosing to fine-tune the 363

larger models using PEFT approaches. 364
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