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Abstract. Machine learning based autonomous driving systems often
face challenges with safety-critical scenarios that are rare in real-world
data, hindering their large-scale deployment. While increasing real-world
training data coverage could address this issue, it is costly and danger-
ous. This work explores generating safety-critical driving scenarios by
modifying complex real-world regular scenarios through trajectory opti-
mization. We propose ReGentS, which stabilizes generated trajectories
and introduces heuristics to avoid obvious collisions and optimization
problems. Our approach addresses unrealistic diverging trajectories and
unavoidable collision scenarios that are not useful for training robust
planner. We also extend the scenario generation framework to handle
real-world data with up to 32 agents. Additionally, by using a differ-
entiable simulator, our approach simplifies gradient descent-based opti-
mization involving a simulator, paving the way for future advancements.
The code is available at https://github.com/valeoai/ReGentS.

Keywords: safety-critical scenario generation, corner case, trajectory
optimization, robustness, bird’s-eye-view

1 Introduction

With the rapid advancement of machine learning (ML), autonomous driving sys-
tems are becoming increasingly proficient, particularly through neural network-
based methods [2]. However, their performance relies heavily on the extent of
training data coverage, and they may struggle with unseen, safety-critical scenar-
ios rarely encountered in real-world data. Improving out-of-distribution general-
ization remains a important topic within the ML community [16]. This challenge
hinders the large-scale deployment of autonomous driving systems, which must
meet strict safety standards. One solution is to enhance real-world data coverage
by collecting more diverse data, such as through event data recorders (EDRs)
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(c) Ours: ReGentS

Fig. 1: Importance of Constraints in Ego-Adversary Collision Scenarios. The
figures depict the final state with past trajectories shown as dotted lines. The origi-
nal collision-free scenario (a) is modified by an unconstrained method [8] (b) and our
ReGentS (c) with proposed constraints. The ego vehicle is at the center, and the adver-
sary is in front. In (b), the unconstrained adversary takes an unrealistic swinging turn
(first to the left then to the right), leading to a partially diverging trajectory that does
not reflect plausible real-world driving behavior. In contrast, our ReGentS (c) ensures
the adversary decelerates smoothly while gradually approaching the ego, maintaining
a realistic and natural trajectory.

[13]. However, collecting data specifically for safety-critical scenarios is danger-
ous, costly, and fraught with privacy concerns. Alternatively, generating these
scenarios offers a solution. However, most existing approaches [8, 10, 12, 14, 15]
have been benchmarked on synthetic data, which features scenarios of limited
complexity and often involves few vehicles. Additionally, the generation process
is often unconstrained, which may produce unrealistic solutions as shown in
Fig. 1b or scenarios not useful for enhancing ML-based planner’s robustness.

In this work, we introduce ReGentS, an approach for generating more stable
safety-critical driving scenarios based on real-world data. We study some com-
mon choices in existing approaches, such as the cost that induces collisions. By
focusing on KING [8] and refactoring it at a larger scale and in a more realistic
setting with real-world data based simulator, Waymax [7], we identify following
areas for improvement: (1) Unrealistic swinging trajectories may be produced,
and (2) Many generated collisions involve the ego vehicle being rear-ended, which
cannot in practice be avoided and thus does not provide useful corner cases for
planner training. We address these issues by analyzing the optimization process
of [8] and adding constraints to produce more stable trajectories. Additionally,
we introduce a heuristic to avoid obvious collision scenarios. Our approach en-
hances stability of generated trajectories with more realistic driving behavior
compared to the unconstrained method, as shown in Figs. 1b and 1c.

In a technical viewpoint, we implement and simplify the setup using a single
differentiable simulator [7]. This allows for direct optimization through gradient
descent, making the process simpler, unified, and easier to extend. The differen-
tiable simulator also avoids the heavy interaction between a differentiable proxy
simulator and non-differentiable one like CARLA [4], and eliminating inconsis-
tencies that may arise between the two simulators.

In summary, our contributions are:
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– We propose solutions to two main issues identified in existing approaches:
solution stability and the choice of adversarial vehicles. Specifically, we adapt
the optimization process to enhance stability with tailored analysis and in-
troduce heuristics based on the position of the background vehicle.

– We implement a trajectory optimization-based scenario generation pipeline
on a large-scale, differentiable simulator for real scenarios and data, facili-
tating its use in further studies.

– We demonstrate that ReGentS selects better adversaries and generates more
stable trajectories in certain cases. Quantitatively, it produces more safety-
critical scenarios, which is useful for fine-tuning ML-based planners.

The paper is organized as follows: Sec. 2 presents previous and related liter-
ature, Sec. 3 describes the addressed problem, Sec. 4 is a complete description
of ReGentS and Sec. 5 is dedicated to experimental evaluation of our approach.

2 Related Work

The literature has been concentrating on trajectory generation to create ego-
adversary collisions, which we categorize into the following approaches.

Black-box Optimization Approaches. Early methods treat the problem as a black-
box adversarial attack. For example, AdvSim [14] uses Bayesian optimization.
It employs a trajectory sampling method that rejects non-physically realizable
trajectories, and proposes a cost function to bias the sampling to create collisions.

Generative Model-based Approaches. Generative models learn distributions based
on provided data. In recent advances of complete scenario generation, such
as [11], the results may lack diversity and physical feasibility. More specifically, in
safety-critical case generation, these approaches typically involve two steps: (1)
training a generative model to sample from a regular distribution, and (2) biasing
the generation to create collisions using hand-crafted losses. STRIVE [12] uses
a conditional variational autoencoder (CVAE) to learn a latent space of regular
scenarios, which can then be adjusted to generate collisions. CAT [17] introduces
a resampling strategy to bias generative models towards collision scenarios. Re-
cent efforts, such as [10, 15], have introduced diffusion models that generate
trajectories by diffusing states/actions from Gaussian noise. These models com-
pute the gradient of a collision-inducing cost w.r.t. the states/actions to guide
the diffusion process using classifier guidance.

Model-Based Trajectory Optimization Approaches. Unlike previous approaches,
model-based methods such as KING [8] optimize trajectories directly by lever-
aging a kinematic model and actions.

The costs used by all the approaches above are derived from the collision
condition eq. (2). They are mainly benchmarked on simulators with limited
realism, such as CARLA [4]. Instead of injecting bias into a distribution as in
(a) and (b), we choose to modify existing scenarios directly, as in (c). Unlike the
unconstrained optimization in [8], we impose additional constraints.
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3 Problem Setting

In this section, to put important elements in order, we provide a formal definition
of safety-critical scenario generation common in the domain. In the following,
without loss of generality, we focus on the bird’s-eye-view (BEV) scenario.

3.1 Scenario Definition

We define a driving scenario s ∈ S as being composed of time-invariant contexts
and time-variant series.

Time-invariant contexts include essential information and parameters for
constructing the scenario background. This includes the road graph g, which
specifies the positions of road features such as boundaries and lane center lines.
Additionally, vehicle (agent) metadata {v(i)}i∈J0,nK is provided, where i indicates
the i-th agent in the scenario. The metadata v(i) includes the width and length
of agent’s bounding box. The agent designated as i = 0 is the ego agent, while
agents i ∈ J1, nK represent the n background (potentially adversarial) agents.

Time-variant series correspond to two categories: traffic signals and tra-
jectories. Each series is uniformly discretized over T time steps k ∈ J0, T −
1K with interval δt, meaning that k represent kδt. Traffic signals are a series
w = (wk)k∈J0,T−1K, including, e.g., traffic light statuses. The trajectories of
the ego and background agents are denoted by {q(0)π } ∪ {q(i)}i∈J1,nK, where
each q(i) is represented as a series of states, i.e., q(i) = (q

(i)
k )k∈J0,T−1K. The

ego trajectory q0π is unrolled with a planner π. Typically, each state qk in-
cludes the position xk, the speed uk, and the orientation angle ψk, i.e., qk =
(xk, uk, ψk) ∈ Q = R2 × R × [−π, π]. To summarize, a scenario is defined as
s = (g, {v(i)}, w, {q(0)π } ∪ {q(i)}i>0). By abuse of notation, we denote the scene
at a time step k by sk = (g, {v(i)}, wk, {q(0)k,π} ∪ {q(i)k }i>0).

3.2 Collision-Style Safety-Critical Condition

A widely accepted criterion of a “safety-critical” scenario in the field (see Sec. 2
for examples) is that there should be a collision between the ego agent i = 0 and
any background agent i > 0. For a scenario s, it is commonly defined based on
the distance between the bounding boxes of agents i and j at time step k:

dsBB(i, j, k) = d
(
BB(q

(i)
k,π, v

(0)),BB(q
(j)
k , v(i))

)
(1)

where BB computes the agent’s bounding box from the state qk (position and
orientation) and the agent’s metadata v(i), and the distance d is the Euclidean
distance in R2 between closest points on the bounding polygons. Therefore, a
scenario is considered safety-critical if

∃k ∈ J0, T − 1K, i > 0, dsBB(0, i, k) ≤ 0. (2)

indicating an overlap between the ego agent i = 0 and any adversary i > 0 at
some time step k.
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Fig. 2: Forward Model Assumption of ReGentS Through a Differentiable
Simulator, accompanied by the agent’s structure for state transition from sk to sk+1.
The ego agent (i = 0) generates an observation ok by rasterizing the scenario onto a
uniform grid. The planner uses this observation and a target point xtarget to predict the
ego agent’s action a

(0)
k with a controller, which is fed into the kinematic model f . For

background agents (i > 0), the model f estimates their actions a(i) and reconstructs
their logged trajectory q̃(i). Arrows represent the computational graph which enables
the backward autodiff.

3.3 Safety-Critical Scenario Generation with Regular Data

To generate scenario with collisions involving the ego agent, we use a dataset of
scenarios D = {s}s∼pS(s), collected from the unknown real-world scenario distri-
bution pS . These data are often retrieved using well-equipped vehicles driven by
trained drivers. Publicly available datasets typically contain common scenarios
under regular driving conditions, often lacking safety-critical situations.

However, generating the entire scenario s is difficult for safety-critical sit-
uations due to the lack of safety-critical reference data. In practice, scenario
generation is further narrowed down to the conditional generation of trajecto-
ries with ego-adversary collisions. This involves generating adversary trajectories
that are both plausible and satisfy the collision condition in Eq. (2), given the
road graph g, agent metadata v, and potentially the traffic light statuses w.

4 Methodology

In this section, we present ReGentS as follows: We begin by introducing the
model assumptions in Sec. 4.1. Next, we provide an overview of [8], the prereq-
uisite of our work in Sec. 4.2. Finally, we describe our ReGentS, which results
from our analysis of the optimization process, detailed in Sec. 4.3.

4.1 Model Assumption

The trajectory of each background agent (i > 0) is supposed to be controlled
by a series of actions through a discretized kinematic dynamics model: q(i)k+1 =

q
(i)
k + f(q

(i)
k , a

(i)
k )δt where f is the vehicle’s dynamics model (e.g., a Bicycle
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Model considered in [8]), a(i) = (a
(i)
k )k∈J0,T−2K is a series of T − 1 actions.

We denote this action-conditioned trajectory as q̃(i) = (q
(i)
0 ) ∥ (q̃

(i)
k )k∈J1,T−1K

where q̃(i)k = q
(i)
0 +

∑k−1
s=0 f(q

(i)
s , a

(i)
s )δt. The action-conditioned trajectory q̃(i)

should recover the original one q(i), i.e., q̃(i) ≈ q(i). A scenario s is therefore
extended as s = (g, w, {v(i)}, {q(0)π } ∪ {q̃(i)}i>0, {a(i)}i>0). Note that the action
series a(i) are typically not available in most datasets and require to be estimated
given the kinematic model f and original trajectories. The ego agent is assumed
as a mapping π : (sk, xtarget) 7→ ak, which can be further decomposed into an
observer-planner-controller structure (see details in Sec. 5.1). We depict this
forward scheme in Fig. 2.

4.2 Prerequisite: KING

Our method extends KING [8], which is based on the setting described in Sec. 3
and generates new scenarios by modifying the trajectories of background agents
in each s ∈ D using a kinematic model and estimated agent actions. The core of
this approach is detailed below.

Scenario Generation as Optimization Problem. The scenario generation prob-
lem, as defined in KING, involves solving an optimization problem using a cost
function C(s) for a given scenario s that encourages background agents to pro-
voke a collision with the ego agent in an initially collision-free scenario. The
optimization problem is formulated as:

a∗ = argmin
a

C(s) s.t. ∀i ∈ J0, nK, k ∈ J0, T−2K, q(i)k+1 = q
(i)
k +f(q

(i)
k , a

(i)
k )δt (3)

where a represents the action series of all background agents {a(i)}i>0. Solving
this problem finds the actions that minimize the cost, subject to the physical
dynamics model constraints.

Cost Definition. [8] decomposes the cost C into two parts: (a) Collision Induc-
tion: A cost Cego

col is introduced to encourage collision between the ego agent
and one of the background agents; (b) Background Agent Regularization: Two
costs Cadv

col , Cadv
dev are introduced to avoid collisions among background agents and

prevent the background agents from deviating from the drivable area.
The cost (a) considers the average distance over all time steps k ∈ J0, T − 1K

between the ego agent (i = 0) and each background agent (i > 0) to indicate
how likely a collision can be provoked:

Cego
col (s) = min

i∈J1,nK

1

T

T−1∑
k=0

dsBB(0, i, k). (4)

This function selects the closest background agent to minimize its distance to
the ego. Regularization (b) is intended to avoid unwanted solutions. This first
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Fig. 3: Illustration of Representative Issues with Unconstrained KING
Method [8]. The final state of each scenario is shown along with the trajectory history
in dotted line. The ego agent (blue) is at the center, and the adversary agent (green)
represents the last optimized adversary.

term discourages collisions between background agents using distance-based re-
pulsion: Cadv

col (s) = −mini,j∈J1,nK,k∈J0,T−1K min(τ, dsBB(i, j, k)), which measures
the minimum distance between any pair of background agents over time, lower-
bounded by threshold τ . The second term is intended to help background agents
stay within the drivable area: Cadv

dev (s) =
1
T

∑T−1
k=0

∑n
i=1

∑
c∈{cl}4

l=1
(moob∗K)

(
BB(

q
(i)
k , v

(i)
k

)
[c]
)
. Here, K is a 2D Gaussian kernel, and {cl}4l=1 represents the four

corners of the agent’s bounding box. The kernel is displaced by the coordinates
of each corner and convolved with the binary drivable area map moob. A higher
cost indicates a greater distance of background agents’ bounding boxes from the
drivable zone.

Solving Optimization Problem Using Gradient Descent. The optimization prob-
lem Eq. (3) is solved with gradient descent methods. The gradient of the cost
function ∇aC(s) is computed w.r.t. all action series {a(i)}i>0 across all time
steps, which is feasible if the kinematic model is differentiable. The optimization
iteration is stopped once the condition Eq. (2) is satisfied.

4.3 ReGentS

Analysis. We focus on studying the main collision induction cost Eq. (4) and
its optimization. We first provide an analysis on the optimization problem, the
optimization algorithm and the kinematic gradient of the main cost function.

Optimization Bias. The current approaches to safety-critical scenario generation
are based on a distance-based loss derived from the acceptance condition of
Eq. (2). However, solving the optimization problem with the cost function Eq. (4)
introduces some undesired biases:
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(c) Negative gradient of
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one action update with the

gradient shown in (a) and (b).

Fig. 4: Negative Gradient of the Distance Between the Ego Agent (→) and
an Adversary (→) w.r.t. the Adversary’s Actions. In (b), two interesting zones
are highlighted. Diverging Front Adversary zone (red): Adversaries could pursue a
diverging trajectory w.r.t. the ego agent. The negative gradient points to the diverging
direction. The angle this zone is determined by the yaw of the adversary. Converging
Rear-end Adversary zone (orange): Adversaries are likely to rear-end the ego agent.
After one gradient descent update from (b) to (c), the negative gradient in the zoomed
area intensifies, favoring the divergence of the adversary.

– Minimum Trap: Although Eq. (4) does not explicitly designate an adversary,
the hard minimum operator can cause the optimization to fixate on the
adversary chosen in the first iteration. As shown in Fig. 3a, the collision cost
fixates on a stopped agent, while the agent turning at the intersection could
have created a more interesting and avoidable collision.

– Time-Averaged Distance Bias: As shown in Fig. 3b, the green adversary
intended to turn right is pulled back towards the ego by the minimization of
the time-averaged distance. A simpler solution would be to optimize only the
trajectory before the adversary arriving at the intersection. This showcases
that minimizing distance over all time steps may lead to ineffective solutions.

– Limited Diversity in Adversary Trajectory : Optimizing the action series (ak)k
of the chosen adversary relies solely on the optimization algorithm and its
hyperparameters (e.g., learning rate or Adam’s decay rates), limiting the
diversity of results.

Kinematic Gradient Bias. Defining a distance-based loss to create collisions is
convenient, but it can also lead to unrealistic behaviors with methods rely on
kinematic gradient information w.r.t. agent actions, due to constraints on the
degrees of freedom (DoF) of actions. We illustrate some issues with KING [8],
which relies heavily on kinematic gradients. Note that these issues may also affect
recent classifier-conditioned diffusion models that generate actions to produce
trajectories with a kinematic model [10, 15], using the same gradient to guide
the generative model to induce collisions.
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To illustrate the issue in the kinematic gradient, we present a simple scenario
involving only the ego agent and a single adversary agent to be optimized. The
adversary is shown at different locations but with the same distance to the ego,
as shown in Fig. 4. Both agents are moving at a constant speed to the right.
The key difference is their yaw: the ego’s yaw is aligned with the x-axis, while
the adversary’s yaw is slightly offset. This scenario is particularly interesting
when using real-world data because even if background agents are heading in
the same direction as the ego, their yaws cannot be perfectly aligned due to noise
in the data. The yaw offset shown in Fig. 4 is chosen for better illustration and
visualization.

In Fig. 4, we show the gradient descent directions (i.e., negative gradient)
for the acceleration (Fig. 4a) and steering (Fig. 4b) of the adversary calculated
from the distance between the ego and the adversary. As shown in Fig. 4a, the
negative gradient of acceleration aligns well with the intuition of a typical driver:
the adversary diminish its acceleration if it is ahead of the ego; it accelerates more
if it is behind. However, the steering negative gradient, shown in Fig. 4b, is more
complex. We focus on two specific zones for the adversary (red and orange),
where undesired situations may occur. The angle of these zones corresponds to
the difference in orientations between the ego and the adversary.

– Diverging Front Adversary : As illustrated in Fig. 3c, the agent could have
created a collision with the ego by just decelerating, while it did unnecessary
turns which induced its collision with another background agent. The reason
why this happens is when an adversary enters the red zone in Fig. 4b its
negative gradient suggests it should turn away from the ego, causing the
adversary’s trajectory to diverge from the ego’s. Subsequently, updating the
actions with this negative gradient (see Fig. 4c) amplifies the yaw difference
for agents already in the red zone, creating larger negative gradients which
could push them further onto a more diverging trajectory (see the zoomed
area in Figs. 4b and 4c). As a result, agents in this zone are prone to showing
unrealistic divergent behaviors, such as swinging turns between left and right.

– Converging Rear-End Adversary : In real-world driving environments, rear-
end collisions are less relevant for improving the robustness of the planner.
For example, if the ego vehicle is in dense traffic, it is almost impossible
to avoid such a collision. However, optimizing adversaries in some areas is
doomed to create a rear-end collision. As shown in Fig. 3d, when an adversary
is behind the ego, i.e., in the orange zone in Fig. 4b, it will be attracted to
align with the yaw of the ego. It is very unlikely that the adversary in this
area can overtake the ego because the tendency to diverge from the ego’s
past trajectory will be counteracted. Therefore, the optimized adversary is
very likely to rear-end the ego, leading to uninteresting cases.

ReGentS’ Remedy. Inspired by the previous analysis, we propose ReGentS,
which consists of several constraint rules designed to address some of the iden-
tified issues. Our goal is to make these criteria as flexible as possible.
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Stop Front Divergence. As discussed in Sec. 4.3,
front divergence may be caused by an aggrieving
steer negative gradient favoring diverging trajec-
tories. To mitigate this, we establish the following
rule: we cancel the update for the steering action if
an adversary stays (i) ahead of the ego agent and
(ii) its yaw is offset to the same side as its position
relative to the ego during a certain percentage of
time steps, defined by a threshold τfront.

The rule is illustrated in Fig. 5, featuring the
same red zone shown in Fig. 4. At each time
step k, the angle of the red zone is calculated by
ψ
(i)
k −ψ(0)

k . The deviation of the adversary’s angu-
lar position relative to the ego’s orientation, denoted by α(i)

k −ψ(0)
k , is compared

to the red zone angle to determine if the adversary is within the red zone at
time k. This check is performed only for background agents with a yaw differ-
ence ψ(i)

k − ψ
(0)
k ∈ (−π

8 ,
π
8 ) and whose angular position is α(i)

k − ψ
(0)
k ∈ (−π

8 ,
π
8 )

in front of the ego agent.

Exclude Rear-End and Static Adversaries. As explained in Sec. 4.3, we may want
to avoid rear-end collisions, which are unavoidable for the ego vehicle in some
cases. In ReGentS, we consider collisions in the orange zone as non-actionable
and choose to exclude adversaries situated in this zone if they remain there at
most time steps in the original scenario. The central angle of the disk sector zone
is adjusted empirically as a hyperparameter. In our experiments, we set this zone
as large as 45 degrees, with its axis of symmetry aligned with the x-axis.

To avoid the problem where the optimization stick to a static adversary, we
simply exclude all the static adversaries in the scenario from candidate to the
optimization.

5 Experimental Results

5.1 Implementation for Real-World Scenarios

Data and Simulator. In our work, we uses the Waymo Open Motion Dataset
(WOMD) [6] and Waymax [7], a differentiable simulator based on the scenario
data in WOMD. The dataset comprises the scenarios recorded in cities, and we
limit the maximum number of agents in a scenario to 32. The main advantage of
Waymax is its implementation with JAX [1], which is inherently differentiable,
in contrast to CARLA, eliminating the need for another differentiable proxy
simulator. In comparison, [8] uses a synthetic dataset featuring up to four back-
ground agents alongside the non-differentiable CARLA simulator. This setup
significantly limited the flexibility of gradient calculations necessary to optimize
trajectories through actions, thus necessitating a differentiable proxy simulator
as a workaround.
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Neural Network-Based Ego Agent. We employ a neural network-based ego agent
tailored for WOMD. The agent π : (sk, xtarget) 7→ ak determines actions based on
the current scene sk at time step k and a target point xtarget. We adapt the AIM-
BEV agent from KING, consisting of the following components: (1) Observer:
An observer Obs: sk 7→ ok is implemented for WOMD to provide a rasterized
ego-centered BEV observation ok, oriented to ego’s yaw direction. (2) Planner:
Using MobileNet-V3 [9], the observation ok is transformed into hidden features
hk via Enc: ok 7→ hk. A gated recurrent unit (GRU) [3] cell is used to pre-
dict L future waypoints (xk+l)l∈J1,LK. At each time step k + l, the GRU cell
updates its hidden state to hk+l+1 = GRU(hk+l, [xk+l, xtarget, xtarget − xk+l]),
using position xk+l, target point xtarget, and their difference as inputs. The hid-
den state is then decoded by Dec(·) to predict the displacement towards the
next waypoint xk+l+1 = xk+l + Dec(hk+l+1). (3) Controller: We follow [8]
by using PID controller to estimate ego actions from the predicted waypoints
(xk+l)l∈J1,LK 7→ ak. The planner (2) is trained to learn to map from (ok, xtarget)
to future waypoints (xk+l)l∈J1,LK. Training is done via imitation learning using
supervised input-output examples of this mapping.

Action Estimation for Background Agents. As mentioned in Sec. 4.2, in real-
world scenarios, only a series of waypoint coordinates (xk)k is known and the
actions must be estimated. We use an invertible bicycle model to estimate actions
using local derivatives, accurately recovering physically plausible trajectories.
Note that this approach may produce noisy actions due to data noise; we leave
addressing this issue to future work.

Simulation and Optimization. We simulate the scenarios using the AIM-BEV
planner for the ego vehicle and estimated actions for the background agents. By
leveraging Waymax, we can efficiently compute the exact gradient of the cost
w.r.t. the actions throughout the entire trajectory. This is in contrast to the
approach used in [8], which uses an approximate gradient to reduce calculation
overhead by stopping gradients at specific moments. For both ReGentS and [8],
we use the Adam optimizer with a learning rate of 10−3 and a maximum of
500 optimization iterations. The optimization process is unsuccessful if it fails
to generate a collision.

5.2 Effectiveness of ReGentS

Evaluation Protocol. We conducted our experiments using 200 scenarios ex-
tracted from the validation set of WOMD [6]. First, we validated the ego agent
using the original scenarios. Then, we generated safety — critical scenarios with
ReGentS and KING and compared their effectiveness both qualitatively — illus-
trated with examples — and quantitatively — based on the number of scenarios
successfully generated and their impact on the ego agent’s performance.

Ego Agent Validation. Since our objective is to enhance an ego agent, we start
with one that can drive correctly in regular scenarios. The following scores of
the ego planner are reported for these scenarios:
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• Road Completion measures the average percentage of the route that the
planner completes by the horizon of each scenario or before collision.

• Infraction Score is an accumulated penalty when the ego agent collides
with another agent, a cyclist, a pedestrian, or ran out of the road boundary.
We implemented the score for WOMD with the same penalty rate as [8].

• Driving score is the product of the two previous scores.
• Collision rate is the rate of collisions of the ego agent.

Our trained agent can reach given target points with an average route com-
pletion rate of 88.05%, indicating acceptable performance. However, despite the
high route completion rate, the collision rate is 25.50%.
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Fig. 6: Qualitative Comparison of Generated Scenarios. The first row shows the
solutions provided by KING [8], while the second row displays ReGentS’ results. The
final state of each scenario is shown along with the trajectory history in dotted line.
The ego agent (blue) is at the center, and the adversary agent (green) represents the
last optimized adversary. Our method provides non-divergent trajectories and choose
better adversary to create more interesting cases.

Qualitative Results. In Fig. 6, we present a qualitative comparison of ReGentS
with KING. In Fig. 6a, [8] makes the optimized adversary run into another back-
ground vehicle, despite regularization, while ReGentS can steadily decelerate the
adversary without creating diverging trajectories. In Fig. 6b, ReGentS selects a
background agent that provokes a merging collision, in contrast to [8], which
results in a less interesting rear-end collision. In Fig. 6c, ReGentS removes the
static agent and creates a head-on collision with the oncoming agent, whereas
KING focuses on a stopped vehicle and attempts to start it from the stopping
state. In Fig. 6d, ReGentS ignores the stopping agent on the right and the other
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Table 1: Comparison of Collision Generation Effectiveness for ReGentS and
[8]. The table presents the ego agent’s performance scores across 200 original WOMD
validation scenarios, as well as those modified by ReGentS and [8], alongside their
generation success rates. “↑ for generation” indicates that a higher value is better for
collision generation, vice versa. The metrics are defined in the beginning of Sec. 5.2.

WOMD Val Scenarios Original KING [8] ReGentS

Generation Success Rate (↑ for generation) n/a 48.99 60.40

E
go

A
ge

n
t

P
er

fo
rm

an
ce

Route Completion (↑ for ego, ↓ for generation) 88.05 73.68 71.06
Infraction Score (↑ for ego, ↓ for generation) 0.82 0.72 0.69
Driving Score (↑ for ego, ↓ for generation) 74.20 56.19 50.78
Collision Rate (↓ for ego, ↑ for generation) 25.50 59.00 69.50

agent behind with risk of rear-end, and modifies marginally the agent on the
left to create a lane merging collision from the right side. These qualitative re-
sults indicate better stability in adversary trajectory generation and improved
adversary selection in ReGentS compared to [8].

Quantitative Results. To demonstrate the effectiveness of collision generation,
we report Generation Success Rate, the percentage of collisions that corre-
sponding method have successfully created among the previously collision-free
scenarios. In Tab. 1, we present the results comparing scenarios modified by
ReGentS with those generated by the original KING.

We observe a significant drop in the collision generation success rate for
KING, decreasing from approximately 80% with synthetic scenarios in the origi-
nal work to 49% with WOMD. This decline highlights the challenges of applying
this method to real-world settings. In contrast, ReGentS improves the success
rate to 60% with WOMD, representing a 10 percentage point increase.

Additionally, both ReGentS and KING generate collisions that negatively
impact the ego vehicle’s driving performance. ReGentS tends to penalize the
ego agent more, likely due to the higher number of collisions created.

5.3 Notes for Implementation

Implementing our approach with Waymax and JAX required reworking most
components from scratch to ensure efficient optimization.

We leveraged just-in-time (JIT) compilation and function vectorization to
parallelize and accelerate most parts of the calculation for optimal performance
on GPUs. New functions were implemented for rasterizing observations directly
on GPUs, accelerating the ego agent’s planning and scenario simulation.

Due to the lack of some information in the WOMD dataset, cost terms were
adapted based on available information. For example, no drivable area map was
directly provided in WOMD, so we rebuilt it using road boundary information.
For the same reason, some evaluation metrics were adapted, such as the out-of-
road penalty score, which requires access to the drivable area map.
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Additionally, we smoothly integrated a pretrained neural network with Py-
Torch into our JAX pipeline using torch2jax [5], avoiding potential performance
issues caused by network architecture re-implementation and weight transfer.

6 Conclusion

In this work, we propose ReGentS, which enhances the stability of kinematic
model-based trajectory optimization methods. We address issues discovered af-
ter scaling the approach from [8] for use in real-world settings. Our method
identifies and mitigates issues that cause instabilities and generate unactionable
scenarios. It generates more meaningful scenarios in complex settings and pro-
vides a robust and flexible technical foundation for developing efficient solutions
for safety-critical scenario generation. In future work, it would be valuable to in-
vestigate how well the generated corner-cases, which are currently optimized to
a specific ego agent’s planning algorithm, generalize to different driving agents.
Additionally, exploring whether it is possible to design corner-cases that univer-
sally cause planners to fail would be an interesting avenue to pursue.
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