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Triple Alignment Strategies for
Zero-shot Phrase Grounding under Weak Supervision

Anonymous Authors

ABSTRACT
Phrase Grounding, i.e., PG aims to locate objects referred by noun
phrases. Recently, PG under weak supervision (i.e., grounding with-
out region-level annotations) and zero-shot PG (i.e., grounding
from seen categories to unseen ones) are proposed, respectively.
However, for real-world applications these two approaches are lim-
ited due to slight annotations and numerable categories during
training. In this paper, we propose a framework of zero-shot PG
under weak supervision. Specifically, our PG framework is built
on triple alignment strategies. Firstly, we propose a region-text
alignment (RTA) strategy to build region-level attribute associa-
tions via CLIP. Secondly, we propose a domain alignment (DomA)
strategy by minimizing the difference between distributions of seen
classes in the training and those of the pre-training. Thirdly, we
propose a category alignment (CatA) strategy by considering both
category semantics and region-category relations. Extensive exper-
iment results show that our proposed PG framework outperforms
previous zero-shot methods and achieves competitive performance
compared with existing weakly-supervised methods. The code and
data will be publicly available at GitHub after double-blind phase.

KEYWORDS
Vision and language, Phrase grounding, Weakly supervised, Zero-
shot, Vision-language pre-training.

1 INTRODUCTION
Phrase Grounding (i.e., PG) [48] aims to locate objects referred by
noun phrases. The PG task could be beneficial for various down-
stream works, such as image captioning [8, 31, 56], vision naviga-
tion [3, 16, 24, 51, 52], visual question answering [7, 10, 50, 54], and
other multi-modal researches [18, 19, 23, 28–30, 33, 44, 49].

Recently, some works on PG under weak supervision [11] have
been proposed. The motivation is to alleviate the large annotation
cost of bounding boxes(bbox). PG models under weak supervision
are required to learn only from image-phrase pairs but without
bounding boxes. To address this challenge, various approaches
using visual detectors [9, 14, 32, 34] and constructing auxiliary
tasks [1, 2, 12, 17, 41, 42, 55] are proposed. These works achieve
significant performance. However, due to limited seen categories
during training, they are difficult to apply in zero-shot settings.
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Figure 1: Three challenges in zero-shot PG under weak super-
vision are illustrated. a) The attributes association of seen
categories with those of unseen categories. b) The knowledge
transfer from seen categories to unseen ones via a representa-
tion space for prediction. c) The measurement of similarities
and differences among categories.

Very recently, some works propose the task of zero-shot PG.
Various approaches using zero-shot learning [5, 40] and Vision-
Language Pre-training (VLPs) models [4, 22, 43, 45, 58] are proposed.
The former approaches assume that the entities of phrases in the
training set have limited categories (i.e., seen categories) and differ
from those (i.e., unseen categories) in the testing set. To bridge the
gap, these works leverage semantic information shared across all
categories, achieving good performance. However, these works still
require collecting large-scale bounding box annotations for seen
categories. The latter VLP-based methods ground objects on new
data without being fine-tuned. However, these methods primarily
showcase the generality of VLPs for various vision-language tasks,
not focusing on PG. In addition, these VLP-based methods suffer
from the collecting of enormous training data.

To summarize, existing works have not addressed the challenges
of PG in weak supervision and zero-shot settings, simultaneously.
In effect, for real-world applications, the grounding models are
required to fit images without bounding box annotations and to
effectively generalize from limited seen categories to unseen ones.
Motivated by this observation, we propose a framework of zero-shot
PG under weak supervision.

Here, three questions arise naturally for zero-shot PG under
weak supervision by our observations. Firstly, how to associate
attributes of seen categories with those of unseen categories? Take

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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an example in Figure 1 a). Suppose that two classes including “white
police cat” and “black truck” have been seen before, and the model
is required to ground the unseen class “black police car”. To perform
inference correctly, the semantic information of “black” and “police
car” should be transferred to their corresponding visual regions. To
this end, the model is required to design a region-text alignment
strategy. Secondly, how to transfer knowledge learned from seen
categories to unseen categories for the model’s prediction? As
shown in Figure 1 b), during training, the model can only observe
the data of limited classes, such as people, vehicles, and animals. We
expect that themodel could learn a domain-invariant representation
space even being trained on seen categories. Thus, the model can
take advantage of such invariance for grounding unseen categories,
such as celebrities, animes, and artworks. To this end, we need to
design a domain alignment strategy. Thirdly, how to measure the
similarities and differences among seen categories and those of
unseen ones? As shown in Figure 1 c), for one thing, “yellow hound”
is related to “yellow puppy”, but not to “police car”. Therefore,
phrases can be used to categorize referred objects. For another,
correct visual-textual relations can help in distinguishing categories.
For “yellow puppy”, we reduce its distance to the corresponding
region and increase that to irrelevant regions. Then the model will
identify the category and ground the region of a similar phrase
such as “yellow hound”. To this end, we need to design a category
alignment strategy. To emphasize, the weakly supervised setting
requires that the training datasets do not provide accurate location
annotations in images. This makes it more difficult for PG models
to generalize in the zero-shot setting.

In this paper, we propose a novel PG framework (Figure 2) using
triple alignment strategies. Firstly, we design a region-text align-
ment (RTA) strategy to build region-level attribute associations
based on Contrastive Language-Image Pre-Training (CLIP). Specifi-
cally, we extract region-level visual semantics and gradient maps
using CLIP [37] for given phases. Each region-level visual semantics
corresponds to a certain text embedding. Then, we use a patch-level
gradient map to refine the CLIP-based heatmap. Here, the CLIP-
based heatmap is used as a pseudo-label. Secondly, we propose a
domain alignment (DomA) strategy to transfer knowledge learned
from seen classes. Specifically, we align the grounding-related fea-
tures to those of the pre-trained model through learning a domain-
invariant space. A domain alignment loss is designed to adaptively
adjust the grounding-related features. Thirdly, we design a cate-
gory alignment (CatA) strategy to distinguish grounding-region
categories. Inspired by the class activation method [27], we discrim-
inate the categories based on the phrase embeddings. To construct
accurate visual-textual relationships, we use CLIP to measure the
similarity of image regions and phrases. Our strategy considers
both category semantics and region-category relations.

In summary, our main contributions are three-fold.
1)We propose a novel PG framework with zero-shot under weak

supervision. To the best of our knowledge, we are the first to study
PG under the two settings, simultaneously.

2) We propose triple alignment strategies for PG framework.
First, we design RTA strategy to learn region-level attribute associa-
tions. Second, we propose DomA strategy to learn domain-invariant
representation space. Third, we design CatA strategy to help the
network distinguish categories.

3) We conduct extensive experiments on benchmark datasets.
The results consistently show that our approach significantly out-
performs existing zero-shot methods, and achieves competitiveness
compared with other weakly-supervised methods.

2 RELATEDWORK
2.1 Weakly-supervised PG
Under weak supervision, PG models can solely learn from image-
phrase pairs during the training. To address the challenge, detector-
based works use visual detectors and choose the correct proposals
that are highly related to the corresponding phrases. For example,
Datta et al. [9] align captions with caption-conditioned image rep-
resentations. Lu et al. [34] combine diverse vision-and-language
tasks to improve performance. Gupta et al. [14] associate image
regions with caption words by maximizing mutual information. Liu
et al. [32] design a relation-aware instance refinement module to
construct the phrase-object relations. However, the performances
of these methods heavily depend on the quality of visual detectors.

Moreover, the other methods design auxiliary tasks for PG, such
as intra-modal classifications and inter-modal alignments. Javed
et al. [17] use an attention mechanism to share nouns in captions
among images having a common visual region. Zhang et al. [55]
propose contrastive attention for task-specific attention maps. Ak-
bari et al. [1] designs a multi-level common semantic space by
mapping visual and textual features for phrase grounding. Arbelle
et al. [2] use source separation techniques to ground the referred
entities in pixel-level. Shaharabany et al. [41] proposeWWbl, which
learns to create a phrase-related foreground with the CLIP explain-
ability. Recently, Shaharabany and Wolf [42] employ a layer-wise
relevance propagation method to integrate relevancy and gradient
information. Gomel et al. [12] design a joint learning approach to
train the grounding model and an object detector, simultaneously.
Nevertheless, all previous weakly-supervised PG methods struggle
on unseen categories due to the limited training data.

2.2 Zero-shot PG
Zero-shot PG aims to predict the bounding boxes for images of
unseen categories but is trained only on those of limited seen
categories. Currently, there exist two main approaches, namely
zero-shot learning-based and VLP-based methods. In the former
methods, Sadhu et al. [40] leverage the supervision of image cap-
tions, class names, and bounding boxes, and perform zero-shot
predictions via mapping the visual representations and three types
of annotations. Chen et al. [5] leverage object priors shared across
all categories. The latter VLP-based methods ground phrases on
new data without being fine-tuned. Recently, GAE [4] was proposed,
advancing VLP-based method for PG. Although this method acti-
vates the most discriminative location, the grounding box cannot
accurately cover the object. Li et al. [22] use super-pixels technique
to generate high-resolution feature maps for phrase grounding.
Zhou et al. [58] modify the image encoder of CLIP by transform-
ing the value embedding layer to handle pixel-level predictions.
Subramanian et al. [45] use the pre-trained detector to generate a
set of proposals and then use CLIP to select the best association
between the query and proposals. However, these works either
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Figure 2: Our PG framework is depicted. b) CLIP-based module extracts region-level image semantics, and fuses it with text
embedding to generate the CLIP-based heatmaps. c) The grounding module consists of bi-modal encoders and one grounding
decoder. a) CLIP-based image encoder. e) DomA strategy is used for aligning feature distributions of grounding module and
those of CLIP-based module. d) CatA strategy is used for distinguishing grounding-region categories by aligning object and
phrase. With RTA strategy, grounding module learns region-level attribute association by aligning heatmaps generated from
CLIP-based module. \ means the parameters of the backbone are trainable,� the parameters of the backbone are frozen.

require collecting bounding box annotations for seen categories or
enormous image-text pairs.

3 METHODOLOGY
3.1 Problem Formulation
Given an image 𝐼 and a noun phrase 𝑇 , the task of PG requires
the model to predict a bounding box 𝐵. For obtaining the box, a
heatmap 𝐻 is also generated as an intermediate bridge. In zero-
shot PG under weak supervision, the model grounds both seen and
unseen classes during the inference, after only being trained on
seen classes without bounding box annotations in images.

3.2 Overview of Proposed Framework
The overview of our proposed framework is shown in Figure 2.
The framework comprises the CLIP-based module and the ground-
ing module. The CLIP-based module (Figure 2 b) is built on CLIP,
which is pre-trained on 400 million image-phrase pairs [37]. It first
extracts region-level image semantics by transferring the textual
class token’s semantics to visual patch tokens. Then, this module
fuses these tokens, generating a CLIP-based heatmap 𝐴∗

𝐶
.

The grounding module (Figure 2 c)) consists of an image encoder
E𝑖𝑚𝑔 (·), a text encoder E𝑡𝑥𝑡 (·), and a grounding decoder D𝑔𝑛𝑑 (·).
Thus, the grounding module returns a heatmap 𝐻 as follows,

𝐻 = D𝑔𝑛𝑑

(
E𝑖𝑚𝑔 (𝐼 ), E𝑡𝑥𝑡 (𝑇 )

)
(1)

where the image encoder uses the last layer of the pre-trained CNN
in ImageNet as the visual embedding. The text encoder uses the text

embedding branch of CLIP (VIT-B/32), which is frozen. Multimodal
feature fusion calculates the similarity of text features and visual
ones,𝐴𝑀 = E𝐼𝑚𝑔 (𝐼 )⊗E𝑇𝑥𝑡 (𝑇 ). The attention is then given as𝑅𝑀 =

E𝑖𝑚𝑔 (𝐼 )◦𝐴𝑀 , in which the symbol ◦means Hadamard product. The
grounding decoder converts the high-dimensional fusion features
into the grounding heatmaps 𝐻 . The decoder consists of two up-
sampling layers.

Moreover, we propose triple alignment strategies, RTA, DomA,
and CatA. RTA strategy helps align the grounding heatmaps𝐻 with
CLIP-based heatmaps 𝐴∗

𝐶
. DomA strategy aligns features of seen

categories in the training and those in the pre-training. CatA strat-
egy aligns phrases with the corresponding regions. Subsequently,
we describe the three strategies in detail.

3.3 Region-text Alignment (RTA) Strategy
To learn region-level attribute associations, we exploit the working
process of VLP. In our strategy, we employ the parameter-fixed
CLIP to generate region-level attribute associations. Our network
is trained on a limited number of seen classes. Therefore, directly
re-training CLIP tends to overfit the seen classes as themodel param-
eters are optimized only for seen classes. Consequently, knowledge
learned for entity concepts unseen from the training set might be
ignored during re-training. Parameter-fixed CLIP could potentially
alleviate this issue.

Formally, for the CLIP image encoder, we denote the embeddings
from the 𝑙-th transformer layer as {𝑐𝑙 , 𝑃𝑙 }, where 𝑐𝑙 denotes the
[CLS] token and 𝑃𝑙 = {𝑝1𝑙 , 𝑝2𝑙 , · · · , 𝑝𝑙𝑍 } denote the image patch
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tokens. Inspired by VIT [38], the patch tokens of the last layer rep-
resent dense features. However, CLIP only focuses on the [CLS]
token, and the patch tokens are unable to establish semantic asso-
ciations with text embeddings [58]. A straightforward way is to
transfer the [CLS] token’s semantic information to the patch tokens
in the last layer, discarding the preceding layers. Thus, each patch
token only receives information from its corresponding semantic
so that phrase-related visual entities are well grounded. In practice,
we initialize the mask token from the pre-trained [CLS] token, i.e.,
𝑚1 = 𝑐1 and append it to the above token sequence in the first layer
of CLIP image encoder. Then the 𝑙-th transformer layer processes
the mask tokens as follows,

𝑚𝑙+1 = 𝛼𝑙 · Attn
(
𝑚𝑙 , 𝑃𝑙

)
+ 𝛽𝑙 ·𝑚𝑙 , 𝑙 = {1, · · · , 𝐿 − 1} (2)

where 𝐴 denotes the attention weight. Hyperparameters 𝛼 and
𝛽 control the weights of the residual term. While the parameter
𝑙 < 𝐿 − 1, we set 𝛼 and 𝛽 to avoid establishing strong semantic
associations between the mask tokens and patch tokens in the
shallow self-attention layers. These patch tokens tend to share
holistic information, which is favorable in image-level tasks [47].
While the parameter 𝑙 = 𝐿 − 1, we enhance the semantic transfer
from previous layer’s mask tokens to the last layer’s patch tokens. In
other words, in shallow layers the two parameters are set relatively
small, while in the last layer they are set relatively large.

CLIP-based heatmap generation. We obtain the final embed-
ding vectors {𝑚𝐿𝑝 }, in which 𝑝 = 1, 2, · · · , 𝑍 for each patch token.
We then compute the inner product between the text embedding
and the final embedding vectors to fuse texts and image regions.
Formally, we obtain the CLIP-based heatmap as follows,

𝐴𝐶 = exp

(
E𝑡𝑥𝑡 (𝑇 ) ⊗𝑚𝐿𝑝

𝛿

)
(3)

where 𝛿 is the temperature scaling parameter in CLIP, E𝑇𝑥𝑡 denotes
text encoder, and 𝐿 represents the last layer of image encoder.

CLIP-based heatmap refinement. The gradient map is often
used to ground specific objects [21, 45], where only the gradient
of patch tokens of the last layer is computed. In contrast, we fo-
cus on patch-to-patch attention of each multi-head self-attention
(MHSA). It involves collecting grounding-related features. Thus,
we extract the patch-level attentions 𝐴𝑃2𝑃 ∈ R𝑍×𝑍 based on patch
tokens, without considering the [CLS] token. The gradient map ▽𝐴
is computed as ▽𝐴 =

𝜕𝑄
𝜕𝐴𝑃2𝑃

, where 𝑄 is the model’s output logit,
i.e., the similarity score for the image-text pair. The refinement is
formulated as:

𝐴∗
𝐶 = 𝐴𝐶 · ReLU

(∑︁
𝑙

▽𝐴𝑙
)

(4)

where 𝐴∗
𝐶
is the CLIP-based heatmap refined by the gradient map.

Region-level attribute association learning. CLIP can asso-
ciate attributes and entities. For example, CLIP can infer the image
has “red elephant", though it has only seen the attribute “red" or the
entity “elephant" during pretraining. Our CLIP-based heatmap 𝐴𝐶 ∗

inherits CLIP’s property of attribute association. This is demon-
strated in the image region (See Figure 3). To enable the grounding
module to learn the similar property, smooth ℓ1 loss [39] forces the
grounding module to simulate the region-text alignment process

a) b) c) d)

Figure 3: Two visualization examples. a) and c) show two
images generated by Generative AI [57]. a) is for "purple dog"
and c) is for "red elephant". CLIP has never seen them before.
b) and d) show our CLIP-based heatmaps.

applied to the CLIP-based heatmap. The ℓ1 loss is given as

ℓ1 (𝑥) =
{
1
2𝑥

2 if |𝑥 | ≤ 1
|𝑥 | − 1

2 otherwise
(5)

in which, 𝑥 is the difference between the grounding heapmatp 𝐻

and the CLIP-based heatmap 𝐴∗
𝐶
.

3.4 Domain Alignment (DomA) Strategy
To transfer knowledge from CLIP, a direct method is to replace the
image encoder in our grounding module with that of CLIP. Then
we train the modified model on the image-text datasets containing
phrases from a limited number of classes. However, such a choice
might cause severe overfitting.

This motivates us to seek a special kind of feature in the ground-
ingmodule. Thus, we designDomA strategy: 1) Reconstruct grounding-
related feature in CLIP and our network. 2) Minimize the difference
in feature distributions between the training and pretraining phases.
Formally, our grounding module computes the matching attention
between a phrase and an image by

(𝐴𝑀 )𝑖× 𝑗×1 =
𝐾∑︁
𝑘=1

E𝑖𝑚𝑔 (𝐼 )𝑖× 𝑗×𝑘 ⊗ E𝑡𝑥𝑡 (𝑇 )1×𝑘 (6)

where 𝑘 and 𝑖 × 𝑗 donate the number of channels and spatial dimen-
sions, respectively. The domain heatmap 𝐴𝑀 , compared with the
grounding heatmap 𝐻 , can avoid overfitting. We consider the do-
main heatmap 𝐴𝑀 and CLIP-based heatmap 𝐴∗

𝐶
as features, respec-

tively. Note that the weakly-supervised training does not change
the feature distribution of the frozen pre-trained model.

Domain Alignment Loss. To narrow the difference in feature
distributions between the training and pre-training phases, We use
contrastive learning [15]. We formulate an alignment process to
learn to select the positive samples from a set of positive and nega-
tive matching attention maps. Specifically, we use the CLIP-based
attention 𝐴∗

𝐶
as the criterion for determining positive and negative

samples. We treat the matching attention from the same input as
positive samples, while the matching attention from different in-
puts as negative samples. Given a pair of matching attention 𝐴𝑀
and CLIP-based heatmap 𝐴∗

𝐶
, the alignment loss is given as

ℓ𝑐𝑜𝑛
𝜉

(𝐴𝑀 , 𝐴∗𝜉
𝐶 ) =

{
− log𝛿 (1 − (𝐴𝑀 · 𝐴∗𝜉

𝐶
)), 𝜉 ∈ B,

− log𝛿 (𝐴𝑀 · 𝐴∗𝜉
𝐶
), 𝜉 ∈ W,

ℓ𝑐𝑜𝑛 (𝐴𝑀 , 𝐴∗
𝐶 ) =

1
|B ∪W|

∑︁
𝜉∈B∪W

ℓ𝑐𝑜𝑛
𝜉

(7)
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where𝐴∗
𝐶
is a given in Eq. (4). B andW denote sets of positive and

negative samples, respectively. B∪W is the union of two sets, and
𝛿 is the sigmoid function. Thus, our domain alignment is relevant
to grounding-related domain generalization.

3.5 Category Alignment (CatA) Strategy
We treat the PG as a problem of phrase-region alignment. Inspired
by the class activation method [27, 53], we use the phrase embed-
ding E𝑡𝑥𝑡 (𝑇 ) to discriminate the category of grounding-related
feature, and normalize it as a category label 𝑦. To construct region-
category relations, we calculate CLIP matching scores based on
phrase embeddings and grounding-region embeddings. To ensure
each training class can be seen by pre-trained CLIP, we crop out
the grounding regions along the bounding box.

Object and Phrase matching loss. By exploiting the informa-
tion from the phrase-related object by CLIP, the region of the object
𝐵(𝐻 ) is grounded by cropping the bounding box, reshaped as out-
put 𝐻 size, and mapped to the image representation by CLIP image
encoder, i.e., 𝑣𝑂 = E𝑖𝑚𝑔 (𝐵(𝐻 )). The cosine similarity between the
object representation 𝑣𝑂 and the phrase representation E𝑡𝑥𝑡 (𝑇 ) is
used for a loss,

ℓ𝑂𝑃 = −
𝑁∑︁
𝑛=1

𝑦𝑛 log 𝑠𝑛, (8)

in which 𝑠𝑛 is the cosine similarity. 𝑁 is the total number of gen-
erated heatmaps. Thus, the heatmap 𝐻 is gradually close to the
phrase-related object under the supervision of ℓ𝑂𝑃 .

Random region and Phrase matching loss. To enlarge the
distance between phrase-irrelevant regions and phrase representa-
tions, the region of non-object is grounded by cropping a randomly
generated 𝐻 -size of the box 𝐵𝑅 . The generated box should be less
intersected with the bounding box 𝐵(𝐻 ). The box is represented
by the CLIP image encoder, i.e., 𝑣𝑅 = E𝑖𝑚𝑔 (𝐵𝑅). The cosine sim-
ilarity between the box visual representation 𝑣𝑅 and the phrase
representation E𝑡𝑥𝑡 (𝑇 ) is used for a loss,

ℓ𝑅𝑃 = −
𝑁∑︁
𝑛=1

𝑦𝑛 log(1 − 𝑠∗𝑛), (9)

in which 𝑠∗𝑛 denotes the cosine similarity. Thus, the heatmap 𝐻

retains less of the phrase-irrelevant region of the object.
Regularization loss. To further exclude irrelevant background

in the heatmap, we constrain the size of the region covered by the
heatmap, i.e.,

ℓ𝑅𝐸 =
1
𝑁

𝑁∑︁
𝑛=1

𝐻𝑛 (10)

Thus, the total loss of our model is given as follows,

ℓ𝑇 = ℓ1 + 𝜆1ℓ𝑂𝑃 + 𝜆2ℓ𝑅𝑃 + 𝜆3ℓ𝑅𝐸 + 𝜆4ℓ𝑐𝑜𝑛 (11)

Based on the grounding module, we generate the bounding box
as follows. First, we set zeroes for the low-value pixels with a
threshold of 0.5. Then, we search for contours and extract suitable
bounding boxes following [46]. We then calculate the scores of
bounding boxes based on the area percentage of the heatmap 𝐻 .
Finally, non-maximal suppression is applied with 𝐼𝑜𝑈 = 0.3, and
the boxes 𝐵 with 50% less than the maximum score are filtered

a) b) c) d) e)

Figure 4: Visualization of the bounding box generation. The
phrase for the image is "white rocket". a) the input image, b)
heatmap, c) contour map after thresholding with proposals,
d) contour map after thresholding with the final bbox, and e)
the input image with the final bbox.

to complete the localization. The visualization of bounding box
generation is shown in Figure 4.

4 EXPERIMENT
4.1 Datasets
We evaluate our framework on zero-shot PG settings using Flickr-
Split-S0, Flickr-Split-S1, VG-Split-S2, and VG-Split-S3 [40]. In ad-
dition, to compare with previous weakly-supervised grounding
methods, we use the setting in MG [1], which is adopted in vari-
ous works using either MS-COCO [26] or VG [20] training splits,
respectively. In both cases, the resulting models are evaluated on
the testing splits of Flickr30K [35], VG, and ReferIt [6, 13].

4.2 Baselines and Metrics
We compare our framework with various state-of-the-art PG base-
lines, which can be divided into the following three categories.
1) Supervised zero-shot baseline, i.e., ZSGNet [40]. 2) Zero-shot
baselines, including detector + CLIP [45], GAE [4], Grad-CAM [45],
AdaptingCLIP [22], and MaskCLIP [58]. 3)Weakly-supervised base-
lines, including MG [1], GbS [2], WWbl [41], SMST [42], BBR [12],
and VPT [25].

Three metrics, including “pointing game” accuracy [55], bound-
ing box accuracy [41], and recognition accuracy are used for our
evaluation. The “pointing game” accuracy measures the percentage
of predicted maximum points of the heatmap that lie within the
bounding box ground truth. The bounding box accuracy measures
the percentage of heatmap bounding boxes that have an IoU greater
than 0.5 for the testing set of “image-query” pairs. In addition, the
recognition accuracy counts the rate of correct results over all test
sets. The accuracy relies on human evaluation. We asked volunteers
to judge whether the grounded region is cognitively appropriate.

4.3 Implementation Details
For a fair comparison, we use VGG-16 as the visual encoder in our
framework. The model accepts an image size of 224 × 224 which
is the input size of CLIP’s visual branch VIT-B/32. It generates a
heatmap 𝐻 of the same size. We trained 150 epochs using SGD
optimizer (a batch size of 64 and an initial learning rate of 0.0003),
where the optimizer momentum is 0.9 and the weight decay is
0.0001. In addition, the layer 𝐿 is set as 11. The parameters 𝛼 and
𝛽 , they are set as 0.01 and 1 when 𝑙 < 11. They are set as 1 and 10
when 𝑙 = 𝐿. All methods were implemented on an NVIDIA RTX
A6000. In all our experiments, the weights of our loss in Eq. (11)
were set as follows, 𝜆1 = 0.25, 𝜆2 = 0.125, 𝜆3 = 0.25, and 𝜆4 = 1.
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Method Visual Encoder Flickr-Split-0 Flickr-Split-1 VG-2B VG-2UB VG-3B VG-3UB
0.3 0.5 0.3 0.5 0.3 0.5 0.3 0.5

Supervised SoTA method [40] VGG-16 39.32 29.35 17.09 11.02 16.48 10.55 17.63 11.42 17.35 10.97
VLP-based method
Detector+CLIP [45] Faster RCNN 14.12 12.60 11.78 4.82 10.69 4.77 12.57 5.74 11.68 4.67
MaskCLIP [58] ResNet-50 31.08 25.78 14.71 5.72 13.66 6.35 15.68 6.09 14.63 6.57
Grad-CAM [45] VIT-B/32 27.07 24.09 13.94 5.99 13.14 5.55 13.23 6.37 13.35 5.47
GAE [4] VIT-B/32 27.18 24.12 14.94 6.02 13.21 5.67 14.91 6.56 13.63 5.98
AdaptingCLIP [22] VIT-B/32 27.47 24.81 13.43 6.91 12.50 5.21 14.21 7.24 13.43 5.49
Weakly-supervised method
WWbl [41] VGG-16 29.15 24.23 10.90 5.67 10.31 5.18 11.17 5.93 10.55 5.43
Ours VGG-16 32.50 28.02 14.12 6.92 13.74 6.45 14.57 7.48 14.83 6.61

Table 1: Bounding box accuracy across unseen splits. For Flickr-Split-0 & 1, we use the bounding box accuracy with an IoU
threshold of 0.5. For VG-Split-2 & 3, we report the bounding box accuracy with IoU thresholds of 0.3 and 0.5, respectively. “B”
and “UB” denote the balanced and unbalanced sets in VG-Split, respectively.

Method Point Accuracy Bbox Accuracy
VG Flickr Referlt VG Flickr Referlt

GAE [4] 54.72 72.47 56.76 16.70 25.56 19.10
CH 55.31 71.29 57.47 23.43 43.75 24.63

M
S-
CO

CO

MG [1] 47.94 61.66 47.52 15.77 27.06 15.51
GbS [2] 52.00 72.60 56.10 - - -
WWbl [41] 59.09 75.43 61.03 27.22 35.75 30.08
SMST [42] 62.96 78.10 61.53 29.14 46.62 32.43
BBR [12] 60.05 77.19 63.48 28.77 47.26 30.63
Ours 60.31 77.85 62.63 29.58 45.46 33.41

VG

MG [1] 48.76 60.08 60.01 14.45 27.78 18.85
GbS [2] 53.40 70.48 59.44 - - -
WWbl [41] 62.31 75.63 65.95 27.26 36.35 32.25
SMST [42] 66.63 79.95 70.25 30.95 45.56 38.74
BBR [12] 63.51 78.32 67.33 31.02 42.40 35.56
Ours 58.07 76.69 70.86 27.31 45.63 35.70

Table 2: Comparison with SoTA weakly-supervised PG meth-
ods evaluated using the “pointing game” accuracy and bound-
ing box accuracy on VG, Flickr30K, and ReferIt. The best
performances are shown in bold.

4.4 Main Results
Zero-shot Evaluation on Unseen Phrase Classes. We report
the zero-shot evaluation results on the test split of Flickr-Split and
VG-Split in Table 1. Unlike Flickr-Split, VG-Split’s phrases contain
a large amount of textual noise that does not describe the corre-
sponding objects. Therefore, we set two IoU thresholds (0.3 and
0.5) in the evaluation. Specifically, our approach achieves superior
results on IoU thresholds of 0.5 shown in column #6, #8, #10, and
#12). This indicates that the model’s grounding results cover unseen
categories better than other methods. Although there still exists
a gap compared to the supervised method, our method improves
the performance significantly compared to the weakly-supervised
methods. WWbl model masks the image with the heatmaps, fol-
lowed by using external knowledge to measure the similarity be-
tween masked images and phrases as the loss function. However,
the external discriminator rarely encounters mask-covered images,
leading to an incorrect accumulation of category judgment. Com-
pared to other datasets, Flickr-Split-1 is more stringent in defining
the difference between training phrase categories and testing ones.

However, our results are close to the supervised grounding SoTA
on Flickr-Split-1. This result shows a strong generalization of our
model on unseen phrase classes.

Weakly Supervised Evaluation on Seen Classes. We re-
port the performances of our PG framework compared with other
weakly-supervised PG methods on Flickr30K, VG, and ReferIt in
Table 2. For a fair comparison, all trainable methods use VGG-16
as the image encoder to produce the final grounding output. The
experimental results show that our method generates competitive
results compared with other weakly-supervised PG methods. Our
CLIP-based heatmap (CH) also surpasses the pseudo label (GAE)
used by WWbl in terms of bbox accuracy and such information is
not available in the training dataset. This explains the 9% increase
in bbox accuracy over WWbl. Our method does not perform well
on some metrics compared to BBR, and SMST. The main reason is
that these methods provide more accurate supervision labels. SMST
designs visual similarity maps, while BBR uses bounding boxes
provided by the object detector as additional annotations. We did
not consider using their labels because the zero-shot generalization
of weakly-supervised PG is more important than the slight improve-
ment in grounding accuracy. Although visual similarity maps and
box annotations can improve the appearance of heatmaps, they
are both text-agnostic. Simply using such annotations can disrupt
the text-image alignment, which is crucial for zero-shot manner of
weakly-supervised PG.

Zero-shot Evaluation on Unseen Object Classes.We com-
pare our framework with the supervised methods on unseen image-
object classes. The testing set was collected which contained 30
instances for each category from Google. These categories belong
to novel concepts or fine-grained categories, which do not appear
in training datasets. This dataset includes 10 categories: CElebrity
names (CE), ANime names (AN), GAme character names (GA), ARt-
work names (AR), RAre plant and animal phrases (RA), SMall ob-
ject phrases (SM), EXclusive category phrases (EX), SEntence-level
phrases (SE), REmote-sensing-related phrases (RE) and MEdical-
related phrases (ME). Note that the supervised method uses box
annotations during training, whereas our method does not require
any form of additional annotations. Figure 5 shows the proportion
of grounding results evaluated by human evaluation. The subjective
results clearly show that our method outperforms the supervised
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Figure 5: Comparison of the recognition accuracy of different
models with unseen object categories.

Variant Strategy
RTA DomA CatA R+D+C

CLIP-based Heatmap 13.48 11.20 10.55 41.58
Gradient map 11.28 10.31 9.79 39.48
Combination 16.85 12.23 11.10 45.46

Table 3: Grounding results with different alignment strate-
gies on the val split of Flickr30K Entities.

Method Point Accuracy Bbox Accuracy
VG Flickr Referlt VG Flickr Referlt

M
S-
CO

CO

ℓ1 49.17 58.11 46.72 13.01 16.85 16.56
ℓ1+ℓ𝑐𝑜𝑛 51.68 58.59 46.97 14.32 29.41 18.83
ℓ1+ℓ𝑐𝑜𝑛+ℓ𝑂𝑃 53.31 70.54 48.33 20.93 38.25 25.04
ℓ1+ℓ𝑐𝑜𝑛+ℓ𝑂𝑃+ℓ𝑅𝑃 55.20 73.34 60.92 23.82 42.51 29.09
ℓ1+ℓ𝑐𝑜𝑛+ℓ𝑂𝑃+ℓ𝑅𝑃+ℓ𝑅𝐸 60.31 77.85 62.63 29.58 45.46 33.41

VG

ℓ1 48.42 57.85 50.11 13.47 16.10 17.92
ℓ1+ℓ𝑐𝑜𝑛 37.26 58.67 50.28 14.58 28.20 19.90
ℓ1+ℓ𝑐𝑜𝑛+ℓ𝑂𝑃 51.97 70.12 51.47 20.11 36.59 27.88
ℓ1+ℓ𝑐𝑜𝑛+ℓ𝑂𝑃+ℓ𝑅𝑃 53.98 73.28 64.62 23.44 40.79 31.98
ℓ1+ℓ𝑐𝑜𝑛+ℓ𝑂𝑃+ℓ𝑅𝑃+ℓ𝑅𝐸 58.07 76.69 70.86 27.31 45.63 35.70

Table 4: Comparison of the point accuracy and bbox accu-
racy of using different combinations of loss functions on
MSCOCO and VG datasets.
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34
29.88

26.15IO
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Ours(w/o CatA)CLIP (RN50) + Decoder
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18.29
17.35

35.5334.75

Figure 6: Comparison with the baselines.

method with large margins in novel concepts. Some fine-grained
categories, including SM, EX, and SE with close semantics have
been encountered during training. It is extremely advantageous to
the supervised method because the box annotations build stronger
associations among similar semantic entities.

4.5 Ablation Study
Effects of alignment Strategies. Firstly, Table 3 shows the ef-
fects of alignment strategies in weakly supervised settings. We
use Flickr30K Entities as it contains clearer expressions without
noise. Among all combinations of VLP and training stages, using
all alignment strategies leads to the best performance. Secondly, we
measure the impact of each loss on grounding performance. Table
4 shows quantitative comparisons among different combinations
of loss functions. Our framework only obtains 16.85% when only
ℓ1 is used. An addition of ℓ𝑐𝑜𝑛 improves IoU from 16.85% to 29.41%
and the inclusion of ℓ𝑂𝑃 and ℓ𝑅𝑃 achieves absolute improvements
8.84% and 4.26%, respectively. ℓ𝑅𝐸 can ensure the compactness of
CLIP-based heatmaps and improve the IoU by 2.95% on the dataset.
Thirdly, we compare the baseline (we replaced the image encoder of
grounding module with CLIP (RN50)) with our domain alignment
strategy. In our experiments, we evaluate seen classes on Flickr30K
Entities, and unseen classes on Flickr S0 and Filckr S1. As shown
in Figure 6, our baseline has a large gap in bounding box accuracy
on seen and unseen classes. Compared to the former, our domain
alignment strategy achieves better domain adaptation between
seen and unseen classes. Finally, we ablate each alignment strategy
in zero-shot settings. In addition, Table 5 shows the quantitative
comparisons among different combinations of alignment strategies.
The results show that each strategy works in our PG framework.

Effects of CLIP-based Heatmap. To show the impact of the
pseudo-label effect on our grounding module, we show the per-
formance of our CLIP-based heatmap in Table 2 and Table 6, and
evaluate the performance of our framework with different training
labels (rows #5 and #6 in Table 6). Our CLIP-based heatmap has
demonstrated competitive performance in seen classes. In addition,
when our CLIP-based heatmap (CH) acts as a label, our network
improves the grounding quality in most seen classes.

4.6 Qualitative Analysis.
We show several results of our alignment strategies in Figure 7.
We use the instances’ ground-truth bounding boxes as propos-
als in Flickr30K. When using only RTA, the predicted CLIP-based
heatmap tends to focus on the most discriminative region of the
referred object. However, when equipped with DomA strategy, the
predicted CLIP-based heatmap tends to capture the context of the
phrase but may focus on different object categories. With triple
alignments, our method successfully grounds the referred object.

Furthermore, we compare ourmethodwith VLP-based andweakly-
supervised PG methods, as shown in Figure 8. We observe that our
method typically grounds more complete object contents and less
phrase-related background regions. Specifically, VLP-based meth-
ods and weakly-supervised PG methods may underestimate the
region of blue jeans and the woman, or falsely ground the region
of mountain bike and the subway station. In contrast, the regions
grounded by our framework are more complete and compact.

Finally, we show failure cases of our framework in Figure 9. We
categorize failure cases into two groups: similar dense objects and
in-context entities-related objects. Our framework highlights con-
nected regions rather than separate regions while it locates dense
objects. The number of bounding boxes cannot be precisely deter-
mined. Furthermore, our framework extracts only noun phrases
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Method Strategy Flickr-Split-0 Flickr-Split-1 VG-2B VG-2UB VG-3B VG-3UB
S0 S1 S0 S1 S0 S1 S0 S1

ℓ1 RTA 28.32 25.01 10.67 5.51 10.23 5.16 11.24 5.87 10.64 5.41
ℓ1 + ℓ𝑐𝑜𝑛 RTA+DomA 29.88 26.15 11.33 5.69 11.25 5.39 12.08 6.12 11.30 5.65
ℓ1 + ℓ𝑐𝑜𝑛 + ℓ𝑂𝑃 RTA+DomA+CatA 30.58 26.99 12.07 5.94 12.12 5.81 12.73 6.54 12.66 5.93
ℓ1 + ℓ𝑐𝑜𝑛 + ℓ𝑂𝑃 + ℓ𝑅𝑃 RTA+DomA+CatA 31.33 27.74 13.85 6.39 13.05 6.06 13.15 7.03 13.55 6.42
ℓ1 + ℓ𝑐𝑜𝑛 + ℓ𝑂𝑃 + ℓ𝑅𝑃 + ℓ𝑅𝐸 RTA+DomA+CatA 32.50 28.02 14.12 6.92 13.74 6.45 14.57 7.48 14.83 6.61

Table 5: Bounding box accuracy across unseen splits. For Flickr-Split-0&1 we use accuracy with IoU threshold of 0.5. For
VG-Split-2&3, we report accuracy with IoU thresholds of 0.3 and 0.5. “B” and “UB” are balanced and unbalanced sets in VG-Split.

Phrase: clarinetto

RTA + CatA

Phrase: purple shirt

Phrase: a beautiful bride Phrase: a handsome groom

GT & OursImage + DomA GT & OursRTA + CatA+ DomA

Figure 7: Qualitative results are reported. Input Images are given in the left most column. The corresponding phrases are
different. Columns #2-4 present the generated heatmaps using RTA, RTA+DomA, and triple alignments, respectively. Columns
#6-8 show the results of another phrase. The white boxes represent ground truth and the red represents the results of ours.

Method Overall People Animals Vehicles Scene Other

MaskCLIP 34.26 37.46 40.93 52.25 48.40 25.87
AdaptingCLIP 29.47 29.23 40.15 45.00 41.86 24.92
GAE 25.56 26.76 39.72 38.12 33.72 22.22
CH 43.75 56.33 62.31 58.60 52.78 32.26
Ours w/ GAE 36.35 43.58 48.22 52.72 55.94 26.44
Ours w/ CH 45.46 56.44 59.95 57.68 70.04 32.53

Table 6: Category-wise bounding box accuracy on Flickr30K
Entities. Boldface: best results. Underline: suboptimal results.

AdaptingCLIP GAEMaskCLIP Ours

Caption：A man on  a black mountain bike

Caption：A guy wearing a white shirt 

Caption：A woman pointing to the subway station

Caption：A man in a plaid shirt and  blue jeans 

WWbl Ground TruthImage

Figure 8: Qualitative results of our framework with other
methods. Each bounding box represents the object region
referred by specific noun phrase.

without considering phrases in-context during the inference. This
leads to an inaccurate evaluation of the referred object’s location.

Caption : A new crew and a reporter in a blue coat make a film in the rain.

Ground Truth

 Caption : The kid wears glasses and two kids are smiling. 

Figure 9: Failure cases of our method. Column #1 presents
the ground truth. Column #2 presents the successful case.
Column #3 presents the failure cases for grounding simi-
lar dense objects. Column #4 presents the failure cases for
grounding entities in context.

5 CONCLUSION AND FUTUREWORK
In this paper, we propose a PG framework, which designs alignment
strategies to address three key problems of zero-shot grounding
with weak supervision. Our approach outperforms previous zero-
shot methods and achieves competitive results on weakly super-
vised benchmarks.

In the future, there are several interesting directions. For instance,
we will consider interpretable solutions for several grounding-
related tasks, such as Grounded VQA and image captioning. In
addition, we will consider how to use multi-modal large language
models [36] to improve zero-shot PG under weak supervision.
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