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Abstract

Discovering new solid-state materials necessitates the ability to rapidly explore
the vast space of crystal structures and locate stable regions. Generating stable
materials with desired properties and composition is a challenging task because
of (a) the exponentially large number of possibilities when the elements from the
periodic table are considered along with vast variations in their 3D arrangement and
corresponding lattice parameters and (b) the rarity of the stable structures. Further-
more, materials discovery requires not only optimized solution structures but also
diversity in the configuration of generated material structures. Existing methods
have difficulty when exploring large material spaces and generating significantly
diverse samples with desired properties and requirements. We propose Crystal
Hierarchical Generative Flow Network (CHGlownet), a new generative model
that employs a hierarchical exploration strategy with Generative Flow Network to
efficiently explore the material space while generating the crystal structure with
desired properties. Our model decomposes the large material space into a hierarchy
of subspaces of space groups, lattice parameters, and atoms. We significantly
outperform the iterative generative methods such as Generative Flow Network
(GFlowNet) and Physics Guided Crystal Generative Model (PGCGM) in crystal
structure generative tasks in validity, diversity, and generating stable structures
with optimized properties and requirements.

1 Introduction

Discovering new solid-state materials plays a central role in advancing various technologies, including
energy generation and storage, and semiconductor electronics (Berger, 2020; Noh et al., 2019).
Each unique crystal structure exhibits properties useful for specific applications. For example,
superconductive perovskite structure is used in circuit board elements for computers. Generating
material structures that meet given property requirements poses a set of unique challenges. The key
is to generate crystal structures with the repeating arrangement of atoms in three-dimensional space
throughout the material. A crystal structure is determined by how atoms are arranged within the unit
cell specified by its lengths and angles. However, the inter-atom interactions are not confined within
the unit cell but also with adjacent unit cells. These characteristics make the search space of crystal
structures significantly larger and more complex compared to well-studied molecular search space.
The number of known crystal structures, both experimental and hypothetical, is around 3 million
curated from AFlow (Mehl et al., 2017; Hicks et al., 2019, 2021) and Material Project (Jain et al.,
2013), which is tiny compared to billions of molecules from the Znic dataset (Irwin & Shoichet, 2005).
The limited data undermines modern data-driven methods to learn the crystal structure representation
(Chithrananda et al., 2020; Liu et al., 2019), thus making crystal structure generation significantly
harder than molecule generation.
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We address the complexity associated with the large search space by proposing a new generative
model termed Hierarchical Generative Flow Networks (HGFlowNets). HGFlowNets explores the
vast search space in an efficient way. The key insight to solving the large state space problem is
breaking space exploration into more meaningful hierarchical sub-tasks. Here the higher-level tasks
explore more actions that are closely related to the reward function while lower-level tasks handle the
configuration adjustment corresponding to the action taken at higher-level tasks. Since the exploration
starts at the highly general concept level, it can learn a more meaningful policy that corresponds to
the target reward function. With more meaningful actions taken at a higher level, the policy networks
can focus on searching the actions in a significantly smaller sub-space that corresponds to actions of
high-level tasks instead of exploring the whole space.

Three key concepts can help the generative models to search in the material space effectively. Firstly,
the crystal structure class imposes a set of symmetry operations and geometrical characteristics on the
atom position and lattice parameters, thus effectively reducing the material search space. In addition,
each crystal structure class is associated with relevant properties, for example, perovskite structure
with conductivity. Secondly, searching for stable structures on the non-smooth energy landscape
defined by quantum mechanics requires the generative models to explore and generate diverse sample
sets to avoid getting stuck in one single mode and local minima. Thirdly, we apply a bond constraint
on the atom pairs in the generated crystals whereby atoms should not be closer to each other than
specific bond thresholds. These thresholds are obtained by calculating the minimum bond distance for
every atom pair in all the materials in the MaterialsProject database. Given the diversity of materials
in the database, it is reasonable to assume that minimum distances obtained from this database are
threshold distances for the ground state structure of the respective atoms in any new crystal structure.

More specifically, we model the whole material space in a hierarchical structure. The highest level
is the crystal structure class. Since the crystal structure class is related to relevant properties of
the material, exploring the crystal structure class can efficiently lead to more optimal properties of
the generated structure. In this case, we specifically use the space group of the crystal structure to
effectively reduce the 3D atom space exploration to a more meaningful high-level exploration and
generate a high-symmetry crystal structure. The next level searches the unit cell lattice parameters
and atoms’ configuration given the space group. The space group of the crystal structure also imposes
constraints on the lattice parameters and atoms’ position, thus reducing the lattice parameters’ and
atoms’ search space. Choosing the positions one by one creates a long horizon trajectory, making it
difficult to learn a policy that generates high symmetry structures that match proportionally to the
reward function. The space group’s symmetry operation can immediately replicate the atoms over the
unit cell, thus reducing the trajectory length and making it easier for the policy network to learn how
to generate a high-symmetry crystal structure.

In this work, we apply our proposed Hierarchical Generative Flow Network to the crystal structure
generation task and refer to the resulting model as Crystal Hierarchical Generative Flow Network
(CHGFlowNet). Our main contributions are:

• We propose a generative model that can search effectively in a large search space by modeling
the state space in a hierarchical structure.

• We incorporate the physical knowledge curated from the large material databases into our
generative model to generate more stable structures.

• We validate the hierarchical structure state space and physics priors of our proposed genera-
tive model in the crystal structure generation task to show the efficiency in material space
exploration as well as the stability of the generated structures.

2 Related Works

Crystal structure generation frameworks can be classified into three main approaches based on the
initial step and their search strategy:

Element substitution Given the templates from the ICSD (Belkly et al., 2002), the elements within
the crystal structure are substituted with another element type having similar properties before being
optimized by density functional theory (DFT) (Hautier et al., 2011; Wang et al., 2021; Wei et al.,
2022). Generally, this approach is computationally expensive and relies on domain knowledge in
element substitution.
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Material distribution sampling Deep generative models learn from the distribution of stable crystal
structures derived from experimentally known ones and sample from the distribution new crystal
structures. An important model class is based on Variational AutoEncoders (VAEs) (Xie et al.,
2022; Court et al., 2020; Noh et al., 2019) which learns and samples from the stable material
distribution. Another model class derives from Generative Adversarial Networsk (GANs) (Zhao
et al., 2021; Kim et al., 2020) which use a generator to create hypothetical crystal structures based on
composition or space group symmetry, and a discriminator to differentiate those generated structures
from the real samples. Diffusion models coupled with symmetry-aware probabilistic model (?) or
periodic-E(3)-equivariant denoising model (Jiao et al.) target the invariance of crystal structure. This
data-driven approach has difficulty in generating high symmetry structures and in out-of-distribution
generalization. Also, the generation process is solely based on learning from the known distribution,
leaving minimal room for domain knowledge and human intervention during the generation process.

Iterative generation Crystal structures can be decomposed into compositional objects, and con-
structed step by step using reinforcement learning (RL). A recent work (Zamaraeva et al., 2023)
only applies RL for crystal structure prediction and optimization. Our work is the first to apply
the RL-based technique to explore the entire material space. The key advantage of this RL-based
approach is its high flexibility, which allows for the incorporation of domain knowledge into the
action and state space and shaping the reward function.

3 Preliminaries

3.1 Crystallographic space group

The crystal structure is the repeating arrangement of the atoms within a unit cell in 3D. Formally, the
unit cell of N atoms is a triplet (L,A,X) of lattice parameters L, atom list A, and atom coordinates
X . There are 6 lattice parameters L = (a, b, c, α, β, γ) ∈ R6 describing 3 lengths and 3 angles
of the unit cell, respectively. The atoms list A = (a1, ..., aN ) describes the elements. The atoms’
coordinates X ∈ RN×3 describe the positions of the atoms within the unit cell, which can be
Cartesian or fractional.

The space group of crystal structure consists of a list of symmetry transformations to the atoms
within the unit cell. In crystallography, there are 230 space groups (Glazer et al., 2012). The
symmetry level of the crystal structure also increases with the space group number: Group 1 has the
lowest symmetry meaning all atom’s positions and lattice parameters are free without following any
symmetry operations and constraints.

Each space group has geometrical characteristics defined in lattice angles and lengths that can be used
as constraints to limit the parameters search space. The list of geometrical characteristics is provided
in the Supplement Table 5. Given the space group Gs, the elements of the space group g ∈ Gs are a
set of symmetry operations. A crystallographic orbit of an atom o = (xo, ao) with coordinate xo and
element ao is defined as

OGs
(xo) = {g · xo | g ∈ Gs} (1)

where g · xo denotes the application of the symmetry operation g on the atom o within the unit cell.
From a reference atom o, we can obtain a set OGs of equivalent points.

3.2 Generative Flow Network

The Generative Flow Network (GFlowNet) is a generative model designed to sample candidates
proportional to their target rewards. The framework has been successfully applied to many fields such
as molecular discovery (Bengio et al., 2021), protein sequence discovery (Jain et al., 2022), causality
(Deleu et al., 2022), and continuous control (Li et al., 2023). GFlowNet models the sampling process
of the compositional object s as the directed acrylic graph (DAG) G = (S,A) where S is the set of
states and A is the state transition which is the subset of S × S . The sampling process starts with the
initial state vertex s0 ∈ S with no incoming edge. and stops at the sink state vertex sn ∈ S , n is
the sampling trajectory length, with no outgoing edge. GFlowNet learns a policy function π that can
sample the object x with the probability proportional to the non-negative reward function. GFlowNets
constructs the object step by step, from the initial state s0 to the sink state sn, forming a trajectory
τ = s0, .., sn, τ ∈ τ where τ is the trajectory set. For any state s in the trajectory, we can define the
flow of the state as F (s) =

∑
τ∋s F (τ) and the flow of the edge s→ s′ as F (s) =

∑
τ∋s→s′ F (τ)
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(Bengio et al., 2021). The forward policy that maps the probability of transition from the current
state s to the next state s′ is given as PF (s

′|s) = F (s→s′)
F (s) . The backward policy mapping probability

transition to the previous state s given the current state s′ is PB(s|s′) = F (s→s′)
F (s′) . The training

objective of the GFlowNets is flow matching consistency where the incoming flow is equal to the
outgoing flow,

∑
s′′→s F (s′′ → s) = F (s) =

∑
s→s′ F (s → s′), for all states. Malkin et al.

(2022) propose trajectory balance to deal with the long trajectory credit assignment problem. Given
the trajectory τ = (s0 → s1 → ... → sn), the forward probability of a trajectory is defined as∏n

t=1 P (s′|s). The trajectory balance constraint is defined as:

Z

n∏
t=1

PF (st|st−1) = F (x)

n∏
t=1

PB(st−1|st) (2)

where P (sn = x) = F (x)
Z , Z = F (s0) is the initial state flow. Then the trajectory balance objective

is defined as:

LTB(τ) =

(
log

Zθ

∏n
t=1 PF (st|st−1; θ)

R(x)
∏n

t=1 PB(st−1|st; θ)

)2

(3)

4 Proposed method

We now describe our CHGFlowNets, a hierarchical generalization of GFlowNets to operate on the
hierarchical structure state space of crystals. In the hierarchy, lower states represent discrete concepts
constrained by the higher states that represent more abstract concepts. The key to the design of
CHGFlowNets is to allow efficient exploration of high-symmetry crystal structures with desired
properties.

In particular, the symmetry is defined on the space group structure outlined in Sec. 3.1 that imposes
constraints on the lattice parameters. In the space group, for n symmetry operations, one can identify
the positions and elements of other n−1 atoms given only the (coordinates, element) pair of one atom
o = (xo, ao). This effectively reduces the number of searches n times. The lattice parameters shape
the unit cells containing the atoms, thus affecting the atoms’ distance and interaction. Therefore,
we place the atom state below the lattice parameters state in our hierarchical state structure. Fig. 1
describes the overall structural design.

Space group

Lattice paramters
(lengths, angles of unit

cell)
Atoms positons

Symmetry
operation

Parameters
constraint Space group: P4(2)/mmc

Atom:
O (0,0,0)

Atom:
O (0, 0, 0)

O (0, 0, 0.5)

Lattice params:
a = 4, b = 6, c =4

 

  0  -1   0    0
  1   0   0    0
  0   0   1   1/2

Symmetry operation

Lattice params:
a = 4, b = 4, c =4

 

Constraint:
a = b = c

 

(a) (b)

Figure 1: (a) Hierarchical crystal structure state. The space group level provides the set of symmetry
operations for atoms’ positions and lattice parameters constraints. (b) An example of applying the
hierarchical state space. The current state has one Oxygen atom at position (0, 0, 0), lattice parameters
a = 4, b = 6, c = 4, α = 60◦, β = 80◦, γ = 60◦, and P1 spacegroup. The action of choosing space
group P4(2)/mmc provides a symmetry operation to generate another Oxygen atom at position (0, 0,
0.5). The lattice parameter constraints reduce the unit cell’s length search space from R3 to R and
make the unit cell’s angles constant at 90◦
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4.1 State encoding.

We represent the crystal unit cell (L,A,X) described in Sec. 3.1 as a directed graph G = (V, E) of
node feature matrix V and edge matrix E . The node features include the atom’s atomic number and
its fractional coordinates within the unit cell. The edges are determined by k-nearest neighbor with
the maximum number of neighbors being 12 and the radius cut-off is 8.0. The graph representation is
learned using the Graph Convolution Networks (GCNs) (Kipf & Welling, 2017), equipped with skip
connections to allow deep layers:

H l = σ(H l−1 + F l(H l−1)), where (4)

F l(H l−1) =W l−1σ(GCN(H l−1, E)), (5)

where W is the learnable weight matrix, l is the layer’s index, and σ is a non-linear ReLU activation
function. The GCN readout function uses max pooling, followed by a two-layer MLP to output
graph-level representation hG .

Lattice parameters are encoded using a multi-layer perceptron as:

hL = MLP ([l1, l2, l3, sin(α), cos(α), sin(β), cos(β), sin(γ), cos(γ)]) (6)

where l1, l2, l3 are the lattice lengths, and α, β, γ are the angle of the lattice angle. The space
group is encoded as hsg using an embedding layer. Finally, the crystal structure state is simply
hM = (hsg, sal) where hal = [hG ;hL]. The encoded crystal structure state hM is later used as the
representation of the hierarchical state space sM .

4.2 Hierarchical policy

Our hierarchical policy consists of two levels: The high-level decision-making policy operating on
the space groups, and the low-level execution policy operating on the atom-lattices (see Fig. 2). The
space group policy chooses the space group and applies corresponding constraints on the atom-lattice
policy actions. The corresponding hierarchical state space is decomposed as s = (ssg, sal), where
ssg is the space group state and sal is the atom-lattice state. The latter consists of lattice parameters
slp, atoms’ coordinate sac, and atoms’ type sat states.

Then we define the probability of transitions as:

P (s′|s) = P (s′sg, s
′
al|ssg, sal) (7)

P (s′sg, s
′
al|ssg, sal) = P (s′al|ssg, sal, s′sg)P (s′sg|ssg, sal) (8)

Then given the trajectory τ = (s0 → s1 → ...→ sn), we then have the trajectory balance constraint
(Eq. 2) with the decomposed state as:

Z

n∏
t=1

PF (s
t
al|st−1

sg , st−1
al , stsg)PF (s

t
sg|st−1

sg , st−1
al ) (9)

= F (x)

n∏
t=1

PB(s
t−1
al |s

t
sg, s

t
al, s

t−1
sg )PB(s

t−1
sg |stsg, stal) (10)

The space group forward and backward transition probabilities PF (s
t
sg|st−1) and PB(s

t−1
sg |st) are

parameterized by the multinoulli distribution defined by the logits output of the space group policy
networks. The lattice parameters state slp transition probability is parameterized by the Gaussian
distribution defined by the mean µ and variance σ2. The atom fraction coordinates state sac transition
probability is parameterized by the Multivariate Gaussian distribution given by the mean µ and
covariance matrix Σ. The atom type state sat transition probability is parameterized by the multinoulli
distribution. These transition probabilities are used in the trajectory sampling process A.3.4.

The model is trained using the trajectory balance training objective in Eq. 3.

4.3 Physic-informed reward function

At the terminal state x = sMt of the trajectory, a reward is returned by a non-negative function R(x),
providing feedback on the generated crystal structure, especially its validity and stability. The reward
function is composed of the following terms:
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High-level policy

Low-level policy

Crystal
structure

state

Space group
 policy network

Space
group

 

Atom-lattice
policy network

Atom-lattice
state

Figure 2: Hierarchical policy for crystal structure state. First, the crystal structure graph state s is
decomposed into space group state ssg and atom-lattice state sal. Then the transition probability
P (s′sg|ssg, sal) in Eq. 8 is given by the space group policy network θsg. The transition probability
P (s′al|ssg, sal, s′sg) in Eq. 8 is given by the atom-lattice policy network θal.

The formation energy term dictates that a stable crystal structure will have a negative formation
energy, thus defined as Re(x) = e−E(x), where E(x) is the predicted formation energy per atom
given by the prediction model (Sec. A.3.8).

The bond distance preferences term Rb is defined by the distance between any atom pairs (ai, aj),
i and j are the atoms’ indices. The term consists of two validation conditions which are the minimum
distance constraint and neighbour distance constraints. The minimum distance constraint term is
defined as

Rmin(x) =

{
αp, if ∃ai, aj ∈ x : d(ai, aj) < dmin(ai, ai)

1, otherwise.
(11)

where d(ai, aj) is the distance between two ai and aj atoms, dmin(ai, ai) is the minimum distance
retrieved from the database, and αp < 1 is the penalty term hyper-parameter.

The neighbor distance term is defined as:

Rmax =

{
βp, if ∃aj ∈ nei(ai), d(ai, aj) > dmax(ai, aj)

1, otherwise.
(12)

where d(ai, aj) is the distance between two ai and aj atoms, nei(a) is the neighbours atoms of atom
a, dmax(ai, aj) is the maximum distance retrieved from the database, and βp < 1 is the penalty term
hyper-parameter.

The bond distance preference is defined as:

Rbond(x) =


γp, if Rmax(x) < 1 and Rmin(x) < 1

αp if Rmin(x) < 1

βp if Rmax(x) < 1

1, otherwise.

(13)

The density term is defined upon the structure density. Because the bond distance preference term
applies a strict penalty for structures violating the minimum distance constraint, the generative model
tends to generate a structure with long distances between atoms pairs with only a few neighbor atoms.
This leads the model to generate gas with low density rather than solid-state density. On the other
hand, structures with very high density (i.e. larger than 10) are unlikely to be realistic as the units
are crowded with atoms causing a very high formation energy. We measure the generated structure
density P (x) (Sec. A.3.3) and define the density term as the Gaussian function of structure density:

RP (x) = ae
−(P (x)−b)2

2c2 (14)

The composition validity term is defined as Rcomp(x) = 1 for valid composition and Rcomp(x) = 0
otherwise. We follow composition validity is given by the charge neutrality check (Davies et al.,
2019). Finally, the physic-informed reward function is composed as:

R(x) = (Re(x) +RP (x)) ∗Rbond(x) +Rcomp(x) (15)
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Conventional reward function for multiple object is the weighted addtition between objectives.
However, summing up terms may introduce unintented behaviours. For example, because the
formation energy is exponential, the generated crystals can have very low formation energy but very
unrealistic due to distance constraint violation. Furthermore, energy, density, and distance between
atoms are closely related. Therefore, we mulply the formation energy term and density term with the
bond distance preferences term to strongly enforce the atom distance validity.

5 Experiments

Battery material discovery task Motivated by the search for light-weight, transition-metal free
cation battery materials, we explore the space of possible materials that can be made from the light
elements Be, B, C, N, O, Si, P, S and Cl, and one of the three alkali metals Li, Na and K. This space
of materials constitutes materials that can be utilised in lithium-ion, sodium-ion, and potassium-ion
battery materials, respectively. Of particular interest to our work is the generation of new transition-
metal free solid-state electrolyte materials that can be incorporated in solid-state lithium, sodium, and
potassium batteries.

Baselines We compare our CHGFlowNet with the latest crystal generation model of PGCGM (Zhao
et al., 2023) and the Generative Flow Networks (GFlowNets), which is a flat version of our method.
The PGCGM is a GAN-based method that uses a physics-informed loss function defined by the
distance between atoms.

As the original GFlowNets only work on the discrete space, we follow the recent work on continuous
GFlownet (Lahlou et al., 2023) to work on the continuous space of the atoms’ coordinates and lattice
parameters. The model has a single-level policy network that outputs space group, lattice parameters,
atoms’ coordinates, and atoms’ type. Note that this is the first time GFlowNet has been applied
successfully for crystal generation.

5.1 Material validity

We evaluate the proposed method and baseline methods on the validity of the generated crystal
structure, measured based on three criteria. We follow the previous work (Zhao et al., 2023) for
validity measurements a) CIFs validity is the percentage of Crystallographic Information Files
(CIFs) of generated crystal structure that is readable by pymatgen (Ong et al., 2013) b) structure
validity: a structure is valid as long as the minimum distance between any two atoms is more
than 0.5 c) composition validity: a composition is valid if the overall charge computed by SMACT
Davies et al. (2019) is neutral. As seen in Tab. 1, CIFs validity is an easy condition, and all three
methods can achieve a validation rate close to one. Both GFlowNet and CHGFlowNet structure
and composition validities are close to one, highlighting the effectiveness of learning reward-based
exploration. The structure and composition validities are used in the reward function described in
Sec. 4.3. In contrast, PGCGM faces the common problem of sampling from data-induced distribution
without any refinement, which is low structure validity.

Table 1: Validity of the generated structures. We evaluate the top 1000 crystal structures ranked by
the reward function after 105 states visited.

Method Validity
CIF ↑ Structure ↑ Composition ↑

PGCGM 1 0.101 0.747
GFlowNet 1 0.995 0.998
CHGFlowNet 1 0.998 0.986

5.2 Material diversity and formation energy

Diversity Following the previous works (Xie et al., 2022; Zhao et al., 2023), we evaluate both the
structure and composition diversity of the generated crystal structures. The structure diversity is
defined as the average pairwise Euclidean distance between the structure fingerprint of any two
generated materials (Pan et al., 2021). The composition diversity is defined as the average pairwise
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Table 2: Diversity and average of formation energy of the generated structures. We evaluate the top
1000 crystal structures ranked by the reward function after 105 states visited.

Method Diversity Formation %Crystal
family ↑

Composition
↑

Structure
↑ Energy ↓ stable ↑

PGCGM 2.467 2141.196 0.524 4.558 62.5
GFlowNet 2.544 3205.639 0.651 1.433 73.4
CHGFlowNet 2.616 3037.808 0.761 0.882 89.9

distance between the composition fingerprints of any two generated materials (Pan et al., 2021) (Sec.
A.3.6). We further use the crystal family defined in Supplement Tab. 5 which is a group of space
groups sharing some special geometric characteristics. The crystal family diversity is defined as the
Shannon–Wiener index (Shannon, 1948) of the number of generated structures in each crystal family.

Figure 3: Comparison of CHGFlowNet and
GFlowNet in exploring crystal modes using 3 steps.
A mode is defined as a valid crystal structure with
negative formation energy. A step is an action of
choosing one atom in the spacegroup-lattice-atom
hierarchical state space.

We evaluate the diversity, average formation
energy structures, and the percentage of stable
structures discovered by the models, and report
the results in Tab. 2. A stable structure is de-
fined as a structure with formation energy per
atom smaller than 2eV/atom. All three methods
can find stable structures more than 60% of the
time, but the GFlowNet family has more hit rate
of 73.4% and 89.9%. Since PGCGM learns a
crystal distribution from data and samples from
it, the diversity of generated structures is low.
And without further optimisation step, its forma-
tion energy is rather high on average. Compared
with the flat GFlowNets, our CHGFlowNets find
crystals with lower formation energy, and more
diversity in terms of crystal family and structure.

Material mode exploration To evaluate the
speed of exploring the material space and find-
ing the valid material structures, we count the
number of modes found by the generated crystal
structures plotted against the number of states
visited in Fig. 3. We define a unique mode as a
valid crystal structure satisfying conditions A.3.7. The results show that using our hierarchical model
improves the speed of mode discovery compared to the flat variant.

5.3 Stability of generated materials

Table 3: Match rates of the generated
crystal paired with structures optimized
by M3GNet (Chen & Ong, 2022)

Methods Match rate ↑
PGCGM 0.625
GFlowNet 0.678
CHGFlowNet 0.753

It is a common practice to relax the generated crystal
structures to seek the lower the potential energy surface
using DFT calculation iteratively. As DFT calculation is
expensive, it is desirable to generate a structure that is
close to energy minima. In this experiment, we compare
the generated crystal structure with its optimized structure.
We use the M3GNet framework (Chen & Ong, 2022) to
iteratively optimize the energy predicted by the potential
surface energy model. Examples of generated structures
and their corresponding optimized structures are shown in
Fig. 4.

Match rate We follow the previous work in (Zhao et al., 2023) to evaluate the match rate of crystal
structure relaxation. A structure m and its optimized structure m′ are matched if their atoms’
translation and angle are within tolerance thresholds, indicating that the generated structure is close
to the optimal, thus is more stable. We use the matching algorithm provided by pymatgen library
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(Ong et al., 2013) in StructureMacher with 10o angle tolerance, 1.0 fractional length tolerance, and
1.0 site tolerance. The match rate is the fraction of the number of matched structures on the total
number of generated structures.

The results reported in Tab. 3 show that our proposed method can produce more structures (at the rate
of 75.3%) that are nearly optimal in terms of total energy compared to GFlowNets and PGCGM.

CHGFlownet
Generated

crystal structure
Optimized

crystal structure

GFlownet
Generated

crystal structure
Optimized

crystal structure

PGCGM
Generated

crystal structure
Optimized

crystal structure

Figure 4: Examples of generated crystal structures and the corresponding structure optimized by
M3GNet framework (Chen & Ong, 2022).

5.4 Ablation Study

To demonstrate the ability to guide the generative model to generate more stable structures, we
perform the ablation study on the reward function’s terms of Eq. 15. The generated crystal structures
are relaxed using M3GNet optimization framework (Chen & Ong, 2022).

Table 4: The ablation study on the im-
pact of reward function terms on the crys-
tal structure stability. Match rates of the
generated crystal paired with structures
optimized by M3GNet (Chen & Ong,
2022)

Methods Match rate ↑
All terms 0.753
W/o density 0.617
W/o bond score 0.739
W/o formation energy 0.734

The results reported in Tab. 4) show that all the density
term, bond score term, and formation energy term are nec-
essary for the model to generate more stable structures.
During the relaxation process, both atoms’ positions and
lattice parameters are adjusted to lower the total energy
and the force of the crystal structure. As a result, the
density and the distance between atoms are changed sig-
nificantly. By using the preference density and distance
distilled from prior knowledge such as the relaxed crystal
structure dataset, the generation model is able to place
atoms and adjust the lattice parameters to maintain the
preference distances between atoms.

6 Conclusion

We have proposed CHGFlowNet, a Hierarchical Genera-
tive Flow Network for crystal structure generation, aiming

at rapid exploration of the exponential crystal space and simultaneously satisfying physics constraints.
CHGFlowNet is built on a hierarchical state space, allowing for multi-level policy networks to operate
on action abstraction. It effectively exploits the high-symmetry in the crystal structure space, defining
space transformation groups. The framework is rather flexible, allowing domain experts to embed
physics and chemistry knowledge to guide the generation process through space structure design
and reward engineering. CHGFlowNet demonstrates its superiority in efficiency in exploration,
diversity, and stability in the generated crystal structures. While our focus is on materials discovery,
our hierarchical state space and policy can easily extend to other tasks and deeper hierarchy such as
continuous control and robotics where multiple layers of abstraction and discreet states and actions
are required.

9



References
Alec Belkly, Mariettee Helderman, Vicky Lyman Karen, and Peter Ulkch. New developments in

the Inorganic Crystal Structure Database (ICSD): accessibility in support of materials research
and design. Acta crystallographica. Section B, Structural science, 58(Pt 3 Pt 1):364–369, 6 2002.
ISSN 0108-7681. doi: 10.1107/S0108768102006948. URL https://pubmed.ncbi.nlm.nih.
gov/12037357/.

Emmanuel Bengio, Moksh Jain, Maksym Korablyov, Doina Precup, and Yoshua Bengio. Flow
Network based Generative Models for Non-Iterative Diverse Candidate Generation. Advances
in Neural Information Processing Systems, 33:27381–27394, 6 2021. ISSN 10495258. URL
https://arxiv.org/abs/2106.04399v2.

Lev I. Berger. Semiconductor Materials. CRC Press, 12 2020. ISBN 9780138739966. doi:
10.1201/9780138739966.

Chi Chen and Shyue Ping Ong. A universal graph deep learning interatomic potential for the
periodic table. Nature Computational Science 2022 2:11, 2(11):718–728, 11 2022. ISSN
2662-8457. doi: 10.1038/s43588-022-00349-3. URL https://www.nature.com/articles/
s43588-022-00349-3.

Seyone Chithrananda, Gabriel Grand, and Bharath Ramsundar. ChemBERTa: Large-scale self-
supervised pretraining for molecular property prediction. In Machine Learning for Molecules
Workshop, NeurIPS, Online, 10 2020. URL https://arxiv.org/abs/2010.09885v2.

Callum J. Court, Batuhan Yildirim, Apoorv Jain, and Jacqueline M. Cole. 3-D inorganic crystal
structure generation and property prediction via representation learning. Journal of Chemical
Information and Modeling, 60(10):4518–4535, 10 2020. ISSN 1549960X. doi: 10.1021/ACS.
JCIM.0C00464/ASSET/IMAGES/MEDIUM/CI0C00464{\_}M017.GIF. URL https://pubs.
acs.org/doi/full/10.1021/acs.jcim.0c00464.

Daniel Davies, Keith Butler, Adam Jackson, Jonathan Skelton, Kazuki Morita, and Aron Walsh.
SMACT: Semiconducting Materials by Analogy and Chemical Theory. Journal of Open Source
Software, 4(38):1361, 6 2019. ISSN 2475-9066. doi: 10.21105/joss.01361.

Tristan Deleu, António Góis, Chris Emezue, Mansi Rankawat, Simon Lacoste-Julien, Stefan Bauer,
and Yoshua Bengio. Bayesian Structure Learning with Generative Flow Networks. In Proceedings
of the Conference on Uncertainty in Artificial Intelligence, 2022. URL https://github.com/
tristandeleu/jax-dag-gflownet.

Michael Glazer, Gerald Burns, and Alexander N Glazer. Space groups for solid state scientists. 2012.

Geoffroy Hautier, Chris Fischer, Virginie Ehrlacher, Anubhav Jain, and Gerbrand Ceder. Data mined
ionic substitutions for the discovery of new compounds. Inorganic Chemistry, 50(2):656–663, 1
2011. ISSN 00201669. doi: 10.1021/IC102031H/SUPPL{\_}FILE/IC102031H{\_}SI{\_}001.
TXT. URL https://pubs.acs.org/doi/abs/10.1021/ic102031h.

David Hicks, Michael J. Mehl, Eric Gossett, Cormac Toher, Ohad Levy, Robert M. Hanson, Gus Hart,
and Stefano Curtarolo. The AFLOW Library of Crystallographic Prototypes: Part 2. Computational
Materials Science, 161:S1–S1011, 4 2019. ISSN 09270256. doi: 10.1016/j.commatsci.2018.10.
043.

David Hicks, Michael J. Mehl, Marco Esters, Corey Oses, Ohad Levy, Gus L.W. Hart, Cormac Toher,
and Stefano Curtarolo. The AFLOW Library of Crystallographic Prototypes: Part 3. Computational
Materials Science, 199:110450, 11 2021. ISSN 09270256. doi: 10.1016/j.commatsci.2021.110450.

John J Irwin and Brian K Shoichet. ZINC-A free database of commercially available compounds
for virtual screening. Journal of Chemical Information and Modeling, 45(1):177–182, 2005. doi:
10.1021/CI049714. URL http://chembank.med.harvard.edu.

Anubhav Jain, Shyue Ping Ong, Geoffroy Hautier, Wei Chen, William Davidson Richards, Stephen
Dacek, Shreyas Cholia, Dan Gunter, David Skinner, Gerbrand Ceder, and Kristin A. Persson.
Commentary: The materials project: A materials genome approach to accelerating materials

10

https://pubmed.ncbi.nlm.nih.gov/12037357/
https://pubmed.ncbi.nlm.nih.gov/12037357/
https://arxiv.org/abs/2106.04399v2
https://www.nature.com/articles/s43588-022-00349-3
https://www.nature.com/articles/s43588-022-00349-3
https://arxiv.org/abs/2010.09885v2
https://pubs.acs.org/doi/full/10.1021/acs.jcim.0c00464
https://pubs.acs.org/doi/full/10.1021/acs.jcim.0c00464
https://github.com/tristandeleu/jax-dag-gflownet
https://github.com/tristandeleu/jax-dag-gflownet
https://pubs.acs.org/doi/abs/10.1021/ic102031h
http://chembank.med.harvard.edu


innovation. APL Materials, 1(1):11002, 7 2013. ISSN 2166532X. doi: 10.1063/1.4812323/
119685/COMMENTARY-THE-MATERIALS-PROJECT-A-MATERIALS. URL /aip/apm/
article/1/1/011002/119685/Commentary-The-Materials-Project-A-materials.

Moksh Jain, Emmanuel Bengio, Alex-Hernandez Garcia, Jarrid Rector-Brooks, Bonaventure F P
Dossou, Chanakya Ekbote, Jie Fu, Tianyu Zhang, Michael Kilgour, Dinghuai Zhang, Lena Simine,
Payel Das, and Yoshua Bengio. Biological Sequence Design with GFlowNets. Proceeding of In-
ternational Conference on Machine Learning, 2022. URL https://www.who.int/news-room/
fact-sheets/.

Rui Jiao, Wenbing Huang, Peijia Lin, Jiaqi Han, Pin Chen, Yutong Lu, and Yang Liu. Crystal
Structure Prediction by Joint Equivariant Diffusion.

Sungwon Kim, Juhwan Noh, Geun Ho Gu, Alan Aspuru-Guzik, and Yousung Jung. Generative
Adversarial Networks for Crystal Structure Prediction. ACS Central Science, 6(8):1412–1420, 8
2020. ISSN 2374-7943. doi: 10.1021/acscentsci.0c00426. URL https://pubs.acs.org/doi/
10.1021/acscentsci.0c00426.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In Proceedings of the International Conference on Learning Representations, Toulon, France, 5
2017.

Salem Lahlou, Tristan Deleu, Pablo Lemos, Dinghuai Zhang, Alexandra Volokhova, Alex Hernández-
García, Léna Néhale Ezzine, Yoshua Bengio, and Nikolay Malkin. A Theory of Continuous
Generative Flow Networks. In Proceedings of the International Conference on Machine Learning,
2023.

Yinchuan Li, Shuang Luo, Haozhi Wang, and Jianye HAO. CFlowNets: Continuous control with
Generative Flow Networks, 2 2023.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, Veselin Stoyanov, and Paul G Allen. RoBERTa: A robustly optimized
BERT pretraining approach. arXiv preprint arXiv:1907.11692, 2019. doi: https://doi.org/10.48550/
arXiv.1907.11692. URL https://github.com/pytorch/fairseq.

Nikolay Malkin, Moksh Jain, Emmanuel Bengio, Chen Sun, and Yoshua Bengio. Trajectory balance:
Improved credit assignment in GFlowNets. In Proceedings of Advances in Neural Information
Processing Systems, 1 2022. ISBN 9781713871088. URL https://arxiv.org/abs/2201.
13259v2.

Michael J. Mehl, David Hicks, Cormac Toher, Ohad Levy, Robert M. Hanson, Gus Hart, and Stefano
Curtarolo. The AFLOW Library of Crystallographic Prototypes: Part 1. Computational Materials
Science, 136:S1–S828, 8 2017. ISSN 09270256. doi: 10.1016/j.commatsci.2017.01.017.

Juhwan Noh, Jaehoon Kim, Helge S. Stein, Benjamin Sanchez-Lengeling, John M. Gregoire,
Alan Aspuru-Guzik, and Yousung Jung. Inverse Design of Solid-State Materials via a
Continuous Representation. Matter, 1(5):1370–1384, 11 2019. ISSN 25902385. doi:
10.1016/j.matt.2019.08.017. URL http://www.cell.com/article/S2590238519301754/
fulltexthttp://www.cell.com/article/S2590238519301754/abstracthttps:
//www.cell.com/matter/abstract/S2590-2385(19)30175-4.

Shyue Ping Ong, William Davidson Richards, Anubhav Jain, Geoffroy Hautier, Michael Kocher,
Shreyas Cholia, Dan Gunter, Vincent L. Chevrier, Kristin A. Persson, and Gerbrand Ceder. Python
Materials Genomics (pymatgen): A robust, open-source python library for materials analysis.
Computational Materials Science, 68:314–319, 2 2013. ISSN 09270256. doi: 10.1016/j.commatsci.
2012.10.028.

Hillary Pan, Alex M. Ganose, Matthew Horton, Muratahan Aykol, Kristin A. Persson, Nils E.R.
Zimmermann, and Anubhav Jain. Benchmarking Coordination Number Prediction Algorithms on
Inorganic Crystal Structures. Inorganic Chemistry, 60(3):1590–1603, 2 2021. ISSN 1520510X. doi:
10.1021/ACS.INORGCHEM.0C02996/SUPPL{\_}FILE/IC0C02996{\_}SI{\_}001.PDF. URL
https://pubs.acs.org/doi/abs/10.1021/acs.inorgchem.0c02996.

11

/aip/apm/article/1/1/011002/119685/Commentary-The-Materials-Project-A-materials
/aip/apm/article/1/1/011002/119685/Commentary-The-Materials-Project-A-materials
https://www.who.int/news-room/fact-sheets/
https://www.who.int/news-room/fact-sheets/
https://pubs.acs.org/doi/10.1021/acscentsci.0c00426
https://pubs.acs.org/doi/10.1021/acscentsci.0c00426
https://github.com/pytorch/fairseq
https://arxiv.org/abs/2201.13259v2
https://arxiv.org/abs/2201.13259v2
http://www.cell.com/article/S2590238519301754/fulltext http://www.cell.com/article/S2590238519301754/abstract https://www.cell.com/matter/abstract/S2590-2385(19)30175-4
http://www.cell.com/article/S2590238519301754/fulltext http://www.cell.com/article/S2590238519301754/abstract https://www.cell.com/matter/abstract/S2590-2385(19)30175-4
http://www.cell.com/article/S2590238519301754/fulltext http://www.cell.com/article/S2590238519301754/abstract https://www.cell.com/matter/abstract/S2590-2385(19)30175-4
https://pubs.acs.org/doi/abs/10.1021/acs.inorgchem.0c02996


C. E. Shannon. A Mathematical Theory of Communication. Bell System Technical Journal, 27(3):
379–423, 7 1948. ISSN 00058580. doi: 10.1002/j.1538-7305.1948.tb01338.x.

Hai Chen Wang, Silvana Botti, and Miguel A.L. Marques. Predicting stable crystalline compounds
using chemical similarity. npj Computational Materials 2021 7:1, 7(1):1–9, 1 2021. ISSN
2057-3960. doi: 10.1038/s41524-020-00481-6. URL https://www.nature.com/articles/
s41524-020-00481-6.

Logan Ward, Ankit Agrawal, Alok Choudhary, and Christopher Wolverton. A general-purpose
machine learning framework for predicting properties of inorganic materials. npj Computational
Materials, 2(1):16028, 8 2016. ISSN 2057-3960. doi: 10.1038/npjcompumats.2016.28.

Logan Ward, Alexander Dunn, Alireza Faghaninia, Nils E.R. Zimmermann, Saurabh Bajaj, Qi Wang,
Joseph Montoya, Jiming Chen, Kyle Bystrom, Maxwell Dylla, Kyle Chard, Mark Asta, Kristin A.
Persson, G. Jeffrey Snyder, Ian Foster, and Anubhav Jain. Matminer: An open source toolkit for
materials data mining. Computational Materials Science, 152:60–69, 9 2018. ISSN 09270256.
doi: 10.1016/j.commatsci.2018.05.018.

Lai Wei, Nihang Fu, Edirisuriya M.D. Siriwardane, Wenhui Yang, Sadman Sadeed Omee, Rongzhi
Dong, Rui Xin, and Jianjun Hu. TCSP: A Template-Based Crystal Structure Prediction Algorithm
for Materials Discovery. Inorganic Chemistry, 61(22):8431–8439, 6 2022. ISSN 1520510X.
doi: 10.1021/ACS.INORGCHEM.1C03879/ASSET/IMAGES/MEDIUM/IC1C03879{\_}0009.
GIF. URL https://pubs.acs.org/doi/abs/10.1021/acs.inorgchem.1c03879.

Tian Xie, Xiang Fu, Octavian-Eugen Ganea, Regina Barzilay, and Tommi Jaakkola. Crystal Diffu-
sion Variational Autoencoder for Periodic Material Generation. In Proceeding of International
Conference on Learning Representations, 2022. URL https://github.com/txie-93/cdvae.

Elena Zamaraeva, Christopher M. Collins, Dmytro Antypov, Vladimir V. Gusev, Rahul Sa-
vani, Matthew S. Dyer, George R. Darling, Igor Potapov, Matthew J. Rosseinsky, and
Paul G. Spirakis. Reinforcement Learning in Crystal Structure Prediction. 3 2023.
doi: 10.26434/CHEMRXIV-2023-4FN8J. URL https://chemrxiv.org/engage/chemrxiv/
article-details/64197420aad2a62ca11a1f62.

Yong Zhao, Mohammed Al-Fahdi, Ming Hu, Edirisuriya M D Siriwardane, Yuqi Song, Alireza
Nasiri, Jianjun Hu, Y Zhao, E M D Siriwardane, Y Song, A Nasiri, J Hu, M Al-Fahdi, and
M Hu. High-Throughput Discovery of Novel Cubic Crystal Materials Using Deep Generative
Neural Networks. Advanced Science, 8(20):2100566, 10 2021. ISSN 2198-3844. doi:
10.1002/ADVS.202100566. URL https://onlinelibrary.wiley.com/doi/full/10.
1002/advs.202100566https://onlinelibrary.wiley.com/doi/abs/10.1002/advs.
202100566https://onlinelibrary.wiley.com/doi/10.1002/advs.202100566.

Yong Zhao, Edirisuriya M.Dilanga Siriwardane, Zhenyao Wu, Nihang Fu, Mohammed Al-Fahdi,
Ming Hu, and Jianjun Hu. Physics guided deep learning for generative design of crystal materials
with symmetry constraints. npj Computational Materials 2023 9:1, 9(1):1–12, 3 2023. ISSN
2057-3960. doi: 10.1038/s41524-023-00987-9. URL https://www.nature.com/articles/
s41524-023-00987-9.

A Appendix

A.1 Geometrical characteristics

A.2 Continous GFlownet assumptions

The soundness of the theory of continuous GFlownet relies on a set of assumptions:
- The structure of the state space must allow all states to be reachable from the source state s0.
- The structure must ensure that the number of steps required to reach any state from s0 is bounded.
- The learned probability measures need to be expressed through densities over states, rather than
over actions.
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Table 5: Geometrical characteristics of space groups in terms of lattice angles or lengths
Space group Crystal family Lengths constraints Angles constraints Parameters search space
1-2 Triclinic c None None a, b, c, α, β, γ
3-15 Monoclinic None α = β = 90◦ a, b, c, γ
16-74 Orthorhombic None α = β = γ = 90◦ a, b, c
75-142 Tetragonal a = b α = β = γ = 90◦ a, c
143-194 Hexagonal a = b α = β = 90◦, γ = 120◦ a, c
195-230 Cubic a = b = c α = β = γ = 90◦ a

Our crystal structure state space and training framework satisfy these assumptions as:
- Given the s0 as the empty crystal structure with space group 1 (lowest symmetry without any
constraints on the lattice parameters and no symmetry operation) and initial lattice params, the
measurable pointed graph is defined as S = s0 ∪ [minl,maxl]

3 ∪ [mina,maxa]
3 ∪ [0, 1]T where

minl, maxl are minimum and maximum lattice length, mina,maxa are minimum and maximum
lattice angle.
- We have the upper limit T for the trajectory length during the trajectory sampling process. Therefore
the number of steps to reach any state is bounded by T .
- The forward pF and backward pB policy networks learn the distribution over states
PF (s

t
al|st−1

sg , st−1
al , stsg), PF (s

t
sg|st−1

sg , st−1
al ), PB(s

t−1
al |stsg, stal, st−1

sg ), PB(s
t−1
sg |stsg, stal)

A.3 Implementation details

A.3.1 State graph construction

We determine the edges of the crystal structure graph using k-nearest neighbor atoms within 8.0. The
node feature is the coordinate and the atomic number of the atom.

A.3.2 Graph convolution neural network

GCN is a convolutional network designed to learn the node-level representation of graph structure
G = (X , E), where X is the node feature matrix of N nodes and E ∈ RN×N is the adjacency matrix.
Given W l be the weight matrix at l-th layer, the graph convolution operation is then defined as:

H1 = X , (16)

H l = σ
(
D̃− 1

2 ẼD̃− 1
2H l−1W l−1

)
, (17)

where Ẽ = E + I is the adjacency matrix with self-loop in each node. I is the identity matrix and
D̃ =

∑
j Ẽij and σ is a non-linear function.

A.3.3 Crystal structure density

The generated crystal structure density is defined as the ratio of mass m of the unit cell over the
volume V of unit cell:

P (x) =
m

V
(18)

In our implementation, the density is calcuated using pymatgen library. (Ong et al., 2013).

A.3.4 Sampling process

The lattice sampling process starts with the state s0 which has lattice parameters as a = b = c =
4, α = β = γ = 90o, space group 1, empty crystal graph at state s0 Gs0 . The sampling process is
Algorithm 1.
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Algorithm 1: Trajectory sampling
Input: θsg , θal, T, minl, maxl,
Return: Trajectory τ , complete crystal structure x
sal ← {a = b = c = 4, α = β = γ = 90o};
ssg ← 1
G ← ⊘
Reference atom list Aref ← ⊘
for each step t ≤ T do

Get the multinomial logits pnsg ← θsg(ssg,G).
Sample space group s′sg ∼Mnsg(1, pnsg).
Get distribution parameters
µa, σa, µb, σb, µc, σc, µα, kα, µβ , kβ , µγ , kγ , µf , pne ← θsg(s

′
sg, ssg,G).

Sample lattice parameter:
a ∼ N (µa, σ

2
a)

b ∼ N (µb, σ
2
b )

c ∼ N (µc, σ
2
c )

α ∼ vonMises(µα, kα)
β ∼ vonMises(µβ , kβ)
γ ∼ vonMises(µγ , kγ).
Update s′lp = (a, b, c, α, β, γ) values based constraints imposed by s′sg .
Sample atom fraction coordinate: s′ac ∼ N3(µf ,Σf ).
Clamp sampled fraction coordinate to [0, 1].
Get the atom’s element valid mask based on the composition constraint.
Set logits with mask pne[mask] = −∞.
Sample atom’s element type s′at ∼Mnsg(1, pne)
Aref = Aref ∪ (s′at, s

′
ac, )

Add state s′sg, s
′
lp, s

′
at, s

′
ac to trajectory τ

end
Apply symmetry operation of space group ssg at the terminal state to the Aref to get complete

crystal structure x

A.3.5 Wyckoff positions

We use the function Structure.from_spacegroup which, for a given space group, evaluates the Wyckoff
positions in a lattice structure and gives a set of species and positions within the lattice, such that the
resultant structure satisfies the symmetry operations of the space group. The Wyckoff positions are
obtained from a python dictionary within pymatgen, and use the fractional coordinates of the atoms
as input. The generated atoms will occupy the Wyckoff positions, but for a structure to be valid, we
apply the minimum distance in the reward function to encourage the policy network to sample a valid
structure.

A.3.6 Diversity metrics

Structure diversity is computed based on the CrystalNNFingerprint (CNN fingerprint) Ward et al.
(2018). CrystalNNFingerprint computes the fingerprint of a given site i using its coordination features
and neighbors. The site i neighbors are determined by the CrystalNN neighbor-finding algorithm.
The fingerprint of a crystal structure is the average of fingerprints of all sites.

Composition fingerprint is computed using the statistics of Magpie, computed by element stoichiome-
try Ward et al. (2018, 2016). We use ElementProperty.from_preset(’magpie’) in Matminer as material
composition fingerprint.

Then we define diversity as:

Diversity =
1

n

∑
i,j∈Ngen

d(ffp(i), ffp(j)) (19)

where Ngen is the set generated crystal structures, n is the number of structure in set Ngen. In our
experiment, Ngen is the top 1000 crystal structures ranked by reward, ffp is the structure fingerprint
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in case of structure diversity or composition fingerprint in case of composition diversity, d is the
Euclidean distance.

A.3.7 Unique mode

We define a unique mode if it satisfies four conditions. The first condition is three types of validity
defined in Sec. 5.1. The second condition is that the crystal structure satisfies both distance constraints
defined in Eq.11 and Eq.12. The third condition is that the structure must have negative formation
energy. The fourth condition is that the composition cannot be the same as other modes.

A.3.8 Formation energy prediction

We use M3GNet (Chen & Ong, 2022) to predict the formation energy. As the M3GNet is only trained
on the Material Project valid crystal structure, the predictions for invalid structures may be inaccurate
and have abnormally low formation energy. Therefore, we put the negative cut-off for the prediction.
The cut-off is -10.0 eV/atom. Any prediction lower than the cut-off is set to 10 eV/atom.

A.3.9 Hyper-parameters

See Tab. 6 for hyper-parameter setting.

Table 6: Hyper-parameters

Hyper-paramters Value
Learning rate 0.0001
Learning rate Z 0.1
Optimizer Adam
Learning rate scheduler γ 1.0
Initial logZ 0.0
Batch size 32
αp (Eq. 11) 0.1
βp (Eq. 12) 0.01
γp (Eq. 13) 0.001
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