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Abstract

Manipulating objects is a hallmark of human intelligence, and an important task
in domains such as robotics. In principle, Reinforcement Learning (RL) offers
a general approach to learn object manipulation. In practice, however, domains
with more than a few objects are difficult for RL agents due to the curse of di-
mensionality, especially when learning from raw image observations. In this work
we propose a structured approach for visual RL that is suitable for representing
multiple objects and their interaction, and use it to learn goal-conditioned ma-
nipulation of several objects. Key to our method is the ability to handle goals
with dependencies between the objects (e.g., moving objects in a certain order).
We further relate our architecture to the generalization capability of the trained
agent, and demonstrate agents that learn with 3 objects but generalize to sim-
ilar tasks with over 10 objects. Rollout videos are available on our website:
https://sites.google.com/view/entity-centric-rl

Introduction: While some studies focus on developing general agents that can solve a wide range
of tasks [27], the difficulty of particular problems has motivated studying agents that incorporate
structure into the learning algorithm [20]. Object manipulation – our focus in this work – is a
clear example for the necessity of structure: as the number of degrees of freedom of the system
grows exponentially with the number of objects, the curse of dimensionality inhibits standard
approaches from learning. For problems such as robotic manipulation with image inputs, however,
how to factor the state (images of robot and objects) into individual entities and their attributes
(positions, orientation, etc.) is not trivial. Our main contribution in this work is a goal-conditioned
RL framework for multi-object manipulation from pixels. Our approach consists of two components:
(1) an unsupervised object-centric image representation (OCR), which extracts entities and their
attributes from image data; and (2) a transformer-based architecture for the policy and Q-function
neural networks that we name Entity Interaction Transformer (EIT). Combined with our choice of
deep latent particles (DLP) [4] image representations, we demonstrate what is, to the best of our
knowledge, the most accurate object manipulation from pixels involving more than two objects, or
with goals that require interactions between objects. Finally, we demonstrate that an EIT trained on
manipulating up to 3 objects can perform well on tasks with up to 6 objects, and in certain tasks we
show generalization to new goals containing over 10 objects.

Related Work: Previous work has proposed unsupervised single-vector latent representations of
images as goal and state spaces for solving goal-conditioned manipulation tasks with RL [21, 22]. In
tasks involving multiple objects, this approach falls short when compared to models based on struc-
tured representations such as SMORL [34], which employs an object-centric image representation.
The key assumption in SMORL is that multi-object goals can be addressed sequentially (object by
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object) and independently, overlooking potential interactions among objects that might influence
reaching goals. Our model, on the other hand, considers interaction between entities, leading to
improved performance and generalization. Further related work is discussed in Appendix A.

Deep Latent Particles (DLP): DLP [4, 5] is an unsupervised object-centric model for im-
ages. DLP provides a disentangled latent space structured as a set of foreground particles
z = {(zp, zs, zd, zt, zf )i}K−1

i=0 ∈ RK×(6+l), where K is the number of particles, zp ∈ R2 is a
keypoint, the position of the particle as (x, y) coordinates in Euclidean pixel space, zs ∈ R2 is a scale
attribute, zd ∈ R is a pixel space "depth" attribute, zt ∈ R is a transparency attribute and zf ∈ Rl are
the latent features that encode the visual appearance in the particle region, where l is the dimension
of learned visual features. DLP also assigns an abstract particle for the background, located in the
center of the image, and described by mbg latent background visual features, zbg ∈ Rmbg .

Method: Our approach is entity-centric – it is structured to decompose the input into individual
entities, each represented by a latent feature vector, and learn the relationships between them. Our
method consists of the following 2 components: (1) Object centric representation (OCR) of
Images – we extract a representation of state and goal images consisting of a set of latent vectors
using a pretrained model; (2) Entity interaction transformer (EIT) – we feed the sets of latent
vectors, extracted from multiple viewpoints, to a transformer-based architecture for the RL policy
and Q-function neural networks.

Given a tuple of image observations from K different viewpoints of the state (Is1 , . . . , I
s
K) and goal

(Ig1 , . . . , I
g
K), we process each image separately using a pretrained DLP model, extracting a set of M

vectors {pkm}Mm=1, k indexing the viewpoint of the source image, which we will refer to as (latent) par-
ticles. We denote particle m of state image Isk by pkm and of goal image Igk by qkm. The input to the goal-
conditioned policy is a tuple of the 2K sets:

(
{p1m}Mm=1, . . . , {pKm}Mm=1, {q1m}Mm=1 . . . , {qKm}Mm=1

)
.

For the Q-function, Q(s, a, g), an action particle pa ∈ R6+l is added to the input, obtained by
learning a projection from the action dimension da to the latent particle dimension. An outline of
the transformer-based architecture is presented in Figure 2. Compared to previous goal-conditioned
methods’ use of the attention mechanism, we use it to explicitly model relationships between entities
from both state and goal across multiple viewpoints and do not assume privileged entity-entity
matching information. See further method details in Appendix C.

Experiments: We separate our investigation into 2 main parts: (1) we focus on the design of our OCR
and EIT, and how it handles complex interactions between objects, and (2) we study compositional
generalization. We employ our method with TD3 [7] and HER [1] in a tabletop cube manipulation
environment. Further implementation details as well as details about the environment, metrics and
baselines can be found in Appendix D.

Multi-object Manipulation Results are presented in Figure 4. We observe that with a single object,
all methods succeed, yet the unstructured baselines are less sample efficient. With more than 1
object, the image-based unstructured baseline is not able to learn at all, while the unstructured state-
based baseline is significantly outperformed by the structured methods. Notably, on 3 objects, our
image-based method surpasses the unstructured state-based method. In environments that require
interaction between objects, our method outperforms SMORL using state input. Moreover, with
image inputs our method outperforms SMORL with state inputs, demonstrating that SMORL is
fundamentally limited in performing these more complex tasks.

Compositional Generalization We investigate our method’s ability to achieve zero-shot compo-
sitional generalization. Different number of cubes than in training - visual results on 6 cubes are
presented in Figure 5 (left) and evaluation metrics in Table 4. Our agent generalizes to a changing
number of objects with some decay in performance as the number of objects grows. Cube sorting - we
provide a goal image containing X ≤ 3 cubes of different colors and then deploy a policy of an agent
trained on 3 cubes in an environment containing 4X cubes, 4 of each color. The agent sorts the cubes
around each goal cube position with matching color, and is also able to perform the task with cube
colors unseen during RL training. Visual results on 12 cubes in 3 colors are presented in Figure 6.
Further generalization capabilities of our agent are detailed in the Appendix F and demonstrated on
our website.

Conclusion: We proposed an RL framework for object manipulation from images, composed of an
off-the-shelf object-centric image representation, and a novel transformer-based policy architecture
that can account for multiple viewpoints and interactions between entities. We have conducted
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experiments that demonstrate non-trivial generalization behavior of our trained policies. Future work
can explore multi-modal goal specification (e.g., language), and more expressive sensing (depth
cameras, contact/force sensors, etc.), which could be integrated as additional input entities to the EIT.
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Figure 1: The environment we used for our experiments (Left) and how the agent perceives it (middle,
right), colored keypoints are the position attribute (zp) of particles from DLP.

A Extended Related Work

Latent-based Visual RL: Unstructured latent representations, where each scene is represented
by a single latent vector, have been widely employed, both in model-free [21, 22, 32] and model-
based [10, 19] settings. However, in manipulation tasks involving multiple objects, this approach
falls short when compared to models based on structured representations [8, 34].
Object-centric RL: Several recent works explored policy architectures for a structured representation
of the state: Li et al. [15] employ relational networks [26, 3], Zhou et al. [36] explore attention [2, 30]
and deep sets [35], while Mambelli et al. [18] strive to reduce architecture complexity with linear
relation networks. Compared to our approach, the aforementioned methods assume access to ground-
truth structured state representation, while we learn representations from images.
Object-centric RL from Pixels: Several works have explored adopting ideas from state-based
structured representation methods to learning from visual inputs. FOCUS [6] learns an object-centric
world model, demonstrating manipulation of up to 2 objects. In contrast, our method is trained in a
model-free setting and we demonstrate learning to manipulate many more objects. OCRL [33] and
Heravi et al. [11] have investigated slot-based representations [9, 16, 28] for manipulation tasks, the
first in a model-free learning and the latter in an imitation learning setting. Both have demonstrated
the clear advantages of these representations over alternative methods. In this work, we utilize particle-
based image representations [4] and extend these findings by tackling more complex manipulation
tasks and showcasing generalization capabilities. Closely related to our work, SMORL [34] employs
SCALOR [13], a patch-based image representation for goal-conditioned manipulation tasks. The
key assumption in SMORL is that goal-conditioned multi-object tasks can be addressed sequentially
(object by object) and independently, overlooking potential interactions among objects that might
influence reaching goals. Our model, on the other hand, considers interaction between entities,
leading to improved performance and generalization, as we demonstrate in our experiments.

B Extended Background

Goal-Conditioned Reinforcement Learning (GCRL): RL considers a Markov Decision Process
(MDP) [23] defined as M = (S,A, P, r, γ), where S represents the state space, A the action space,
P the environment transition dynamics, r the reward function, and γ the discount factor. GCRL
additionally includes a goal space G, and the agent seeks to learn a policy π∗ : S × G → A that max-
imizes the expected return Eπ[

∑∞
t=0 γ

trt], where rt = r (st, g) : S × G → R represents immediate
rewards at time step t when the state is st and the goal is g.
A Q-function Qπ (s, a, g) : S × A × G → R parameterized by a deep neural network Qθ (s, a, g)
with parameters θ, approximates the expected return given goal g when taking action a at state
s and then following the policy π. Qθ (s, a, g) is learned via minimization of the temporal dif-
ference (TD) [29] objective given a state, action, next state, goal tuple (s, a, s′, g): LTD(θ) =

[r(s, g) + γQθ̄ (s
′, π(s′, g), g)−Qθ (s, a, g)]

2, where Qθ̄ (s
′, a′, g) is a target network with pa-

rameters θ̄ which are constant under the TD objective. Specifically in off-policy actor-critic al-
gorithms [7], a policy network πϕ (s, g) (actor) with parameters ϕ is learned concurrently with
the Q-function network (critic) with the objective of maximizing it with respect to the action:
Lπ(ϕ) = −Qθ (s, πϕ (s, g) , g).
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The Attention Mechanism: Attention [2] denoted A(·, ·) is an operator between two sets of vectors,
X = {xi}Ni=1 and Y = {yj}Mj=1, producing a third set of vectors Z = {zi}Ni=1. For simplicity, we
describe the case were all input, output and intermediate vectors are in Rd. Denote the key, query and
value projection functions q(·), k(·), v(·) : Rd → Rd respectively. The attention operator is defined
as A(X,Y ) = Z where:

zi =

N∑
j=1

α (xi, yj) v (yj) , α (xi, yj) = softmaxj

(
q (xi) · k (yj)√

d

)
∈ R.

An important property of A(X,Y ) is that it is equivariant to permutations of X (permutation of
elements in X results in the same permutation in the output elements in Z, with no change in
individual elements’ values) and invariant to permutations of Y (permutation of elements in Y does
not change the output Z). In the special case where X = Y , the operation is termed self-attention
(SA), and otherwise, cross-attention (CA).

Deep Latent Particles (DLP): DLP [4, 5] is an unsupervised object-centric model for im-
ages. DLP provides a disentangled latent space structured as a set of foreground particles
z = {(zp, zs, zd, zt, zf )i}K−1

i=0 ∈ RK×(6+l), where K is the number of particles, zp ∈ R2 is a
keypoint, the position of the particle as (x, y) coordinates in Euclidean pixel space, zs ∈ R2 is a
scale attribute containing the (x, y) dimensions of the bounding-box around the particle, zd ∈ R is a
pixel space "depth" attribute used to signify which particle is in front of the other in case there is an
overlap, zt ∈ R is a transparency attribute and zf ∈ Rl are the latent features that encode the visual
appearance in the particle region, where l is the dimension of learned visual features. In addition,
DLP assigns an abstract particle for the background, located in the center of the image, and described
by mbg latent background visual features, zbg ∈ Rmbg .

C Method

We propose an approach to solving goal-conditioned multi-object manipulation tasks from images.
Our approach is entity-centric – it is structured to decompose the input into individual entities, each
represented by a latent feature vector, and learn the relationships between them. Our method consists
of the following 2 components: (1) Object-Centric Representation (OCR) of Images – We extract
a representation of state and goal images consisting of a set of latent vectors using a pretrained
model; (2) Entity Interaction Transformer (EIT) – We feed the sets of latent vectors, extracted
from multiple viewpoints, to a transformer-based architecture for the RL policy and Q-function
neural networks. These two components can be used with standard RL algorithms to optimize a
given reward function. During training, the reward function can depend on either the true state of
the system (in simulation), or on the image observation itself; during inference, the learned policy
depends only on images. As designing a reward function from image inputs can be difficult, we
additionally propose a novel reward function that is based on the OCR, and corresponds to moving
objects to goal configurations. We term this Chamfer Reward, and it enables learning entirely from
pixels. We elaborate on the Chamfer reward in Section E. We begin with a general reasoning that
underlies our approach.

The complexity tradeoff between representation learning and decision making It is important to
understand that the representation learning (OCR) and decision making (EIT) problems are dependent.
Consider for example the task of moving objects with a robot arm, as in our experiments. Ideally, the
OCR should output the physical state of the robot and each object, which is sufficient for optimal
control. However, identifying that the robot is a single entity with several degrees of freedom, while
the objects are separate entities, is difficult to learn just from image data, as it pertains to the dynamics
of the robot. The relevant properties of each object can also be task dependent – for example, the
color of the objects may only matter if the task’s goal depends on it. Alternatively, one may settle
for a much leaner OCR component that does not understand the dynamics of the objects nor their
relevance to the task, and delegate the learning of this information to the EIT. Our design choice in
this paper is the latter, i.e., a lean OCR and an expressive EIT. We posit that this design allows to (1)
easily acquire an OCR, and (2) handle multiple views and mismatches between the visible objects in
the current state and the goal seamlessly. We next detail our design.
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C.1 Object-Centric Representation of Images

The first step in our method requires extracting a compact disentangled OCR from raw pixel obser-
vations. Given a tuple of image observations from K different viewpoints of the state (Is1 , . . . , I

s
K)

and goal (Ig1 , . . . , I
g
K), we process each image separately using a pretrained Deep Latent Particles

(DLP) [4, 5] model, extracting a set of M vectors {pkm}Mm=1, k indexing the viewpoint of the source
image, which we will refer to as (latent) particles. We denote particle m of state image Isk by pkm and
of goal image Igk by qkm. We emphasize that there is no alignment between particles from different
views (e.g., p1m, p2m can correspond to different objects) or between state and goal of the same view
(e.g., between p1m and q1m). The vectors pkm, qkm ∈ R6+l contain different attributes detailed in the
DLP section of the Background B. In contrast to previous object-centric approaches that utilize
patch-based [34] or slot-based [33] representations, we adopt DLP, which has recently demonstrated
state-of-the-art performance in single-image decomposition and various downstream tasks.

Pretraining the DLP: In this work, we pretrain the DLP from a dataset of images collected by a
random policy. We found that in all our experiments, this simple pretraining was sufficient to obtain
well performing policies even though the image trajectories in the pretraining data are different from
trajectories collected by an optimal policy. We attribute this to the tradeoff described above – the
lean single-image based DLP OCR is complemented by a strong EIT that can account for dynamics
necessary to solve the task.

C.2 Entity-Centric Architecture

We next describe the EIT, which processes the OCR entities into an action or Q-value. As mentioned
above, our choice of a lean OCR requires the EIT to account for the dynamics of the entities and
their relation to the task. In particular, we have the following desiderata from the EIT: (1) Permu-
tation Invariance; (2) Handle goal-based RL; (3) Handle multiple views; (4) Compositional
generalization. Proper use of the attention mechanism provides us with (1). The main difficulty
in (2) and (3) is that particles in different views and the goal are not necessarily matched. Thus,
we designed our EIT to seamlessly handle unmatched entities. For (4), we compose the EIT using
transformer [30] blocks. An outline of the architecture is presented in Figure 2. Compared to previous
goal-conditioned methods’ use of the attention mechanism, we use it to explicitly model relationships
between entities from both state and goal across multiple viewpoints and do not assume privileged
entity-entity matching information. A more detailed comparison can be found in Section H. We now
describe the EIT in detail:

Input - The EIT policy receives the latent particles extracted from both the current state images and
the goal images as input. We inject information on the source viewpoint of each state and goal particle
with an additive encoding which is learned concurrently with the rest of the network parameters.
Forward - State particles

(
{p1j}Mj=1, . . . , {pNj }Mj=1

)
are processed by a sequence of Transformer

blocks: SA → CA → SA → AA, denoting Self-Attention SA, Cross-Attention CA, and
Aggregation-Attention AA, followed by an MLP.
Goal-conditioning - We condition on the goal particles

(
{q1k}Mk=1, . . . , {qNk }Mk=1

)
using the CA

block between the state (provide the queries) and goal (provide the keys and values) particles.
Permutation Invariant Output - The AA block reduces the set to a single-vector output and is
implemented with a CA block between a single particle with learned features (provides the query)
and the output particles from the previous block (provide the keys and values). This permutation
invariant operation on the processed state particles, preceded by permutation equivariant transformer
blocks, makes the output of the network invariant to permutations of the particles in each set. The
aggregated particle is input to an MLP, producing the final output (action/value).
Action Entity - The EIT Q-function, in addition to the state and goal particles, receives an action as
input. The action is projected to the dimension of the particles and added to the input set. Treating
the action as an individual entity proved to be a significant design choice, see Section F.3.

C.3 Training and Implementation Details

We developed our method with the off-policy algorithm TD3 [7] along with hindsight experience
replay (HER, Andrychowicz et al. 1). In principal, our approach is not limited to actor-critic
algorithms or to the online setting, and can be used with any deep Q-learning algorithm, online or
offline. We pre-train a single DLP model on images from multiple viewpoints of rollouts collected
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Figure 2: Outline of the Entity Interaction Transformer (EIT) Sets of state and goal particles from
multiple views with an additive view encoding are input to a sequence of transformer blocks. For the
Q-function, an action particle is added. We condition on goals with cross-attention. Attention-based
aggregation reduces the set to a single vector, followed by an MLP to produce the final output.

with a random policy. In the off-policy RL training loop, during the data collection phase, we convert
state and goal images to object-centric latent representations with the DLP encoder before inserting
them to the replay buffer. We use our EIT architecture for all policy and Q-function neural networks.
Further details and hyperparameters can be found in Section G. Our code will be made publicly
available.

D Experiments

We design our experimental setup to address the following aspects: (1) benchmarking our method
on multi-object manipulation tasks from pixels; (2) assessing the significance of accounting for
interactions between entities for the RL agent’s performance; (3) evaluating the scalability of our
approach to increasing number of objects; (4) analyzing the generalization capabilities of our method.

Environments We evaluate our method on several simulated tabletop robotic object manipulation
environments implemented with IsaacGym [17]. The environment includes a robotic arm set in front
of a table with a varying number of cubes in different colors. The agent observes the state of the
system through a number of cameras in fixed locations, and performs actions in the form of deltas in
the end effector coordinates a = (∆xee,∆yee,∆zee). At the beginning of each episode, the cube
positions are randomly initialized on the table, and a goal configuration is sampled similarly. The
goal of the agent is to push the blocks to match the goal configuration. We categorize a suite of tasks
as follows (see Figure 3):
N-Cubes: Push N different-colored cubes to their goal location.
Adjacent-Goals: A 3-Cubes setting where goals are sampled randomly on the table such that all
cubes are adjacent. This task requires accounting for interactions between objects.
Small-Table: A 3-Cubes setting where the table is substantially smaller. This task requires to
accurately account for all objects in the scene at all times, to avoid pushing blocks off the table.
Ordered-Push: A 2-Cubes setting where a narrow corridor is set on top of the table such that its
width can only fit a single cube. We consider two possible goal configurations: red cube in the rear
of the corridor and green cube in the front, or vice versa. This tasks requires to fulfill the goals in a
certain order, otherwise the agent fails (pulling a block out of the corridor is not possible).

Reward The reward calculated from the ground-truth state of the system, which we refer to as the
ground-truth (GT) reward, is the mean negative L2 distance between each cube and its desired goal
position on the table. The image-based reward calculated from the DLP OCR for our method is the
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Figure 3: The simulated environments used for experiments in this work.

negative GDAC distance (see Eq. 1) between state and goal sets of particles, averaged over viewpoints.
Further reward details can be found in the Section G.1.

Evaluation Metrics We evaluate the performance of the agents on several metrics. In this environ-
ment, we define an episode a success if all N objects are at a threshold distance from their desired
goal. The metric most closely captures task success, but does not capture intermediate success or
timestep efficiency. To this end, we additionally evaluate based on success fraction, maximum object
distance, average object distance and average return. For a formal definition of these metrics see
Section G.1. All results show means and standard deviations across 3 random seeds.

Baselines We compare our method with the following baselines:

Unstructured – a single-vector latent representation of images using a pre-trained VAE is extracted
from multiple viewpoints from both state and goal images and then concatenated and fed to an MLP
architecture for the policy and Q-function neural networks. This baseline corresponds to methods
such as Nair et al. [21], with the additional multi-view data as in our method.

SMORL – We re-implement SMORL [34], extending it to multiview inputs and tune its hyper-
parameters for the environments in this work. Re-implementation details are available in Section G.4.
We use DLP as the pre-trained OCR for this method for a fair comparison. Note that image-based
SMORL cannot utilize GT reward since it requires matching the particle selected from the goal
image at the beginning of each training episode to the corresponding object in the environment. We
therefore do not present such experiments.

Object-centric Pretraining All image-based methods in this work utilize pre-trained unsupervised
image representations trained on data collected with a random policy. For the object-centric methods,
we train a single DLP model on data collected from the 6-Cubes environment. We found it generalizes
well to fewer objects and changing backgrounds (e.g. smaller table). For the non-OCR baselines, we
use a mixture of data from the 1/2/3-Cubes environments to learn a latent representation with a
β-VAE [12]. More information on the architectures and hyper-parameters is available in Section G.3.

Experiment Outline We separate our investigation into 3 parts. In the first part, we focus on the
design of our OCR and EIT, and how it handles complex interactions between objects. We study
this using the GT reward, to concentrate on the representation learning question. When comparing
to baselines, we experiment with both the OCR, and a ground truth state representation1. To prove
that our method indeed handles complex interactions, we shall show that our method with the OCR
outperforms baselines with GT state on complex tasks. In the second part, we study compositional
generalization. In this case we also use the GT reward, with similar motivation as above. Finally, in
the third part we evaluate our method using the Chamfer reward. This part is reported in Section E.2.

D.1 Multi-object Manipulation

We evaluate the different methods with GT rewards on the environments detailed above. Results are
presented in Figure 4. We observe that with a single object, all methods succeed, yet the unstructured
baselines are less sample efficient. With more than 1 object, the image-based unstructured baseline
is not able to learn at all, while the unstructured state-based baseline is significantly outperformed
by the structured methods. Our method and SMORL reach similar performance in the state-based
setting, SMORL being more sample efficient. This is expected as SMORL essentially learns single

1The ground truth state is si = (xi, yi), gi = (xg
i , y

g
i ) the (x, y) coordinates of the state and goal of entity i

respectively. We detail how this state is input to the networks in Section G.1
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(a) 1-Cube (b) 2-Cubes (c) 3-Cubes

(d) Ordered-Push (e) Legend (f) Small-Table

Figure 4: Success Rate vs. Environment Timesteps – Values calculated on 96 randomly sampled
goals. Methods with input type ’State’ are presented in dashed lines and learn from GT state
observations, otherwise, from images. Our method performs better than or equivalently to the best
performing baseline in each category (state/image-based). In the environments requiring object
interaction ((d), (f)), our method achieves significantly better performance than SMORL. Notably,
our image-based method matches/surpasses state-based SMORL.

object manipulation, regardless of the number of cubes in the environment. Notably, on 3-Cubes,
our image-based method surpasses the unstructured state-based method.

In environments that require interaction between objects – Adjacent-Goals, Small-Table and
Ordered-Push – our method outperforms SMORL using state input. Moreover, with image inputs
our method outperforms SMORL with state inputs (significantly on Ordered-Push, yet marginally
on Small-Table, Adjacent-Goals), demonstrating that SMORL is fundamentally limited in
performing these more complex tasks.

Method Success Rate Success Fraction Max Obj Dist Avg Obj Dist Avg Return

Ours (State) 0.963 ± 0.005 0.982 ± 0.005 0.022 ± 0.002 0.014 ± 0.002 -0.140 ± 0.008
SMORL (State) 0.716 ± 0.006 0.863 ± 0.005 0.063 ± 0.003 0.031 ± 0.001 -0.233 ± 0.004
Ours (Image) 0.710 ± 0.016 0.883 ± 0.005 0.044 ± 0.003 0.027 ± 0.001 -0.202 ± 0.007

Table 1: Performance Metrics for Adjacent-Goals – Methods trained on 3-Cubes and evaluated
on Adjacent-Goals. Values calculated on 400 random goals per random seed.

D.2 Compositional Generalization

In this section, we investigate our method’s ability to achieve zero-shot compositional generalization.
Agents were trained from images with our method using GT rewards and require purely image inputs
during inference. We present several inference scenarios requiring compositional generalization:

Different Number of Cubes than in Training We train an agent on the 3-Cubes environment
and deploy the obtained policy on the N-Cubes environment for N ∈ [1, 6]. Colors are sampled
uniformly out of 6 options and are distinct for each cube. Visual results on 6 cubes are presented in
Figure 5 (left) and evaluation metrics in Table 4. We see that our agent generalizes to a changing
number of objects with some decay in performance as the number of objects grows. Notably, the
decay in the average return, plotted in Figure 5 (right), is approximately linear in the number of
Cubes.

Cube Sorting We train an agent on the 3-Cubes environment with constant cube colors (red, green,
blue). During inference, we provide a goal image containing X ≤ 3 cubes of different colors and
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Figure 5: Left – Rollout of an agent trained on 3 cubes generalizing to 6 cubes. Right – The average
return of an agent trained on 3 cubes vs. the number of cubes in the environment it was deployed in
during inference. Values are averaged over 400 episodes with randomly initialized goal and initial
configurations.

then deploy the policy on an environment containing 4X cubes, 4 of each color. The agent sorts the
cubes around each goal cube position with matching color, and is also able to perform the task with
cube colors unseen during RL training (but which the DLP model was pretrained on). Visual results
on 12 cubes in 3 colors are presented in Figure 6. We find these results exceptional, as they require
compositional generalization from both the EIT policy (trained on 3 cubes) and the DLP model
(trained on 6 cubes) to significantly more cubes, occupying a large portion of the table’s surface.

Figure 6: Rollout of an agent trained on 3 cubes, then provided a goal image containing 3 different
colored cubes and deployed in an environment with 12 cubes, 4 of each color. The agent sorts the
cubes around each goal position with mathcing color.

Video demonstrations are available on our website.

E Chamfer Reward

We desire a reward that captures the task of moving objects to goal configurations. However, because
particles in different images are not aligned, and some particles may be occluded or missing, we
cannot directly construct a reward based on distances between the particles. Instead, we define a
reward from the DLP representations of images as the Generalized Density-Aware Chamfer (GDAC)
distance between state and goal particles, which we term Chamfer reward. The GDAC distance is
defined between two sets X = {xi}Ni=1, Y = {yj}Mj=1, xi, yi ∈ Rd in the following manner:

DistGDAC (X,Y )=
1∑

jI(|Xj |>0)

∑
j

1

|Xj |+ε

∑
x∈Xj

D1(x, yj)+
1∑

iI(|Yi|>0)

∑
i

1

|Yi|+ε

∑
y∈Yi

D1(y, xi)

(1)

where Xj =
{
xi| argminyk∈Y (D2 (x, yk)) = j

}
, Yi =

{
yj | argminxk∈X (D2 (y, xk)) = i

}
D1(x, y) and D2(x, y) are two distance functions between entities. The standard Chamfer dis-
tance is obtained by setting D1(x, y) = D2(x, y) = ∥x− y∥22 and substituting 1∑

j I(|Xj |>0) ·
1

|Xj |+ε ,
1∑

i I(|Yi|>0) ·
1

|Yi|+ε with 1
|X| ,

1
|Y | respectively.

The Chamfer distance measures the average distance between each entity in X and the closest entity
to it in Y and vice versa. The Density-Aware Chamfer distance [31] takes into account the fact that
multiple entities from one set can be mapped to the same entity in the other set, and re-weights their
contribution to the overall distance accordingly. The Generalized Density-Aware Chamfer distance,
decouples the distance function that is used to match between entities D2(x, y) and the one used to
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(a) 1-Cube (b) 2-Cubes (c) 3-Cubes

Figure 7: Success Rate vs. Environment Timesteps (Image-Based Rewards) – Values calculated
based on 96 randomly sampled goals.

calculate the distance between them D1(x, y). Decoupling these two allows using entity-identifying
attributes for matching while calculating the actual distances between matching entities based on
localization features. For example, we can use the DLP visual features zf to match between objects
in the current and goal images, and then measure their distance using the (x, y) coordinate attributes
zk.

E.1 Focused Chamfer Reward

In many robotic object manipulation settings, we do not care about the robot in our goal specification
as long as the objects reach the desired configuration. In order to consider only a subset of the
entities for the image-based reward (e.g. particles corresponding to objects and not the agent), we
train a simple multi-layer perceptron (MLP) binary classifier on the latent visual features of the
DLP representation, differentiating objects of interest from the rest of the particles. We train this
classifier on annotated particles extracted from 20 images of the environment. Annotation required
5 minutes of our time and training the classifier itself took just a few seconds. We then filter out
particles based on the classifier output before inputting them to the Chamfer reward. We emphasize
that this supervision is only required for training the classifier which is used for the image-based
reward exclusively during RL training.

E.2 Training with the Chamfer Reward

We compare our method to SMORL, trained entirely from images. Results on N-Cubes for N ∈
{1, 2, 3} are presented in Figure 7 and Table 2. Training our method with the image-based reward
obtains lower success rates compared to training with the GT reward. While this is expected, we
believe the large differences are due to noise originated in the DLP representation and occlusions,
which make the reward signal less consistent and harder to learn from. This is especially hard with
increasing number of objects, as the chances of at least one object being occluded are very high. This
is highlighted by the drop in performance from 1 to 2 cubes, compared to the GT reward. Image-
based reward calculation for single object manipulation, as in SMORL, is slightly more consistent
as occlusions in a single view will not affect the overall reward as much. Adding more viewpoints
for the reward calculation might improve these results without increasing inference complexity. We
see that in the 3-Cubes environment, our method surpasses SMORL, although SMORL’s reward is
based on a single object regardless of the number of objects in the environment. This could be as
result of object-object interactions being more significant in this case.

Method Success Rate Success Fraction Max Obj Dist Avg Obj Dist Avg Return

Ours 0.765 ± 0.025 0.875 ± 0.015 0.037 ± 0.002 0.026 ± 0.001 -0.210 ± 0.009
SMORL 0.838 ± 0.016 0.911 ± 0.008 0.038 ± 0.004 0.025 ± 0.002 -0.320 ± 0.007

Ours 0.580 ± 0.093 0.822 ± 0.052 0.063 ± 0.008 0.035 ± 0.005 -0.251 ± 0.022
SMORL 0.509 ± 0.044 0.794 ± 0.024 0.092 ± 0.006 0.047 ± 0.004 -0.451 ± 0.031

Table 2: Performance Metrics: Image-Based Rewards Methods trained and evaluated on the
2-Cubes (top) and 3-Cubes (bottom) environments. Values calculated on 400 random goals per
random seed.
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F Additional Results

F.1 Multi-Object Manipulation

Performance metrics for the 2-Cubes and 3-Cubes are presented in Table 3

Method Success Rate Success Fraction Max Obj Dist Avg Obj Dist Avg Return

Ours (State) 0.991 ± 0.004 0.995 ± 0.003 0.014 ± 0.001 0.010 ± 0.001 -0.129 ± 0.006
SMORL (State) 0.980 ± 0.006 0.989 ± 0.005 0.014 ± 0.002 0.009 ± 0.002 -0.142 ± 0.016
Ours 0.968 ± 0.019 0.983 ± 0.009 0.020 ± 0.002 0.015 ± 0.001 -0.150 ± 0.008

Ours (State) 0.978 ± 0.006 0.991 ± 0.002 0.016 ± 0.001 0.010 ± 0.001 -0.124 ± 0.007
SMORL (State) 0.932 ± 0.022 0.974 ± 0.009 0.028 ± 0.005 0.015 ± 0.002 -0.201 ± 0.011
Ours 0.919 ± 0.008 0.969 ± 0.004 0.026 ± 0.002 0.016 ± 0.001 -0.157 ± 0.007

Table 3: Performance Metrics: GT Reward Methods trained and evaluated on the 2-Cubes (top)
and 3-Cubes (bottom) environments. Values calculated on 400 random goals per random seed.

F.2 Generalization

Performance metrics for the compositional generalization to different numbers of objects of an agent
trained on the 3-Cubes environment are presented in Table 4.

An additional scenario we consider is providing the agent a goal image which contains some cube
colors that are not present in the environment. We term these cubes distracters. The agent is able to
disregard the distracters in the goal image while successfully manipulating the other cubes to their
respective goal locations.
While we designed our algorithm to facilitate compositional generalization, it has demonstrated
some ability to generalize to cube colors it has not seen during training. Videos demonstrating these
capabilities are available on our website.

Number of Cubes Success Rate Success Fraction Max Obj Dist Avg Obj Dist Avg Return

1 0.973 0.973 0.016 0.016 -0.162
2 0.963 0.981 0.023 0.017 -0.154
3 0.838 0.942 0.034 0.02 -0.175
4 0.723 0.912 0.051 0.027 -0.213
5 0.57 0.876 0.068 0.031 -0.245
6 0.398 0.826 0.09 0.036 -0.294

Table 4: Performance Metrics for Different Number of Cubes than in Training – Our method’s
performance on different numbers of cubes in the N-cubes environment, trained on the 3-cubes
environment (results in bold) with cubes of 6 different colors. Values are averaged over 400 episodes
with randomly initialized goal and initial configurations.

F.3 Ablation Study

We explore how aspects we found to be key to the success of our proposed method effect sample
efficiency. Figure 8a compares our method with multi-view vs. single-view image inputs. We find
that both with GT and image-based reward, multi-view inputs substantially improve sample efficiency.
We believe that the connections formed between particles from different views in the transformer
blocks makes it easier for the agent to learn the correlations between actions defined in 3D space
and latent attributes defined in 2D pixel space. In addition, multiple viewpoints decrease the degree
of partial observability. Figure 8b compares treating the action as a separate input entity to the
Q-function transformer blocks vs. concatenating the action to the output of the final transformer
block, before the output MLP. We find that the action having equal status as the state and goal entities
is crucial to the performance of our method. Without it, our experiments exhibit decreased sample
efficiency in state observations and failure to learn in the given environment timestep budget with
image observations.
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(a) Multiview (b) Action Entity

Figure 8: Success Rate vs. Environment Timesteps (Ablations) – Values calculated based on 96
randomly sampled goals.

G Implementation Details and Hyper-parameters

In this section, we provide extensive implementation details in addition to the open-source code that
will be made available.

G.1 Environment

We implement our environments with IsaacsGym [17], by adapting code from IsaacGymEnvs2 and
OSCAR3.

Ground-truth State Denote si = (xi, yi), gi = (xg
i , y

g
i ) the xy coordinates of the state and goal

of entity i respectively. The input to the networks in the structured methods are two sets of vectors
{vi}Ni=1, vi = [si, one-hot (i|N)] ∈ R2+N , {ui}Ni=1, ui = [gi, one-hot (i|N)] ∈ R2+N , [·] denoting
concatenation, where the one-hot vectors serve as entity-identifying features. In the unstructured
case, the input is [s1, s2, ..., sN , g1, g2, ..., gN ].

Ground-truth Reward The reward calculated from the ground-truth state of the system, which we
refer to as the ground-truth (GT) reward, is the mean negative L2 distance between each cube and its
desired goal position on the table:

rt = − 1

N

N∑
i=1

1

L

∥∥gdi − gai
∥∥
2
, (2)

where gdi and gai denote the desired and achieved goal for object i respectively, N the number
of objects, rt the immediate reward at timestep t and L a normalization constant for the reward
corresponding to the dimensions of the table.

Image-Based Reward The reward calculated from the DLP OCR for our method is the negative
GDAC distance (see Eq. 1) between state and goal sets of particles, averaged over viewpoints:

rt = − 1

K

K∑
k=1

DistGDAC

(
{pkm}Mm=1, {qkm}Mm=1

)
, (3)

where we use D1 (x, y) =
∥∥zxp − zyp

∥∥
1

and D2 (x, y) =
∥∥∥zxf − zyf

∥∥∥
2

in the GDAC distance, z(·)p , z(·)f

denoting DLP latent attribute zp, zf of particle (·) respectively. We filter out particles that do not
correspond to cubes (see section E.1) for the distance calculation. When a particle has no match
(i.e. miny

∥∥∥zxf − zyf

∥∥∥
2
> C), a negative bonus is added to the reward to avoid "reward hacking" by

pushing blocks off the table or occluding them on purpose.

Evaluation Metrics We evaluate the performance of the different methods based on the following:

2https://github.com/NVIDIA-Omniverse/IsaacGymEnvs
3https://github.com/NVlabs/oscar

15

https://github.com/NVIDIA-Omniverse/IsaacGymEnvs
https://github.com/NVlabs/oscar


Success: I
(∑N

i=1 I
(∥∥gdi − gai

∥∥
2
< R

)
= N

)
, all N objects are at a threshold distance from their

desired goal. R denotes the success threshold distance and is slightly smaller than the effective radius
of a cube. I denotes the indicator function. This metric most closely captures task success, but does
not capture intermediate success or timestep efficiency.

Success Fraction: 1
N

∑N
i=1 I

(∥∥gdi − gai
∥∥
2
< R

)
, fraction of objects that reach individual success.

Maximum Object Distance: maxi
{∥∥gdi − gai

∥∥
2

}
, largest distance of an object from its desired goal.

Average Object Distance: 1
N

∑N
i=1

∥∥gdi − gai
∥∥
2
, average distance of objects from their desired goal.

Average Return: 1
T

∑T
t=1 rt, the immediate GT reward averaged across timesteps, where T is the

evaluation episode length. A high average return means that the agent solved the task quickly.

G.2 Reinforcement Learning

We implement our RL algorithm with code adapted from stable-baselines3 [24]. Specifically,
we use TD3 [7] with HER [1]. We use ε-greedy and Gaussian action noise for exploration, that
decays to half its initial value with training progress, similar to Zhou et al. [36]. We use Adam for
neural network optimization. Related hyper-parameters can be found in Table 5 and Table 6.

Learning Rate 5e-4
Batch Size 512

γ 0.98
τ 0.05

# Episodes Collected per Training Loop 16
Update-to-Data Ratio 0.5

HER Ratio 0.8
Exploration Action Noise σ 0.2

Exploration ε 0.3
Table 5: General hyper-parameters used for RL training.

Number of Cubes 1 2 3
Episode Horizon 30 50 100

Replay Buffer Size 100000 100000 200000
Table 6: Environment specific hyper-parameters used for RL training.

For the Entity Interaction Transformer (EIT) we adapted components from DDLP’s Particle In-
teraction Transformer (PINT, Daniel and Tamar [5]), which is based on a transformer decoder
architecture [14] and utilizing the open-source minGPT [14] code base. Related hyper-parameters
can be found in Table 7.

Attention Dimension 64
Attention Heads 8

MLP Hidden Dimension 256
MLP Number of Layers 3

Table 7: Hyper-parameters for the EIT architecture.

Attention Masking: The DLP model extracts a fixed number of particles, which often include
particles that do not represent objects in the image. These particles are assigned low transparency (zt)
values by the DLP model as to not affect the reconstruction quality. We disregard these particles in
our policy and Q-function by directly masking the attention entries related to them. We found that
this slightly improves sample efficiency but is not crucial to performance as the EIT is able to learn to
disregard these particles by assigning them very low attention values.

Policies for the unstructured baselines have 5 layer MLPs with hidden dimension 256.
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G.3 Pre-trained Image Representations

In this section, we detail the various unsupervised pre-trained image representation methods used
in this work. We begin with the non-object-centric baselines, i.e., methods that given an image
I ∈ RH×W×C , encode a single-vector representation z ∈ RD, where D is the latent dimension,
of the entire input image. Then, we describe the object-centric representation (OCR) method that
provides a structured latent representation z ∈ RK×d of a given image I , where K is the number of
entities in the scene, each described by latent features of dimension d.

Data: We collect 600, 000 images from 2 viewpoints by interacting with the environment using
a random policy for 300, 000 timesteps. For all methods, we use RGB images at a resolution of
128× 128, i.e., I ∈ R128×128×3.

Variational Autoencoder (VAE): We train a β-VAE [12] with a latent bottleneck of size D = 256,
i.e., each image I is encoded as z ∈ R256. We adopt a similar autoencoder architecture as Rombach
et al. [25] based on the open-source implementation4 and add a 2-layer MLP with 512 hidden units
after the encoder and before the decoder to ensure the latent representation is of dimension 256. We
use β = 1e− 10, a batch size of 16 and an initial learning rate of 2e− 4 which is gradually decayed
with a linear schedule. The model is trained for 40 epochs with a perceptual reconstruction loss and
L1 pixel-wise loss, similarly to Rombach et al. [25], and we keep the default values for the rest of the
hyper-parameters.

Deep Latent Particles (DLP): We train a DLPv2 [5] using the publicly available code base5 as
our unsupervised OCR model. Recall that DLP provides a disentangled latent space structured as a
set of foreground particles z = {(zp, zs, zd, zt, zf )i}K−1

i=0 ∈ RK×(6+m), where K is the number of
particles, zp ∈ R2 is the position of the particle as (x, y) coordinates in Euclidean space, zs ∈ R2 is
a scale attribute, zd ∈ R is a depth attribute, zt ∈ R is a transparency attribute and zf ∈ Rm are the
visual features that encodes the visual appearance in the particle region, where m is the dimension
of learned visual features. A background particle zbg ∈ Rmbg describes the visual features of the
background. Figure 9 illustrates an example of object-centric decomposition for a single image using
a DLP model pre-trained on our data. We keep the default recommended hyper-parameters and report
the data-specific hyper-parameters in Table 8. Note that our DLP model represents an image I by a
total of mbg +K × (6 +m) = 1 + 24 ∗ (6 + 4) = 241 latent features.

Batch Size 64
Posterior KP K 24

Prior KP Proposals L 32
Reconstruction Loss MSE

βKL 0.1
Prior Patch Size 16
Glimpse Size S 32
Feature Dim m 4

Background Feature Dim mbg 1
Epochs 60

Table 8: Hyper-parameters used for the Deep Latent Particles (DLP) object-centric model.

G.4 SMORL Reimplementation

We re-implement SMORL [34] based on the official implementation6 using the same code-base as
we used for the EIT, for the SMORL attention architecture. SMORL specific hyper-parameters are
detailed in Table 9. We extend SMORL to multiple views, which includes modifications to several
aspects of the algorithm:

Attention Architecture: We extend SMORL’s attention policy by adding a goal-conditioned and
goal-unconditional attention block for the additional view. The outputs of attention layers from both

4https://github.com/CompVis/latent-diffusion
5https://github.com/taldatech/ddlp
6https://github.com/martius-lab/SMORL
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Figure 9: Object-centric Decomposition with DLP. DLP decomposes a single image into latent parti-
cles, each characterized by attributes including position (keypoints in the images), scale (bounding
boxes), and visual appearance features around the keypoint (displayed as decoded glimpses from
these features).

views are concatenated and fed to an MLP, as in the single-view version. An outline of SMORL’s
single-view attention-based architecture is described in Figure 10.

Selecting a Single Goal: SMORL decomposes the multi-object goal-conditioned task to single
objects by selecting a single goal at a time, and rewarding the agent with respect to this sub-goal
alone. Working with multiple views requires selecting a goal particle corresponding to the same
object from both viewpoints, which requires explicit matching. We do this by selecting a goal particle
from one viewpoint and choosing the closest matching particle from the second viewpoint based on
the L2 distance in latent attribute zf .

Reward: The image-based reward calculated from the DLP OCR for SMORL is the negative L2

distance in attribute zp between the goal particle to the closest matching state particle based on
attribute zf , averaged over viewpoints:

rt = − 1

K

K∑
k=1

∥∥∥∥zgk

p − z
skmk
p

∥∥∥∥
2

, mk = argmin
m

∥∥∥zgk

f − z
skm
f

∥∥∥
2
, (4)

gk denoting the goal particle from view k and skm denoting particle m from view k. When there is no

match for the goal particle in viewpoint k (i.e. minm

∥∥∥zgk

f − z
skm
f

∥∥∥
2
> C), the minimal reward is

given for that view. Note that this reward is a special case of the Chamfer reward we define in this
work.

H Attention in RL Policies - Comparison to Previous Work

In this section, we compare our use of attention to two previous approaches, Zhou et al. [36] which is
state-based and SMORL [34] which is image-based.
Zhou et al. [36] also propose a transformer-based policy. They define an entity as the concatenation
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Figure 10: Outline of SMORL’s Attention Architecture The policy is conditioned on the goal by
choosing a single goal particle and feeding it to a cross-attention block between the goal particle
and the state particles. In parallel, cross-attention between a learned particle and the state particles
is performed to extract features from the state that are not goal-dependant. The outputs of the two
attention layers are then concatenated to the original goal particle and fed to an MLP to produce the
action. For the Q-function, the input action is additionally concatenated to the output of the attention
to produce the value.

Attention Dimension 64
Unconditional Attention Heads 8

Goal-conditioned Attention Heads 8
MLP Hidden Dimension 256

MLP Layers 4
Scripted Meta-policy Steps 15

Table 9: SMORL hyper-parameters.

of each object’s state, goal, and the state of the agent (and the action when we consider the input
to the Q-function). This requires explicitly matching between entities in state and goal as well as
identifying the agent, which is trivial when working with GT state observations. When learning from
OCRs of images, this is not at all trivial and is not always possible due to lack of existence of a
one-to-one match or occlusion, which also limits the use of multiple viewpoints. We tackle this in
our EIT by using a cross-attention block for goal-conditioning. Figure 11 describes the differences
between their definition of an input entity to ours.
SMORL uses an OCR of images and does not require matching between entities in the single-view
case. The goal-conditioned attention in their architecture (see Figure 10) matches a single goal
particle to the relevant state particle via cross-attention. Different from us, the attention mechanism is
used only to extract sub-goal specific entities from the set of state entities, and does not explicitly
model relationships between the different entities in the state. We do this explicitly by incorporating
self-attention transformer blocks in our architecture.

19



Figure 11: Entity Definition Comparison Left – description of an input token defined by Zhou et al.
[36], where each token is a concatenation of the object and corresponding goal as well as global
entities such as the agent and action; Right – Our definition of input tokens, where each entity is
treated as a separate token.
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