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Abstract

As AI models are becoming more powerful,001
their adoption is becoming more widespread,002
including in safety-critical domains. Explain-003
able AI (XAI) has the aim of making these004
models safer to use, for instance by making005
their decision-making process more transpar-006
ent. However, current explainability methods007
are seldom evaluated in the way they are in-008
tended to be used: by real-world end users.009
To address this, we conducted a large-scale010
user study with 85 clinicians in the context011
of human-AI collaborative chest X-ray anal-012
ysis. We evaluated three types of explanations:013
saliency maps, natural language explanations,014
and their combination. We specifically examine015
how different explanation types influence users016
depending on whether the AI is correct. We017
find that the quality of explanations, i.e., how018
much correct information they entail, and how019
much this aligns with AI correctness, signifi-020
cantly impacts the usefulness of the different021
explanation types.022

1 Introduction023

A significant barrier to the adoption and regulatory024

approval of deep learning models in medical imag-025

ing is the limited understanding of the decision-026

making processes underlying these models (Lan-027

glotz et al., 2019). The combination of lack of028

model robustness (Papernot et al., 2016), bias (al-029

gorithms are prone to amplifying inequalities that030

exist in the world) (Obermeyer et al., 2019; Hajian031

et al., 2016), and the high stakes in clinical ap-032

plications (Vayena et al., 2018) prevent black-box033

algorithms from being used. XAI is proposed as a034

promising solution to address the inherent issues035

of model robustness, bias, and lack of transparency036

in medical imaging (Borys et al., 2023).037

While various XAI methods have been proposed038

to increase the transparency of AI models, such as039

saliency maps (Saporta et al., 2022), counterfac-040

tual explanations (Schutte et al., 2021), and natural041

language explanations (Kayser et al., 2022), the 042

practical utility of these approaches within clin- 043

ical settings remains poorly understood. While 044

there is an abundance of literature and regulatory 045

frameworks that advocate the significance of inter- 046

pretability in medical applications (Frasca et al., 047

2024), only a few studies investigate how useful 048

these explanations are for end-users, with some 049

studies suggesting that these methods may not work 050

as well as anticipated (Adebayo et al., 2018; Hoff- 051

mann et al., 2021; Margeloiu et al., 2021; Shen and 052

Huang, 2020). 053

Evaluating the effectiveness of XAI explanations 054

is a challenging task, as there can often be a vari- 055

ety of correct ways to explain a decision and the 056

criteria for judging their quality are diverse (e.g., 057

plausibility, faithfulness, clarity (Miller, 2019)). 058

As one main value of explanations is their utility 059

to end-users, it’s crucial to evaluate explanations 060

with human subjects. As explanations are prone 061

to confirmation bias and user preference doesn’t 062

always correspond to desired explanation quality 063

requirements, proxies are developed for evaluat- 064

ing explanation usefulness (Ehsan and Riedl, 2020; 065

Liao et al., 2022; Liao and Varshney, 2021; Ehsan 066

et al., 2021). 067

We address this by carrying out a large-scale hu- 068

man subject study to evaluate the usefulness of nat- 069

ural language explanations (NLEs), saliency maps 070

(SM), and a combination of both (COMB), in the 071

setting of imperfect AI and imperfect XAI. Specif- 072

ically, we investigate how different explanation 073

types impact users in a clinical decision-support 074

system (CDSS) setting, with respect to both AI ac- 075

curacy and XAI quality. As the main purpose of 076

AI in medical applications is arguably to enhance 077

practitioners in CDSS settings (Langlotz, 2019; 078

Agrawal et al., 2019), our proxy for the usefulness 079

of explanations is how much they improve human 080

performance in a human-AI collaborative chest X- 081

ray analysis. In our study, 85 clinicians analyse 80 082
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images each, under the setting of four different AI083

models. SMs, the prevailing mode of interpretabil-084

ity in medical imaging (Van der Velden et al., 2022),085

attribute importance weights to regions in an im-086

age. We compare them to NLEs, for which there087

have been calls to deploy them in clinical practice088

(Reyes et al., 2020), and which are known to be089

user-friendly and able to explain more complex090

reasoning (Kayser et al., 2022). We also study091

whether a combination of them further enhances092

human performance.093

Our results show that explanation correctness094

(EC) is an important factor in deciding whether AI095

explanations are helpful or harmful to end users.096

When the AI is correct, incorrect explanations are097

detrimental to human-AI performance, but equally,098

when the AI is incorrect, correct explanations mis-099

lead users into agreeing with the AI. We also find100

that the combination of NLEs and SMs is the most101

useful, and interestingly is better than SMs even102

though NLEs on their own are significantly worse.103

2 Related Work104

XAI in medical imaging XAI methods can be105

broadly classified into post-hoc explainers or self-106

explaining models, i.e. approaches that either ex-107

plain trained black-box AI models, or approaches108

that are inherently designed and trained to be ex-109

plainable. Both types have been applied widely in110

medical imaging applications (Irvin et al., 2019;111

Thomas et al., 2019; Verma et al., 2020; Koh et al.,112

2020; Gale et al., 2018). In this study we fo-113

cus on SMs (post-hoc), a common XAI method114

for medical imaging (Irvin et al., 2019; Thomas115

et al., 2019), and NLEs (self-explainable), which116

are user-friendly, can convey complex reasoning,117

are promising for clinical applications (Reyes et al.,118

2020), and ever more widespread with the rise of119

large language models.120

Human-AI collaboration in medical imaging121

The rapid advancements in AI spurred discussions122

about its capability to automate processes and out-123

perform humans in specific tasks. However, a par-124

allel discourse is centered on how AI can enhance,125

rather than replace, humans, a domain referred to126

as human-AI collaboration. This has been studied127

in areas such as content generation and modera-128

tion (Lee et al., 2022; Zhang et al., 2022; Jhaver129

et al., 2019; Lai et al., 2022), and visual recognition130

(Colin et al., 2022; Kim et al., 2022). Especially131

in medical imaging, where concerns around safety132

and trust make autonomous deployment of AI mod- 133

els challenging, there is an emphasis on how AI can 134

collaboratively support medical professionals. Clin- 135

ical Decision Support Systems (CDSSs), where 136

AI models offer recommendations to humans for 137

specific tasks, are a common form of human-AI 138

collaboration in clinical practice. 139

DCSSs have been getting increasing attention in 140

radiology. Existing studies investigate this form 141

of human-AI interaction by looking at how the 142

sequential order of human and AI decisions affect 143

performance (Fogliato et al., 2022), what influence 144

the assertiveness of AI suggestions has (Calisto 145

et al., 2023), or which kind of users benefit the 146

most from it (Gaube et al., 2023). A recent large- 147

scale study conducted by Agarwal et al. (2023) 148

shows that, in most cases, human performance is 149

enhanced when using DCSSs. 150

In this work, we built upon this literature by 151

evaluating the usefulness of different XAI expla- 152

nations in the context of a DCSS for chest X-ray 153

analysis. However, in contrast to previous works, 154

we specifically focus on imperfect AI and XAI by 155

controlling the accuracy of both AI predictions and 156

explanations. 157

Evaluating XAI Evaluating AI explanations is 158

less straightforward than evaluating e.g., predic- 159

tion performance. The lack of unique ground truth, 160

the wide range of interpretability goals, as well as 161

the human-computer interaction aspect, make this 162

more difficult. Thus, differences in the effective- 163

ness of existing XAI methods are not well under- 164

stood (Gaube et al., 2023). For these reasons, a 165

growing body of work is evaluating XAI methods 166

through the lens of human subject studies, follow- 167

ing one of three predominant methodologies. 168

User Preference Some studies directly measure 169

human participants’ preferences for XAI explana- 170

tions. For instance, Adebayo et al. (2020) simu- 171

lated a quality assurance context, requesting partic- 172

ipants to assess the deployment readiness of AI al- 173

gorithms, which came with different kinds of expla- 174

nations. However, Hase et al. (2020) demonstrated 175

that user preference does not correlate with how 176

well users can predict model behavior, a proxy for 177

how transparent the model is. Additionally, there 178

are concerns that humans might fall prey to confir- 179

mation bias, the tendency to believe that the system 180

used the features they think are most important 181

(Rudin et al., 2021-03-20). There is also evidence 182

that XAI methods can unreasonably increase the 183
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Figure 1: Study design overview.

confidence in a model’s prediction (Kunkel et al.,184

2019; Schaffer et al., 2019; Ghassemi et al., 2018;185

Eiband et al., 2019).186

Model Predictability. Arguably, the closest187

proxy for full model transparency is to measure188

how well humans can predict a model’s predictions189

on unseen data. If users achieve 100% accuracy,190

it would mean the model is entirely transparent to191

them. While this method is common to evaluate192

XAI explanations (Alqaraawi et al., 2020; Colin193

et al., 2022; Yang et al., 2019; Shen and Huang,194

2020), its applicability to radiology is limited, as195

predictions are highly nuanced and multiple labels196

can apply and each come with their own, different197

explanations.198

Human-AI Collaboration. Another approach199

to evaluate the usefulness of XAI explanations is200

to measure how much they improve human perfor-201

mance in the AI-human collaborative setting. The202

goal of XAI in this setting is to guide the user to203

appropriate evidence when the model is correct, or204

shed light on faulty AI decision-making when it205

is wrong. Chu et al. (2020) measured the impact206

of XAI methods in helping users predict age given207

images of human faces. Kim et al. (2022) analyzed208

performance changes in a bird classification task209

under the guidance of various XAI techniques. In210

clinical applications, where practitioners see a need211

for explanations to justify “their decision-making212

in the context of a model’s prediction” (Tonekaboni213

et al., 2019), this evaluation method is particularly214

well suited and hence also used in this work. Ex-215

isting work most similar to ours is by Morrison216

et al. (2023), who are the first to look at NLEs217

and consider imperfect XAI. We differ by the task218

(safety-critical CDSS vs bird classification), contin-219

uous EC scores instead of binary, considering EC 220

as how well it explains the AI advice even when 221

incorrect, looking at SMs SMs+NLEs). 222

Evaluating XAI in Clinical DCSS. Few works 223

looked at the usefulness of XAI in clinical applica- 224

tions. Du et al. (2022) consider a simple, 5-feature 225

set-up to compare explanation-based and feature 226

attribution methods in the CDSS setting. Rajpurkar 227

et al. (2020); Ahn et al. (2022) provide visual expla- 228

nations when evaluating the usefulness of a DCSS, 229

but they do not look at the effect that XAI expla- 230

nations had. Gaube et al. (2023) find that SMs 231

improve the diagnosis performance for non-task ex- 232

perts, but they do not compare it to other XAI meth- 233

ods. Tang et al. (2023) look at AI tools for lung 234

nodule detection in chest X-rays. They compare 235

having no AI help, to having just the AI prediction, 236

AI prediction with confidence score, and AI pre- 237

diction with confidence score and localisation map. 238

They find that while AI prediction helps, neither 239

type of AI with the above forms of explanations 240

(e.g., confidence score, localisation map) leads to 241

any significant improvement over no AI. 242

Our work is the first to study and compare the 243

effect of different explanation types, and the inter- 244

action with advice and explanation correctness, on 245

the complex vision task of chest X-ray analysis. 246

3 Methods 247

We evaluate the usefulness of SMs, NLEs, and their 248

combination in a clinical decision-support context. 249

We also control for AI advice correctness and ex- 250

planation correctness (EC). EC captures to what 251

extent the information provided in an explanation 252

is clinically correct. We obtain the ground-truth 253

for both advice and explanation correctness from 254

3



the annotations of three expert radiologists. EC255

is rated on a 7-point Likert scale, evaluating both256

individual and combined explanation effectiveness.257

The annotator interface to provide these metrics is258

shown in Figure 24 in the Appendix. The study259

design is outlined in Figure 1.260

3.1 Study Overview261

Our pre-registered, IRB-approved user study en-262

tails both quantitative and qualitative measure-263

ments involving 85 clinical participants. The study264

was developed through iterative pilot studies and265

consultations with expert clinicians. Our goal is to266

evaluate the usefulness of XAI explanations. We267

consider usefulness to be the ability of an explana-268

tion to help users discern whether a model predic-269

tion is correct. A natural way to evaluate usefulness270

is in a human-AI collaborative setting, i.e., CDSSs.271

Our CDSS provides a suggestion for each im-272

age, consisting of a single radiographic finding273

predicted by the AI, i.e., the AI advice. To simplify274

our design, we focus on one finding per image,275

and communicate to participants that this is not276

necessarily the only or most important finding.277

We study the following four scenarios: (i) No278

XAI (participants receive the AI model’s advice279

without any explanation), (ii) SM (participants re-280

ceive the model’s advice and an SM), (iii) NLE281

(participants receive the model’s advice and an282

NLE), (iv) COMB (participants receive the model’s283

advice, an SM, and an NLE).284

We consider the case of an imperfect AI and285

XAI, as we want to explicitly study how good or286

bad explanations can help users identify whether287

the model is correct. We simulated an environment288

where the model has an accuracy of 70%, to strike289

a balance between having a reasonable representa-290

tion of correct and incorrect model predictions and291

not making the model appear overly unreliable. We292

also sample image-explanation pairs to ensure that293

the overall distribution of EC scores is as uniform294

as possible (to get a good representation of differ-295

ent EC levels). The distributions are shown in the296

appendix in Figure 9 and 8.297

In each of the four randomly shuffled sessions,298

participants are shown 20 examples, which consist299

of a chest X-ray, the patient context, the AI advice,300

e.g., “Pneumonia”, and a scenario-specific expla-301

nation (see a snapshot of the user interface in Fig-302

ure 25). They are then asked to express their agree-303

ment with the AI advice (“Not present”, “Maybe304

present”, or “Definitely present”). We also ask 305

them whether they found the explanation useful in 306

their decision-making (e.g. “How useful was the AI 307

model’s explanation in helping you decide whether 308

the AI was right or wrong in suggesting pneumo- 309

nia.”). This encourages them to engage with the 310

explanation and it enables us to quantify the rela- 311

tionship between perceived and actual explanation 312

usefulness. 313

To mitigate order effects and user fatigue, we 314

randomize the order of the tasks for each partici- 315

pant, ensuring that each task is equally distributed 316

as the first, second, third, or last. We also enforce 317

three-minute breaks between each session, where 318

we give participants the option to follow a guided 319

meditation. We also emphasize multiple times that 320

the users are engaging with different AI models in 321

each task, to avoid carry-over effects where a per- 322

son’s engagement with explanation type A affects 323

their perception of the CDSS and therefore their 324

subsequent engagement with explanation type B. 325

Finally, we introduce an incentive of doubling the 326

compensation for participants who perform in the 327

top 20%. The aim of this ensure users are dedi- 328

cated through the 80 examples. At the end of the 329

four tasks, users fill out a post-study survey. Here 330

we ask them about their experience with the differ- 331

ent AI explanations and measure how their attitude 332

towards AI has been affected. 333

3.2 Participant Recruitment 334

As our aim is to study the effect of different ex- 335

planation types in an imperfect (X)AI setting, we 336

recruit participants with foundational competence 337

in reading chest X-rays, who are knowledgeable 338

enough to not rely wholly on the AI system, but are 339

still likely to engage with the AI’s predictions and 340

explanations. Indeed, Gaube et al. (2023) found 341

that increasing expertise in radiology leads to an 342

increased likelihood of dismissing AI suggestions. 343

Furthermore, CDSSs are generally seen as most 344

useful for people who have medical training but 345

are not experts in the task at hand (Bussone et al., 346

2015). This is particularly relevant in scenarios 347

where there is a scarcity of expert radiologists, and 348

non-expert clinicians benefit from collaborating 349

with AI systems (Gaube et al., 2023). 350

For the above reasons, our primary target group 351

for this study are medics who have undergone train- 352

ing in reading chest X-rays, but who are not spe- 353

cialist radiologists. All potential participants fill 354
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out a screening document, which contains a self-355

assessment as well a quiz on three chest X-rays356

that fulfil the medical student curriculum of the357

Royal College of Radiologists (UK) (an example358

is shown in Figure 25). These X-rays contain ex-359

amples of pneumonia, pleural effusion, and lobe360

collapse, which are the most common classes in361

our dataset. We then select our final batch of par-362

ticipants based on these forms. In order to deter-363

mine the sample size, we ran four pilot studies and364

used the estimated effects to run a power analy-365

sis using the model described in 1. We found that366

80 participants should provide significant power.367

We ended up recruiting 85 participants, as we sent368

out extra invitations to account for dropouts. Our369

participants range from medicine students to radi-370

ology residents (see detailed characteristics in Ap-371

pendix B. We recruit participants via mailing lists372

and networks focusing mainly on COUNTRIES373

ANONYMIZED. Participants are compensated for374

their time with an voucher worth an equivalent of375

$38 for the one-hour study. The entire task is con-376

ducted online on a custom streamlit platform that377

we will make publicly available for future use.378

3.3 Model Implementation379

We train a model following the Ratchet architec-380

ture (Kayser et al., 2022). It consists of a DenseNet381

vision encoder (Huang et al., 2017) that generates382

7x7 1024-dimensional feature maps of the image.383

These are then used to perform multi-label image384

classification, and given as prefixes to a transformer385

decoder for NLE generation. The NLE is further386

conditioned on the predicted label. For each posi-387

tively predicted class an NLE is generated.388

The model was trained on the MIMIC-NLE389

dataset (Kayser et al., 2022). The NLEs are all390

directly extracted from radiology reports that were391

recorded during routine clinical practice. Each392

NLE links a finding to its evidence in a radio-393

graphic scan, including details about location, size,394

severity, certainty, and differential diagnoses. Ex-395

amples of NLEs are shown in the Appendix in396

Figure 10. The model obtained a weighted AUC of397

0.75. Note that the main purpose wasn’t to maxi-398

mize model performance. Instead, we specifically399

focus on the case of imperfect AI, where a model,400

for various reasons, such as limited or biased data,401

does not perform optimally. This is different from402

existing work in human-AI collaboration, where403

they often consider AI models that outperform hu-404

mans to investigate how they could be used to im- 405

prove human performance (Tschandl et al., 2020; 406

Fogliato et al., 2022). Nonetheless, our model still 407

performs favorably on existing benchmarks, ensur- 408

ing that our model and the generated explanations 409

are of a realistic standard (Irvin et al., 2019). 410

The NLEs that the model generates are learned in 411

a purely supervised way. They, therefore, capture 412

the nuances around assertiveness and the certainty 413

of findings that naturally occur in clinical practice. 414

For this reason, we consider assertiveness an inte- 415

gral part of the NLEs, as opposed to a design factor 416

that can be studied by itself (Calisto et al., 2023). 417

For SMs, we implement Grad-Cam (Selvaraju 418

et al., 2017) following Gildenblat and contributors 419

(2021). We ran it on our model trained for both im- 420

age classification and NLE generation. We chose 421

Grad-CAM as it is widely used and previous work 422

has shown that out of the commonly used saliency 423

techniques, it is the most accurate one for medical 424

imaging (Saporta et al., 2022). We have also quali- 425

tatively verified it by comparing it to Grad-Cam++, 426

HiResCam, AblationCAM, and XGradCAM. 427

3.4 Data Selection 428

In this section, we describe how we obtained the 429

set of 80 images used in our study. 430

3.4.1 Acquiring AI Predictions 431

We used a multi-label classification AI trained on 432

the MIMIC-CXR dataset, which assigns a logit 433

to each of the 10 classes. We established thresh- 434

olds for each class by maximizing the Youden 435

Index to optimize the balance between sensitiv- 436

ity and specificity. The selected classes for our 437

study—pneumonia, atelectasis, pulmonary edema, 438

fluid overload/heart failure, aspiration, and alveolar 439

haemorrhage—were chosen for their clinical sig- 440

nificance and detectability in chest X-rays alone, 441

after consultations with radiologists. 442

3.4.2 Expert annotation 443

Even though our chest X-rays are paired with ra- 444

diology reports, we follow existing work (Gaube 445

et al., 2023; Ahn et al., 2022; Seah et al., 2021) and 446

have three experienced radiologists annotate our 447

AI advice and explanations. 448

Radiologists classify each AI-predicted find- 449

ing as Not present, Maybe present, or Definitely 450

present, based on established medical imaging stan- 451

dards. They also rate the correctness of textual and 452

heatmap explanations on a 7-point Likert scale, 453
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evaluating both individual and combined explana-454

tion effectiveness. The majority vote determines455

the advice correctness, while explanation correct-456

ness scores are averaged and mean-centered. More457

details, including the user interface used by our458

annotators, are shown in Appendix I.459

3.4.3 Selecting the study examples460

From the annotated set, we carefully selected 80461

images, ensuring a similar distribution of correct462

and incorrect AI predictions across all our classes.463

We also excluded ambiguous cases with significant464

annotator disagreement. Additionally, we sample465

examples such that the distribution of EC scores is466

as uniform as possible.467

For our selected sample we obtain pairwise468

kappa scores of 0.451, 0.458, and 0.502 between469

the three annotators (grouping “Maybe present”470

and “Definitely present” as positive). Note that471

if we leave out “Maybe present” votes, we get per-472

fect kappa scores because of the above exclusion473

criteria. Further details on our selected samples are474

given in the Appendix C.475

3.4.4 Distributing examples across476

participants and tasks477

These 80 images were evenly distributed across478

four tasks and multiple participants, ensuring each479

image was equally represented across all tasks.480

This method prevents task-specific biases and main-481

tains a consistent 70% accuracy rate for AI advice482

across different explanation types.483

4 Results484

4.1 Statistical Model485

We model our results using a Generalized Linear486

Mixed-Effects Model that predicts human accuracy487

for each instance. The model is given below:488

lij =β0

+ βa ∗ (AC)

+ βt ∗ (Explanation Type)

+ βt×a ∗ (Expl. Type) × (AC)

+ βt×e ∗ (Expl. Type) × (EC)

+ βt×e×a ∗ (Expl. Type) × (EC) × (AC)

+ uParticipant

+ uImage

(1)489

This model predicts the log-odds of the human490

accuracy lij for the i-th participant on the j-th im-491

age. As fixed effects, we consider advice correct- 492

ness AC (i.e., whether AI advice is correct or not), 493

explanation type (None, NLE, SM, and combined), 494

explanation correctness EC and different interac- 495

tions of these effects. As random effects, we in- 496

clude the participants (which can have different 497

skill levels) and the images (which can have differ- 498

ent difficulty levels). A rationale for the different 499

interaction terms is given below: 500

• (Explanation Type)× (AC): We are assuming 501

that different explanation types have a differ- 502

ent impact on human accuracy when advice is 503

correct or incorrect. For example, explanation 504

types prone to confirmation bias will have a 505

particular effect when the advice is incorrect. 506

• (Expl. Type) × (EC): Note that we do not in- 507

clude (EC) as a main effect. This is because 508

(EC) between different explanation types is 509

not directly comparable (e.g. NLEs con- 510

tain more specific information and therefore 511

can contain both more correct information 512

and more false information). Therefore we 513

consider (Explanation Correctness) as a type- 514

specific metric and need to include the inter- 515

action term. 516

• (Expl. Type) × (EC) × (AC): We need to 517

model this interaction as (EC) is strongly cor- 518

related to (AC) (the (EC) scores for incorrect 519

advice are much lower). 520

We test the model statistically and find that both 521

random and fixed effects should be included. In 522

particular, we perform a likelihood ratio test (LRT) 523

between the model in (1) and a baseline model dis- 524

regarding explanation correctness and interactions 525

and find that the full model yields significantly bet- 526

ter fit χ2
12 = 28.21, p = .005 (see Appendix A). 527

4.2 Main Hypotheses 528

Our main goal is to understand how different ex- 529

planation types affect human accuracy, which is 530

our proxy for explanation usefulness. More specif- 531

ically, we are interested in how explanation and 532

advice correctness factor into this. In the context 533

of imperfect XAI, we consider the following clas- 534

sification of EC. Qualitative examples representing 535

the different subtypes are given in Figure 10 536

• Explanations are insightful when their correct- 537

ness aligns with advice correctness: Convinc- 538

6



Incorrect AI Advice Correct AI Advice

−3 −2 −1 0 1 2 −3 −2 −1 0 1 2

0%

25%

50%

75%

Explanation Correctness

H
um

an
 A

cc
ur

ac
y

Type

Combined
NLE
Saliency

Figure 2: Human Accuracy given AC and EC.

ing explanations are correct when the AI ad-539

vice is correct; Revealing explanations are in-540

correct when the AI advice is incorrect.541

• Explanations are deceptive when their correct-542

ness misaligns with advice correctness: Mis-543

leading explanations are correct when the AI544

advice is incorrect; Confusing explanations545

are incorrect when the AI advice is correct.546

EC needs to align with AC: Our results show547

that insightful explanations, i.e., where EC aligns548

with AC, are helpful in the decision-support setting.549

Figure 2 illustrates how higher EC scores harm550

human accuracy when the AI prediction is incor-551

rect (deceptive explanations) and benefits human552

accuracy when the AI advice is correct (insight-553

ful explanations). These effects are less strong for554

NLEs than for the visual methods.555

In Figure 3 we look at human accuracy by ex-556

planation type for the four EC scenarios described557

earlier. We consider high EC to be the upper half558

of EC scores by explanation type, and low EC is559

the lower half.560

We observe that as a general trend human accu-561

racy is harmed when explanations are deceptive,562

and people would be better off using no explana-563

tion. For SMs, human accuracy goes down 4.9%564

(p < .05) when AC and EC don’t align. For com-565

bined explanations, it goes down 3.9% (p = .06).566

On the contrary, for insightful EC scores, human567

accuracy goes up 4.3% (p < .005) for combined568

explanations. These effects are not seen for NLEs,569

suggesting that the visual explanations are more570

helpful to users to discern whether an AI’s decision-571

making is flawed.572

When insightful, combine SM and NLE: For573

insightful explanations, combining SMps and574

NLEs provides significant improvements compared 575

to the other conditions: 6.3% (p < .005) against 576

No XAI, 7.1% (p < .005) against NLEs, and 4.5% 577

(p < .05) against SM. This suggests that partici- 578

pants can integrate the information from both visual 579

and textual cues to identify when an AI is wrong or 580

right. Interestingly, even though insightful NLEs 581

on their own are worse than “No AI”, combining 582

them with visual explanations leads to a significant 583

boost. 584

NLEs on their own lead to overreliance: 585

Across AC and EC scores, differences between 586

our four conditions cancel each other out and we 587

observe no significant differences (see Figure 17 588

in the Appendix. However, in the case of incor- 589

rect advice, there is a significant drop in human 590

accuracy for NLEs compared to combined (-7.3%, 591

p < 0.05) and SM (-6.2%, p < 0.05). This sug- 592

gests that NLEs make people more likely to agree 593

with the AI when it is incorrect. Especially when 594

EC is comparatively high but the AI advice is in- 595

correct, people are 10.1% (p < 0.05) more likely 596

to agree with the AI than without explanation. This 597

also means that for the scenario of correct advice 598

and comparatively low EC explanations, NLEs lead 599

to higher performance (6.6%, p < 0.05 versus SAL 600

and 5.7% p < 0.05 versus combined), as people 601

are more likely to agree with low EC NLEs. Over- 602

all, people agree with the AI 67.3% of the time 603

when it’s accompanied by an NLE, compared to 604

63.8% on average for the other explanation types. 605

This aligns with our survey results, which show a 606

clear user preference for NLEs, as well as the per- 607

ception that the NLE model was the most correct 608

one (participants were not aware that they all have 609

the same share of correct/incorrect advice). This 610

could suggest that the assertiveness (Calisto et al., 611

2023) and/or human-like (Breum et al., 2024) na- 612

ture of NLEs could lead people to overly trust and 613

rely on AI. 614

4.2.1 Additional Results 615

In further analyses, we study the time participants 616

require to reach a diagnostic decision (decision 617

speed), their decision confidence and the perceived 618

helpfulness of different explanation types. We find 619

that with increasing complexity of explanations 620

(NLE > Saliency > No XAI), participants require 621

more time to reach a decision. Further, we find that 622

the measured confidence is similar across explana- 623

tion types, but increases significantly as explana- 624
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Figure 3: Main results. The error bars represent standard errors. .p < 0.1, ∗p < 0.05, ∗ ∗ p < 0.01, statistically
non-significant are left unmarked.

tions get more insightful. Finally, we observe that625

higher quality NLEs are rated as more useful and626

we find an effect of perceived usefulness on the di-627

agnostic accuracy that resembles that of confidence.628

We discuss results in more detail in Appendix ??.629

4.3 Post-Survey Insights630

In our post-task survey, we ask users about their ex-631

perience with the different explanation types. There632

is a strong tendency towards preferring NLEs the633

most, and saliency maps the least, as shown in Ta-634

ble 1. Participants also perceive the model with635

saliency maps to be on average 17% less accurate636

than the model with NLEs. This confirms our find-637

ing that users overestimate (and therefore overrely)638

on the model with NLEs. They deem the model639

with saliency maps as more inaccurate, but per-640

haps that caution is warranted given the artificially641

flawed model. Participants also evaluated each ex-642

planation type across five key characteristics (the643

exact questions can be found in Appendix F) of644

explanations, with NLEs scoring the highest on all645

5 (Figure 4).646

5 Summary and Outlook647

In this work, we conducted a large user study to648

assess the usefulness of SMs, NLEs, and their com-649

bination in a clinical setup with imperfect AI and650

Table 1: Ranking of models.

µRank #1 #2 #3 #4
NLE 1.85 38.9% 38.9% 20.0% 2.2%
Comb. 2.05 40.0% 23.3% 27.8% 8.9%
No XAI 2.98 14.4% 21.1% 16.7% 47.8%
SM 3.11 6.7% 16.7% 35.6% 41.1%

Figure 4: Five attributes of explainability methods,
ranked on a 7-point Likert scale.

XAI. We showed that EC and its alignment with 651

AC are significantly affecting the usefulness of ex- 652

planations. Textual explanations alone are prone to 653

lead to overreliance, but joint with saliency maps 654

are showing the most promise. 655
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Limitations656

The present study presents a distinct insight into657

how users engage with AI explanations in a spe-658

cific scenario. We aim to evaluate imperfect AI and659

imperfect XAI explanations in a clinical decision-660

support setting, rather than validating a clinical end661

product. It provides a snapshot, rather than a longi-662

tudinal study, leaving unexplored how interaction663

with models and explanations change over time.664

Similarly, the data used in this study consists of665

chest X-rays in a limited number of classes, hence666

more research is needed to understand how gener-667

alizable the results are for other classes and types668

of X-rays. It is worth noting that recruitment biases669

such as self-selection can impact the participants670

who chose to engage in this study. Methodolog-671

ically, to mitigate order effects and fatigue, we672

implemented breaks between sessions and clearly673

stated that participants interacted with a different674

AI in each session. Additionally, to incentivize per-675

formance, we announced beforehand that the top676

20% of participants completing the survey would677

gain double earnings.678
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A Model Selection 989

Here we provide details on the statistical model we 990

used to analyze our main results. The statistical 991

model was selected based on the nature of the task 992

and experiment design at hand and then verified 993

using inferential statistics. 994

To establish the significance of our main model 995

(1), we compare it against a baseline model that 996

disregards explanation types. The model equation 997

is as follows: 998

lij =β0

+ βa ∗ (Advice Correctness)

+ uParticipant

+ uImage

(2) 999

Fixed Effects. We first select fixed effects while 1000

including random effects. As reported in the main 1001

paper, we use an LRT to test whether the added 1002

variables improve model fit. We further find the 1003

AIC (Akaike Information Criterion) is improved: 1004

5504.3 to 5500.1. 1005

Random Effects. The study design strongly sug- 1006

gests the inclusion of random effects uImage and 1007

uParticipant as these introduce dependencies be- 1008

tween observations. For both models, we study the 1009

random effect variances and compare the model 1010

with and without its random effects. For the base- 1011

line model (2) we find that V ar(uP ) = 0.056 1012

and V ar(uI) = 0.400. Further, the LRT is sig- 1013

nificant suggesting the inclusion of random ef- 1014

fects: χ2
2 = 227.86, with p < .0001. We re- 1015

peat this analysis for the full model (1). We find 1016

V ar(uP ) = 0.059 and V ar(uI) = 0.295, which 1017

are qualitatively > 0. The LRT comparing this 1018

model with and without random effects is signifi- 1019

cant, χ2
2 = 144.43, p < .0001. In addition, we test 1020

incrementally only including uImage in compari- 1021

son to a model with both random effects. Analysis 1022

of both models suggests that uParticipant should be 1023

included. Hence, we only consider models with 1024

both random effects included. 1025

B Selected Participants 1026

We provide descriptive information on the 85 partic- 1027

ipants included in this study in Figures 5, 6, and 7. 1028

C Study X-ray sample 1029

In this section, we provide additional data on the 1030

process of annotating X-rays and sampling the set 1031

12



Figure 5: Self-assessed levels of experience and expertise in computer vision, NLP, explainable AI, and clinical
decision-support systems.

Turkey
1.2%
Germany
6.1%
India
3.7%
Nigeria
3.7%

Romania
48.8%

UK
29.3%

Participant Countries

Figure 6: Countries where participants have spend the
most time “studying or practicing” medicine.

of 80 scans included in this study.1032

D Qualitative Examples1033

Figure 10 contains representative examples show-1034

casing how Explanation Correctness (EC) affects1035

clinicians’ diagnostic accuracy. Each scenario in-1036

cludes the original chest X-ray (left) and the X-ray1037

overlaid with a saliency map (right), along with1038

the corresponding AI advice, Natural Language1039

Explanation (NLE), mean EC scores, and the par-1040

ticipants’ overall average diagnostic accuracy for1041

that image given different explanation types.1042

E Participant Behavior Analysis1043

This section (Figures 11 to 16 contains further1044

insights into participant behavior performance.1045

early student
5.3%
Consultant
4.0%

advanced student
22.7%

Non-rad training
20.0%

FY
9.3%

Rad training
38.7%

Medical Training Levels

Figure 7: Medical Training Level of Participants.

F Participant Survey 1046

F.1 Questions about level of AI expertise 1047

Participants have to agree to each of the following 1048

statements on a 7-point Likert scale from “Strongly 1049

Disagree” to “Strongle Agree”. 1050

• I understand the principles behind computer 1051

vision models (i.e., AI algorithms used for 1052

analysing images) and how they work. 1053

• I am familiar with language models (i.e. AI 1054

algorithms used to understand and generate 1055

language) and how they work. 1056

• I understand the concepts of explainable AI 1057

(XAI), i.e., methods that try to make AI al- 1058

gorithms’ decision-making more transparent 1059

(for example: heatmaps). 1060

13



Figure 8: The graphs show the distribution of explanation correctness scores assigned to the different explanation
types. In total, 3 explanations (NLE, SM, COMB) were annotated for 160 images.
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Figure 9: An illustration of the distribution of explanation correctness scores included in the study. The images
were selected to ensure that the distribution is as uniform as possible (representing all EC scores equally). It can be
seen that annotators assigned higher EC values to SM compared to NLE.
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Figure 10: (a) Confusing (Correct advice, Low explanation score): The AI correctly identifies aspiration but provides
a poorly rated explanation, leading to lower diagnostic accuracy compared to relying on the AI prediction alone.
(b) Convincing (Correct advice, High explanation score): The AI correctly identifies pneumonia and provides a
highly rated explanation, resulting in high diagnostic accuracy. (c) Revealing (Incorrect advice, Low explanation
score): The AI incorrectly suggests atelectasis, but the poorly rated explanation helps clinicians identify the error,
leading to higher accuracy compared to relying on the AI prediction alone. (d) Deceptive (Incorrect advice, High
explanation score): The AI incorrectly suggests alveolar haemorrhage and provides a highly rated yet misleading
explanation, leading clinicians to agree with the incorrect prediction and resulting in the lowest diagnostic accuracy.

• I regularly use AI-powered chat tools (e.g.1061

ChatGPT).1062

• I regularly interact with methods that make1063

AI algorithms’ decision-making more trans-1064

parent.1065

• I regularly use AI-based decision-support1066

tools for medical imaging.1067

F.2 Questions about attitude towards AI1068

Below are the 9 statements that were used to eval-1069

uate participants’ attitude towards AI in terms of1070

trust, ethical concern, and performance expectation.1071

We use the same Likert scale as above.1072

Trust1073

• I’m not comfortable using an AI if I don’t1074

fully understand how it makes a decision.1075

• The use of AI should always be accompanied1076

by the option for human review and interven-1077

tion.1078

• I trust AI-based recommendations as much as1079

those from human experts in a clinical setting.1080

Ethical Concerns 1081

• I am not concerned about the ethical implica- 1082

tions of using AI in healthcare. 1083

• Due to the dangers of AI, its adoption should 1084

be minimised. 1085

• The development of AI in healthcare should 1086

be tightly regulated. 1087

Performance Expectations 1088

• It won’t take long until AI will drastically 1089

transform healthcare. 1090

• AI in its current form is still far from being 1091

ready to be used in clinical practice. 1092

• I believe AI can improve the accuracy of diag- 1093

noses in healthcare. 1094

F.3 Explanation Type Feedback 1095

Questionnaire 1096

To capture participants’ objective feedback of ex- 1097

planation types we asked the following questions 1098

for each type (only the “trust” question for “No 1099

XAI”) 1100
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Figure 11: This plot shows the average decision speed
(time taken per image) and how it changed over time.
The overall trend is that participants become faster over
time. We can also see spikes at the start of each new
task, when they are introduced to a new explanation
type.

• I trusted this AI.1101

• The explanations that were provided for the1102

diagnoses were difficult to understand.1103

• It was transparent to me how the AI came to a1104

diagnosis.1105

• I didn’t rely on the AI’s explanations to decide1106

whether I agree with the diagnosis or not.1107

• I have learned something from the AI’s ex-1108

planations and they helped me become more1109

proficient in reading chest X-rays.1110

• How accurate do you think this AI was (in1111

%)?1112

For all but the last question users had to re-1113

spond on the same 7-point Likert scale as described1114

above.1115

G Additional Results1116

In Figure 17 we show the effect of explanation1117

types (given correct and incorrect advice) on hu-1118

man accuracy.1119

H Exploratory Analysis1120

H.1 Perceived Usefulness1121

Hypotheses. Participants report the perceived1122

usefulness of all explanations. We seek to under-1123

stand the association of this perceived usefulness1124

with the actual usefulness, measured by differences1125

the diagnostic accuracy. Further, we wish to under- 1126

stand if some explanation types are perceived as 1127

more useful than others. Finally, we are interested 1128

in the effect of explanation quality on the perceived 1129

usefulness. 1130

Modeling. We model human accuracy by aug- 1131

menting our main model (1) with the perceived 1132

usefulness and its first-order interaction effects: 1133

lij =β0

+ βa ∗ (AC)

+ βt ∗ (Explanation Type)

+ βp ∗ (Perceived Usefulness)

+ βt×a ∗ (ET) × (AC)

+ βt×e ∗ (ET) × (EC)

+ βp×a ∗ (PU) × (AC)

+ βp×e ∗ (PU) × (EC)

+ βp×t ∗ (PU) × (ET)

+ βt×e×a ∗ (ET) × (EC) × (AC)

+ uParticipant

+ uImage.

(3) 1134

We find this model yields significantly better model 1135

fit than our main model (1) indicating that the per- 1136

ceived usefulness adds above and beyond the ob- 1137

served effects based on the explanation correctness 1138

(and other variables), χ2
4 = 40.923, p < .0001. 1139

Perceived usefulness increases with explanation 1140

quality. We find that the perceived usefulness in- 1141

creases with an increasing explanation correctness 1142

for NLEs and by extension for combined explana- 1143

tions (see Figure 18). However, this trend is not 1144

visible for saliency maps, which is a surprising 1145

finding. 1146

Perceived usefulness interacts with advice cor- 1147

rectness. We use model (3) to study the effect 1148

of perceived usefulness on the diagnostic accuracy 1149

and find that such effect is present, albeit heavily 1150

moderated by the correctness of the advice. In- 1151

terestingly, when AI advice is incorrect, higher 1152

perceived usefulness is associated with worse di- 1153

agnostic accuracy as participants fail to detect that 1154

the explanation is misleading. This effect resem- 1155

bles that of the explanation quality. It noteworthy 1156

though that the misleading nature of deceptive ex- 1157

planations does indeed translate from explanation 1158

correctness into self reported measures of perceived 1159

usefulness. Beyond this joint effect of advice cor- 1160
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Figure 12: This 3x3 plot illustrates the distributions of accuracies, perceived usefulness, and decision speed by:
participant, image, and image-explanation pairing.
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Figure 13: A participant’s AI experience and under-
standing compared to their diagnostic accuracy across
all tasks.

rectness and perceived usefulness, we do not see a1161

clear trend between different types of explanations.1162

H.2 Confidence1163

We study agreement confidence, which we define1164

as the share of participants deeming a finding as1165

“Maybe present” ( low confidence) or “Definitely1166

present” (high confidence).1167

Modeling. We model whether participants in-1168

dicate “Definitely present” (Confidence = 1) or1169

“Maybe present” (Confidence = 0) using a bino-1170

mial generalized linear mixed model:1171

ηij =β0

+ βt ∗ (Explanation Type)

+ βac ∗ (Advice Correctness)

+ βec ∗ (Explanation Correctness)

+ βec×ac ∗ (AC) × (EC)

+ uParticipant

+ uImage

(4)1172

where ηij are the log-odds of confidence for partic-1173

ipant i and image j. We compare (4) against a null1174

model1175

ηij = β0 + uParticipant + uImage (5)1176

and find, our model is significant, χ2
6 = 13.454,1177

p = 0.036.1178

Figure 14: A participant’s expectation of AI compared
to their diagnostic accuracy across all tasks.

Confidence increases with insightful explana- 1179

tions. We distinguish between insightful explana- 1180

tions and deceptive explanations. The former are 1181

high quality explanations for correct advice, as well 1182

as, low quality explanations for incorrect advice, 1183

as they reveal the poor model workings. A decep- 1184

tive explanation is high quality for incorrect advice 1185

and low quality for correct advice. As presented 1186

in Figure 21, we find that deceptive explanations 1187

are associated with low confidence. With increas- 1188

ing insightfulness of the explanations, confidence 1189

increases. 1190

Explanation Types do not predict confidence. 1191

An interesting question is whether some types of 1192

explanations are associated with higher agreement 1193

confidence as reported by participants. As can seen 1194

in Figure 21, there is no statistically significant 1195

evidence supporting this. While there is no varia- 1196

tion for correct advice, NLEs are associated with 1197

higher confidence ratings than combined explana- 1198

tions (≈ 12%). However, this difference is not 1199

significant. 1200

H.3 Efficiency 1201

We study the time participants require to make a 1202

diagnostic decision based on the presented infor- 1203

mation. Besides the diagnostic accuracy, the time 1204

taken to examine a radiological study and reach a 1205

decision is an important metric as it influences the 1206

cost and efficiency of the diagnostic procedure. 1207
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Figure 15: Participant’s level of ethical concerns regard-
ing AI compared to their diagnostic accuracy across all
tasks.

The median time taken per study is 35.05 sec-1208

onds with an inter-quartile range of [24.25, 55.24].1209

As some users might have paused the experiment1210

(evident in very few, very long time intervals), the1211

time taken per study does not necessarily measure1212

the time required to reach a diagnostic decision.1213

Hence, we decide to limit our analysis to observa-1214

tions below 5 min. This excludes 0.6% of observa-1215

tions.1216

Modeling. We use a Gamma Linear Mixed1217

Model to answer our hypotheses in regards to the1218

decision time. As decision times are still over-1219

dispersed, we model the log logDecision Time.1220

We build our model as1221

ηij =β0

+ βt ∗ (Explanation Type)

+ uParticipant

+ uImage

(6)1222

and compare against the null model1223

ηij = β0 + uParticipant + uImage. (7)1224

We find that the larger model fits the data better1225

χ2
3 = 47367.00, p < .0001 and hence base our1226

analysis upon this.1227

Hypotheses. We aim to investigate two hypothe-1228

ses.1229

Figure 16: A participant’s trust in AI compared to their
diagnostic accuracy across all tasks.

1. Does the complexity of the type of explana- 1230

tions predict the time required to reach a diag- 1231

nostic decision? 1232

2. Does the explanation correctness influence 1233

the decision speed? In particular, we expect 1234

higher quality explanations to increase speed 1235

when the advice is correct. We also expect 1236

higher quality explanations to decrease speed 1237

when advice is incorrect, as conflicting, decep- 1238

tive information are shown. 1239

Complexity reduces decision speed. We model 1240

the decision speed (as described above) and obtain 1241

95% confidence intervals for the adjusted means as 1242

shown in Figure 22. We observe that the most com- 1243

plex explanations (NLE and combined) reduce deci- 1244

sion speed by 8s per image (26.8%). Saliency maps 1245

reduce the decision speed by only 4s (13.8%). All 1246

pairwise comparisons are significant with p < .001 1247

with the exception of combined explanations and 1248

NLEs (Bonferroni-Holm adjusted, log-log domain). 1249

One could argue that the help provided by the ex- 1250

planations reduces the decision times. However, 1251

we find that the additional time spent on processing 1252

the explanations outweighs such effect - if present: 1253

With the increasing complexity of the explanation, 1254

the decision speed reduces substantially. The main 1255

factor seem to be the NLEs (tCombined ≈ tNLE and 1256

tNLE > tSaliency ). 1257
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Figure 17: Human accuracy given explanation types (a) for both incorrect (b) and correct (c) advice.

2

3

4

5

−2 0 2

Explanation Correctness

U
se

fu
ln

es
s 

R
at

in
g

Type Combined NLE Saliency

Figure 18: The perceived usefulness of NLEs and com-
bined explanations increases with explanation quality
(observed trends). Saliency maps do not follow this
trend.
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Figure 19: The diagnostic accuracy increases with the
perceived usefulness of explanations when AI advice is
correct (right).
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Figure 20: We find that insightful explanations increase
reported confidence. Left panel is incorrect advice, right
panel correct advice.
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Figure 21: We find no significant effect of explanation
type on confidence.
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Figure 23: The explanation quality does not have an
effect on the decision speed. Neither in the top panel
(AI advice incorrect) nor the bottom panel (AI advice
correct) a clear trend between explanation correctness
and decision speed is visible.

Explanation Correctness does not influence de-1258

cision speed. We find that the correctness of ex-1259

planations does not significantly influence the de-1260

cision time. In Figure 23, we show that the log1261

decision time is almost constant across explana-1262

tion correctness. We find this is true across varia-1263

tions of Advice Correctness and Explanation Type.1264

Additionally, a GLMM including explanation cor-1265

rectness does not significantly improve the model1266

likelihood.1267

I Annotation process1268

When evaluating the AI advice, annotators are pre-1269

sented with a chest X-ray and a single class pre-1270

dicted by the AI (e.g. “pneumonia”). They are then1271

asked whether they think the class is “Not present”1272

(the finding can not be seen so is not worth mention-1273

ing or it can be mentioned negatively. For example:1274

“No signs of pneumonia.”), “Maybe present” (while1275

the evidence is inconclusive and/or there is some1276

ambiguity, it’s worth mentioning in the radiology 1277

report that the finding may be present. For exam- 1278

ple: “Bibasilar opacities may represent atelectasis 1279

or pneumonia.”), or “Definitely present” (the find- 1280

ing is clearly present and will be noted in the radi- 1281

ology report. For example: “There are clear signs 1282

for pneumonia.”), following a common convention 1283

in evaluating the presence of chest X-ray findings 1284

(cite MIMIC-CXR, Chexpert). Both the annotators 1285

and study participants are instructed to interpret the 1286

labels as above. 1287

The annotators also evaluate the textual explana- 1288

tion and heatmap for each prediction. Given that 1289

explanations can vary significantly in information 1290

richness Rivera-Garrido et al. (2022), we argue that 1291

a continuous scale is better suited than a binary cor- 1292

rectness label, as has been done by Morrison et al. 1293

(2023). Suppose our annotators deem the AI ad- 1294

vice (e.g. “pneumonia”) to be correct (“Definitely 1295

present” or “Maybe present”). In that case, we ask 1296

them “How correctly does the NLE (or heatmap) 1297

explain the AI advice pneumonia in this image?” 1298

and record their response on a 7-point Likert scale. 1299

We also ask them “If you consider the heatmap 1300

and the NLE as a joint explanation, how correctly 1301

do they explain the AI advice pneumonia in this 1302

image?” to obtain a correctness score for the com- 1303

bined explanation. In case they think the AI predic- 1304

tion is incorrect, we still want to get a measure of 1305

how much correct information an explanation con- 1306

tains and ask them the following: “How correctly 1307

does the heatmap (or NLE) highlight radiographic 1308

findings that would be relevant for the AI advice 1309

pneumonia in this image?”. An illustration of the 1310

annotator interface can be found in Figure 26. 1311

We obtain our consensus by selecting the over- 1312

all advice correctness as the majority vote of the 1313

three annotations, and the explanation correctness 1314

score of each explanation as the average of the three 1315

scores. We mean-center the explanation correct- 1316

ness scores for each type of explanation. Detailed 1317

outcomes of our annotation process can be found 1318

in the Appendix. 1319

J Study User Interface 1320

Figure 25 shows an example test case from our 1321

screening survey and 26 shows a screenshot (bar 1322

the overlaying explanations) of our study user in- 1323

terface. 1324
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Figure 24: The platforms annotators used to annotate chest x-rays.
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Figure 25: An example of one of the three test cases included in the screening survey.
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2. Patient context: This is real patient 
information that was provided by the 
referring physician.

4. Radiographic finding suggested 
by the AI model: Only one finding 
will be highlighted for every X-ray, 
and it is not necessarily the main 
finding. Base your agreement only on 
this specific finding.

5. AI Explanations: The different AI 
models in this study can provide 
different (or no) explanations for 
their decisions. The explanations 
can either consist of visual 
explanations ("heatmaps"), textual 
explanations, or a combination of 
both (as in this example).

3. AI model serial 
number: each session 
has a different AI

1. Original Chest X-ray

6. Agreement rating: To what extent do you agree with the AI 
whether the finding is present in the X-ray? 
You have the following options:
● Not present: The finding cannot be seen and does not 

need to be highlighted in the radiology report.
● Maybe present: While the evidence is inconclusive 

and/or there is some ambiguity, it is worth mentioning in 
the radiology report that the finding may be present.

● Definitely present: The finding is clearly present and has 
to be noted in the radiology report.

Here we ask solely you agree with the finding suggested by 
the AI, not whether you agree with the explanation the AI 
provides!

7. Explanation Usefulness: If the AI provided an explanation, 
you will rate how useful it was in deciding whether you agree with 
the AI. This is not necessarily the same as agreeing with 
explanation itself (for example: if an explanation helps you to see 
that the AI suggestion is incorrect).

Click HERE to rewatch 
the instruction video 

Figure 26: The instruction PDF that people have access to throughout the study. The 3-minute explanation video
will be shared once the authors are no longer anonymized. This also shows cases of the UI that we used throughout
the study (without the overlaying explanation boxes.
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