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Abstract

As Al models are becoming more powerful,
their adoption is becoming more widespread,
including in safety-critical domains. Explain-
able Al (XAI) has the aim of making these
models safer to use, for instance by making
their decision-making process more transpar-
ent. However, current explainability methods
are seldom evaluated in the way they are in-
tended to be used: by real-world end users.
To address this, we conducted a large-scale
user study with 85 clinicians in the context
of human-Al collaborative chest X-ray anal-
ysis. We evaluated three types of explanations:
saliency maps, natural language explanations,
and their combination. We specifically examine
how different explanation types influence users
depending on whether the Al is correct. We
find that the quality of explanations, i.e., how
much correct information they entail, and how
much this aligns with Al correctness, signifi-
cantly impacts the usefulness of the different
explanation types.

1 Introduction

A significant barrier to the adoption and regulatory
approval of deep learning models in medical imag-
ing is the limited understanding of the decision-
making processes underlying these models (Lan-
glotz et al., 2019). The combination of lack of
model robustness (Papernot et al., 2016), bias (al-
gorithms are prone to amplifying inequalities that
exist in the world) (Obermeyer et al., 2019; Hajian
et al., 2016), and the high stakes in clinical ap-
plications (Vayena et al., 2018) prevent black-box
algorithms from being used. XAl is proposed as a
promising solution to address the inherent issues
of model robustness, bias, and lack of transparency
in medical imaging (Borys et al., 2023).

While various XAI methods have been proposed
to increase the transparency of Al models, such as
saliency maps (Saporta et al., 2022), counterfac-
tual explanations (Schutte et al., 2021), and natural

language explanations (Kayser et al., 2022), the
practical utility of these approaches within clin-
ical settings remains poorly understood. While
there is an abundance of literature and regulatory
frameworks that advocate the significance of inter-
pretability in medical applications (Frasca et al.,
2024), only a few studies investigate how useful
these explanations are for end-users, with some
studies suggesting that these methods may not work
as well as anticipated (Adebayo et al., 2018; Hoff-
mann et al., 2021; Margeloiu et al., 2021; Shen and
Huang, 2020).

Evaluating the effectiveness of XAl explanations
is a challenging task, as there can often be a vari-
ety of correct ways to explain a decision and the
criteria for judging their quality are diverse (e.g.,
plausibility, faithfulness, clarity (Miller, 2019)).
As one main value of explanations is their utility
to end-users, it’s crucial to evaluate explanations
with human subjects. As explanations are prone
to confirmation bias and user preference doesn’t
always correspond to desired explanation quality
requirements, proxies are developed for evaluat-
ing explanation usefulness (Ehsan and Riedl, 2020;
Liao et al., 2022; Liao and Varshney, 2021; Ehsan
et al., 2021).

We address this by carrying out a large-scale hu-
man subject study to evaluate the usefulness of nat-
ural language explanations (NLEs), saliency maps
(SM), and a combination of both (COMB), in the
setting of imperfect Al and imperfect XAl Specif-
ically, we investigate how different explanation
types impact users in a clinical decision-support
system (CDSS) setting, with respect to both Al ac-
curacy and XAI quality. As the main purpose of
Al in medical applications is arguably to enhance
practitioners in CDSS settings (Langlotz, 2019;
Agrawal et al., 2019), our proxy for the usefulness
of explanations is how much they improve human
performance in a human-Al collaborative chest X-
ray analysis. In our study, 85 clinicians analyse 80



images each, under the setting of four different Al
models. SMs, the prevailing mode of interpretabil-
ity in medical imaging (Van der Velden et al., 2022),
attribute importance weights to regions in an im-
age. We compare them to NLEs, for which there
have been calls to deploy them in clinical practice
(Reyes et al., 2020), and which are known to be
user-friendly and able to explain more complex
reasoning (Kayser et al., 2022). We also study
whether a combination of them further enhances
human performance.

Our results show that explanation correctness
(EC) is an important factor in deciding whether Al
explanations are helpful or harmful to end users.
When the Al is correct, incorrect explanations are
detrimental to human-Al performance, but equally,
when the Al is incorrect, correct explanations mis-
lead users into agreeing with the Al. We also find
that the combination of NLEs and SMs is the most
useful, and interestingly is better than SMs even
though NLEs on their own are significantly worse.

2 Related Work

XAI in medical imaging XAI methods can be
broadly classified into post-hoc explainers or self-
explaining models, i.e. approaches that either ex-
plain trained black-box Al models, or approaches
that are inherently designed and trained to be ex-
plainable. Both types have been applied widely in
medical imaging applications (Irvin et al., 2019;
Thomas et al., 2019; Verma et al., 2020; Koh et al.,
2020; Gale et al., 2018). In this study we fo-
cus on SMs (post-hoc), a common XAI method
for medical imaging (Irvin et al., 2019; Thomas
et al., 2019), and NLEs (self-explainable), which
are user-friendly, can convey complex reasoning,
are promising for clinical applications (Reyes et al.,
2020), and ever more widespread with the rise of
large language models.

Human-AI collaboration in medical imaging
The rapid advancements in Al spurred discussions
about its capability to automate processes and out-
perform humans in specific tasks. However, a par-
allel discourse is centered on how Al can enhance,
rather than replace, humans, a domain referred to
as human-Al collaboration. This has been studied
in areas such as content generation and modera-
tion (Lee et al., 2022; Zhang et al., 2022; Jhaver
etal., 2019; Lai et al., 2022), and visual recognition
(Colin et al., 2022; Kim et al., 2022). Especially
in medical imaging, where concerns around safety

and trust make autonomous deployment of Al mod-
els challenging, there is an emphasis on how Al can
collaboratively support medical professionals. Clin-
ical Decision Support Systems (CDSSs), where
Al models offer recommendations to humans for
specific tasks, are a common form of human-Al
collaboration in clinical practice.

DCSSs have been getting increasing attention in
radiology. Existing studies investigate this form
of human-AlI interaction by looking at how the
sequential order of human and Al decisions affect
performance (Fogliato et al., 2022), what influence
the assertiveness of Al suggestions has (Calisto
et al., 2023), or which kind of users benefit the
most from it (Gaube et al., 2023). A recent large-
scale study conducted by Agarwal et al. (2023)
shows that, in most cases, human performance is
enhanced when using DCSSs.

In this work, we built upon this literature by
evaluating the usefulness of different XAl expla-
nations in the context of a DCSS for chest X-ray
analysis. However, in contrast to previous works,
we specifically focus on imperfect Al and XAI by
controlling the accuracy of both Al predictions and
explanations.

Evaluating XAI Evaluating Al explanations is
less straightforward than evaluating e.g., predic-
tion performance. The lack of unique ground truth,
the wide range of interpretability goals, as well as
the human-computer interaction aspect, make this
more difficult. Thus, differences in the effective-
ness of existing XAl methods are not well under-
stood (Gaube et al., 2023). For these reasons, a
growing body of work is evaluating XAI methods
through the lens of human subject studies, follow-
ing one of three predominant methodologies.
User Preference Some studies directly measure
human participants’ preferences for XAl explana-
tions. For instance, Adebayo et al. (2020) simu-
lated a quality assurance context, requesting partic-
ipants to assess the deployment readiness of Al al-
gorithms, which came with different kinds of expla-
nations. However, Hase et al. (2020) demonstrated
that user preference does not correlate with how
well users can predict model behavior, a proxy for
how transparent the model is. Additionally, there
are concerns that humans might fall prey to confir-
mation bias, the tendency to believe that the system
used the features they think are most important
(Rudin et al., 2021-03-20). There is also evidence
that XAI methods can unreasonably increase the
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Figure 1: Study design overview.

confidence in a model’s prediction (Kunkel et al.,
2019; Schaffer et al., 2019; Ghassemi et al., 2018;
Eiband et al., 2019).

Model Predictability. Arguably, the closest
proxy for full model transparency is to measure
how well humans can predict a model’s predictions
on unseen data. If users achieve 100% accuracy,
it would mean the model is entirely transparent to
them. While this method is common to evaluate
XALI explanations (Alqaraawi et al., 2020; Colin
et al., 2022; Yang et al., 2019; Shen and Huang,
2020), its applicability to radiology is limited, as
predictions are highly nuanced and multiple labels
can apply and each come with their own, different
explanations.

Human-AI Collaboration. Another approach
to evaluate the usefulness of XAI explanations is
to measure how much they improve human perfor-
mance in the Al-human collaborative setting. The
goal of XAl in this setting is to guide the user to
appropriate evidence when the model is correct, or
shed light on faulty Al decision-making when it
is wrong. Chu et al. (2020) measured the impact
of XAI methods in helping users predict age given
images of human faces. Kim et al. (2022) analyzed
performance changes in a bird classification task
under the guidance of various XAI techniques. In
clinical applications, where practitioners see a need
for explanations to justify “their decision-making
in the context of a model’s prediction” (Tonekaboni
et al., 2019), this evaluation method is particularly
well suited and hence also used in this work. Ex-
isting work most similar to ours is by Morrison
et al. (2023), who are the first to look at NLEs
and consider imperfect XAI. We differ by the task
(safety-critical CDSS vs bird classification), contin-

uous EC scores instead of binary, considering EC
as how well it explains the Al advice even when
incorrect, looking at SMs SMs+NLE:s).

Evaluating XAl in Clinical DCSS. Few works
looked at the usefulness of XAl in clinical applica-
tions. Du et al. (2022) consider a simple, 5-feature
set-up to compare explanation-based and feature
attribution methods in the CDSS setting. Rajpurkar
et al. (2020); Ahn et al. (2022) provide visual expla-
nations when evaluating the usefulness of a DCSS,
but they do not look at the effect that XAl expla-
nations had. Gaube et al. (2023) find that SMs
improve the diagnosis performance for non-task ex-
perts, but they do not compare it to other XAI meth-
ods. Tang et al. (2023) look at Al tools for lung
nodule detection in chest X-rays. They compare
having no Al help, to having just the Al prediction,
Al prediction with confidence score, and Al pre-
diction with confidence score and localisation map.
They find that while Al prediction helps, neither
type of Al with the above forms of explanations
(e.g., confidence score, localisation map) leads to
any significant improvement over no Al

Our work is the first to study and compare the
effect of different explanation types, and the inter-
action with advice and explanation correctness, on
the complex vision task of chest X-ray analysis.

3 Methods

We evaluate the usefulness of SMs, NLEs, and their
combination in a clinical decision-support context.
We also control for Al advice correctness and ex-
planation correctness (EC). EC captures to what
extent the information provided in an explanation
is clinically correct. We obtain the ground-truth
for both advice and explanation correctness from



the annotations of three expert radiologists. EC
is rated on a 7-point Likert scale, evaluating both
individual and combined explanation effectiveness.
The annotator interface to provide these metrics is
shown in Figure 24 in the Appendix. The study
design is outlined in Figure 1.

3.1 Study Overview

Our pre-registered, IRB-approved user study en-
tails both quantitative and qualitative measure-
ments involving 85 clinical participants. The study
was developed through iterative pilot studies and
consultations with expert clinicians. Our goal is to
evaluate the usefulness of XAl explanations. We
consider usefulness to be the ability of an explana-
tion to help users discern whether a model predic-
tion is correct. A natural way to evaluate usefulness
is in a human-AlI collaborative setting, i.e., CDSSs.

Our CDSS provides a suggestion for each im-
age, consisting of a single radiographic finding
predicted by the Al, i.e., the Al advice. To simplify
our design, we focus on one finding per image,
and communicate to participants that this is not
necessarily the only or most important finding.

We study the following four scenarios: (i) No
XALI (participants receive the Al model’s advice
without any explanation), (ii) SM (participants re-
ceive the model’s advice and an SM), (iii) NLE
(participants receive the model’s advice and an
NLE), (iv) COMB (participants receive the model’s
advice, an SM, and an NLE).

We consider the case of an imperfect Al and
XAl, as we want to explicitly study how good or
bad explanations can help users identify whether
the model is correct. We simulated an environment
where the model has an accuracy of 70%, to strike
a balance between having a reasonable representa-
tion of correct and incorrect model predictions and
not making the model appear overly unreliable. We
also sample image-explanation pairs to ensure that
the overall distribution of EC scores is as uniform
as possible (to get a good representation of differ-
ent EC levels). The distributions are shown in the
appendix in Figure 9 and 8.

In each of the four randomly shuffled sessions,
participants are shown 20 examples, which consist
of a chest X-ray, the patient context, the Al advice,
e.g., “Pneumonia”, and a scenario-specific expla-
nation (see a snapshot of the user interface in Fig-
ure 25). They are then asked to express their agree-
ment with the Al advice (“Not present”, “Maybe

present”, or “Definitely present”). We also ask
them whether they found the explanation useful in
their decision-making (e.g. “How useful was the Al
model’s explanation in helping you decide whether
the AI was right or wrong in suggesting pneumo-
nia.”). This encourages them to engage with the
explanation and it enables us to quantify the rela-
tionship between perceived and actual explanation
usefulness.

To mitigate order effects and user fatigue, we
randomize the order of the tasks for each partici-
pant, ensuring that each task is equally distributed
as the first, second, third, or last. We also enforce
three-minute breaks between each session, where
we give participants the option to follow a guided
meditation. We also emphasize multiple times that
the users are engaging with different Al models in
each task, to avoid carry-over effects where a per-
son’s engagement with explanation type A affects
their perception of the CDSS and therefore their
subsequent engagement with explanation type B.
Finally, we introduce an incentive of doubling the
compensation for participants who perform in the
top 20%. The aim of this ensure users are dedi-
cated through the 80 examples. At the end of the
four tasks, users fill out a post-study survey. Here
we ask them about their experience with the differ-
ent Al explanations and measure how their attitude
towards Al has been affected.

3.2 Participant Recruitment

As our aim is to study the effect of different ex-
planation types in an imperfect (X)AI setting, we
recruit participants with foundational competence
in reading chest X-rays, who are knowledgeable
enough to not rely wholly on the Al system, but are
still likely to engage with the AI’s predictions and
explanations. Indeed, Gaube et al. (2023) found
that increasing expertise in radiology leads to an
increased likelihood of dismissing Al suggestions.
Furthermore, CDSSs are generally seen as most
useful for people who have medical training but
are not experts in the task at hand (Bussone et al.,
2015). This is particularly relevant in scenarios
where there is a scarcity of expert radiologists, and
non-expert clinicians benefit from collaborating
with Al systems (Gaube et al., 2023).

For the above reasons, our primary target group
for this study are medics who have undergone train-
ing in reading chest X-rays, but who are not spe-
cialist radiologists. All potential participants fill



out a screening document, which contains a self-
assessment as well a quiz on three chest X-rays
that fulfil the medical student curriculum of the
Royal College of Radiologists (UK) (an example
is shown in Figure 25). These X-rays contain ex-
amples of pneumonia, pleural effusion, and lobe
collapse, which are the most common classes in
our dataset. We then select our final batch of par-
ticipants based on these forms. In order to deter-
mine the sample size, we ran four pilot studies and
used the estimated effects to run a power analy-
sis using the model described in 1. We found that
80 participants should provide significant power.
We ended up recruiting 85 participants, as we sent
out extra invitations to account for dropouts. Our
participants range from medicine students to radi-
ology residents (see detailed characteristics in Ap-
pendix B. We recruit participants via mailing lists
and networks focusing mainly on COUNTRIES
ANONYMIZED. Participants are compensated for
their time with an voucher worth an equivalent of
$38 for the one-hour study. The entire task is con-
ducted online on a custom streamlit platform that
we will make publicly available for future use.

3.3 Model Implementation

We train a model following the Ratchet architec-
ture (Kayser et al., 2022). It consists of a DenseNet
vision encoder (Huang et al., 2017) that generates
7x7 1024-dimensional feature maps of the image.
These are then used to perform multi-label image
classification, and given as prefixes to a transformer
decoder for NLE generation. The NLE is further
conditioned on the predicted label. For each posi-
tively predicted class an NLE is generated.

The model was trained on the MIMIC-NLE
dataset (Kayser et al., 2022). The NLEs are all
directly extracted from radiology reports that were
recorded during routine clinical practice. Each
NLE links a finding to its evidence in a radio-
graphic scan, including details about location, size,
severity, certainty, and differential diagnoses. Ex-
amples of NLEs are shown in the Appendix in
Figure 10. The model obtained a weighted AUC of
0.75. Note that the main purpose wasn’t to maxi-
mize model performance. Instead, we specifically
focus on the case of imperfect Al, where a model,
for various reasons, such as limited or biased data,
does not perform optimally. This is different from
existing work in human-Al collaboration, where
they often consider AI models that outperform hu-

mans to investigate how they could be used to im-
prove human performance (Tschandl et al., 2020;
Fogliato et al., 2022). Nonetheless, our model still
performs favorably on existing benchmarks, ensur-
ing that our model and the generated explanations
are of a realistic standard (Irvin et al., 2019).

The NLEs that the model generates are learned in
a purely supervised way. They, therefore, capture
the nuances around assertiveness and the certainty
of findings that naturally occur in clinical practice.
For this reason, we consider assertiveness an inte-
gral part of the NLEs, as opposed to a design factor
that can be studied by itself (Calisto et al., 2023).

For SMs, we implement Grad-Cam (Selvaraju
et al., 2017) following Gildenblat and contributors
(2021). We ran it on our model trained for both im-
age classification and NLE generation. We chose
Grad-CAM as it is widely used and previous work
has shown that out of the commonly used saliency
techniques, it is the most accurate one for medical
imaging (Saporta et al., 2022). We have also quali-
tatively verified it by comparing it to Grad-Cam++,
HiResCam, AblationCAM, and XGradCAM.

3.4 Data Selection

In this section, we describe how we obtained the
set of 80 images used in our study.

3.4.1 Acquiring AI Predictions

We used a multi-label classification Al trained on
the MIMIC-CXR dataset, which assigns a logit
to each of the 10 classes. We established thresh-
olds for each class by maximizing the Youden
Index to optimize the balance between sensitiv-
ity and specificity. The selected classes for our
study—pneumonia, atelectasis, pulmonary edema,
fluid overload/heart failure, aspiration, and alveolar
haemorrhage—were chosen for their clinical sig-
nificance and detectability in chest X-rays alone,
after consultations with radiologists.

3.4.2 Expert annotation

Even though our chest X-rays are paired with ra-
diology reports, we follow existing work (Gaube
etal., 2023; Ahn et al., 2022; Seah et al., 2021) and
have three experienced radiologists annotate our
Al advice and explanations.

Radiologists classify each Al-predicted find-
ing as Not present, Maybe present, or Definitely
present, based on established medical imaging stan-
dards. They also rate the correctness of textual and
heatmap explanations on a 7-point Likert scale,



evaluating both individual and combined explana-
tion effectiveness. The majority vote determines
the advice correctness, while explanation correct-
ness scores are averaged and mean-centered. More
details, including the user interface used by our
annotators, are shown in Appendix I.

3.4.3 Selecting the study examples

From the annotated set, we carefully selected 80
images, ensuring a similar distribution of correct
and incorrect Al predictions across all our classes.
We also excluded ambiguous cases with significant
annotator disagreement. Additionally, we sample
examples such that the distribution of EC scores is
as uniform as possible.

For our selected sample we obtain pairwise
kappa scores of 0.451, 0.458, and 0.502 between
the three annotators (grouping “Maybe present”
and “Definitely present” as positive). Note that
if we leave out “Maybe present” votes, we get per-
fect kappa scores because of the above exclusion
criteria. Further details on our selected samples are
given in the Appendix C.

3.4.4 Distributing examples across
participants and tasks

These 80 images were evenly distributed across
four tasks and multiple participants, ensuring each
image was equally represented across all tasks.
This method prevents task-specific biases and main-
tains a consistent 70% accuracy rate for Al advice
across different explanation types.

4 Results
4.1 Statistical Model

We model our results using a Generalized Linear
Mixed-Effects Model that predicts human accuracy
for each instance. The model is given below:

lij =Po
+ Ba * (AC)
+ B * (Explanation Type)
+ Bixa * (Expl. Type) x (AC)
+ Bixe * (Expl. Type) x (EC)
+ Bixexa * (Expl. Type) x (EC) x (AC)
+ UPparticipant

+ UTmage
)
This model predicts the log-odds of the human
accuracy [;; for the i-th participant on the j-th im-

age. As fixed effects, we consider advice correct-
ness AC (i.e., whether Al advice is correct or not),
explanation type (None, NLE, SM, and combined),
explanation correctness EC and different interac-
tions of these effects. As random effects, we in-
clude the participants (which can have different
skill levels) and the images (which can have differ-
ent difficulty levels). A rationale for the different
interaction terms is given below:

* (Explanation Type) x (AC): We are assuming
that different explanation types have a differ-
ent impact on human accuracy when advice is
correct or incorrect. For example, explanation
types prone to confirmation bias will have a
particular effect when the advice is incorrect.

* (Expl. Type) x (EC): Note that we do not in-
clude (EC) as a main effect. This is because
(EC) between different explanation types is
not directly comparable (e.g. NLEs con-
tain more specific information and therefore
can contain both more correct information
and more false information). Therefore we
consider (Explanation Correctness) as a type-
specific metric and need to include the inter-
action term.

* (Expl. Type) x (EC) x (AC): We need to
model this interaction as (EC) is strongly cor-
related to (AC) (the (EC) scores for incorrect
advice are much lower).

We test the model statistically and find that both
random and fixed effects should be included. In
particular, we perform a likelihood ratio test (LRT)
between the model in (1) and a baseline model dis-
regarding explanation correctness and interactions
and find that the full model yields significantly bet-
ter fit x3, = 28.21, p = .005 (see Appendix A).

4.2 Main Hypotheses

Our main goal is to understand how different ex-
planation types affect human accuracy, which is
our proxy for explanation usefulness. More specif-
ically, we are interested in how explanation and
advice correctness factor into this. In the context
of imperfect XAl, we consider the following clas-
sification of EC. Qualitative examples representing
the different subtypes are given in Figure 10

* Explanations are insightful when their correct-
ness aligns with advice correctness: Convinc-
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ing explanations are correct when the Al ad-
vice is correct; Revealing explanations are in-
correct when the Al advice is incorrect.

» Explanations are deceptive when their correct-
ness misaligns with advice correctness: Mis-
leading explanations are correct when the Al
advice is incorrect; Confusing explanations
are incorrect when the Al advice is correct.

EC needs to align with AC: Our results show
that insightful explanations, i.e., where EC aligns
with AC, are helpful in the decision-support setting.
Figure 2 illustrates how higher EC scores harm
human accuracy when the Al prediction is incor-
rect (deceptive explanations) and benefits human
accuracy when the Al advice is correct (insight-
ful explanations). These effects are less strong for
NLEs than for the visual methods.

In Figure 3 we look at human accuracy by ex-
planation type for the four EC scenarios described
earlier. We consider high EC to be the upper half
of EC scores by explanation type, and low EC is
the lower half.

We observe that as a general trend human accu-
racy is harmed when explanations are deceptive,
and people would be better off using no explana-
tion. For SMs, human accuracy goes down 4.9%
(p < .05) when AC and EC don’t align. For com-
bined explanations, it goes down 3.9% (p = .06).
On the contrary, for insightful EC scores, human
accuracy goes up 4.3% (p < .005) for combined
explanations. These effects are not seen for NLEs,
suggesting that the visual explanations are more
helpful to users to discern whether an AI’s decision-
making is flawed.

When insightful, combine SM and NLE: For
insightful explanations, combining SMps and

NLE:s provides significant improvements compared
to the other conditions: 6.3% (p < .005) against
No XAI 7.1% (p < .005) against NLEs, and 4.5%
(p < .05) against SM. This suggests that partici-
pants can integrate the information from both visual
and textual cues to identify when an Al is wrong or
right. Interestingly, even though insightful NLEs
on their own are worse than “No AI”, combining
them with visual explanations leads to a significant
boost.

NLEs on their own lead to overreliance:
Across AC and EC scores, differences between
our four conditions cancel each other out and we
observe no significant differences (see Figure 17
in the Appendix. However, in the case of incor-
rect advice, there is a significant drop in human
accuracy for NLEs compared to combined (-7.3%,
p < 0.05) and SM (-6.2%, p < 0.05). This sug-
gests that NLEs make people more likely to agree
with the Al when it is incorrect. Especially when
EC is comparatively high but the Al advice is in-
correct, people are 10.1% (p < 0.05) more likely
to agree with the Al than without explanation. This
also means that for the scenario of correct advice
and comparatively low EC explanations, NLEs lead
to higher performance (6.6%, p < 0.05 versus SAL
and 5.7% p < 0.05 versus combined), as people
are more likely to agree with low EC NLEs. Over-
all, people agree with the Al 67.3% of the time
when it’s accompanied by an NLE, compared to
63.8% on average for the other explanation types.
This aligns with our survey results, which show a
clear user preference for NLEs, as well as the per-
ception that the NLE model was the most correct
one (participants were not aware that they all have
the same share of correct/incorrect advice). This
could suggest that the assertiveness (Calisto et al.,
2023) and/or human-like (Breum et al., 2024) na-
ture of NLEs could lead people to overly trust and
rely on AL

4.2.1 Additional Results

In further analyses, we study the time participants
require to reach a diagnostic decision (decision
speed), their decision confidence and the perceived
helpfulness of different explanation types. We find
that with increasing complexity of explanations
(NLE > Saliency > No XAl), participants require
more time to reach a decision. Further, we find that
the measured confidence is similar across explana-
tion types, but increases significantly as explana-
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Figure 3: Main results. The error bars represent standard errors. .p < 0.1, *p < 0.05, * * p < 0.01, statistically

non-significant are left unmarked.

tions get more insightful. Finally, we observe that
higher quality NLEs are rated as more useful and
we find an effect of perceived usefulness on the di-
agnostic accuracy that resembles that of confidence.
We discuss results in more detail in Appendix ??.

4.3 Post-Survey Insights

In our post-task survey, we ask users about their ex-
perience with the different explanation types. There
is a strong tendency towards preferring NLEs the
most, and saliency maps the least, as shown in Ta-
ble 1. Participants also perceive the model with
saliency maps to be on average 17% less accurate
than the model with NLEs. This confirms our find-
ing that users overestimate (and therefore overrely)
on the model with NLEs. They deem the model
with saliency maps as more inaccurate, but per-
haps that caution is warranted given the artificially
flawed model. Participants also evaluated each ex-
planation type across five key characteristics (the
exact questions can be found in Appendix F) of
explanations, with NLEs scoring the highest on all
5 (Figure 4).

5 Summary and Outlook

In this work, we conducted a large user study to
assess the usefulness of SMs, NLEs, and their com-
bination in a clinical setup with imperfect Al and

Table 1: Ranking of models.

pRank #1 #2 #3 #4
NLE 1.85 389% 38.9% 20.0% 2.2%
Comb. 2.05 40.0% 233% 27.8% 8.9%
No XAI 2.98 144% 21.1% 16.7% 47.8%
SM 3.11 6.7% 16.7% 35.6% 41.1%
Reliance
- SAL
-~ NLE
comMB
Transparency ~No XAI
5 - \\\ Learning Factor
BERESENY 5 6 7

Understandability

Trust

Figure 4: Five attributes of explainability methods,
ranked on a 7-point Likert scale.

XAI. We showed that EC and its alignment with
AC are significantly affecting the usefulness of ex-
planations. Textual explanations alone are prone to
lead to overreliance, but joint with saliency maps
are showing the most promise.



Limitations

The present study presents a distinct insight into
how users engage with Al explanations in a spe-
cific scenario. We aim to evaluate imperfect Al and
imperfect XAl explanations in a clinical decision-
support setting, rather than validating a clinical end
product. It provides a snapshot, rather than a longi-
tudinal study, leaving unexplored how interaction
with models and explanations change over time.
Similarly, the data used in this study consists of
chest X-rays in a limited number of classes, hence
more research is needed to understand how gener-
alizable the results are for other classes and types
of X-rays. It is worth noting that recruitment biases
such as self-selection can impact the participants
who chose to engage in this study. Methodolog-
ically, to mitigate order effects and fatigue, we
implemented breaks between sessions and clearly
stated that participants interacted with a different
Al in each session. Additionally, to incentivize per-
formance, we announced beforehand that the top
20% of participants completing the survey would
gain double earnings.
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A Model Selection

Here we provide details on the statistical model we
used to analyze our main results. The statistical
model was selected based on the nature of the task
and experiment design at hand and then verified
using inferential statistics.

To establish the significance of our main model
(1), we compare it against a baseline model that
disregards explanation types. The model equation
is as follows:

lij =Bo
+ Bq * (Advice Correctness) )
+ UPparticipant
+ UI'mage
Fixed Effects. We first select fixed effects while

including random effects. As reported in the main
paper, we use an LRT to test whether the added
variables improve model fit. We further find the
AIC (Akaike Information Criterion) is improved:
5504.3 to 5500.1.

Random Effects. The study design strongly sug-
gests the inclusion of random effects w7y,q4e and
UParticipant aS these introduce dependencies be-
tween observations. For both models, we study the
random effect variances and compare the model
with and without its random effects. For the base-
line model (2) we find that Var(up) = 0.056
and Var(ur) = 0.400. Further, the LRT is sig-
nificant suggesting the inclusion of random ef-
fects: x3 = 227.86, with p < .0001. We re-
peat this analysis for the full model (1). We find
Var(up) = 0.059 and Var(uy) = 0.295, which
are qualitatively > 0. The LRT comparing this
model with and without random effects is signifi-
cant, X% = 144.43, p < .0001. In addition, we test
incrementally only including 7,44 in compari-
son to a model with both random effects. Analysis
of both models suggests that % pyrticipant Should be
included. Hence, we only consider models with
both random effects included.

B Selected Participants

We provide descriptive information on the 85 partic-
ipants included in this study in Figures 5, 6, and 7.

C Study X-ray sample

In this section, we provide additional data on the
process of annotating X-rays and sampling the set
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Figure 5: Self-assessed levels of experience and expertise in computer vision, NLP, explainable Al, and clinical

decision-support systems.

Participant Countries

Nigeria

Romania
48.8

Figure 6: Countries where participants have spend the
most time “studying or practicing” medicine.

of 80 scans included in this study.

D Qualitative Examples

Figure 10 contains representative examples show-
casing how Explanation Correctness (EC) affects
clinicians’ diagnostic accuracy. Each scenario in-
cludes the original chest X-ray (left) and the X-ray
overlaid with a saliency map (right), along with
the corresponding Al advice, Natural Language
Explanation (NLE), mean EC scores, and the par-
ticipants’ overall average diagnostic accuracy for
that image given different explanation types.

E Participant Behavior Analysis

This section (Figures 11 to 16 contains further
insights into participant behavior performance.

Medical Training Levels

early student

0.3 Non-rad training
Consultant 200

advanced student

Rad training

Figure 7: Medical Training Level of Participants.

F Participant Survey

F.1 Questions about level of Al expertise

Participants have to agree to each of the following
statements on a 7-point Likert scale from “Strongly
Disagree” to “Strongle Agree”.

* [ understand the principles behind computer
vision models (i.e., Al algorithms used for
analysing images) and how they work.

* [ am familiar with language models (i.e. Al
algorithms used to understand and generate
language) and how they work.

* | understand the concepts of explainable Al
(XAI), i.e., methods that try to make Al al-
gorithms’ decision-making more transparent
(for example: heatmaps).
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Figure 8: The graphs show the distribution of explanation correctness scores assigned to the different explanation
types. In total, 3 explanations (NLE, SM, COMB) were annotated for 160 images.
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a. Confusing: Correct advice, Low explanation score

class: aspiration
NLE: Patchy opacities in the lung bases may reflect atelectasis, but
iration or ia should also be i

Explanation  Mean
type Rating

NLE 146

Heatmap -028

Combined 1.04

Tasktype  Mean
accuracy

NLE 064

Heatmap 047

Combined 056

PredOnly  0.71

c. Revealing: Incorrect advice, Low explanation score
class: atelectasis
NLE: Streaky opacities in the lung bases likely reflect atelectasis.

Mean
Rating

Explanation
type
NLE 246
Heatmap -3.28

Combined 3.04

Mean
accuracy

Task type

NLE
Heatmap  0.81

0.56

Combined

PredOnly

b. Convincing: Correct advice, High explanation score

class: pneumonia
NLE: Right lower lobe opacity is likely atelectasis, but pneumonia is a

possibility.

Heatmap 1.06

Combined 163

Task type

NLE 1.0
Heatmap

Combined

PredOnly

d. Deceptive: Incorrect advice, High Explanation score

class: alveolar hemorrhage
NLE: Right greater than left bilateral perihilar opacities could be due to asymmetric
edema, infection, aspiration, or hemorrhage.

Explanationtype  Mean
Rating
NLE 021

Heatmap 094

Combined 037

Mean
accuracy

Task type

NLE 029
Heatmap  0.38
Combined ~ 0.12

PredOnly  0.80

Figure 10: (a) Confusing (Correct advice, Low explanation score): The Al correctly identifies aspiration but provides
a poorly rated explanation, leading to lower diagnostic accuracy compared to relying on the Al prediction alone.
(b) Convincing (Correct advice, High explanation score): The Al correctly identifies pneumonia and provides a
highly rated explanation, resulting in high diagnostic accuracy. (c¢) Revealing (Incorrect advice, Low explanation
score): The Al incorrectly suggests atelectasis, but the poorly rated explanation helps clinicians identify the error,
leading to higher accuracy compared to relying on the Al prediction alone. (d) Deceptive (Incorrect advice, High
explanation score): The Al incorrectly suggests alveolar haemorrhage and provides a highly rated yet misleading
explanation, leading clinicians to agree with the incorrect prediction and resulting in the lowest diagnostic accuracy.

* | regularly use Al-powered chat tools (e.g.
ChatGPT).

* I regularly interact with methods that make
Al algorithms’ decision-making more trans-
parent.

* I regularly use Al-based decision-support
tools for medical imaging.

F.2 Questions about attitude towards Al

Below are the 9 statements that were used to eval-
uate participants’ attitude towards Al in terms of
trust, ethical concern, and performance expectation.
We use the same Likert scale as above.

Trust

* I’'m not comfortable using an Al if I don’t
fully understand how it makes a decision.

* The use of Al should always be accompanied
by the option for human review and interven-
tion.

e | trust Al-based recommendations as much as

those from human experts in a clinical setting.

Ethical Concerns

* [ am not concerned about the ethical implica-
tions of using Al in healthcare.

* Due to the dangers of Al, its adoption should
be minimised.

* The development of Al in healthcare should
be tightly regulated.

Performance Expectations

* It won’t take long until Al will drastically
transform healthcare.

* Al in its current form is still far from being
ready to be used in clinical practice.

* I believe Al can improve the accuracy of diag-
noses in healthcare.

F.3 Explanation Type Feedback
Questionnaire

To capture participants’ objective feedback of ex-
planation types we asked the following questions
for each type (only the “trust” question for “No
XAI”)
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Figure 11: This plot shows the average decision speed
(time taken per image) and how it changed over time.
The overall trend is that participants become faster over
time. We can also see spikes at the start of each new
task, when they are introduced to a new explanation

type.

e | trusted this Al

* The explanations that were provided for the
diagnoses were difficult to understand.

* It was transparent to me how the Al came to a
diagnosis.

» I didn’t rely on the AI’s explanations to decide
whether I agree with the diagnosis or not.

* I have learned something from the Al’s ex-
planations and they helped me become more
proficient in reading chest X-rays.

* How accurate do you think this Al was (in
%)?

For all but the last question users had to re-
spond on the same 7-point Likert scale as described
above.

G Additional Results

In Figure 17 we show the effect of explanation
types (given correct and incorrect advice) on hu-
man accuracy.

H Exploratory Analysis

H.1 Perceived Usefulness

Hypotheses. Participants report the perceived
usefulness of all explanations. We seek to under-
stand the association of this perceived usefulness
with the actual usefulness, measured by differences
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the diagnostic accuracy. Further, we wish to under-
stand if some explanation types are perceived as
more useful than others. Finally, we are interested
in the effect of explanation quality on the perceived
usefulness.

Modeling. We model human accuracy by aug-
menting our main model (1) with the perceived
usefulness and its first-order interaction effects:

lij =Po
+ Ba * (AC)
+ B * (Explanation Type)
+ By * (Perceived Usefulness)
+ Bixa * (ET) X (AC)
+ Bixe * (ET) x (EC)
+ Bpxa * (PU) x (AC)
+ Bpxe * (PU) x (EC)
+ Bpxt * (PU) x (ET)
+ Bixexa * (ET) x (EC) X (AC)

+ Uparticipant

3)

+ UImage-

We find this model yields significantly better model
fit than our main model (1) indicating that the per-
ceived usefulness adds above and beyond the ob-
served effects based on the explanation correctness
(and other variables), X?; = 40.923, p < .0001.

Perceived usefulness increases with explanation
quality. We find that the perceived usefulness in-
creases with an increasing explanation correctness
for NLEs and by extension for combined explana-
tions (see Figure 18). However, this trend is not
visible for saliency maps, which is a surprising
finding.

Perceived usefulness interacts with advice cor-
rectness. We use model (3) to study the effect
of perceived usefulness on the diagnostic accuracy
and find that such effect is present, albeit heavily
moderated by the correctness of the advice. In-
terestingly, when AI advice is incorrect, higher
perceived usefulness is associated with worse di-
agnostic accuracy as participants fail to detect that
the explanation is misleading. This effect resem-
bles that of the explanation quality. It noteworthy
though that the misleading nature of deceptive ex-
planations does indeed translate from explanation
correctness into self reported measures of perceived
usefulness. Beyond this joint effect of advice cor-
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Figure 13: A participant’s Al experience and under-
standing compared to their diagnostic accuracy across
all tasks.

rectness and perceived usefulness, we do not see a
clear trend between different types of explanations.

H.2 Confidence

We study agreement confidence, which we define
as the share of participants deeming a finding as
“Maybe present” ( low confidence) or ‘“Definitely
present” (high confidence).

Modeling. We model whether participants in-
dicate “Definitely present” (Confidence = 1) or
“Maybe present” (Confidence = 0) using a bino-
mial generalized linear mixed model:

nij =Bo
+ B * (Explanation Type)
~+ Bac * (Advice Correctness)
~+ Bec * (Explanation Correctness)  (4)
+ Beexac * (AC) x (EC)
+ Uparticipant
+ UI'mage
where 7);; are the log-odds of confidence for partic-
ipant ¢ and image 7. We compare (4) against a null
model

&)

Nij = BO + U Participant + UImage

and find, our model is significant, xZ = 13.454,
p = 0.036.
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Figure 14: A participant’s expectation of Al compared
to their diagnostic accuracy across all tasks.

Confidence increases with insightful explana-
tions. We distinguish between insightful explana-
tions and deceptive explanations. The former are
high quality explanations for correct advice, as well
as, low quality explanations for incorrect advice,
as they reveal the poor model workings. A decep-
tive explanation is high quality for incorrect advice
and low quality for correct advice. As presented
in Figure 21, we find that deceptive explanations
are associated with low confidence. With increas-
ing insightfulness of the explanations, confidence
increases.

Explanation Types do not predict confidence.
An interesting question is whether some types of
explanations are associated with higher agreement
confidence as reported by participants. As can seen
in Figure 21, there is no statistically significant
evidence supporting this. While there is no varia-
tion for correct advice, NLEs are associated with
higher confidence ratings than combined explana-
tions (=~ 12%). However, this difference is not
significant.

H.3 Efficiency

We study the time participants require to make a
diagnostic decision based on the presented infor-
mation. Besides the diagnostic accuracy, the time
taken to examine a radiological study and reach a
decision is an important metric as it influences the
cost and efficiency of the diagnostic procedure.
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Figure 15: Participant’s level of ethical concerns regard-
ing Al compared to their diagnostic accuracy across all
tasks.

The median time taken per study is 35.05 sec-
onds with an inter-quartile range of [24.25, 55.24].
As some users might have paused the experiment
(evident in very few, very long time intervals), the
time taken per study does not necessarily measure
the time required to reach a diagnostic decision.
Hence, we decide to limit our analysis to observa-
tions below 5 min. This excludes 0.6% of observa-
tions.

Modeling. We use a Gamma Linear Mixed
Model to answer our hypotheses in regards to the
decision time. As decision times are still over-
dispersed, we model the loglog Decision Time.
We build our model as

nij =Bo
+ [, * (Explanation Type) ©)
+ UParticipant
+ UI'mage
and compare against the null model
Tij = Bo + UParticipant T UImage- @)

We find that the larger model fits the data better
X3 = 47367.00, p < .0001 and hence base our
analysis upon this.

Hypotheses. We aim to investigate two hypothe-

SES.
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Figure 16: A participant’s trust in AI compared to their
diagnostic accuracy across all tasks.

1. Does the complexity of the type of explana-
tions predict the time required to reach a diag-
nostic decision?

Does the explanation correctness influence
the decision speed? In particular, we expect
higher quality explanations to increase speed
when the advice is correct. We also expect
higher quality explanations to decrease speed
when advice is incorrect, as conflicting, decep-
tive information are shown.

Complexity reduces decision speed. We model
the decision speed (as described above) and obtain
95% confidence intervals for the adjusted means as
shown in Figure 22. We observe that the most com-
plex explanations (NLE and combined) reduce deci-
sion speed by 8s per image (26.8%). Saliency maps
reduce the decision speed by only 4s (13.8%). All
pairwise comparisons are significant with p < .001
with the exception of combined explanations and
NLEs (Bonferroni-Holm adjusted, log-log domain).
One could argue that the help provided by the ex-
planations reduces the decision times. However,
we find that the additional time spent on processing
the explanations outweighs such effect - if present:
With the increasing complexity of the explanation,
the decision speed reduces substantially. The main
factor seem to be the NLEs (tcombined = tNLE and

INLE > tSaliency )
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Figure 17: Human accuracy given explanation types (a) for both incorrect (b) and correct (c) advice.
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Figure 21: We find no significant effect of explanation
type on confidence.
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Figure 23: The explanation quality does not have an
effect on the decision speed. Neither in the top panel
(AI advice incorrect) nor the bottom panel (Al advice
correct) a clear trend between explanation correctness
and decision speed is visible.

Explanation Correctness does not influence de-
cision speed. We find that the correctness of ex-
planations does not significantly influence the de-
cision time. In Figure 23, we show that the log
decision time is almost constant across explana-
tion correctness. We find this is true across varia-
tions of Advice Correctness and Explanation Type.
Additionally, a GLMM including explanation cor-
rectness does not significantly improve the model
likelihood.

I Annotation process

When evaluating the Al advice, annotators are pre-
sented with a chest X-ray and a single class pre-
dicted by the Al (e.g. “pneumonia”). They are then
asked whether they think the class is “Not present”
(the finding can not be seen so is not worth mention-
ing or it can be mentioned negatively. For example:
“No signs of pneumonia.”), “Maybe present” (while
the evidence is inconclusive and/or there is some
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ambiguity, it’s worth mentioning in the radiology
report that the finding may be present. For exam-
ple: “Bibasilar opacities may represent atelectasis
or pneumonia.”), or “Definitely present” (the find-
ing is clearly present and will be noted in the radi-
ology report. For example: “There are clear signs
for pneumonia.”), following a common convention
in evaluating the presence of chest X-ray findings
(cite MIMIC-CXR, Chexpert). Both the annotators
and study participants are instructed to interpret the
labels as above.

The annotators also evaluate the textual explana-
tion and heatmap for each prediction. Given that
explanations can vary significantly in information
richness Rivera-Garrido et al. (2022), we argue that
a continuous scale is better suited than a binary cor-
rectness label, as has been done by Morrison et al.
(2023). Suppose our annotators deem the Al ad-
vice (e.g. “pneumonia’) to be correct (‘“Definitely
present” or “Maybe present”). In that case, we ask
them “How correctly does the NLE (or heatmap)
explain the Al advice pneumonia in this image?”’
and record their response on a 7-point Likert scale.
We also ask them “If you consider the heatmap
and the NLE as a joint explanation, how correctly
do they explain the Al advice pneumonia in this
image?” to obtain a correctness score for the com-
bined explanation. In case they think the Al predic-
tion is incorrect, we still want to get a measure of
how much correct information an explanation con-
tains and ask them the following: “How correctly
does the heatmap (or NLE) highlight radiographic
findings that would be relevant for the Al advice
pneumonia in this image?”. An illustration of the
annotator interface can be found in Figure 26.

We obtain our consensus by selecting the over-
all advice correctness as the majority vote of the
three annotations, and the explanation correctness
score of each explanation as the average of the three
scores. We mean-center the explanation correct-
ness scores for each type of explanation. Detailed
outcomes of our annotation process can be found
in the Appendix.

J Study User Interface

Figure 25 shows an example test case from our
screening survey and 26 shows a screenshot (bar
the overlaying explanations) of our study user in-
terface.



Patient context: The Al model made the following suggestion:

[age: 60-70, gender: M] Altered mental status, fall. pneumonia

The Al provides the following explanations for its suggestion:

Upright Upright

Right basilar opacity may reflect atelectasis, but aspiration or infection cannot be excluded.

The diagnosis pneumonia is:

Not present
Maybe present
Definitely present

How correctly does the NLE explain pneumonia in this image?

How correctly does the heatmap explain pneumonia in this image?

Evaluating image: 6/161

Figure 24: The platforms annotators used to annotate chest x-rays.
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If they are present, provide the locations of the radiographic findings in the chest X-ray below. *
[FYI: The right side on the image is the left side of the patient]

Not present Right lower ... Right middle... Right upper L... Left lower lo... Left upper lo...

Pneumonia O O O O O O
Lung collapse D D D D D D
Pleural Effus... O 0O 0O O O O

Figure 25: An example of one of the three test cases included in the screening survey.
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3. Al model serial
ber: each session
has a different Al

Relevant patient background: The Al model Y2P made the following suggestion:

o 4. Radiographic finding suggested .
Al . 65-year-old ; with shorts f breatt N
e Wo";‘,m shoriness otbrea by the Al model: Only one finding a:electasls
will be highlighted for every X-ray, . . - 9 3
2. Patient context: This is real patient and it is not necessarily the main :’he.:\l modelt.\ml’ provides the following textual explanation and ‘xplanatlon
information that was provided by the finding. Base your agreement only on | 1°"!tS SUggestion:
referring physician. this specific finding.

Bibasilar opacities may represent atelectasis, but aspiration or infection cannot be
excluded.

5. Al Explanations: The different Al
models in this study can provide
different (or no) explanations for
their decisions. The explanations
can either consist of visual
explanations ("heatmaps"), textual
explanations, or a combination of
both (as in this example).

1. Original Chest X-ray

6. Agreement rating: To what extent do you agree with the Al

whether the finding is present in the X-ray?

You have the following options:

e Not present: The finding cannot be seen and does not
need to be highlighted in the radiology report.

e Maybe present: While the evidence is inconclusive
and/or there is some ambiguity, it is worth mentioning in
the radiology report that the finding may be present.

o Definitely present: The finding is clearly present and has
to be noted in the radiology report.

Here we ask solely you agree with the finding suggested by
the Al, not whether you agree with the explanation the Al
\provides!

\ How much do you agree that the Al model Y2P's suggestion of atelectasis is present? C I ick H E R E to rewatc h
the instruction video

Maybe present
Not present

How useful was the Al model Y2P's combination of ‘ual and textual explanations in helping you decide whether the Al was
right or wrong in suggesting atelectasis?

Not at all useful Slightly useful () Somewhatuseful () Moderatelyuseful ) Useful ) Very useful Extremely useful

7. Explanation Usefulness: If the Al provided an explanation,
you will rate how useful it was in deciding whether you agree with

Evaluating image: 1/3 the Al. This is not necessarily the same as agreeing with
explanation itself (for example: if an explanation helps you to see
that the Al suggestion is incorrect).

Figure 26: The instruction PDF that people have access to throughout the study. The 3-minute explanation video
will be shared once the authors are no longer anonymized. This also shows cases of the UI that we used throughout
the study (without the overlaying explanation boxes.
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