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Abstract

We introduce Equivariant Neural Eikonal Solvers, a novel framework that integrates
Equivariant Neural Fields (ENFs) with Neural Eikonal Solvers. Our approach em-
ploys a single neural field where a unified shared backbone is conditioned on
signal-specific latent variables – represented as point clouds in a Lie group – to
model diverse Eikonal solutions. The ENF integration ensures equivariant map-
ping from these latent representations to the solution field, delivering three key
benefits: enhanced representation efficiency through weight-sharing, robust geo-
metric grounding, and solution steerability. This steerability allows transformations
applied to the latent point cloud to induce predictable, geometrically meaning-
ful modifications in the resulting Eikonal solution. By coupling these steerable
representations with Physics-Informed Neural Networks (PINNs), our framework
accurately models Eikonal travel-time solutions while generalizing to arbitrary
Riemannian manifolds with regular group actions. This includes homogeneous
spaces such as Euclidean, position–orientation, spherical, and hyperbolic manifolds.
We validate our approach through applications in seismic travel-time modeling
of 2D, 3D, and spherical benchmark datasets. Experimental results demonstrate
superior performance, scalability, adaptability, and user controllability compared
to existing Neural Operator-based Eikonal solver methods.

1 Introduction

The eikonal equation is a first-order nonlinear partial differential equation (PDE) that plays a central
role in a wide range of scientific and engineering applications. Serving as the high-frequency
approximation to the wave equation [Noack and Clark, 2017], its solution represents the shortest
arrival time from a source point to any receiver point within a specified scalar velocity field [Sethian,
1996]. This formulation underpins numerous applications: in Computer Vision, it is integral to the
computation of Signed Distance Functions (SDFs) [Jones et al., 2006] and geodesic-based image
segmentation [Chen and Cohen, 2019]; in Robotics, it facilitates optimal motion planning and inverse
kinematics [Ni and Qureshi, 2023, Li et al., 2024b]; and in Geophysics, it models seismic wave
propagation through heterogeneous media, enabling critical travel-time estimations [Abgrall and
Benamou, 1999, Rawlinson et al., 2010, Schuster and Quintus-Bosz, 1993].

Conventional numerical solvers, such as the Fast Marching Method (FMM) [Sethian, 1996] and the
Fast Sweeping Method (FSM) [Zhao, 2004], have historically been used to compute solutions to the
eikonal equation. However, these approaches are heavily dependent on spatial discretization, leading
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to a challenging trade-off: higher resolution is required for complex velocity models, which in turn
dramatically increases computational and memory demands [Grubas et al., 2023, Song et al., 2024,
Mei et al., 2024, Smith et al., 2021, Waheed et al., 2021]. This issue is exacerbated in scenarios
involving complex input geometries, such as Riemannian manifolds, which are prevalent in both
computer vision [Bekkers et al., 2015] and robotics applications [Li et al., 2024b].

Figure 1: Steerability in the Equivariant Neural
Eikonal Solver (E-NES) enables weight sharing
across the entire group orbit: applying a group
transformation to the conditioning variable zl, in-
duces a corresponding transformation on the travel-
time function Tθ(·, ·; zl) through the group’s left
regular representation, and on the associated ve-
locity field vl via the non-linear group action µ, as
formalized in Section 4.1.

Recent advances in scientific machine learning
have introduced neural network-based solvers as
promising alternatives. Physics-Informed Neu-
ral Networks (PINNs) integrate the PDE con-
straints into the training loss, offering a grid-free
approximation to the eikonal equation and alle-
viating the discretization issues inherent in tradi-
tional numerical methods [Smith et al., 2021,
Waheed et al., 2021, Ni and Qureshi, 2023,
Grubas et al., 2023, Li et al., 2024b]. However,
a significant limitation of PINN-like approaches
is their requirement to train a new network for
each distinct velocity field, which hampers their
applicability in real-time scenarios.

Neural Operators overcome this constraint by
learning mappings between function spaces –
specifically, from velocity fields to their corre-
sponding travel-time solutions. Unlike PINNs,
neural operators utilize a shared backbone and
incorporate conditioning variables to handle dif-
ferent velocity profiles [Song et al., 2024, Mei
et al., 2024]. Current approaches leveraging sim-
ple architectures such as DeepONet [Mei et al.,
2024] and Fourier Neural Operators [Song et al., 2024] have demonstrated promising results, yet
there remain several avenues for improvement, as discussed in Section 2.

As stated in Wang et al. [2024b], one promising direction is to recognize that Neural Operators belong
to a broader class of models known as Conditional Neural Fields. These models, which have been
popularized within the Computer Vision community, explore advanced conditioning techniques to
enhance expressivity, adaptability, and controllability [Dupont et al., 2022, Wessels et al., 2024, Wang
et al., 2024b]. In this work, we focus on the recently introduced Equivariant Neural Fields, which
ground these conditioning variables in geometric principles, leading to improved representation
quality and steerability – ensuring that transformations in the latent space correspond directly to
transformations in the solution space [Knigge et al., 2024].

Our key contributions are as follows:

• We introduce a novel, expressive generalization of Equivariant Neural Fields to functions
defined over products of Riemannian manifolds with regular group actions, including
homogeneous spaces associated with linear Lie groups.

• We implement this framework through our Equivariant Neural Eikonal Solver (E-NES), to
efficiently solve eikonal equations by leveraging geometric symmetries, enabling generaliza-
tion across group transformations without explicit data augmentation (see Figure 1).

• We validate our approach through comprehensive experiments on 2D, 3D, and spheri-
cal seismic travel-time benchmarks, achieving superior scalability, adaptability, and user
controllability compared to existing methods in a grid-free manner.

Our code, including scripts to generate the results, is provided at: https://github.com/
AGarciaCast/E-NES.

2 Related work

Neural eikonal solvers. Initial neural approaches for solving the eikonal equation have primarily
relied on Physics-Informed Neural Networks (PINNs), which incorporate the PDE directly into
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the loss function [Smith et al., 2021, Waheed et al., 2021, Ni and Qureshi, 2023, Grubas et al.,
2023, Li et al., 2024b, Kelshaw and Magri, 2024]. These models are trained individually for each
velocity field, achieving high-accuracy reconstructions at the expense of significant computational and
memory overhead. Moreover, this per-instance training lacks cross-instance generalization, limiting
its practicality for large-scale or real-time applications.

To enable generalization across velocity fields, operator learning methods have been proposed.
DeepONet variants [Lu et al., 2021, Mei et al., 2024] learn mappings between function spaces,
but typically require discretization of either the source or receiver points. This limits resolution
invariance and complicates applications requiring continuous evaluations, such as geodesic path
planning. Moreover, some methods, such as Mei et al. [2024], rely on the supervision of a numerical
solver, which can be beneficial in some simple scenarios but is a bottleneck in complex ones. On the
hand, other operator learning approaches such as Fourier Neural Operators [Song et al., 2024] offer
solver-free alternatives and incorporate the PDE into the loss, but still rely on partial discretization,
inheriting similar resolution constraints.

In contrast, our method avoids discretization entirely by representing both inputs continuously and
training solely with PDE supervision. We adopt the Conditional Neural Field (CNF) framework as
our backbone, enabling scalable conditioning on velocity fields while preserving grid-free inference
and resolution independence.

Conditional and equivariant neural fields. Conditional Neural Fields (CNFs) are coordinate-
based networks that reconstruct continuous signals from discrete observations. Formally, a CNF
fθ :M×Z → Rd maps coordinates p ∈ M and latent codes z ∈ Z to outputs fθ(p; z) approxi-
mating target signals. Given a dataset D = {fi}ni=1, a single network can represent all signals via
instance-specific latents: fθ(p; zi) ≈ fi(p).

Early CNFs used global latent vectors for conditioning [Dupont et al., 2022]. Subsequent work
demonstrated that learnable point cloud latents {zi}mi=1 ⊆ Z significantly enhance expressivity and
reconstruction quality [Bauer et al., 2023, Luijmes et al., 2025, Kazerouni et al., 2025, Wessels et al.,
2024]. Equivariant Neural Fields (ENFs) further impose symmetry priors through the steerability
property: fθ(g−1 · p; {zi}) = fθ(p; {g · zi}) for all g ∈ G. This equivariant design improves sample
efficiency and generalization [Wessels et al., 2024, Chen et al., 2022, Chatzipantazis et al., 2023] by
encoding geometric structure directly into the latent space.

In this work, we extend ENFs to signals defined on products of Riemannian manifolds, i.e.,
f :M1 × · · · ×Mn → Rd, enabling complex inter-input interactions while preserving equivari-
ance. This generalization substantially broadens the scope of addressable problems beyond prior
single-point formulations, with implications extending beyond eikonal solving (see Appendix F).

Invariant function learning. Steerability in ENFs requires invariance to joint transformations:
f(g ·p; {g ·zi}) = f(p; {zi}) for all g ∈ G [Wessels et al., 2024, Chen et al., 2022, Chatzipantazis
et al., 2023]. Constructing expressive invariant functions is thus central to our framework.

We provide a formal expressivity analysis establishing a complete and maximally expressive set of
independent invariants, guaranteeing zero information loss during canonicalization. This addresses
a critical gap in prior work [Wessels et al., 2024, Knigge et al., 2024], where invariants were
selected heuristically without completeness guarantees. Our analysis extends to arbitrary (possibly
non-transitive) Lie group actions on product manifolds.

From Invariant Theory, a complete set of fundamental invariants must: (1) express any invariant func-
tion, and (2) separate orbits—i.e., Iν(p) = Iν(q) for all invariants Iν if and only if p and q share the
same orbit [Olver, 1995]. While several computational approaches exist—including Weyl’s theorem
[Weyl, 1946, Villar et al., 2021], infinitesimal methods [Andreassen, 2020], moving frames [Olver,
2001], and differential invariants [Olver, 1995, Sangalli et al., 2022, Li et al., 2024a]—we employ the
moving frame technique [Olver, 2001] for its conceptual clarity and natural connection to modern
canonicalization methods [Shumaylov et al., 2024] (see Appendix B for detailed comparisons).

Moreover, rather than relying on global canonicalization—which produces a single canonical rep-
resentation for an entire point cloud—we adopt a local canonicalization strategy [Hu et al., 2024,
Wessels et al., 2024, Chen et al., 2022, Du et al., 2022, Wang et al., 2024a, Zhang et al., 2019]. By
canonicalizing small patches, our approach is better able to capture relevant local information and
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facilitates the use of transformer-based architectures, as opposed to the DeepSet-based architectures
commonly employed in Blum-Smith et al. [2024], Dym and Gortler [2023], Villar et al. [2021].

3 Background
In this section, we present the necessary mathematical foundations and formulate the eikonal equation
problem. For a comprehensive treatment of these topics, we refer the reader to Lee [2018], Olver
[1995].
3.1 Mathematical Preliminaries

Differential Geometry. A Riemannian manifold is defined as a pair (M,G), where M is a
smooth manifold and G is a Riemannian metric tensor field onM [Lee, 2018]. The metric tensor
Gp : TpM×TpM→ R assigns to each p ∈M a positive-definite inner product on the tangent space
TpM. Specifically, for any tangent vectors ṗ1, ṗ2 ∈ TpM, the inner product is given by Gp(ṗ1, ṗ2),
and the corresponding norm is defined as ∥ṗ1∥G =

√
Gp(ṗ1, ṗ1).

The Riemannian distance between two points p and q in a connected manifold M, denoted as
dG(p, q), is defined as the infimum of the length of all smooth curves joining them [Lee, 2018].
Curves that achieve this infimum while traveling at constant speed are known as geodesics.

For a smooth scalar field f :M → R, the Riemannian gradient grad f is the unique vector field
reciprocal to the differential df : TM→ R, meaning G(grad f, · ) = df . Given a smooth function
ϕ :M→M, we can also define the adjoint of a differential dϕ(p) : TpM→ Tϕ(p)M at a point
p ∈ M as the map (dϕ(p))∗ : Tϕ(p)M → TpM; such that for every ṗ ∈ TpM, q̇ ∈ Tϕ(p)M we
have that Gϕ(p)(dϕ(p)[ṗ], q̇) = Gp(ṗ, (dϕ(p))∗[q̇]) [Lezcano-Casado, 2019].

Note that when M = Rn and Gp = In for all p ∈ Rn, all Riemannian notions reduce to their
Euclidean counterparts.

Group Theory. A Lie group G is a smooth manifold with group operations that are smooth. A
(left) group action on a set X is a map µ : G×X → X satisfying µ(e, x) = x and µ(g, µ(h, x)) =
µ(gh, x) for all x ∈ X , g, h ∈ G. When µ is clear by the context we write g · x. The orbit space
X/G is the quotient space obtained by identifying points in X that lie in the same orbit under the
G-action. Formally, X/G = {Orb(x) | x ∈ X} consists of all distinct orbits, where each orbit
Orb(x) = {g · x | g ∈ G} represents an equivalence class under the relation x ∼ y ⇔ ∃g ∈
G such that y = g · x. These equivalence classes partition X into mutually disjoint subsets whose
union equals X , yielding a canonical decomposition that reflects the underlying symmetry of the
group action.

In this work, we will focus on the Special Euclidean group SO(n) = {R ∈ Rn×n | RRT =
In, det(R) = 1} and the Special Euclidean group SE(n) = Rn ⋊ SO(n), representing roto-
translations. For g = (t, R) ∈ SE(n), the group product is g ·g′ = (t, R)(t′, R′) = (t+Rt′, RR′).

The isotropy subgroup (or stabilizer) at x ∈ X is Gx = {g ∈ G | g · x = x}. A group G acts freely
if Gx = {e} for all x ∈ X , meaning no non-identity element fixes any point. An r-dimensional Lie
group acts freely on a manifoldM if and only if its orbits have dimension r [Olver, 1995]. A group
acts regularly onM if each point has arbitrarily small neighborhoods whose intersections with each
orbit are connected. In practical applications, the groups of interest typically act regularly.

As discussed in Section 2, it is crucial for building Equivariant Neural Fields to obtain a complete
set of functionally independent invariants. As demonstrated by Olver [2001], when a Lie group acts
freely and regularly, such a set can be systematically derived locally using the moving frame method –
detailed in the Appendix (Section B).

3.2 Eikonal Equation Formulation

On a Riemannian manifold (M,G), the two-point Riemannian Eikonal equation with respect to a
velocity field v :M→ [vmin, vmax] (where 0 < vmin ≤ vmax <∞) is:

∥ grads T (s, r)∥G = v(s)−1,

∥ gradr T (s, r)∥G = v(r)−1,

T (s, r) = T (r, s), T (s, s) = 0,

(1)
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where grads and gradr denote the Riemannian gradients with respect to the source s ∈ M and
the receiver r ∈ M, respectively. The solution T :M×M→ R+ corresponds to the travel-time
function, and the interval [vmin, vmax] specifies the minimum and maximum velocity values in the
training set.

To prevent irregular behavior as r → s, it is standard to factorize the travel-time function as

T (s, r) = d̃(s, r) τ(s, r),

where d̃ is a semimetric—a function satisfying non-negativity (d̃(s, r) ≥ 0), identity of indiscernibles
(d̃(s, r) = 0 iff s = r), and symmetry (d̃(s, r) = d̃(r, s))—that approximates the ground-truth
Riemannian distance dG [Smith et al., 2021, Waheed et al., 2021, Grubas et al., 2023, Li et al., 2024b,
Kelshaw and Magri, 2024]. The scalar field τ(s, r) then represents the unknown travel-time factor.

In this work, we further require that d̃(s, r) be invariant under the group action of G; that is,
d̃(s, r) = d̃(g · s, g · r) for all g ∈ G. This invariance condition is essential to ensure that the
travel-time function preserves its steerability property, as will be demonstrated in Section 4. When
the group acts by isometries, d̃ can, as previously discussed, be taken as the geodesic distance on the
manifold. In particular, for manifolds embedded in Euclidean space where the group action extends to
isometries of the ambient Euclidean space, the Euclidean (chordal) distance offers a computationally
efficient approximation [Kelshaw and Magri, 2024]. For more general group actions, one may instead
adopt the discrete semimetric d̃(s, r) = 1s̸=r, which equals 1 when s ̸= r and 0 otherwise. To
maintain gradient compatibility during training, this discrete indicator can be incorporated using a
straight-through estimator [Bengio et al., 2013].

4 Method

We introduce Equivariant Neural Eikonal Solver (E-NES), which extends Equivariant Neural Fields to
efficiently solve eikonal equations by leveraging geometric symmetries. Our approach incorporates
steerability constraints that enable generalization across group transformations without explicit data
augmentation. We present the theoretical framework (Section 4.1), detail our equivariant architecture
(Section 4.2), introduce a technique for computing fundamental joint-invariants (Section 4.3), and
describe our physics-informed training methodology (Section 4.4).

4.1 Theoretical Framework

We extend the Equivariant Neural Field architecture introduced in Wessels et al. [2024] to represent
solutions of the eikonal equation. Let (M,G) denote the input Riemannian manifold on which the
eikonal equations are defined, and let G be a Lie group acting regularly on M. We introduce a
conditioning variable, represented as a geometric point cloud z = {(gi, ci)}Ni=1, which consists of
N so-called pose-context pairs. Here, each gi ∈ G is referred to as a pose, and each corresponding
ci ∈ Rd is the associated context vector. We will denote the space of pose-context pairs as the product
manifold Z = G× Rd, so that z is an element of the power set P(Z). This representation naturally
supports a G-group action defined by g · z = {(g · gi, ci)}Ni=1.

In the setting of the factored eikonal equation, consider a solution Tl satisfying Equation (1) for the
velocity field vl. We associate this solution with the conditioning variable zl, such that our conditional
neural field Tθ(s, r; zl) = d̃(s, r) τθ(s, r; zl) is trained to approximate Tθ(s, r; zl) ≈ Tl(s, r), for all
s, r ∈M. Here, θ denotes the network weights.

The steerability constraint, i.e.,

Tθ(s, r; g · z) = Tθ(g
−1 · s, g−1 · r; z) for all (s, r, z) ∈M×M×P(Z), (2)

incorporates equivariance, enabling the network to generalize across all transformations g ∈ G with-
out requiring explicit data augmentation, thus significantly enhancing data efficiency. Consequently,
solving the eikonal equation for one velocity field automatically extends to its entire family under
group actions, as illustrated in Figure 1. This property is formally stated in the following proposition:
Definition 4.1 (g-steered metric). For all g ∈ G, define the g-steered metric Gg : TM× TM→ R
as:

Ggp (u̇, v̇) := Ggp
(
(dLg−1(g · p))∗[u̇], (dLg−1(g · p))∗[v̇]

)
for p ∈M, and u̇, v̇ ∈ TpM,

5



where Lg−1 :M→M is the diffeomorphism defined by Lg−1(p) = g−1 · p.
Proposition 4.1 (Steered Eikonal Solution). Let Tθ :M×M×P(Z) → R+ be a conditional
neural field satisfying the steerability property (2), and let zl be the conditioning variable representing
the solution of the eikonal equation for vl :M→ R∗

+, i.e., Tθ(s, r; zl) ≈ Tl(s, r) for Tl satisfying
Equation (1) for the velocity field vl. Let Gg be a g-steered metric (Definition 4.1). Then:

1. The map µ : G× (M→ R∗
+)→ (M→ R∗

+) defined by

µ(g, vl)(s) :=
∥∥gradg−1s Tl(g

−1 · s, g−1 · r)
∥∥−1

Gg , (3)

where r is an arbitrary point inM, is a well-defined group action.

2. For any g ∈ G, Tθ(s, r; g · zl) solves the eikonal equation with velocity field µ(g, vl).

For the common cases where the group action is either isometric or conformal, the expression for the
associated velocity fields admits a simpler form:
Corollary 4.1. Assume the hypotheses of Proposition 4.1, then the group action µ : G × (M →
R∗

+)→ (M→ R∗
+) is given by:

1. µ(g, vl)(s) = vl(g
−1 · s) if G acts isometrically onM.

2. µ(g, vl)(s) = Ω(g, s) vl(g
−1 · s) if G acts conformally on M with conformal factor

Ω(g, s) > 0, i.e., Ggs (dLg(s)[ṡ1], dLg(s)[ṡ2]) = Ω(g, s)2 Gs (ṡ1, ṡ2), ∀ ṡ1, ṡ2 ∈ TsM.

Since µ : G× (M→ R∗
+)→ (M→ R∗

+) constitutes a group action on the space of velocity fields,
its orbit space induces a partition. Therefore, by obtaining the conditioning variable associated with
one representative of an orbit, we effectively learn to solve the eikonal equation for all velocities
within that equivalence class.

Finally, steerability also relates grads Tθ(s, r; z) to grads Tθ(s, r; g · z) (see Lemma A.1). Hence,
any geodesic extracted by backtracking the gradient of Tθ for one field generalizes to its transformed
counterpart. This property is essential for applications such as geodesic segmentation [Chen and
Cohen, 2019], motion planning [Ni and Qureshi, 2023], and ray tracing [Abgrall and Benamou,
1999].

Further details regarding the steerability property for eikonal equations, as well as proofs for Proposi-
tion 4.1 and Corollary 4.1, can be found in the Appendix (Section A).

4.2 Model Architecture

We define the Equivariant Neural Eikonal Solver (E-NES) as τθ = P ◦E, where .Wessels et al. [2024]
and P : RL → R+ is the bounded projection head from Grubas et al. [2023].

1. Invariant Cross-Attention Encoder. To enforce the steerability, our encoder builds invariant
representations under G-symmetries of (s, r, gi). For each gi ∈ z, we compute:

a
(s,r)
i = RFF

(
Inv(s, r, gi)

)
, a

(r,s)
i = RFF

(
Inv(r, s, gi)

)
, (4)

where Inv(·) yields a complete set of functionally independent invariants via the moving frame
method (as we will explain in Section 4.3), and RFF is a random Fourier feature mapping [Tancik
et al., 2020]. To enforce τθ(s, r; z) = τθ(r, s; z), we use ãi = (a

(s,r)
i + a

(r,s)
i )/2, the Reynolds

operator over S2 [Dym et al., 2024]. Then the invariant cross-attention encoder is computed as:

E(s, r; z) = FFNE

(
N∑
i=1

αi v(ãi, ci)

)
with αi =

exp(q(ãi)
⊤k(ci)/

√
dk)∑N

j=1 exp(q(ãj)
⊤k(cj)/

√
dk)

,

where the attention maps and values are parameterized as:

q(ã) = Wqã, k(c) = Wk LN(Wcc),

v(ã, c) = FFNv(Wv LN(Wcc)⊙ (1 + FFNγ(ã)) + FFNβ(ã)),

with FFNE ,FFNv,FFNγ ,FFNβ being small multilayer perceptron (MLP) using GELU activation
functions, and Wq,Wk,Wc,Wv,Wγ ,Wβ learnable linear maps.
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2. Bounded Velocity Projection. The encoder output h = E(s, r; z) passes through a second MLP
network FFNP with AdaptiveGauss activations to model sharp wavefronts and caustics [Grubas et al.,
2023]. The final output is projected into [1/vmax, 1/vmin] by:

P (h) =

(
1

vmin
− 1

vmax

)
σ(α0 · FFNP (h)) +

1

vmax
,

where σ is the sigmoid function and α0 ∈ R+ is a learnable temperature parameter.

4.3 Computation of Fundamental Joint-Invariants

Let Π =M1 × · · · ×Mm denote a product of Riemannian manifolds, each equipped with a smooth,
regular action δi : G ×Mi → Mi by a Lie group G. These individual actions induce a natural
diagonal action on the product Π given by δ(g, (p1, . . . , pm)) = (δ1(g, p1), . . . , δm(g, pm)).

As observed in Olver [2001], when the group action on Π is not free, the standard moving frame
method is not directly applicable. In such cases, alternative techniques—such as those discussed in
Section 2—are typically employed to compute invariants.

We show that the moving frame method can be restored in this setting by augmenting the space
Π with an auxiliary (learnable) group element, yielding an extended space Π = Π × G. On this
augmented space, the group action admits a canonicalization procedure with explicitly computable
invariants:
Theorem 4.1 (Canonicalization via latent-pose extension). Let Π and G be as above. Define a new
group action δ : G × Π → Π by δ(h, (p1, . . . , pm, g)) = (δ(h, (p1, . . . , pm)), h · g). Then, the set{
δi(g

−1, pi)
}m
i=1

forms a complete collection of functionally independent invariants of the action µ.

Sketch of proof (full at Appendix, Section B). To verify that the action µ is free, we show that the
isotropy group of any point (p1, . . . , pm, g) ∈ Π is trivial. Specifically, this subgroup satisfies
G(p1,...,pm,g) = Gp1

∩ · · · ∩Gpm
∩Gg , where Gpi

denotes the isotropy subgroup of pi under δi, and
Gg is the isotropy subgroup of g ∈ G under left multiplication. Since h · g = g implies h = e in a
group, we have Gg = {e}. Thus, the intersection is trivial, and δ defines a free action. The moving
frame method then guarantees a complete set of invariants, which are exactly {δi(g−1, pi)}mi=1.

This result formally justifies the construction proposed in Wessels et al. [2024], showing that the
method yields a complete set of functionally independent invariants and thus guarantees full expres-
sivity. Moreover, it extends the applicability of Equivariant Neural Fields to settings where G acts
regularly—but not necessarily freely nor transitive—on product manifolds. In particular, the invariant
computation used in our E-NES architecture, as presented in Equation (4), takes the form

Inv(s, r, gi) = ( g−1
i · s, g

−1
i · r) ∈M×M.

4.4 Training details

Let V = {vl :M→ [vmin, vmax]}Kl=1 be our training set of K velocity fields over the domainM.
At each iteration, we sample a batch B with B velocity fields {vi}Bi=1 ⊆ V and Nsr source–receiver
pairs {(si,j , ri,j)}Nsr

j=1 ⊂ M2 for each vi. Let {zi}Bi=1 be the conditioning variables associated
with {vi}Bi=1. To enforce the Eikonal equation, we express it in Hamiltonian form asH(s, r, T ) =
v(s)2∥ grads T (s, r)∥2G − 1, where the Eikonal equation is satisfied when H = 0 [Grubas et al.,
2023]. We then minimize a physics-informed loss that penalizes deviations from this zero-level set at
both source and receiver locations:

L(θ, {zi}Bi=1,B) =
1

BNsr

B∑
i=1

Nsr∑
j=1

(∣∣vi(si,j)2∥ grads Tθ(si,j , ri,j ; zi)∥2G − 1
∣∣

+
∣∣vi(ri,j)2∥ gradr Tθ(si,j , ri,j ; zi)∥2G − 1

∣∣). (5)

Fitting is performed in the two modes presented in Wessels et al. [2024]. The first one is Autodecoding
[Park et al., 2019] – where zl and θ are optimised simultaneously over a dataset. The second one is
Meta-learning [Tancik et al., 2021, Cheng and Alkhalifah, 2024] – where optimization is split into an
outer and inner loop, with θ being optimized in the outer loop and z being re-initialized every outer
step to solve the eikonal equation of the velocity fields in the batch in a limited number of SGD steps
in the inner loop. We refer the readers to the Appendix (Section C) for further details.
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Table 1: Performance comparison on OpenFWI datasets against FC-DeepONet. Colours denote Best,
Second best, and Third best performing setups for each dataset. Fitting time represents the total
computational time required to fit the latent conditioning variables for all 100 testing velocity fields.

E-NES

FC-DeepONet Autodecoding (100 epochs) Autodecoding (convergence) Meta-learning

Dataset RE (↓) Fitting (s) RE (↓) Fitting (s) RE (↓) Fitting (s) RE (↓) Fitting (s)

FlatVel-A 0.00277 ∼ 0.615 0.00952 223.31 0.00506 1120.25 0.01065 5.92
CurveVel-A 0.01878 ∼ 0.615 0.01348 222.72 0.00955 1009.67 0.02196 5.91
FlatFault-A 0.00514 ∼ 0.615 0.00857 222.61 0.00568 1014.45 0.01372 5.92
CurveFault-A 0.00963 ∼ 0.615 0.01108 222.89 0.00820 1123.90 0.02086 5.92
Style-A 0,03461 ∼ 0.615 0.01034 222.00 0.00833 1117.99 0.01317 5.92

FlatVel-B 0.00711 ∼ 0.615 0.01581 222.74 0.00860 1010.32 0.02274 5.91
CurveVel-B 0.03410 ∼ 0.615 0.03203 222.97 0.02250 1127.87 0.03583 5.90
FlatFault-B 0.04459 ∼ 0.615 0.01989 222.70 0.01568 1133.98 0.03058 5.93
CurveFault-B 0.07863 ∼ 0.615 0.02183 222.89 0.01885 893.84 0.03812 5.89
Style-B 0.03463 ∼ 0.615 0.01171 221.90 0.01069 896.06 0.01541 5.90

5 Experiments

We evaluate Equivariant Neural Eikonal Solvers (E-NES) on the 2D OpenFWI benchmark [Deng
et al., 2022] and extend our analysis to 3D settings to assess scalability and spherical geometry to
show its generalization capabilities. Implementation details are provided in the Appendix (Section D).
The code, including the experiments, is provided in the previously-mentioned public repository.

5.1 Benchmark on 2D-OpenFWI

Following Mei et al. [2024], we utilize ten velocity field categories from OpenFWI: FlatVel-A/B,
CurveVel-A/B, FlatFault-A/B, CurveFault-A/B, and Style-A/B, each defined on a 70× 70 grid. We
train E-NES on 500 velocity fields per category and evaluate on 100 test fields, positioning four
equidistant source points at the top boundary and computing travel times to all receiver coordinates.
Additional evaluations using a denser 14×14 source grid are presented in the Appendix (Section E.2).

Performance is quantified using relative error (RE) and relative mean absolute error (RMAE):

RE :=
1

Ns

Ns∑
i=1

√√√√∑Mp

j=1 |T i
j − T̂ i

j |∑Mp

j=1 |T i
j |2

, RMAE :=
1

Ns

Ns∑
i=1

∑Mp

j=1 |T i
j − T̂ i

j |∑Mp

j=1 |T i
j |

,

where Ns represents the total number of samples, Mp denotes the total number of evaluated source-
receiver pairs, T i

j indicates the j-th point of the i-th ground truth travel time, and T̂ represents the
model’s predicted travel times. The ground truth values are generated using the second-order factored
Fast Marching Method [Treister and Haber, 2016].

5.1.1 Impact of Steerable Geometric Conditioning
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Figure 2: Comparative analysis of equivariant con-
ditioning variables on the Style-B dataset. For
non-equivariant models Z ∼= Rc, while equivari-
ant models use Z = SE(2)× Rc.

To empirically validate the theoretical benefits
of equivariance in our formulation, we con-
ducted a controlled ablation study comparing
E-NES with equivariance (Z = SE(2) × Rc)
against a variant without equivariance con-
straints (Z ∼= Rc) on the Style-B dataset. Fig-
ure 2 illustrates consistent performance advan-
tages with equivariance, demonstrated by lower
values in both Eikonal loss and mean squared er-
ror (MSE) throughout the training process. This
empirical validation substantiates our theoreti-
cal motivation for incorporating explicit equiv-
ariance constraints into the model architecture.
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Table 2: Performance comparison on OpenFWI
B-type datasets against Functa. Fitting time repre-
sents the total computational time required to fit
the latent conditioning variables for all 100 testing
velocity fields. Here both methods perform 100
epochs of autodecoding to fit the latents.

Functa E-NES

Dataset RE (↓) Fitting (s) RE (↓) Fitting (s)

FlatVel-B 0.11854 12.55 0.01581 222.74
CurveVel-B 0.11210 12.49 0.03203 222.97
FlatFault-B 0.06428 12.50 0.01989 222.70
CurveFault-B 0.06146 12.72 0.02183 222.89
Style-B 0.03106 12.33 0.01171 221.90

To further assess the role of geometric condi-
tioning, we compare our method against Functa
[Dupont et al., 2022], a common baseline in the
literature on conditional neural fields. Functa
employs SIRENs [Sitzmann et al., 2020] with
sample-specific scale and shift modulation but
relies on global latent variables without geomet-
ric constraints, providing a clear contrast to our
geometric point-cloud formulation of the con-
ditioning variables. As shown in Table 2, our
method consistently outperforms Functa across
all datasets. We attribute this to Functa’s global
conditioning, which lacks localized representa-
tion and explicit geometric constraints.

5.1.2 Performance Comparison
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Figure 3: Scaling analysis of E-NES versus
FMM on 3D OpenFWI data. (a) Both au-
todecoding and meta-learning maintain con-
sistent error metrics (RE and RMAE, ×10−2)
across increasing grid dimensions. (b) E-NES
demonstrates computational advantages (sec-
onds ×103) over FMM even at minimal grid
sizes, with efficiency gains amplifying as di-
mensions increase. Note that meta-learning
fitting times (approximately 3 seconds) are
barely visible in (b) due to their minimal mag-
nitude relative to other displayed times.

Table 1 presents a systematic comparison between
E-NES and FC-DeepONet [Mei et al., 2024] across
all ten OpenFWI benchmark datasets. We evaluate
three configurations of E-NES: autodecoding with
100 epochs (tradeoff between computational effi-
ciency and performance), autodecoding until conver-
gence (optimizing for accuracy), and meta-learning
(prioritizing computational efficiency).

Our results demonstrate that E-NES with full au-
todecoding convergence outperforms FC-DeepONet
in seven out of ten datasets, with particularly sub-
stantial improvements on the more challenging
variants—Style-A/B, FlatFault-B, and CurveFault-B.
Even with the reduced computational budget of 100
epochs, E-NES maintains competitive performance
across most datasets. The meta-learning approach,
while exhibiting moderately higher error rates, deliv-
ers remarkable computational efficiency—reducing
fitting time from approximately 1000 seconds to un-
der 6 seconds for the total 100 velocity fields, rep-
resenting a two orders of magnitude improvement.
Additional analyses are provided in Appendix F.3.

The quantitative results are supplemented by qualita-
tive evaluations in the Appendix (Section E.6), includ-
ing visualizations of travel-time predictions and spa-
tial error distributions across all datasets. For a more
detailed analysis of the trade-off between computa-
tional efficiency and prediction accuracy, including
performance with varying numbers of autodecoding
epochs, we refer to the ablation studies in the Ap-
pendix (Section E.5).

5.2 Extending to 3D: Scalability Analysis

To evaluate scalability to higher dimensions, we extended the Style-B dataset to 3D by extruding
2D velocity fields along the z-axis. Figure 3a shows that both autodecoding and meta-learning
approaches maintain stable error metrics as grid dimensions increase, demonstrating E-NES’s ability
to model continuous fields independent of discretization resolution. Figure 3b shows E-NES maintains
efficiency advantages over the Fast Marching Method (FMM) across all evaluated grid dimensions,
with this advantage becoming more pronounced at larger scales (total computation time for all 100
test velocity fields). This stability stems from E-NES’s continuous representation, which adapts to the
underlying physics without requiring increasingly fine discretization.
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Figure 4: Geodesic path planning on the sphere using gradient integration of the travel-time function
under two velocity fields. Left panels show the trajectories in local polar coordinates, while right
panels visualize the corresponding paths on the spherical surface. The constant velocity field (top)
yields a great-circle path, whereas the Gaussian obstacle velocity field (bottom) causes the trajectory
to bend around the low-speed region. The diamond ( ■) denotes the start and the circle ( ) the goal.

5.3 Generalizability to Non-Euclidean Domains

Table 3: Performance of our method on Eikonal
solvers over the 2-sphere.

Dataset RE (↓) RMAE (↓) Fitting Time (s)

Constant Speed 0.013 0.012 209.2
Spherical Style-B 0.015 0.012 207.1

We validate the generality of our framework
on the 2-sphere, i.e., on S2 ⊂ R3, with SO(2)
steerability (rotations about the z-axis). This
setting demonstrates two key capabilities: (i)
handling non-transitive Lie group actions, and
(ii) extending to non-Euclidean geometries.

We test on two velocity field types: constant
speed fields with velocities uniformly sampled, and Spherical Style-B fields, obtained by projecting
OpenFWI’s 2D Style-B fields onto the sphere via spherical coordinates. As shown in Table 3, our
method achieves strong performance on both benchmarks, effectively learning the sphere’s intrinsic
geometry and correctly modeling wavefront propagation despite using Euclidean chordal distance
d̃(s, r) in the factorized representation (as described in Section 3.2).

Moreover, Figure 4 demonstrates that E-NES enables geodesic path planning via gradient integration,
yielding optimal trajectories under configurations with and without obstacles. Additional details on
how to perform this path-finding task are provided in the Appendix C.2.

6 Discussion and Future Work

In this work, we proposed a systematic approach to incorporate equivariance into neural fields
and demonstrated its effectiveness through our Equivariant Neural Eikonal Solver (E-NES). Our
experiments show that E-NES outperforms both Neural Operator methods (e.g., FC-DeepONet) and
Conditional Neural Field approaches (e.g., Functa) across most benchmark datasets. The grid-free
formulation is particularly advantageous for gradient integration tasks and naturally extends to
Riemannian manifolds.

While our method requires explicit optimization at test time, FC-DeepONet’s encoder forward pass
performs implicit latent fitting (0.615 seconds for 100 velocity fields, as indicated in Table 1). Criti-
cally, our test-time optimization enables practitioners to dynamically adjust the accuracy-efficiency
trade-off by varying the number of iterations (Appendix E.5). This adaptability parallels recent test-
time optimization advances in large language models [Zhang et al., 2025], whereas FC-DeepONet’s
performance is fixed post-training. Additional comparative analyses are provided in Appendix F.1.

For future work, we plan to extend our analysis to homogeneous spaces beyond Euclidean and
spherical domains, including position-orientation spaces for systems with nonholonomic constraints
(e.g., vehicle path planning) and hyperbolic spaces for hierarchical interpolation tasks.
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A Steerability and Gradient Equivariance

Let G be a Lie group acting smoothly on the Riemannian manifold (M,G) by left-translations

Lg :M→M, Lg(p) = g · p

and write dLg(s) : TsM→ TgsM for its differential. Let (dLg(s))
∗ : TgsM→ TsM denote the

adjoint of dLg(s) with respect to the metric G.

Lemma A.1 (Gradient Equivariance). Let Tθ :M×M×P(Z)→ R+ be a steerable conditional
neural field, i.e. for all g ∈ G and all s, r ∈ M, Tθ(s, r; g · z) = Tθ(g

−1 · s, g−1 · r; z). Then, for
each fixed z ∈ Z , fixed receiver r ∈M, and every g ∈ G,

grads Tθ(s, r; g · z) = (dLg−1(s))∗
[
gradg−1s Tθ(g

−1 · s, g−1 · r; z)
]
∈ TsM.

Proof. By steerability, one has

Tθ(s, r; g · z) = Tθ

(
Lg−1(s), Lg−1(r); z

)
.

Fix r ∈M and differentiate with respect to s. For any v̇ ∈ TsM, the chain rule yields

dsTθ(s, r; g · z)[v̇] = dg−1sTθ

(
g−1 · s, g−1 · r; z

)[
dLg−1(s)[v̇]

]
.

By the defining property of the Riemannian gradient, we have G(grad f, ·) = df , so that:

Gs
(
grads Tθ(s, r; g · z)︸ ︷︷ ︸

∈TsM

, v̇
)
= Gg−1s

(
gradg−1s, Tθ

(
g−1 · s, g−1 · r; z)︸ ︷︷ ︸

∈Tg−1sM

,dLg−1(s)[v̇]
)
.

This exactly characterizes the adjoint (dLg−1(s))∗, and the result follows.

Definition 4.1 (Restated). For all g ∈ G, define the g-steered metric Gg : TM× TM→ R as:

Ggp (u̇, v̇) := Ggp
(
(dLg−1(g · p))∗[u̇], (dLg−1(g · p))∗[v̇]

)
for p ∈M, and u̇, v̇ ∈ TpM.

Proposition 4.1 (Restated). Let Tθ :M×M×P(Z)→ R+ be a conditional neural field satisfying
the steerability property (2), and let zl be the conditioning variable representing the solution of the
eikonal equation for vl :M→ R∗

+, i.e., Tθ(s, r; zl) ≈ Tl(s, r) for Tl satisfying Equation (1) for the
velocity field vl. Let Gg be a g-steered metric (Definition 4.1). Then:

1. The map µ : G× (M→ R∗
+)→ (M→ R∗

+) defined by

µ(g, vl)(s) :=
1∥∥gradg−1s Tl(g−1 · s, g−1 · r)

∥∥
Gg

, (6)

where r is an arbitrary point inM, is a well-defined group action.

2. For any g ∈ G, Tθ(s, r; g · zl) solves the eikonal equation with velocity field µ(g, vl).

Proof. By the steerability of Tθ, for every g ∈ G and s, r ∈M we have

Tθ(s, r; g · zl) = Tθ(g
−1 · s, g−1 · r; zl).

Since Tθ(s, r; zl) ≈ Tl(s, r), it follows that

Tθ(s, r; g · zl) ≈ Tl(g
−1 · s, g−1 · r).

Define the steered arrival time

T g
l (s, r) := Tl(g

−1 · s, g−1 · r).

We aim to show that T g
l satisfies the eikonal equation with velocity field µ(g, vl).
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Gradient transformation. By Lemma A.1, the gradient of T g
l is related to that of Tl via

grads T
g
l (s, r) = (dLg−1(s))∗

[
gradg−1s Tl(g

−1 · s, g−1 · r)
]
.

Fix g ∈ G and write ẇ = gradg−1s Tl(g
−1 · s, g−1 · r) ∈ Tg−1sM. Taking the squared G-norm we

get:
∥ grads T

g
l (s, r)∥

2
G = Gs

(
(dLg−1(s))∗[ẇ], (dLg−1(s))∗[ẇ]

)
.

Then, for Gg defined by Definition 4.1:

∥ gradg−1s Tl(g
−1 · s, g−1 · r)∥2Gg = Ggg−1s (ẇ, ẇ)

= Ggg−1s

(
(dLg−1(gg−1 · s))∗[ẇ], (dLg−1(gg−1 · s))∗[ẇ]

)
= Gs

(
(dLg−1(s))∗[ẇ], (dLg−1(s))∗[ẇ]

)
= ∥ grads T

g
l (s, r)∥

2
G .

By Eq. (3), we now get

∥ grads T
g
l (s, r)∥G =

1

µ(g, vl)(s)
,

i.e., T g
l solves the eikonal equation with velocity µ(g, vl).

Group action properties of µ.
(1) Identity: Let e ∈ G denote the identity. Then e−1 = e and dLe(s) = Id, hence:

Ges = Gs, µ(e, vl)(s) = ∥ grads Tl(s, r)∥−1
G = vl(s),

using the eikonal equation for Tl.

(2) Compatibility: For all g, h ∈ G, we show that:

µ(g, µ(h, vl)) = µ(gh, vl).

We note that left and right hand side are respectively given by

µ(g, µ(h, vl)) =
1

∥ gradh−1g−1s Tl(h−1g−1 · s, h−1g−1 · r)∥(Gh)g
(7)

and
µ(gh, vl) =

1

∥ grad(gh)−1s Tl((gh)−1 · s, (gh)−1 · r)∥Ggh

. (8)

Both equations (7) and (8) are the same iff Ggh = (Gh)g. By Definition 4.1, it suffices to show
(dL(gh)−1)∗ = (dLg−1)∗(dLh−1)∗ which follows readily:

(dL(gh)−1)∗ = (dLh−1 ◦ dLg−1)∗ = (dLg−1)∗(dLh−1)∗.

Hence, the group action µ is compatible.

Corollary 4.1 (Restated). Assume the hypotheses of Proposition 4.1, then the group action µ :
G× (M→ R∗

+)→ (M→ R∗
+) is given by:

1. µ(g, vl)(s) = vl(g
−1 · s) if G acts isometrically onM.

2. µ(g, vl)(s) = Ω(g, s) vl(g
−1 · s) if G acts conformally on M with conformal factor

Ω(g, s) > 0, i.e., Ggs (dLg(s)[ṡ1], dLg(s)[ṡ2]) = Ω(g, s)2 Gs (ṡ1, ṡ2), ∀ ṡ1, ṡ2 ∈ TsM.

Proof. (1) Isometric case: If G is an isometry, then (dLg−1(s))∗ = (dLg−1(s))−1 = dLg(g
−1 · s)

– so that Gp is equal to the pull-back metric – and preserves inner products. Hence,∥∥ṡ∥∥2Gg = Ggs (ṡ, ṡ) = Ggs(dLg(g
−1g · s)[ṡ],dLg(g

−1g · s)[ṡ]) = Gs(ṡ, ṡ) =
∥∥ṡ∥∥2G .
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Therefore,∥∥grads Tθ(s, r; g · zl)
∥∥
G = ∥ gradg−1s Tθ(g

−1 · s, g−1 · r; zl)
∥∥
Gg =

1

vl(g−1 · s)
,

so µ(g, vl)(s) = vl(g
−1 · s).

(2) Conformal case: If Lg acts conformally with factor Ω(g, s), then for all ṡ1, ṡ2 ∈ TsM,

Ggs (dLg(s)[ṡ1], dLg(s)[ṡ2]) = Ω(g, s)2 Gs (ṡ1, ṡ2) .
Hence dLg−1(s) scales lengths by Ω(g−1, s) = Ω(g, s)−1 and its adjoint satisfies

(dLg−1(s))∗ = Ω(g, s)−2 (dLg−1(s))−1, because (dLg(s))
∗ = Ω(g, s)2 (dLg(s))

−1.

Then
grads Tθ(s, r; g · zl) = Ω(g, s)−2 (dLg−1(s))−1[gradg−1s Tθ(g

−1 · s, g−1 · r; zl)],
and thus ∥∥grads Tθ(s, r; g · zl)

∥∥
G =

1

Ω(g, s) vl(g−1 · s)
.

Therefore µ(g, vl)(s) = Ω(g, s) vl(g
−1 · s).

Figure 5: Example of conformal group action on
v(s) = e−s2 .

As an example of an isometric action,
consider 2D rotations with G = SO(2)
acting on M = R2. In Figure 1,
given a velocity field v(s) and its cor-
responding conditioning variable z, the
transformed variable Rπ/6 · z encodes
the velocity field v(R5π/6s). Simi-
larly, as an example of a conformal ac-
tion, consider the positive scaling group
G = R∗

+ acting on M = R. In the
graph shown in Figure 5, given a veloc-
ity field v(s) encoded by z, the scaled
conditioning variable 2 · z encodes the
velocity field 2 v(s/2). Additional ex-
amples on the steerability property as
well as the emperical validation on our
implementation can be found in Ap-
pendix E.7.

Remark A.1 (Implementation in Euclidean Coordinates). In local coordinates, the metric tensor Gp
at any point p ∈M is represented by a symmetric positive-definite matrix, which induces an inner
product on the tangent space TpM. Specifically, for any tangent vectors ṗ1, ṗ2 ∈ TpM, the inner
product is given by Gp(ṗ1, ṗ2) = ⟨ṗ1, ṗ2⟩G = ṗ⊤1 Gpṗ2, and the corresponding norm is defined as
∥ṗ1∥G =

√
⟨ṗ1, ṗ1⟩G .

Moreover, in local coordinates, the Riemannian gradient is related to that of the Euclidean gradient
∇f via the inverse metric tensor: grad f(p) = G−1

p ∇f(p) [Absil et al., 2008]. IfM is embedded
in a Euclidean space, then the norm of the Riemannian gradient can be computed as ∥grad f∥G =

∥∇f∥G−1 , and the adjoint can be computed as (dLg−1(s))∗ = G−1
s (dLg−1(s))TGg−1s.

Therefore, the group action µ : G× (M→ R∗
+)→ (M→ R∗

+) in local coordinates is given by:

µ(g, vl)(s) =
∥∥∇g−1sTl

(
g−1 · s, g−1 · r

)∥∥−1

G̃g ,

where r is an arbitrary point inM, and G̃g : TpM× TpM→ R is the local coordinated expression
of the g-steered metric given by

G̃gp := dLg−1(g · p)G−1
gp (dLg−1(g · p))T for any p ∈M.

Remark A.2 (Relation to pull-back metric). If G is isometric or conformal, then the g-steered metric
is the pull-back metric Gg = (Lg)

∗G and one directly has
Gg1g2 = (Gg2)g1 ⇒ µ(g1g2, vl) = µ(g1, µ(g2, v1)).
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B Computing Invariants via Moving Frame

B.1 Preliminaries

In this section, we present the essential mathematical foundations of the Moving Frame method,
following Olver [2001], Sangalli et al. [2023]. For a comprehensive treatment, we refer readers to
Olver [2011, 1995].

LetM be an m-dimensional smooth manifold and G be an r-dimensional Lie group acting onM. A
(right) moving frame is a smooth equivariant map ρ :M→ G satisfying ρ(g · p) = ρ(p) · g−1 for all
g ∈ G and p ∈M. Every moving frame ρ induces a canonicalization function k :M→M defined
by

k(p) = ρ(p) · p,
which is G-invariant:

∀p ∈M, g ∈ G, k(g · p) = ρ(g · p) · g · p = ρ(p) · p = k(p).

The existence of moving frames is characterized by the following fundamental result:
Theorem B.1 (Existence of moving frame; see Olver [2001]). A moving frame exists in a neighbor-
hood of a point p ∈M if and only if G acts freely and regularly near p.

Moving frames can be constructed via cross-sections to group orbits. A cross-section to the group
orbits is a submanifold K ⊆M of complementary dimension to the group (i.e., dimK = m− r)
that intersects each orbit transversally at exactly one point.
Theorem B.2 (Moving frame from cross-section; see Olver [2001]). If G acts freely and regularly on
M, then given a cross-section K to the group orbits, for each p ∈M there exists a unique element
gp ∈ G such that gp · p ∈ K. The function ρ :M→ G mapping p to gp is a moving frame.

While any regular Lie group action admits multiple local cross-sections, coordinate cross-sections
(obtained by fixing r of the coordinates) are particularly useful for determining fundamental invariants
ofM with regards to G.
Theorem B.3 (Fundamental invariants via coordinate cross-sections; see Olver [2001]). Given a free,
regular Lie group action and a coordinate cross-section K, let ρ be the associated moving frame.
Then the non-constant coordinates of the canonicalization function image

k(p) = ρ(p) · p ∈ K

form a complete system of functionally independent invariants.

Moreover, this theorem aligns with the classical result on the structure and separation properties of
invariants:
Theorem B.4 (Existence of Fundamental Invariants; see [Olver, 1995]). Let G be a Lie group acting
freely and regularly on an m-dimensional manifoldM with orbits of dimension s. Then, for each
point p ∈ M, there exist m − s functionally independent invariants I1, . . . , Im−s defined on a
neighborhood U of p such that any other invariant I on U can be expressed as I = H(I1, . . . , Im−s)
for some function H . Moreover, these invariants separate orbits: two points y, z ∈ U lie in the same
orbit if and only if Iυ(y) = Iυ(z) for all υ = 1, . . . ,m− s.

These foundational results—existence, construction via cross-sections, and the properties of invari-
ants—underlie all moving-frame computations and guarantee that one obtains a complete, orbit-
separating set of invariants.

B.2 Canonicalization via latent-pose extension

Theorem 4.1 (Restated). Let G be a Lie group acting smoothly and regularly (but not necessarily
freely) on each Riemannian manifoldMi via δi : G ×Mi → Mi, for i = 1, . . . ,m, and hence
diagonally on

Π =M1 × · · · ×Mm, δ
(
g, (p1, . . . , pm)

)
=
(
δ1(g, p1), . . . , δm(g, pm)

)
.

On the augmented space Π = Π×G, define δ
(
h, (p1, . . . , pm, g)

)
=
(
δ(h, (p1, . . . , pm)), h g

)
.

20



Then:

1. δ is free.

2. A moving frame is given by ρ : Π→ G, such that ρ(p1, . . . , pm, g) = g−1.

3. The set
{
δi(g

−1, pi)
}m
i=1

forms a complete collection of functionally independent invariants
of the action µ.

Proof.
(1) Freeness: Fix (p1, . . . , pm, g) ∈ Π. Its isotropy subgroup is

G(p1,...,pm,g) =
{
h ∈ G : δ(h, (p1, . . . , pm)) = (p1, . . . , pm), h g = g

}
.

Hence
G(p1,...,pm,g) = Gp1

∩ · · · ∩Gpm
∩Gg.

where Gpi denotes the isotropy subgroup of pi under δi, and Gg is the isotropy subgroup of g ∈ G
under left multiplication. Since hg = g implies h = e in a group, we have Gg = {e}. Thus, the
intersection is trivial, and µ defines a free action.

(2) Moving frame existence: Because δ is free and regular, Theorem B.1 guarantees a unique smooth
equivariant map

ρ : Π→ G

associated to the cross-section K = {(p1, . . . , pm, g) ∈ Π : g = e}. A direct check shows

ρ(p1, . . . , pm, g) = g−1,

and one verifies equivariance

ρ
(
δ(h, (p1, . . . , pm, g))

)
= (h g)−1 = g−1h−1 = ρ(p1, . . . , pm, g)h−1.

(3) Functional independence and completeness: The canonicalization map k(p1, . . . , pm, g) =
δ(ρ(p1, . . . , pm, g), (p1, . . . , pm, g)) ∈ K gives

k(p1, . . . , pm, g) = δ(g−1, (p1, . . . , pm, g))

=
(
δ1(g

−1, p1), . . . , δm(g−1, pm), e
)
.

By Theorem B.3, the nonconstant coordinates δi(g−1, pi) are functionally independent and generate
all invariants of δ.

C Training and Inference Details

C.1 Training

Autodecoding. In autodecoding, we jointly optimize both the network parameters θ and the latent
conditioning variables zi across the dataset. As detailed in Algorithm 1, this approach yields a tighter
fit to the eikonal equation, at the expense of longer training times. Empirically, we observe that
convergence on the validation set requires between 250 and 500 fitting epochs.

Meta-learning. Our meta-learning framework separates training into two loops: an inner loop for
optimizing latents and an outer loop for updating network parameters. Algorithm 2 summarizes this
bi-level optimization procedure.

By leveraging meta-learning, we achieve significantly faster fitting and impose additional structure on
the latent space [Knigge et al., 2024]. However, as noted by Dupont et al. [2022], the small number
of inner-loop updates typically used on meta-learning can restrict expressivity. To mitigate this, we
initialize the network with weights pretrained via autodecoding, which accelerates convergence and
often leads to better local minima (see Section E.1).
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Algorithm 1 Autodecoding Training

Require: Velocity fields V = {vl}Kl=1, epochs num_epochs, batch size B, pairs per field Nsr,
learning rate η

1: Randomly initialize shared base network Tθ

2: Initialize latents zl ← {(gi, ci)}Ni=1 for all velocity fields
3: for epochs = 1 to num_epochs do
4: while dataloader not empty do
5: Sample batch B = {(si,j , ri,j , vi(si,j), vi(ri,j))}B,Nsr

i=1,j=1

6: Compute loss L(θ, {zi}Bi=1,B) (see Equation 5)
7: Update θ ← θ − η∇θL
8: Update each zi ← zi − η∇ziL
9: end while

10: end for
Ensure: Trained θ and latents {zl}Kl=1

Algorithm 2 Meta-learning Training

Require: Velocity fields V = {vl}Kl=1, outer epochs num_epochs, inner steps S, batch size B, pairs
per field Nsr, learning rates ηθ, ηSGD

1: Initialize shared base network Tθ (optionally pretrained), and learnable learning rate ηz .
2: for epochs = 1 to num_epochs do
3: while dataloader not empty do
4: Sample batch of velocity fields {vi}Bi=1 ⊆ V
5: Initialize latents z(0)i for each vi
6: for t = 1 to S do ▷ Inner loop: Update latents
7: Sample Nsr source–receiver pairs {(s(t−1)

i,j , r
(t−1)
i,j )}Nsr

j=1 ⊂M2, for each vi

8: Construct batch B(t−1) = {(s(t−1)
i,j , r

(t−1)
i,j , vi(s

(t−1)
i,j ), vi(r

(t−1)
i,j ))}B,Nsr

i=1,j=1

9: Compute L̃(θ, {z(t−1)
i }Bi=1,B(t−1))

10: Update each z
(t)
i ← z

(t−1)
i − ηz∇ziL̃

11: end for
12: Sample Nsr source–receiver pairs {(s(S)

i,j , r
(S)
i,j )}

Nsr
j=1 ⊂M2, for each vi

13: Construct batch B(S) = {(s(S)
i,j , r

(S)
i,j , vi(s

(S)
i,j ), vi(r

(S)
i,j ))}

B,Nsr

i=1,j=1

14: Compute L̃meta(θ) = L̃(θ, {z(S)
i }Bi=1,B(S))

15: Update θ ← θ − ηθ∇θL̃meta

16: Update ηz ← ηz − ηSGD∇ηz
L̃meta

17: end while
18: end for
Ensure: Trained θ

In our implementation, we utilize an alternative loss function L̃ in place of the original loss defined
in Equation 5. Specifically, L̃ employs the log-hyperbolic cosine loss log(cosh(x)) [Jeendgar et al.,
2022], as a differentiable substitute for the absolute value term in Equation 5. This substitution is
critical for effective meta-learning, as the log-cosh function provides a smooth approximation to
the absolute value while maintaining convexity and ensuring well-behaved gradients throughout its
domain. The differentiability properties of this function enable us to obtain high-quality higher-order
derivatives, which are essential for the backpropagation process through all inner optimization steps,
as outlined in lines 15 and 16 of Algorithm 2.

C.2 Inference

Solving for new velocity fields. Given a new set of velocity fields, we will obtain their correspond-
ing latent representation as follows:
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• Autodecoding: we perform Algorithm 1 using the frozen weights θ∗, i.e., we do not perform
steps 1 and 7.

• Meta-learning: we perform the inner loop of the Algorithm 2 using frozen weights θ∗, i.e.,
we do steps 5 to 11.

Execution of bidirectional backward integration. As stated in Section 4, given the solution
of the eikonal equation, you can obtain the shortest path between two points under the given
velocity via backward integration. Indeed, we perform SGD over the normalized gradients
∥ grads T (s, r)∥G grads T (s, r) [Bekkers et al., 2015]. Furthermore, as shown in Ni and Qureshi
[2023], our model’s symmetry behavior allows us to perform gradient steps bidirectionally from
source to receiver and from receiver to source. Hence, we compute the final path solution bidirec-
tionally using iterative Riemannian Gradient Descent [Absil et al., 2008] by updating the source and
receiver points as follows, where α ∈ R is a step size hyperparameter.{

s(t) ← Rs(t−1)

(
−α ∥ grads Tθ∗(s(t−1), r(t−1); zl)∥G grads Tθ∗(s(t−1), r(t−1); zl)

)
,

r(t) ← Rr(t−1)

(
−α ∥ gradr Tθ∗(s(t−1), r(t−1); zl)∥G gradr Tθ∗(s(t−1), r(t−1); zl)

)
,

(9)

where Rp : TpM→M is a retraction at p ∈M. The retraction mapping will provide a notion of
moving in the direction of a tangent vector, while staying on the manifold:
Definition C.1 (Retraction; see Absil et al. [2008]). A retraction on a manifold M is a smooth
mapping R from the tangent bundle TM ontoM with the following properties. Let Rp denote the
restriction of R to TpM.

(i) Rp(0̇p) = p, where 0̇p denotes the zero element of TpM.

(ii) With the canonical identification T0̇p
TpM≃ TpM, Rp satisfies

dRp(0̇p) = idTpM,

where idTpM denotes the identity mapping on TpM.

D Experimental Details

This section presents the comprehensive training and validation hyperparameters employed in the
experiments described in Section 5. All experiments were conducted using a single NVIDIA H100
GPU.

D.1 2D OpenFWI Experiments

Model Architecture. Our invariant cross-attention implementation utilizes a hidden dimension
of 128 with 2 attention heads. The conditioning variables are defined as z ∈ P(Z) with cardinality
|z| = 9, where Z = SE(2)× R32 for each velocity field. We initialize the pose component of the
latents—derived from SE(2) = R2×S1—at equidistant positions in R2, with orientations randomly
sampled from a uniform distribution over [−π, π). The context component of the latents is initialized
as constant unit vectors.

For embedding the invariants, we employ RFF-Net, a variant of Random Fourier Features with
trainable frequency parameters. This approach enhances training robustness with respect to hyperpa-
rameter selection. Following the methodology of Wessels et al. [2024], we implement two distinct
RFF embeddings: one for the value function and another for the query function of the cross-attention
mechanism. The frequency parameters are initialized to 0.05 for the query function and 0.2 for the
value function.

Detailed ablations on these architectural choices can be found in Section E.3 and Section E.4

Dataset Configuration. For each OpenFWI dataset, we sample 600 velocity fields for training and
100 for validation. We further divide the training set into 500 fields for training and 100 fields for
testing. For each velocity field, we uniformly sample 20,480 coordinates, producing 10,240 pairs per
velocity field. Each batch comprises two velocity fields with 5,120 source-receiver pairs per field.
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Training Protocol. The autodecoding phase consists of 3,000 epochs, while the meta-learning phase
comprises 500 epochs. To mitigate overfitting, we report results based on the model that performs
optimally on the validation set. Under this criterion, the effective training duration for autodecoding
averages approximately 920 epochs (3.6 hours per dataset), while meta-learning averages 440 epochs
(17.8 hours per dataset).

SE(2) Optimization with Pseudo-Exponential Map. For optimizing parameters in SE(2) =
R2×S1, we employ a standard simplification of Riemannian optimization for affine groups, known as
parameterization via the “pseudo-exponential map.” This approach substitutes the exponential map of
SE(n) = Rn ⋊ SO(n) with the exponential map of Rn × SO(n) [Solà et al., 2021, Claraco, 2022].
This technique is applied in both autodecoding and meta-learning phases, though with different
optimizers as detailed below.

Autodecoding Optimization Strategy. For autodecoding, we optimize all parameters using the
Adam optimizer with different learning rates for each component. The model parameters are trained
with a learning rate of 10−4. For the latent variables, context vectors use a learning rate of 10−2,
while pose components in SE(2) are optimized with a learning rate of 10−3. Both latent variable
components (context and pose) are optimized using Adam.

Meta-learning Configuration. For meta-learning, we jointly optimize the model parameters θ and
inner loop learning rates ηz using Adam with a cosine scheduler. This scheduler implements a single
cycle with an initial learning rate of 10−4 and a minimum learning rate of 10−6. For the SGD inner
loop optimization, we initialize the learning rates at 30 for context vectors and 2 for pose components,
executing 5 optimization steps in the inner loop.

Functa Model Architecture. For the experiment presented in Table 2, adapt the model presented
in Dupont et al. [2022] to have characteristics similar to our E-NES model. Specifically, we use a
global conditioning variable of z ∈ R315 to match the total number of parameters in our geometric
point cloud. Moreover, we will use a hidden dimension of 128 and a latent modulation size of 128 to
match the dimensionality of our architecture.

D.2 3D OpenFWI Experiments

Model Architecture. For the 3D experiments, we adapt the architecture described in the 2D case
with several key modifications. Most notably, we reduce the cross-attention mechanism to a single
head rather than the two employed in the 2D experiments. Additionally, we utilize a set of eight
elements in Z = SE(3)× R32 as conditioning variables instead of the nine used in the 2D case.

Pose Representation. While we maintain the same general approach for pose optimization as in
the 2D experiments, the 3D case requires parameterization of SE(3) rather than SE(2). We employ
the pseudo-exponential map as described previously, but with an important distinction in the rotation
component. Specifically, we parameterize the SO(3) component using Euler angles.

Training and Optimization. All other aspects of the training procedure—including dataset con-
figuration, optimization strategies, learning rates, and epoch counts—remain consistent with those
detailed in the 2D experiments. We maintain the same distinction between optimization approaches
in autodecoding (Adam for all parameters) and meta-learning (Adam for model parameters in the
outer loop, SGD for latent variables in the inner loop). This consistency allows for direct compari-
son between 2D and 3D experimental results while accounting for the specific requirements of 3D
modeling.

D.3 Spherical Experiments

Model Architecture. For the spherical experiments, we adapt the architecture from the 2D Eu-
clidean case with several key modifications. First, we reduce the cross-attention mechanism to a single
head for the constant-velocity dataset, while using two heads for the non-constant cases as in the 2D
experiments. Additionally, we employ conditioning variables from Z = SO(2) × R32 with nine
elements for the non-constant case, compared to four elements from SO(2)× R16 for the constant
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case. These differences reflect the reduced representational requirements of the constant-velocity
scenario, which exhibits simpler dynamics than its non-constant counterparts.

Dataset Configuration. We evaluate our method on three types of velocity fields defined over the
sphere:

• Constant Speed Fields: For each sample, we draw a scalar velocity v ∼ U(0.1, 2.0) and
define a constant velocity field over the entire sphere.

• Spherical Style-B Fields: We construct spatially-varying velocity fields by projecting
OpenFWI’s 2D Style-B velocity models onto the sphere. We query the velocity field at
continuous coordinates via RBF interpolation using cosine distance kernels.

• Gaussian Obstacle Fields: For each sample, we generate random von Mises-Fisher distri-
butions on the sphere with concentration parameters sampled uniformly from κ ∼ U(1, 5).
The distributions are normalized to the interval [0.1, 10.0] to enforce distinctions between
low-velocity regions (obstacles) and high-velocity regions.

Ground truth travel times are computed using the Hamiltonian Fast Marching method of Mirebeau
and Portegies [2019] with the canonical spherical metric tensor.

E Additional results

E.1 Impact of Autodecoding Pretraining on Meta-Learning Performance

This section examines the effectiveness of initializing meta-learning with parameters derived from
standard autodecoding pretraining. We present a comparative analysis using the Style-A and CurveVel-
A 2D OpenFWI datasets, evaluating performance through both eikonal loss and mean squared error
(MSE) metrics throughout the training process.

Figure 6 illustrates the training dynamics across both initialization strategies. Our results demonstrate
that utilizing pretrained model parameters from the autodecoding phase substantially enhances con-
vergence characteristics in two critical dimensions. First, pretrained initialization enables significantly
faster convergence, reducing the number of required epochs to reach performance plateaus. Second,
and more importantly, this approach allows the optimization process to achieve superior local minima
compared to random initialization.
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Figure 6: Comparative analysis of meta-learning convergence with pretrained versus random initial-
ization on Style-A and CurveVel-A OpenFWI datasets.

These findings highlight a fundamental efficiency in our methodology: by leveraging pretrained
autodecoding parameters, the meta-learning phase is effectively transformed from learning from
scratch to a targeted adaptation task. Specifically, the pretrained model has already established a
robust conditional neural field representation of the underlying physics. The subsequent meta-learning
process then primarily needs to adapt this existing representation to interpret conditioning variables
obtained through just 5 steps of SGD, rather than those refined over 500 epochs of autodecoding. This
represents a significant computational advantage, as the meta-learning algorithm can focus exclusively
on learning the mapping between rapidly-obtained SGD variables and the already-established neural
field, rather than simultaneously learning both the field representation and the optimal conditioning.
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E.2 Comprehensive Grid Evaluation of OpenFWI Performance

In Section 5, we evaluated E-NES performance on the OpenFWI benchmark following the method-
ology established by Mei et al. [2024], which utilizes four equidistant source points at the top of
the velocity fields and measures predicted travel times from these sources to all 70×70 receiver
coordinates. This approach allows direct comparison with both the Fast Marching Method (FMM)
and the FC-DeepOnet model [Mei et al., 2024].

To validate the robustness and generalizability of our approach, we conducted additional experiments
using a substantially denser sampling protocol—specifically, a uniform 14×14 source point grid
similar to that employed by Grubas et al. [2023]. As demonstrated in Table 4, E-NES maintains
performance metrics comparable to those presented in Table 1, despite the significant increase in
source points and resulting source-receiver pairs.

Table 4: Performance on OpenFWI datasets on a 14×14 grid of source points. Fitting time represents
the total computational time required to fit the latent conditioning variables for all 100 testing velocity
fields.

Autodecoding (100 epochs) Autodecoding (convergence) Meta-learning

Dataset RE (↓) RMAE (↓) Fitting (s) RE (↓) RMAE (↓) Fitting (s) RE (↓) RMAE (↓) Fitting (s)

FlatVel-A 0.01023 0.00827 223.31 0.00624 0.00509 1010.90 0.01304 0.01003 5.92
CurveVel-A 0.01438 0.01139 222.72 0.01069 0.00841 1009.67 0.02460 0.01878 5.91
FlatFault-A 0.01050 0.00751 222.61 0.00744 0.00510 1014.45 0.01749 0.01255 5.92
CurveFault-A 0.01380 0.00976 222.89 0.01088 0.00745 1007.97 0.02471 0.01807 5.92
Style-A 0.00962 0.00785 222.00 0.00795 0.00646 783.13 0.01326 0.01036 5.92

FlatVel-B 0.01988 0.01586 222.74 0.01178 0.00906 786.48 0.03077 0.02474 5.91
CurveVel-B 0.04291 0.03349 222.97 0.03297 0.02528 1010.70 0.04977 0.03930 5.90
FlatFault-B 0.01889 0.01413 222.70 0.01557 0.01147 898.28 0.02998 0.02214 5.93
CurveFault-B 0.02244 0.01728 222.89 0.01991 0.01537 561.22 0.03824 0.02945 5.89
Style-B 0.01061 0.00860 221.90 0.00984 0.00798 1120.09 0.01566 0.01227 5.90

This consistency across sampling densities provides strong evidence that E-NES effectively captures
the underlying travel-time function for arbitrary point pairs throughout the domain. We attribute this
capability to two key architectural decisions in our approach. First, the grid-free architecture allows
the model to operate on continuous spatial coordinates rather than discretized grid positions. Second,
our training methodology leverages physics-informed neural network (PINN) principles rather than
relying on numerical solver supervision as implemented in Mei et al. [2024]. This physics-based
learning approach enables E-NES to internalize the governing eikonal equation, resulting in a more
generalizable representation of travel-time fields that remains accurate across varying evaluation
protocols.

E.3 Ablation Study: Choice of Embedding for Computing Invariants

To better understand the impact of architectural choices on model performance, we conducted
an ablation study examining different embedding functions for computing invariants in our cross-
attention module. Table 5 compares three embedding approaches: a standard MLP, a polynomial
embedding (degree 3), and Random Fourier Features (RFF, our chosen approach).

The results demonstrate that RFF embeddings provide the best balance of accuracy and computational
efficiency. While the polynomial embedding achieves comparable relative error (RE) and relative
mean absolute error (RMAE) to RFF, it incurs a prohibitively high computational cost, with fit and
inference time approximately 6 times slower. The standard MLP embedding, though computationally
efficient, shows degraded performance across both metrics.

These findings justify our choice of RFF with learnable frequencies (as discussed in Section D.2),
which combines superior accuracy with reasonable computational requirements.
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Table 5: Ablation on the choice of embedding for computing invariants (CurveFault-B validation set).

Embedding RE (↓) RMAE (↓) Fit + Inf. Time (s)

MLP 0.025 0.020 237.2
Polynomial (deg. 3) 0.024 0.019 1460.7
RFF (Ours) 0.021 0.016 255.8

E.4 Ablation Study: Latent Conditioning Design

The design of the latent conditioning mechanism significantly impacts both model performance and
computational efficiency. We investigated different configurations by varying the number of latent
points (N ) and their dimensionality (d), while maintaining a fixed total parameter budget of 288 (i.e.,
N × d = 288). This ensures a fair comparison across different architectural choices.

Table 6 presents results on the CurveFault-B validation set. The configuration with 9 latent points of
dimension 32 provides the optimal tradeoff between accuracy and computational cost, achieving the
lowest error metrics (RE = 0.021, RMAE = 0.016) with reasonable inference time (255.8 seconds).

Table 6: Ablation on latent conditioning design (CurveFault-B validation set). Total latent budget
fixed at 288 parameters.

# Latents (N ) Latent Dim. (d) RE (↓) RMAE (↓) Fit + Inf. Time (s)

1 288 0.078 0.066 58.5
4 72 0.047 0.038 139.3
9 32 0.021 0.016 255.8

16 18 0.039 0.031 501.7

Notably, using a single high-dimensional latent vector (1 × 288) results in significantly degraded
performance, suggesting that spatial distribution of latent conditioning is crucial for capturing the
complexity of the velocity field. Conversely, using too many low-dimensional latents (16 × 18)
increases computational cost without improving accuracy, likely due to insufficient expressiveness of
the context vector per latent point. The selected configuration (9 × 32) thus represents an effective
compromise that provides both spatial coverage and sufficient representational capacity per latent
point.

These results highlight the importance of carefully balancing the number and dimensionality of latent
conditioning variables, and demonstrate that our chosen architecture is well-tuned for the problem at
hand.

E.5 Ablation Study: Impact of Autodecoding Fitting Epochs

This section presents a systematic analysis of how the number of autodecoding fitting epochs affects
model performance and computational efficiency. We evaluate the E-NES model on the 2D-OpenFWI
datasets across both grid configurations described in Section E.2, measuring performance in terms of
Relative Error while tracking computational costs. Additionally, we provide a comparative analysis
between the standard autodecoding approach and our meta-learning methodology.

Figures 7 and 8 illustrate the relationship between fitting time, number of epochs, and model
performance across all datasets. Our analysis reveals that most datasets reach optimal solution
convergence at approximately 400 autodecoding fitting epochs. Performance improvements beyond
this threshold exhibit diminishing returns relative to the additional computational investment required.
Notably, approximately 100 autodecoding epochs represents an effective compromise between
computational efficiency and performance quality.

The meta-learning approach demonstrates remarkable efficiency advantages. With negligible fitting
times compared to standard autodecoding, meta-learning achieves performance levels comparable
to 50-100 epochs of autodecoding for the FlatVel-A/B and CurveVel-A/B datasets. This represents
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Figure 7: Comparative analysis of Relative Error versus total fitting time for all 100 velocity fields in
the 4-source configuration across all datasets. Circular markers represent autodecoding performance
at varying epoch counts (color-coded from 50 to 500 epochs), while the star marker indicates meta-
learning performance.

a substantial reduction in computational requirements while maintaining acceptable performance
characteristics.

These findings suggest that practitioners can optimize computational resource allocation by selecting
the appropriate training approach based on their specific performance requirements and computational
constraints. For applications where rapid deployment is critical, meta-learning offers significant ad-
vantages, while applications demanding maximum accuracy may benefit from extended autodecoding
training, with the optimal epoch count determined by performance saturation points identified in our
analysis.
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Figure 8: Comparative analysis of Relative Error versus total fitting time for all 100 velocity fields in
the dense 14×14 source grid configuration. Circular markers represent autodecoding performance
at varying epoch counts (color-coded from 50 to 500 epochs), while the star marker indicates meta-
learning performance.

E.6 Qualitative Analysis of Travel-Time Predictions

This section provides a visual assessment of the E-NES model’s performance as quantitatively reported
in Table 1. For each dataset in the 2D-OpenFWI benchmark, we present a representative velocity
field alongside the corresponding ground-truth and predicted travel-time surfaces. Additionally,
we visualize the spatial distribution of relative error to facilitate the identification of regions where
prediction accuracy varies.

Figures 9 and 10 demonstrate the E-NES model’s capacity to accurately reconstruct travel-time
functions across diverse geological scenarios. Particularly noteworthy is the model’s performance
on the challenging CurveFault-A/B and Style-A/B datasets, where the travel-time functions exhibit
complex wavefront behaviors including caustic singularities—regions. At these caustics, seismic-ray
trajectories intersect each other, forming singularity zones where gradients are discontinuous.
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(a) Results for FlatVel-A
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(b) Results for CurveVel-A
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(c) Results for FlatFault-A
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(d) Results for CurveFault-A
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(e) Results for Style-A

Figure 9: Comparative visualization of E-NES predicted travel-times against reference solutions for
OpenFWI type B datasets. Each panel displays the velocity field (left), ground-truth travel-time
surface (center-left), E-NES predicted travel-time surface (center-right), and relative error distribution
(right). The red star denotes the source point location from which wavefronts propagate.
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(c) Results for FlatFault-B
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(d) Results for CurveFault-B
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(e) Results for Style-B

Figure 10: Comparative visualization of E-NES predicted travel-times against reference solutions
for OpenFWI type A datasets. Each panel displays the velocity field (left), ground-truth travel-time
surface (center-left), E-NES predicted travel-time surface (center-right), and relative error distribution
(right). The red star denotes the source point location from which the wavefronts propagate.
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E.7 Empirical Steerability Test

In this section, we empirically validate the geometric inductive bias incorporated into our Eikonal
Solver through a two-part test. First, we verify that Tθ(s, r; zl) correctly models the solution of
the Eikonal equation for the velocity field vl. Second, we test the equivariance property: for any
g ∈ SE(2), we examine whether Tθ(s, r; g · zl) solves the Eikonal equation with the transformed
velocity field µ(g, vl), satisfying ∥ grads T (s, r; g · zl)∥−1

G = µ(g, vl)(s).

For the Special Euclidean group, Corollary 4.1 establishes that µ(g, vl)(s) = vl(g
−1 · s), which

enables a direct geometric interpretation and visual verification of the steerability property. Figure 11
demonstrates this behavior empirically: when we rotate the latent conditioning point cloud, the
resulting travel-time field exhibits a corresponding rotation, and the gradient norm yields a rotated
version of the original velocity field. The same predictable equivariant behavior is observed under
y-axis translation, confirming that our model successfully captures the desired geometric structure.
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Figure 11: Steerability test demonstrating SE(2) equivariance on the FlatVel-A dataset. When the
latent conditioning point cloud is transformed by elements of SE(2) (rotations and translations), the
predicted travel-time field and recovered velocity field undergo corresponding geometric transforma-
tions, confirming the model’s equivariant behavior. The red star denotes the source point from which
wavefronts propagate.

F Extended Discussion

F.1 Improved Memory Scalability

In this section, we expand our analysis to consider the relative merits of conditional versus uncondi-
tional neural field approaches for solving the eikonal equation. We intentionally excluded comparisons
against unconditional neural field-based eikonal equation solvers from our main experimental results,
as these comparisons require additional context to interpret appropriately.

Unconditional neural fields typically outperform conditional neural fields in both solution accuracy
and inference speed for individual problem instances. This performance gap stems from the funda-
mental nature of the task: training an unconditional neural field essentially constitutes an overfitting
problem, where even a modest MLP architecture can achieve high accuracy on a single velocity field.
In contrast, conditional neural fields must generalize across multiple instances, effectively learning a
mapping from conditioning variables to solution fields rather than memorizing a single solution.

However, this performance advantage diminishes significantly when considering parameter scalability
across multiple velocity fields. The unconditional approach (e.g., a standard Neural Eikonal Solver)
requires approximately 17,558 parameters per velocity field [Grubas et al., 2023], as it necessitates
training an entirely new network for each travel-time solution. In contrast, our E-NES approach
maintains a fixed baseline of 648,965 parameters for the core network τθ, with each additional velocity
field requiring only 315 parameters for the conditioning variables (in the Z = SE(2)× R32 case).
A simple calculation reveals that E-NES becomes more parameter-efficient than the unconditional
approach when handling more than 38 velocity fields—a threshold easily surpassed in practical
applications.
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The memory scaling properties of E-NES offer additional advantages beyond parameter efficiency.
The conditioning variables effectively serve as a quantization method for the travel-time function,
significantly reducing memory requirements. For example, the 14×14×70×70 grid configuration used
in Table 4 would require storing 960,400 floating-point values per velocity field using traditional
methods. With E-NES, we need only 315 parameters per velocity field regardless of the grid resolution.
This resolution-invariant property becomes particularly valuable as problem dimensions increase,
offering orders of magnitude improvements in memory efficiency for high-resolution applications.

These scalability advantages highlight the complementary nature of conditional and unconditional
approaches. While unconditional neural fields excel at individual problem instances where maximum
accuracy is required, conditional architectures like E-NES provide substantially better scalability for
applications involving multiple velocity fields or varying resolution requirements.

F.2 Applicability Beyond Seismic Travel-Time Modeling

While our manuscript focuses primarily on the Eikonal equation in the context of seismic travel-time
modeling, the proposed generalization of Equivariant Neural Fields (ENFs) extends far beyond this
specific application.

Eikonal Equation Beyond Seismic Imaging. Even within the realm of Eikonal solvers, there exist
several diverse and impactful application domains. For example, in robotics, the Eikonal equation is
used for optimal path planning, where travel-time functions are defined over the robot’s configuration
space [Ni and Qureshi, 2023]. In image segmentation, the Eikonal equation can be employed to
compute geodesic distances, with the velocity field derived from classical edge detectors, thereby
transforming the segmentation task into a minimal-path extraction problem [Chen and Cohen, 2019].
Although our experiments focus on the OpenFWI benchmark—currently the only publicly available
dataset for learning-based Eikonal solvers—our methods are directly applicable to these broader
scenarios, as discussed in Section 1.

Equivariant Neural Fields in Reinforcement Learning. Beyond Eikonal solvers, the proposed
framework is applicable in continuous-control reinforcement learning (RL). Specifically, the travel-
time function T (s, r) obtained by solving the Eikonal equation can be interpreted as an optimal value
function:

v∗(s, r) = T (s, r) = inf
γ(0)=s, γ(1)=r

∫ 1

0

∥γ̇(t)∥
v(t)

dt,

where the state space isM×M, the action space corresponds to TM, and the optimal policy is the
geodesic path γ. The environment is deterministic, with transitions (γ(ε), r) for small ε > 0, and
terminal state (r, r).

In general, RL problems with continuous state and action spaces, the value function v and action-value
function q can naturally be modeled as neural fields. In multi-task RL [Yu et al., 2020], these functions
are conditioned on task embeddings. Our formulation of Conditional Neural Fields is well-suited
to this, as it accommodates both continuous coordinate inputs and a conditioning signal. Moreover,
when the state or action spaces admit a Lie group symmetry [Wang et al., 2022], Equivariant Neural
Fields offer inductive biases that promote better generalization and sample efficiency. Importantly,
our proposed extension enables modeling such value functions in cases involving multiple input
coordinates, which are common in practice.

Beyond Reinforcement Learning. The applicability of our method extends well beyond reinforce-
ment learning. Consider, for instance, a collection of signals f1, . . . , fn, where each fi :Mi → Rd is
defined over a potentially distinct Riemannian manifoldMi. In many scientific and machine learning
applications—including computational biology, multimodal sensor fusion, and medical imaging—it
is of interest to model a similarity metric of the form

sim(f1, . . . , fn)[p1, . . . , pn],

which compares the values or features of these signals at specific points (p1, . . . , pn) ∈ M1 ×
· · · ×Mn. Traditional ENFs are limited to modeling functions defined over a single manifold input.
However, our proposed extension allows us to define and learn such similarity metrics equivariantly
with respect to group actions on the product manifoldM1 × · · · ×Mn.
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F.3 Additional Discussion on Performance Comparison against FC-DeepONet

As shown in Table 1, our method outperforms the FC-DeepONet baseline on 7 out of 10 OpenFWI
datasets, with performance on FlatFault-A comparable. For the two datasets where our method
underperforms (FlatVel-A/B), this can be attributed to two key factors:

Training signal difference: FC-DeepONet is trained using the "ground-truth" travel time fields
obtained from a numerical solver (FMM), rather than learning from the Eikonal equation directly.
As discussed in Section 1, the quality of FMM solutions improves with finer domain discretization.
In the FlatVel-A/B datasets, the velocity profiles have low spatial frequency (see Figures 8 and 9),
making the FMM-derived travel times particularly accurate and advantageous as training targets. In
contrast, our method learns from PDE constraints rather than supervised travel times. This makes
our approach more broadly applicable, but also potentially disadvantaged in cases where numerical
solvers already provide highly accurate approximations. Notably, this performance advantage for
FC-DeepONet diminishes in more complex scenarios involving higher-frequency profiles or more
intricate Riemannian manifolds, where numerical solvers like FMM may perform less reliably.

Inductive bias from domain discretization: As discussed in Section 2, FC-DeepONet requires a
discretized domain to produce conditional latents through its CNN encoder. While this introduces
constraints on generalizability (e.g., limited applicability on manifolds with multiple charts or in
tasks like geodesic backtracking), it can act as a strong inductive bias in low-frequency settings.
The FlatVel-A/B datasets exemplify such settings, where this discretization bias likely aids FC-
DeepONet’s performance.
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Answer: [Yes]
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overcomes through its novel geometric formulation.
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• It is fine to include aspirational goals as motivation as long as it is clear that these goals
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Answer: [Yes]
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• The answer NA means that the paper has no limitation while the answer No means that
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depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
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• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
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• While the authors might fear that complete honesty about limitations might be used by
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Answer: [Yes]
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whether the code and data are provided or not.
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to make their results reproducible or verifiable.
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(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
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technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA] .
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.
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12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA] .
Justification: We do not use existing assets. Regarding code and data, all works were
properly cited.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA] .
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Not applicable.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.
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15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Not applicable.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [No]
Justification: LLMs have not been used for the development of the method.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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