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Abstract

Few-shot node classification is tasked to provide accurate predictions for nodes
from novel classes with only few representative labeled nodes. This problem has
drawn tremendous attention for its projection to prevailing real-world applications,
such as product categorization for newly added commodity categories on an E-
commerce platform with scarce records or diagnoses for rare diseases on a patient
similarity graph. To tackle such challenging label scarcity issues in the non-
Euclidean graph domain, meta-learning has become a successful and predominant
paradigm. More recently, inspired by the development of graph self-supervised
learning, transferring pretrained node embeddings for few-shot node classification
could be a promising alternative to meta-learning but remains unexposed. In
this work, we empirically demonstrate the potential of an alternative framework,
Transductive Linear Probing, that transfers pretrained node embeddings, which
are learned from graph contrastive learning methods. We further extend the setting
of few-shot node classification from standard fully supervised to a more realistic
self-supervised setting, where meta-learning methods cannot be easily deployed
due to the shortage of supervision from training classes. Surprisingly, even without
any ground-truth labels, transductive linear probing with self-supervised graph
contrastive pretraining can outperform the state-of-the-art fully supervised meta-
learning based methods under the same protocol. We hope this work can shed
new light on few-shot node classification problems and foster future research on
learning from scarcely labeled instances on graphs.

1 Introduction
Graph Neural Networks (GNNs) [1–4] are a family of neural network models designed for graph-
structured data. In this work, we concentrate on GNNs for the node classification task, where GNNs
recurrently aggregate neighborhoods to simultaneously preserve graph structure information and
learn node representations. However, most GNN models focus on the (semi-)supervised learning
setting, assuming access to abundant labels [5, 6]. This assumption could be practically infeasible due
to the high cost of data collection and labeling, especially for large graphs. Moreover, recent works
have manifested that directly training GNNs with limited nodes can result in severe performance
degradation [7–9]. Such a challenge has led to a proliferation of studies [6, 10–12] that try to learn
fast-adaptable GNNs with extremely scarce known labels, i.e., Few-Shot Node Classification (FSNC)
tasks. Particularly, in FSNC, there exist two disjoint label spaces: base classes are assumed to contain
substantial labeled nodes while target novel classes only contain few available labeled nodes. If
the target FSNC task contains N novel classes with K labeled nodes in each class, the problem is
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denoted as an N -way K-shot node classification task. Here the K labeled nodes are termed as a
support set, and the unlabeled nodes are termed as a query set for evaluation.

Currently, meta-learning has become a prevailing and successful paradigm to tackle such a shortage
of labels on graphs. Inspired by the way humans learn unseen classes with few samples via utilizing
previously learned prior knowledge, a typical meta-learning based framework will randomly sample
a number of episodes, or meta-tasks, to emulate the target N -way K-shot setting [7]. Based on this
principle, various models [7–13] have been proposed, which makes meta-learning a plausible default
choice for FSNC tasks. On the other hand, despite the remarkable breakthroughs that have been made,
meta-learning based methods still have several limitations. First, relying on different arbitrarily
sampled meta-tasks to extract transferable meta-knowledge, meta-learning based frameworks suffer
from the piecemeal knowledge issue [14]. That being said, a small portion of the nodes and classes
are selected per episode for training, which leads to an undesired loss of generalizability of the learned
GNNs regarding nodes from unseen novel classes. Second, the feasibility for sampling meta-tasks
is based on the assumption that there exist sufficient base classes where substantial labeled nodes
are accessible. However, this assumption can be easily overturned for real-world graphs where the
number of base classes can be limited, or the labels of nodes in base classes can be inaccessible. In
a nutshell, these two concerns motivate us to design an alternative framework for meta-learning to
cover more realistic scenarios.

Inspired by [15, 16], we postulate that the key to solving FSNC is to learn a generalizable GNN
encoder. We validate this postulation by a motivating example in Section 2.3. Then, without the
episodic emulation, the proposed novel framework, Transductive Linear Probing (TLP), directly
transfers pretrained node embeddings for nodes in novel classes learned from Graph Contrastive
Learning (GCL) methods [17–23], and fine-tunes a separate linear classifier with the support set to
predict labels for unlabeled nodes. GCL methods are proven to learn generalizable node embeddings
by maximizing the representation consistency under different augmented views [17, 18, 23, 24]. If
the representations of nodes in novel classes are discriminative enough, probing them with a simple
linear classifier should provide decent accuracy. Based on this intuition, we propose two instantiations
of the TLP framework in this paper: TLP with the self-supervised form of GCL methods and TLP
with the supervised GCL counterparts. We evaluate TLP by transferring node embeddings from
various GCL methods to the linear classifier and compare TLP with meta-learning based methods
under the same evaluation protocol. Moreover, we examine the effect of supervision during GCL
pretraining for target FSNC tasks to further analyze what role labels from base classes play in TLP.

Throughout this paper, we aim to shed new light on the few-shot node classification problem through
the lens of empirical evaluations of both the "old" meta-learning paradigm and the "new" transductive
linear probing framework. The summary of our contributions is as follows:

New Framework We are the first to break with convention and precedent to propose a new framework,
transductive linear probing, as a competitive alternative to meta-learning for FSNC tasks.

Comprehensive Study We perform comprehensive reviews on current literature and the research
community and conduct a large-scale study on six widely-used real-world datasets that cover different
scenarios in FSNC: (1) a sufficient number of base classes with substantial labeled nodes in each
class, (2) a sufficient number of base classes with no labeled nodes in each class, (3) a limited number
of base classes with substantial labeled nodes in each class, and (4) a limited number of base classes
with no labeled nodes in each class. We evaluate all the compared methods under the same protocol.

Findings We demonstrate that despite the recent advances in few-shot node classification, meta-
learning based methods struggle to outperform TLP methods. Moreover, the TLP-based methods
with self-supervised GCL can outperform their supervised counterparts and those meta-learning
based methods even if all the labels from base classes are inaccessible. This signifies that without
label information, self-supervised GCL can focus more on node-level structural information, which
results in better node representations. However, TLP also inherits its limitation for scalability due to
the large memory consumption of GCL, which makes it hard to deploy on extremely large graphs.
Based on those observations, we identify that improving adaptability and scalability are the promising
directions for meta-learning based and TLP-based methods, respectively.

Our implementations for experiments are released2. We hope to facilitate the sharing of insights and
accelerate the progress on the goal of learning from scarcely labeled instances on graphs.

2https://github.com/Zhen-Tan-dmml/TLP-FSNC.git
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2 Preliminaries

2.1 Problem Statement

Formally, given an attributed network G = (V, E ,X) = (A,X), where V denotes the set of nodes
{v1, v2, ..., vn}, E denotes the set of edges {e1, e2, ..., em}, X = [x1;x2; ...;xn] ∈ Rn×d denotes
all the node features, and A = {0, 1}n×n is the adjacency matrix representing the network structure.
Specifically, Aj,k = 1 indicates that there is an edge between node vj and node vk; otherwise,
Aj,k = 0. The few-shot node classification problem assumes that there exist a series of target
node classification tasks, T = {Ti}Ii=1, where Ti denotes the given dataset of a task, and I denotes
the number of such tasks. We term the classes of nodes available during training as base classes
(i.e., Cbase) and the classes of nodes during target test phase as novel classes (i.e., Cnovel) and
Cbase ∩ Cnovel = ∅. Notably, under different settings, labels of nodes for training (i.e., Cbase) may
or may not be available during training. Conventionally, there are few labeled nodes for novel classes
Cnovel during the test phase. The problem of few-shot node classification is defined as follows:
Definition 1. Few-shot Node Classification: Given an attributed graph G = (A,X) with a divided
node label space C = {Cbase,Cnovel}, we only have few-shot labeled nodes (support set S) for
Cnovel. The task T is to predict the labels for unlabeled nodes (query set Q) from Cnovel. If the
support set in each target (test) task has N novel classes with K labeled nodes, then we term this
task an N -way K-shot node classification task.

The goal of few-shot node classification is to learn an encoder that can transfer the topological and
semantic knowledge learned from substantial data in base classes (Cbase) and generate discriminative
embeddings for nodes from novel classes (Cnovel) with limited labeled nodes.

2.2 Episodic Meta-learning for Few-shot Node Classification.

Episodic meta-learning is a proven effective paradigm for few-shot learning tasks [25–32]. The
main idea is to train the neural networks in a way that emulates the evaluation conditions. This is
hypothesized to be beneficial for the prediction performance on test tasks [25–27, 33]. Based on
this philosophy, many recent works in few-shot node classification [8, 10–12, 34–39] successfully
transfer the idea to the graph domain. It works as follows: during the training phase, it generates a
number of meta-train tasks (or episodes) Ttr from Cbase to emulate the test tasks, following their
N -way K-shot node classification specifications:

Ttr = {Tt}Tt=1 = {T1, T2, ..., TT },
Tt = {St,Qt},
St = {(v1, y1), (v2, y2), ..., (vN×K , yN×K)},
Qt = {(v1, y1), (v2, y2), ..., (vN×K , yN×K)}.

(1)

For a typical meta-learning based method, in each episode, K labeled nodes are randomly sampled
from N base classes, forming a support set, to train the GNN model while emulating the N -way
K-shot node classification in the test phase. Then GNN predicts labels for an emulated query set of
nodes randomly sampled from the same classes as the support set. The Cross-Entropy Loss (LCE) is
calculated to optimize the GNN encoder gθ and the classifier fψ in an end-to-end fashion:

θ, ψ = argmin
θ,ψ

LCE(Tt; θ, ψ). (2)

Based on this, Meta-GNN [34] combines MAML [31] with GNNs to achieve optimization for
different meta-tasks. GPN [8] applies ProtoNet [30] and computes node importance for a transferable
metric function. G-Meta [10] aims to establish a local subgraph for each node to achieve fast
adaptations to new meta-tasks. RALE [35] obtains relative and absolute node embeddings based on
node positions on graphs to model node dependencies in each meta-task. An exhaustive survey is
beyond the scope of this paper; see [13] for an overview. However, all those methods are evaluated
on different datasets with each own evaluation protocol, which fragments the practical knowledge
on how meta-learning performs with a few labeled nodes and makes it hard to explicitly compare
their superiority or inferiority. To bridge this gap, in this paper, we conduct extensive experiments to
compare new advances and prior works for FSNC tasks uniformly and comprehensively.
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2.3 A Motivating Example and Preliminary Analysis

More recently, related works in the image domain demonstrate that the reason for the fast adaptation
lies in feature reuse rather than those complicated mate-learning algorithms [15, 16]. In other words,
with a carefully pretrained encoder, decent performance can be obtained through directly fine-tuning a
simple classifier on the target task. However, few studies have been done on the graph domain due to
its important difference from images that nodes in a graph are not i.i.d. Their interactive relationships
are reflected by both the topological and semantic information. To validate such hypothesis on graphs,
based on [16], we construct an Intransigent GNN model, namely I-GNN, that simply does not adapt
to new tasks. We decouple the training procedure to two separate phases. In the first phase, a GNN
encoder gθ with a linear classifier fϕ as the classifier is simply pretrained on all base classes Cbase
with vanilla supervision through LCE :

T ′
tr = ∪{Tt}Tt=1 = ∪{T1, T2, ..., TT },

θ, ϕ = argmin
θ,ϕ

LCE(T ′
tr; θ, ϕ) +R(θ),

(3)

where R(θ) is a weight-decay regularization term: R(θ) = ∥θ∥2/2. Then, we freeze the parameter
of the GNN encoder gθ and discard the classifier fϕ. When fine-tuning on a target few-shot node
classification task Ti = {Si,Qi}, the embeddings of all nodes from Ti are directly transferred from
the pretrained GNN encoder gθ. Then another linear classifier fψ is involved and tuned with few-shot
labeled nodes from the support set Si to predict labels of nodes in the query set Qi:

ψ = argmin
ψ
LCE(Si; θ, ψ). (4)

Results and Analysis of the Intransigent GNN model I-GNN. We demonstrate the performance
of the intransigent model and compare it with those meta-learning based models in Table 1, 6. Under
the same evaluation protocol (defined in Section 3.2), the simple intransigent model I-GNN has
very competitive performance with meta-learning based methods. On datasets (e.g., CiteSeer)
where the number of base classes |Cbase| is limited, I-GNN consistently outperforms meta-learning
based methods in terms of accuracy. This motivating example concludes that transferring node
embeddings from the vanilla supervised training method I-GNN could be an alternative to meta-
learning. Moreover, we take one step further and postulate that if more transferable node embeddings
are obtained during pretraining, the performance on target FSNC tasks could be improved even more.

2.4 Transductive Linear Probing for Few-shot Node Classification.

Inspired by the motivating example above, we generalize it to a new framework, Transductive Linear
Probing (TLP), for few-shot node classification. The only difference between TLP and I-GNN is that
the pretraining method can be an arbitrary strategy rather than the vanilla supervised learning. It can
even be self-supervised training methods that do not have any requirement on base classes. In this
way, the second line of Eq. (3) can be generalized to:

θ = argmin
θ
Lpretrain(T ′

tr; θ), (5)

where Lpretrain is an arbitrary loss function to pretrain the GNN encoder gθ. Then following Eq. (4),
we can exploit a linear classifier to probe the transferred embeddings of nodes from novel classes,
and perform the final node classification.

In this paper, we thoroughly investigate Graph Contrastive Learning (GCL) as the pretraining
strategy for TLP due to two reasons: (1) GCL [17, 19, 20, 23, 40, 41] is a proved effective way
to learn generalizable node representations in either a supervised or self-supervised manner. By
maximizing the consistency over differently transformed positive and negative examples (termed
as views), GCL enforces the GNNs to be aware of the semantic and topological knowledge and
injected perturbations on graphs. Trained on the global structures, GCL should be capable of
addressing the piecemeal knowledge issue in meta-learning to increase the generalizability of the
learned GNNs. Also, [42] summarizes the characteristics of GCL frameworks and empirically
demonstrates the transferability of the learned representations. (2) GCL has no requirement for the
base classes, which means GCL can be deployed even when the number of base classes is limited, or
the nodes in base classes are unlabeled. The effectiveness of GCL highly relies on the contrastive loss
function. There are two categories of contrastive loss function for graphs: (1) Supervised Contrastive

4



Transductive Linear Probing: A Novel Framework for Few-Shot Node Classification

Figure 1: The framework of TLP with supervised GCL: (a) Supervised GCL framework. (b) Fine-
tuning on few-shot labeled nodes from novel classes with support and query sets. Colors indicate
different classes (e.g., Neural Networks, SVM, Fair ML, Explainable AI). Specially, white nodes
mean labels of those nodes are unavailable. Labels of all nodes in base classes are available. Different
types of nodes indicate if nodes are from base classes or novel classes. The counterpart of TLP with
self-supervised GCL is very simliar to this, and a figure is included in Appendix B.

Loss (LSupCon) [43, 44]. (2) Self-supervised Contrastive Loss: Information Noise Contrastive
Estimation (LInfoNCE) [19, 20, 22] and Jensen-Shannon Divergence (LJSD) [17, 18]. We also
consider a special GCL method, BGRL [21], which does not explicitly require negative examples.
The framework for TLP with an iconic supervised GCL method is provided in Fig. 1. From another
perspective, our work is the first to focus on the extrapolation ability of GCL methods, especially
under extremer few-shot settings without labels for nodes in base classes.

3 Experimental Study
3.1 Experimental Settings

We conduct systematic experiments to compare the performance of meta-learning and TLP methods
(with self-supervised and supervised GCL) on the few-shot node classification task. For meta-
learning, we evaluate ProtoNet [30], MAML [31], Meta-GNN [34], G-Meta [10], GPN [8],
AMM-GNN [9], and TENT [12]. For TLP methods with both self-supervised and supervised
forms, we evaluate MVGRL [17], GraphCL [18], GRACE [19], MERIT [20], and SUGRL [22].
Moreover, BGRL [45] and I-GNN [16] are exclusively used for TLP methods with self-supervised
GCL or supervised GCL, respectively. The detailed descriptions of these models can be found in
Appendix D. For comprehensive studies, we benchmark those methods on six prevalent real-world
graph datasets: CoraFull [46], ogbn-arxiv [47], Coauthor-CS [48], Amazon-Computer [48],
Cora [49], and CiteSeer [49]. Specifically, each dataset is a connected graph and consists of
multiple node classes for training and evaluation. A more detailed description of those datasets is
provided in Appendix F with their statistics and class split policies in Table 3 in Appendix E.
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3.2 Evaluation Protocol

In this section, we specify the evaluation protocol used to compare both meta-learning based methods
and TLP based methods. For an attributed graph dataset G = (A,X) with a divided node label
space C = {Cbase,Cnovel (or Ctest)}, we split Cbase into Ctrain and Cdev (The split policy for each
datasets are listed in Table 3). For evaluation, given a GNN encoder gθ, a classifier fψ , the validation
epoch interval V , the number of sampled meta-tasks for evaluation I , the epoch patience P , the
maximum epoch number E, the experiment repeated times R, and the N -way, K-shot, M -query
setting specification, the final FSNC accuracy A and the confident interval I (two mainly-concerned
metrics) are calculated according to Algorithm 1 given below. The default values of all those
parameters are given in Table 2 in Appendix C.

Algorithm 1 UNIFIED EVALUATION PROTOCOL FOR FEW-SHOT NODE CLASSIFICATION

Input: Graph G, Ctrain, Cdev , Ctest; GNN gθ , classifier fψ; parameters V , I , P , E, R, N , K, M
Output: Trained models gθ and fψ , accuracy A, confident interval I.

// Repeat experiment for R times
1: for r = 1, 2, . . . , R do
2: p← 1, t← 1, sbest ← 0;
3: while t ≤ E do
4: Optimize gθ based on the specific training strategy (i.e., meta-learning and TLP); // Training
5: if t mod V = 0 then
6: Sample I meta-tasks from Cdev on G; // Validation
7: Calculate the obtained few-shot node classification accuracy s;
8: if s > sbest then
9: sbest ← s, p← 0;

10: else
11: p← p+ 1;
12: end if
13: end if
14: if p = P then
15: break; // Early Break
16: end if
17: end while
18: Sample I meta-tasks from Ctest on G; // Test
19: Calculate the obtained classification accuracy stest;
20: sr ← stest, r ← r + 1;
21: end for
22: Calculate averaged accuracy A and confident interval I based on {s1, s2, . . . , sr};

3.3 Comparison

Table 1 presents the performance comparison of all methods on the few-shot node classification task.
Specifically, we give results under four different few-shot settings to exhibit a more comprehensive
comparison: 5-way 1-shot, 5-way 5-shot, 2-way 1-shot, and 2-way 5-shot. More results are given in
Appendix H. We choose the average classification accuracy and the 95% confidence interval over R
repetitions as the evaluation metrics. From Table 1, we discover the following observations:

• TLP methods consistently outperforms meta-learning methods, which indicates the importance
of transferring comprehensive node representations in FSNC tasks. In TLP methods, the model
is forced to extract node-level structural information, while the meta-learning methods mainly
focus on label information. As a result, TLP methods can transfer better node representations
and exhibit superior performance on meta-test tasks.

• Even without using any label information from base classes, TLP with self-supervised GCL
methods can mostly outperform TLP with supervised GCL methods. This signifies that di-
rectly injecting supervision can potentially hinder the generalizability for TLP, which is further
investigated in the following sections.

• Increasing the number of shots K (i.e., number of labeled nodes in the support set) has more
significant effect on performance of both forms of TLP methods, compared with meta-learning
methods. This is due to the fact that with the additional support nodes, TLP with GCL can
provide more informative node representations to learn a more powerful classifier. Instead, the
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Table 1: The overall few-shot node classification results of meta-learning methods and TLP with
various GCL methods under different settings. Accuracy (↑) and confident interval (↓) are in %. The
best and second best results are bold and underlined, respectively. OOM denotes out of memory.

Dataset CoraFull ogbn-arxiv CiteSeer

Setting 5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot 2-way 1-shot 2-way 5-shot

Meta-learning

MAML [31] 22.63 ± 1.19 27.21 ± 1.32 27.36 ± 1.48 29.09 ± 1.62 52.39 ± 2.20 54.13 ± 2.18

ProtoNet [30] 32.43 ± 1.61 51.54 ± 1.68 37.30 ± 2.00 53.31 ± 1.71 52.51 ± 2.44 55.69 ± 2.27

Meta-GNN [34] 55.33 ± 2.43 70.50 ± 2.02 27.14 ± 1.94 31.52 ± 1.71 56.14 ± 2.62 67.34 ± 2.10

GPN [8] 52.75 ± 2.32 72.82 ± 1.88 37.81 ± 2.34 50.50 ± 2.13 53.10 ± 2.39 63.09 ± 2.50

AMM-GNN [9] 58.77 ± 2.49 75.61 ± 1.78 33.92 ± 1.80 48.94 ± 1.87 54.53 ± 2.51 62.93 ± 2.42

G-Meta [10] 60.44 ± 2.48 75.84 ± 1.70 31.48 ± 1.70 47.16 ± 1.73 55.15 ± 2.68 64.53 ± 2.35

TENT [12] 55.44 ± 2.08 70.10 ± 1.73 48.26 ± 1.73 61.38 ± 1.72 62.75 ± 3.23 72.95 ± 2.13

TLP with Supervised GCL

I-GNN [16] 42.70 ± 1.92 51.46 ± 1.69 38.46 ± 1.77 51.46 ± 1.69 58.70 ± 3.17 65.60 ± 2.58

MVGRL [17] 44.98 ± 1.99 71.18 ± 1.75 OOM OOM 55.79 ± 1.39 66.72 ± 2.13

GraphCL [18] 47.00 ± 1.64 67.94 ± 1.71 OOM OOM 53.55 ± 1.68 69.50 ± 1.41

GRACE [19] 65.48 ± 2.45 85.08 ± 1.49 OOM OOM 61.20 ± 2.39 81.76 ± 1.74

MERIT [20] 52.80 ± 2.72 81.30 ± 1.53 OOM OOM 61.25 ± 2.59 81.45 ± 1.80

SUGRL [22] 54.26 ± 2.24 77.55 ± 1.95 52.13 ± 2.11 70.05 ± 1.56 65.34 ± 2.55 75.81 ± 1.43

TLP with Self-supervised GCL

MVGRL [17] 59.91 ± 2.39 76.76 ± 1.63 OOM OOM 64.45 ± 2.77 80.25 ± 1.82

GraphCL [18] 64.20 ± 2.56 83.74 ± 1.46 OOM OOM 73.55 ± 3.09 92.35 ± 1.24

BGRL [45] 43.83 ± 2.11 70.44 ± 1.62 36.76 ± 1.74 53.44 ± 0.36 54.32 ± 1.63 70.50 ± 2.11

GRACE [19] 72.42 ± 2.06 83.82 ± 1.67 OOM OOM 60.75 ± 2.54 78.42 ± 2.01

MERIT [20] 73.38 ± 2.25 87.66 ± 1.43 OOM OOM 64.53 ± 2.81 90.32 ± 1.66

SUGRL [22] 77.35 ± 2.20 83.96 ± 1.52 60.04 ± 2.11 77.52 ± 1.45 77.34 ± 2.83 86.32 ± 1.57

meta-learning methods are based on the extracted label information and thus cannot benefit from
additional node-level information.

• Most TLP methods encounter the OOM (out of memory) problem when applied to the
ogbn-arxiv dataset. This is due to the fact that the contrastive strategy in TLP methods will
consume a larger memory compared with traditional supervised learning. Thus, the scalability
problem is not negligible for TLP with GCL methods.

• BGRL [45] exhibits less competitive performance compared with other TLP methods with
self-supervised GCL. The result indicates that negative samples are important for self-supervised
GCL in FSNC, which can help the model exploit node-level information. Nevertheless, without
the requirement of negative samples, BGRL can parallel better to handle the OOM problem.

3.4 Further Analysis

To explicitly compare the results between meta-learning and TLP and between two forms of TLP, we
provide further results of all methods on various N -way K-shot settings in Fig. 2 and Fig. 3. From
the results, we can obtain the following observations:

• When a larger values of N is presented, the performance drop is less significant on TLP based
methods compared to meta-learning based methods. The performance of all methods degrades
as N increases (i.e., more classes in each meta-task). With a larger N , the variety of classes in
each meta-task can result in a more complex class distribution and thus increase the classification
difficulties. Nevertheless, the performance drop is less significant on TLP with both forms of
GCL methods. This is because the utilized GCL methods focus more on node-level structural
patterns, which incorporate more potentially useful information for classification. As a result,
TLP is more capable of alleviating the problem of difficult classification caused by a larger N .
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• As shown in Fig. 3, the performance improvement of TLP with self-supervised GCL methods
over meta-learning methods on CiteSeer is generally more impressive than other datasets.
The main reason is that CiteSeer bears a significantly smaller class set (2/2/2 classes for
Ctrain/Cdev/Ctest). In consequence, the meta-learning methods cannot effectively leverage
the supervision information during training. Nevertheless, TLP with self-supervised GCL can
extract useful structural information for better generalization performance.
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Figure 2: N -way K-shot results on CoraFull, meta-learning and TLP. TLP Methods with ∗ are
based on supervised GCL methods and I-GNN.
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Figure 3: 2-way K-shot results on CiteSeer and Amazon-Computer, meta-learning and two forms
of TLP. TLP Methods with ∗ are based on supervised GCL methods and I-GNN.

3.5 Effect of Supervision Information in Base Classes

In this section, we further investigate the effectiveness of the supervised information in TLP with
supervised GCL methods. Specifically, we leverage a combined loss LJointCon = λLSelfCon +
(1− λ)LSupCon, where LSelfCon indicates a self-supervised GCL loss, either LJSD or LInfoNCE
according to the models, and LJointCon is a mixture of supervised GCL loss and self-supervised
GCL loss. In this way, we can gradually adjust the value of λ to inject different levels of supervision
signals into GCL and then observe the performance fluctuation. Note that due to the unstable training
curve brought by the joint loss LJointCon, we increase the epoch patience number from P to 2P
to ensure convergence. The results on Cora dataset (we observe similar results on other datasets)
with different values of λ are provided in Fig. 4. From the results, we can obtain the following
observations:

• In general, the classification performance increases with a larger value of λ. In other words,
directly injecting supervision information into GCL for TLP will usually reduce the performance
on few-shot node classification tasks. Nevertheless, carefully injecting supervision information
can slightly increase the accuracy by choosing a suitable value of λ. On the other hand, the
results also verify that the TLP framework can still achieve considerable performance without
any explicit restrictions for base classes.

• Even with a relatively small value of λ (e.g., 0.1), the performance improvement over TLP with
totally supervised GCL (i.e., λ = 0.0) is still significant. That being said, the contrastive strategy
that leverages graph structures can provide better performance by providing comprehensive
node representations.
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Figure 4: Results on dataset Cora (2-way)

3.6 Evaluating Learned Node Representations on Novel Classes

In this section, we further validate the quality of the learned node representations from different
training strategies. Particularly, we leverage two prevalent clustering evaluation metrics: normalized
mutual information (NMI) and adjusted random index (ARI), on learned node representations
clustered based on K-Means. We evaluate the representations learned from two datasets CoraFull
and CiteSeer for a fair comparison. The results are presented in Table 4 in Appendix H.2 . Based
on the results, we can obtain the following observations:

• The meta-learning methods typically exhibit inferior NMI and ARI scores compared with both
forms of TLP. This is because meta-learning methods are dedicated for extracting supervision
information from node samples and thus cannot fully utilize node-level structural information.

• In general, TLP with self-supervised GCL methods can result in larger values of both NMI
and ARI scores than TLP with supervised GCL. This is due to the fact that the self-supervised
GCL model focuses more on extracting structural information without the interruption of label
information. As a result, the learned node representations are more comprehensive and thus
exhibit superior clustering performance.

• The difference of NMI and ARI scores between meta-learning and TLP is more significant on
CiteSeer than CoraFull. This phenomenon potentially results from the fact that CiteSeer
consists of fundamentally fewer classes than CoraFull. In consequence, for CiteSeer, the
meta-learning methods will largely rely on label information instead of node-level structural
information for classification.

(a) GraphCL∗ (b) GraphCL (c) SUGRL∗ (d) SUGRL

(e) Meta-GNN (f) TENT (g) Meta-GNN (h) TENT

Figure 5: The t-SNE visualization results. Fig. (a)-(f) are for dataset CoraFull (5-way). Fig. (g)-(h)
are for dataset CiteSeer (2-way). TLP methods with ∗ are based on supervised GCL methods.
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3.7 Visualization

To provide an explicit comparison of different baselines, we visualize the learned node representations
from CoraFull and CiteSeer via the t-SNE algorithm, where colors denote different classes. It
is noteworthy that for clarity, we randomly select five classes from Ctest for the visualization. The
results are provided in Fig. 5 (more results are included in Fig. 8). Specifically, we discover that:

• TLP with self-supervised GCL generally outperforms TLP with supervised GCL. This is
because without learning label information, TLP with self-supervised GCL can concentrate on
node representation patterns, which are easier to transfer to target unseen novel classes.

• The learned node representations are less discriminative for meta-learning on CiteSeer
compared with CoraFull. This is because CiteSeer contains fewer classes, which means the
node representations learned by meta-learning methods will be less informative, since they are
only required to classify nodes from a small class set.

4 Conclusion, Limitations, and Outlook
In this paper, we propose TLP as an alternative framework to meta-learning for FSNC tasks. First, we
provide a motivating example, a vanilla intransigent GNN model, to validate our postulation that a
generalizable GNN encoder is the key to FSNC tasks. Then, we provide a formal definition for TLP,
which transfers node embeddings from GCL pretraining to the prevailing meta-learning paradigm.
We conduct comprehensive experiments and compare various meta-learning based and TLP-based
methods under the same protocol. Our rigorous empirical study reveals several interesting findings
on the strengths and weaknesses of the two approaches and identifies that adaptability and scalability
are the promising directions for meta-learning based and TLP-based methods, respectively.

However, due to limited space, several limitations of our work need to be acknowledged.

• Limited design considerations. Even though an exhaustive survey on FSNC or GCL is out
of the scope of this work, we do not provide a more fine-grained comparison on model details,
such as different GNN encoders or various transformations during GCL pretraining. Also, we
only consider methods applied on a single graph, which currently are the mainstream of research
on FSNC. There are more recent works (e.g., [50]) studying FSNC across multiple graphs.

• Lack of theoretical justifications. Our findings are based on empirical studies, which cannot
disclose the underlying mathematical mechanisms of those methods, such as the performance
guarantee by transferring node embeddings from different GCL methods.

How to address these limitations is saved as future work. Note that based on the experiments here, the
observations drawn are not conclusive termination. We only cover existing methods in this work and
hope this work to be inspiring for developing meta-learning based FSNC methods that can outperform
TLP based methods, or better ways to utilize labels in TLP methods. In broader terms, this work lies
at the confluence of graph few-shot learning and graph contrastive learning. We hope this work can
facilitate the sharing of insights for both communities. On the one hand, we hope our work provides
a necessary yardstick to measure progress across the FSNC field. On the other hand, our work should
have exhibited several practical guidelines for future research in both vigorous fields. For example,
the meta-learning community can get inspired by GCL to learn more transferable graph patterns.
Also, few-shot TLP can serve as a new metric to evaluate the extrapolation ability of GCL methods.
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A Framework for Meta-learning Based FSNC Methods

Figure 6: The framework for meta-learning methods. Colors indicate different classes (e.g., Neural
Networks, SVM, Fair ML, Explainable AI). Specifically, white nodes denotes that the labels of those
nodes are unavailable. Labels of all nodes in base classes are available. Different types of nodes
indicate if nodes are from base classes or novel classes.

B Framework for TLP with Self-Supervised GCL

Figure 7: The framework for TLP with self-supervised methods. Labels of all nodes in base classes
are unavailable. Different types of nodes indicate if nodes are from base classes or novel classes.
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C Default Values of Parameters in Evaluation Protocol
In this section, we provide the default values of parameters used in our experiments. The details are
provided in Table 2. It is noteworthy that the parameters are consistent for all models in both meta-
learning and TLP methods. For the experiments that utilize a joint loss of TLP with self-supervised
GCL and supervised GCL, we increase the patience number from P to 2P to ensure convergence.

Table 2: Default Values of Parameters in Evaluation Protocol for Experiments

Parameters Description Value

V validation epoch interval 10

I number of sampled meta-tasks for evaluation 100

P patience number 10

E maximum epoch number 10000

R number of repeated experiments 5

N number of classes in each meta-task 2,5

K number of nodes for each class in each meta-task 1,3,5

M number of queries for each class in each meta-task 10

D Description of Baselines
In this section, we provide further details about the baselines used in our experiments.

Meta-learning based methods:

• ProtoNet [30]: ProtoNet learns a prototype for each class in meta-tasks by averaging the
embeddings of samples in this class. Then it conducts classification on query instances based on
their distances to prototypes.

• MAML [31]: MAML first optimizes model parameters according to the gradients calculated on
the support instances for several steps. Then it meta-updates parameters based on the loss of
query instances calculated with the parameters updated on support instances.

• Meta-GNN [34]: Meta-GNN combines GNNs with the MAML strategy to apply meta-learning
on graph-structured data. Specifically, Meta-GNN learns node embeddings with GNNs, while
updating and meta-updating the GNN parameters based on the MAML strategy.

• G-Meta [10]: G-Meta extracts a subgraph for each node to learn the node representation with
GNNs. Then it conducts the classification on query nodes based on the MAML strategy to
update and meta-update the parameters of GNNs.

• GPN [8]: GPN proposes to learn node importance for each node in meta-tasks to select more
beneficial nodes for classification. Then GPN utilizes ProtoNet to learn node prototypes via
averaging node embeddings in a weighted manner.

• AMM-GNN [9]: AMM-GNN proposes to extend MAML with an attribute matching mechanism.
Specifically, the node embeddings will be adjusted according to the embeddings of nodes in the
entire meta-task in an adaptive manner.

• TENT [12]: TENT reduces the variance among different meta-tasks for better generalization
performance. In particular, TENT learns node and class representations by conducting node-
level and class-level adaptations. It also incorporates task-level adaptations that maximizes the
mutual information between the support set and the query set.

Transductive Linear Probing with different Pretraining methods:

• I-GNN [16]: I-GNN learns a GNN encoder with a classifier that is trained on all base classes
Cbase with the vanilla Cross-Entropy loss LCE . Then for each meta-test task, the GNN will be
frozen and a new classifier is learned based on the support set for classification.
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• MVGRL [17]: MVGRL learns node and graph level representations by contrasting the repre-
sentations of two structural views of graphs, which include first-order neighbors and a graph
diffusion. It utilizes a Jensen-Shannon Divergence based contrastive loss LJSD.

• GraphCL [18]: GraphCL proposes to leverage combinations of different transformations in GCL
to facilitate GNNs with generalizability, transferrability, and robustness without sophisticated
architectures. It also uses LJSD as the objective.

• GRACE [19]: GRACE proposes a hybrid scheme for generating different graph views on both
structure and attribute levels. GRACE further provides theoretical justifications behind the
motivation. It proposes a variant of Information Noise Contrastive Estimation LInfoNCE as the
contrastive loss.

• MERIT [20]: MERIT employs two different objectives named cross-view and cross-network
contrastiveness to further maximize the agreement between node representations across different
views and networks. It uses LInfoNCE similar to that in GRACE as the loss function.

• SUGRL [22]: SUGRL proposes to simultaneously enlarge inter-class variation and reduce
intra-class variation. The experimental results show promising improvements of generalization
error with SUGRL. It also uses LInfoNCE similar to that in GRACE as the loss function.

• BGRL [45]: BGRL leverages the concept of BYOL [51] and applies it to graph-structured data
by enforcing the agreement between positive views without any explicitly designs on negative
views. Specially, it uses Mean Squared Error LMSE between positive views as the final loss.

E Statistics of Benchmark Datasets

Table 3: Statistics of node classification datasets.

Dataset # Nodes # Edges # Features |C| |Ctrain| |Cdev| |Ctest|

CoraFull 19,793 63,421 8,710 70 40 15 15

ogbn-arxiv 169,343 1,166,243 128 40 20 10 10

Coauthor-CS 18,333 81,894 6,805 15 5 5 5

Amazon-Computer 13,752 245,861 767 10 4 3 3

Cora 2,708 5,278 1,433 7 3 2 2

CiteSeer 3,327 4,552 3,703 6 2 2 2

F Description of Benchmark Datasets
In this section, we provide the detailed descriptions of the benchmark datasets used in our experiments.
All the datasets are public and available on both PyTorch-Geometric [52] and DGL [53].

• CoraFull [46] is a citation network that extends the prevalent small cora network. Specifically,
it is achieved from the entire citation network, where nodes are papers, and edges denote the
citation relations. The classes of nodes are obtained based on the paper topic. For this dataset,
we use 40/15/15 node classes for Ctrain/Cdev/Ctest.

• ogbn-arxiv [47] is a directed citation network that consists of CS papers from MAG [54]. Here
nodes represent CS arXiv papers, and edges denote the citation relations. The classes of nodes
are assigned based on the 40 subject areas of CS papers in arXiv. For this dataset, we use
20/10/10 node classes for Ctrain/Cdev/Ctest.

• Coauthor-CS [48] is a co-authorship graph based on the Microsoft Academic Graph from
the KDD Cup 2016 challenge. Here, nodes are authors, and are connected by an edge if they
co-authored a paper; node features represent paper keywords for each author’s papers, and class
labels indicate most active fields of study for each author. For this dataset, we use 5/5/5 node
classes for Ctrain/Cdev/Ctest.
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• Amazon-Computer [48] includes segments of the Amazon co-purchase graph [55], where
nodes represent goods, edges indicate that two goods are frequently bought together, node
features are bag-of-words encoded product reviews, and class labels are given by the product
category. For this dataset, we use 4/3/3 node classes for Ctrain/Cdev/Ctest.

• Cora [49] is a citation network dataset where nodes mean paper and edges mean citation
relationships. Each node has a predefined feature with 1,433 dimensions. The dataset is
designed for the node classification task. The task is to predict the category of certain paper. For
this dataset, we use 3/2/2 node classes for Ctrain/Cdev/Ctest.

• CiteSeer [49] is also a citation network dataset where nodes mean scientific publications and
edges mean citation relationships. Each node has a predefined feature with 3,703 dimensions.
The dataset is designed for the node classification task. The task is to predict the category of
certain publication. For this dataset, we use 2/2/2 node classes for Ctrain/Cdev/Ctest.

G Implementation Details

In this section, we introduce the implementation details for all methods compared in our experiments.
Specifically, for the encoders used in TLP methods, we follow the settings in the original papers of the
corresponding models to ensure consistency, and we choose Logistic Regression as the linear classifier
for the final classification. For encoders in meta-learning methods, we utilize the original designs for
papers using GNNs. For papers without using GNNs (i.e., ProtoNet [30] and MAML [31]), we use a
two-layer GCN [1] as the encoder with a hidden size of 16. We utilize the Adam optimizer [56] for
all experiments with a learning rate of 0.001. To effectively initialize the GNNs in our experiments,
we leverage the Xavier initialization [57]. For meta-learning methods using the MAML framework,
we set the number of meta-update steps as 20 with a meta-learning rate of 0.05. To ensure more stable
convergence in meta-learning methods, we set the weight decay rate as 10−4. We set the dropout
rate as 0.5 for better generalization performance. The evaluation protocol parameters are provided in
Table 2. All experiments are implemented using PyTorch [58]. We run all experiments on a single
80GB Nvidia A100 GPU.

H More Results

H.1 Visualization

In this section, we provide additional visualization results for more meta-learning and TLP methods
on CoraFull dataset in Fig. 8.

(a) GRACE∗ (b) GRACE (c) MERIT∗ (d) MERIT

(e) MVGRL∗ (f) MVGRL (g) ProtoNet (h) AMM-GNN

Figure 8: The t-SNE visualization results of meta-learning and TLP methods on CoraFull. TLP
methods with ∗ are based on supervised GCL methods.

.
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H.2 Node Representation Evaluation

In this section, we provide the detailed node representation evaluations on two datasets CoraFull
and CiterSeer based on NMI and ARI scores in Table 4.

Table 4: The overall NMI (↑) and ARI (↑) results of meta-learning and TLP methods on two datasets

Dataset CoraFull CiteSeer

Metrics NMI ARI NMI ARI

Meta-learning

MAML 0.1622 0.0597 0.0754 0.0602

ProtoNet 0.2669 0.1263 0.0915 0.0765

AMM-GNN 0.6247 0.5087 0.2090 0.1781

G-Meta 0.5003 0.3702 0.1913 0.1502

Meta-GNN 0.5534 0.4196 0.1317 0.1171

GPN 0.6001 0.4599 0.2119 0.2087

TENT 0.5760 0.4652 0.0930 0.0811

Supervised GCL

GRACE 0.7199 0.6239 0.4693 0.4769

MERIT 0.6119 0.4470 0.3471 0.3482

GraphCL 0.2474 0.0852 0.1321 0.0711

SUGRL 0.7298 0.6626 0.3927 0.4451

MVGRL 0.6412 0.5038 0.2445 0.2146

Self-supervised GCL

GRACE 0.6781 0.5856 0.2663 0.2778

MERIT 0.7419 0.6590 0.3923 0.4014

GraphCL 0.7023 0.5628 0.5579 0.5890

SUGRL 0.7680 0.7049 0.3952 0.4460

MVGRL 0.6227 0.4788 0.2554 0.2232
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H.3 Main Results for the Other Three Datasets or Other Settings

In this section, we further provide results for the other three datasets used in our experiments:
Coauthor-CS, Amazon-Computer, and Cora, and 2-way classification results on CoraFull,
ogbn-arxiv, and Coauthor-CS:

Table 5: The overall few-shot node classification results of meta-learning methods and TLP with
different GCL methods under different settings. Accuracy (↑) and confidence interval (↓) are in %.
The best and second best results are bold and underlined, respectively.

Dataset Coauthor-CS Amazon-Computer Cora

Setting 5-way 1-shot 5-way 5-shot 2-way 1-shot 2-way 5-shot 2-way 1-shot 2-way 5-shot

Meta-learning

MAML 27.98 ± 1.42 42.12 ± 1.40 52.67 ± 2.11 58.23 ± 2.53 53.13 ± 2.26 57.39 ± 2.23

ProtoNet 32.13 ± 1.52 49.25 ± 1.50 61.98 ± 2.95 70.20 ± 2.64 53.04 ± 2.36 57.92 ± 2.34

Meta-GNN 52.86 ± 2.14 68.59 ± 1.49 65.19 ± 3.29 78.65 ± 3.12 65.27 ± 2.93 72.51 ± 1.91

GPN 60.66 ± 2.07 81.79 ± 1.18 57.26 ± 1.50 77.63 ± 2.91 62.61 ± 2.71 76.39 ± 2.33

AMM-GNN 62.04 ± 2.26 81.78 ± 1.24 71.04 ± 3.56 79.21 ± 3.38 65.23 ± 2.67 82.30 ± 2.07

G-Meta 59.68 ± 2.16 74.18 ± 1.29 63.68 ± 3.05 70.21 ± 3.16 67.03 ± 3.22 80.05 ± 1.98

TENT 63.70 ± 1.88 76.90 ± 1.19 71.15 ± 3.11 79.25 ± 2.61 53.05 ± 2.78 62.15 ± 2.13

TLP with Supervised GCL

I-GNN 43.89 ± 1.82 55.93 ± 1.46 62.32 ± 2.89 72.81 ± 2.93 54.45 ± 3.13 65.18 ± 2.21

MVGRL 62.16 ± 2.05 84.79 ± 1.13 64.69 ± 2.84 84.84 ± 2.10 57.24 ± 2.07 78.04 ± 2.08

GraphCL 54.72 ± 2.62 84.02 ± 1.23 75.65 ± 3.05 88.31 ± 1.86 57.10 ± 2.27 79.53 ± 1.98

GRACE 76.48 ± 1.95 90.22 ± 0.84 75.57 ± 3.01 87.69 ± 2.17 66.79 ± 2.96 89.77 ± 1.59

MERIT 71.70 ± 2.88 91.54 ± 0.75 72.10 ± 3.86 94.56 ± 1.19 65.29 ± 3.23 91.02 ± 2.00

SUGRL 84.78 ± 1.47 93.01 ± 0.62 71.42 ± 2.68 84.12 ± 0.75 53.21 ± 1.80 57.64 ± 1.79

TLP with Self-supervised GCL

MVGRL 67.51 ± 2.21 88.72 ± 1.04 66.49 ± 2.75 86.31 ± 2.09 71.17 ± 3.04 89.91 ± 1.45

GraphCL 70.26 ± 2.19 87.32 ± 1.19 77.26 ± 3.12 94.13 ± 1.34 73.51 ± 3.18 92.38 ± 1.30

BGRL 64.72 ± 2.35 90.10 ± 0.88 68.58 ± 3.06 89.15 ± 1.97 60.14 ± 2.33 79.86 ± 1.92

GRACE 79.38 ± 1.75 91.68 ± 0.72 75.23 ± 2.59 90.48 ± 1.24 71.21 ± 2.97 89.68 ± 1.65

MERIT 85.74 ± 1.70 95.78 ± 0.61 78.14 ± 3.82 95.98 ± 1.38 67.67 ± 2.99 95.42 ± 1.21

SUGRL 91.63 ± 1.22 96.30 ± 0.51 85.05 ± 2.23 97.15 ± 0.81 82.35 ± 2.21 92.22 ± 1.15

19



Transductive Linear Probing: A Novel Framework for Few-Shot Node Classification

Table 6: The overall few-shot node classification results of meta-learning methods and TLP with
different GCL methods under different settings. Accuracy (↑) and confidence interval (↓) are in %.
The best and second best results are bold and underlined, respectively.

Dataset CoraFull ogbn-arxiv Coauthor-CS

Setting 2-way 1-shot 2-way 5-shot 2-way 1-shot 2-way 5-shot 2-way 1-shot 2-way 5-shot

Meta-learning

MAML 50.90 ± 2.30 56.19 ± 2.37 58.16 ± 2.35 65.10 ± 2.56 56.90 ± 2.41 66.78 ± 2.35

ProtoNet 57.10 ± 2.47 72.71 ± 2.55 62.56 ± 2.86 75.82 ± 2.79 59.92 ± 2.70 71.69 ± 2.51

Meta-GNN 75.28 ± 3.85 84.59 ± 2.89 62.52 ± 3.41 70.15 ± 2.68 85.90 ± 2.96 90.11 ± 2.17

GPN 74.29 ± 3.47 85.58 ± 2.53 64.00 ± 3.71 76.78 ± 3.50 84.31 ± 2.73 90.36 ± 1.90

AMM-GNN 77.29 ± 3.40 88.66 ± 2.06 64.68 ± 3.13 78.42 ± 2.71 84.38 ± 2.85 94.74 ± 1.20

G-Meta 78.23 ± 3.41 89.49 ± 2.04 63.03 ± 3.32 76.56 ± 2.89 84.19 ± 2.97 91.02 ± 1.61

TENT 77.75 ± 3.29 88.20 ± 2.61 70.30 ± 2.85 81.35 ± 2.77 87.85 ± 2.48 91.75 ± 1.60

Supervised GCL

I-GNN 68.43 ± 2.94 78.20 ± 2.83 65.21 ± 2.86 77.10 ± 2.46 65.35 ± 3.09 76.83 ± 2.48

MVGRL 65.62 ± 3.11 84.41 ± 2.35 OOM OOM 78.08 ± 3.59 91.78 ± 1.66

GraphCL 60.81 ± 2.23 81.25 ± 2.29 OOM OOM 74.16 ± 2.88 88.43 ± 1.73

GRACE 76.78 ± 3.49 93.62 ± 1.32 OOM OOM 86.22 ± 2.53 94.11 ± 1.27

MERIT 75.52 ± 6.53 88.03 ± 5.11 OOM OOM 77.52 ± 7.58 96.62 ± 2.12

SUGRL 75.98 ± 2.98 90.02 ± 1.53 73.48 ± 2.55 81.04 ± 1.68 88.45 ± 1.62 95.10 ± 0.56

Self-supervised GCL

MVGRL 78.81 ± 3.32 91.03 ± 1.80 OOM OOM 78.59 ± 2.92 93.54 ± 1.40

GraphCL 78.49 ± 3.26 91.32 ± 2.11 OOM OOM 78.51 ± 3.12 91.34 ± 1.57

BGRL 61.08 ± 2.65 85.03 ± 2.25 59.91 ± 2.36 76.75 ± 0.86 76.85 ± 3.23 94.69 ± 1.29

GRACE 82.80 ± 3.13 93.06 ± 2.17 OOM OOM 89.46 ± 2.26 95.53 ± 1.05

MERIT 77.46 ± 3.14 94.65 ± 1.31 OOM OOM 94.31 ± 1.73 98.35 ± 0.57

SUGRL 87.98 ± 2.72 95.81 ± 1.69 82.45 ± 2.94 91.68 ± 1.57 96.81 ± 1.31 98.90 ± 0.48
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Figure 9: N -way K-shot results on Coauthor-CS, meta-learning and TLP. TLP Methods with ∗ are
based on supervised GCL methods and I-GNN.
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Figure 10: N -way K-shot results on CoraFull, TLP with self-supervised and supervised GCL.
TLP Methods with ∗ are based on supervised GCL methods.
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Figure 11: N -way K-shot results on Coauthor-CS, TLP with self-supervised and supervised GCL.
TLP Methods with ∗ are based on supervised GCL methods.

1-shot 3-shot 5-shot50
60
70
80
90

100

Te
st

 A
cc

ur
ac

y 
(%

) MVGRL
MVGRL*

GraphCL
GraphCL*

GRACE
GRACE*

MERIT
MERIT*

SUGRL
SUGRL*

(a) Results on dataset Amazon-Computer
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(b) Results on dataset CiteSeer

Figure 12: 2-way K-shot results on Amazon-Computer and CiteSeer, TLP with self-supervised
and supervised GCL. TLP Methods with ∗ are based on supervised GCL methods.
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