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Abstract

We introduce here a form of committee machines that gives good predictions of1

classification confidence, while being computationally efficient. The initial devel-2

opment of this method was motivated by our work on benthic mapping based on3

a large dataset of ocean floor images. These wild type images vary dramatically4

in terms of their classification difficulty and often result in low inter-rater agree-5

ment. We show that our method is able to identify difficult to classify images6

using model uncertainty, consistent with Bayesian neural networks and Monte7

Carlo sampling. However, our method drastically reduces the computational re-8

quirements and offers a more efficient strategy. This enables us to provide these9

uncertain predictions to a human specialist and offers a form of active learning to10

enhance the classification accuracy of the dataset. We provide both a benchmark11

study to demonstrate this approach and first results of the BenthicNet dataset.12

1 Introduction13

Uncertainty quantification of model predictions plays an important role for predictions of high-14

risk applications (Gawlikowski et al. 2023; Hüllermeier and Waegeman 2021; Huang et al. 2024).15

However, evaluating uncertainties of model predictions are typically computationally expensive or16

difficult to implement. This is in part, due to applications of large networks and datasets that are17

commonly used today (e.g., large language models, transformers, ResNets, etc.). Bayesian and their18

approximating methods, such as Monte Carol sampling and ensembles require sampling multiple19

models or subsets of the training dataset. While, recent approaches have been proposed to address20

these concerns (Harrison et al. 2024; Lee et al. 2015; Lakshminarayanan et al. 2017), there continues21

a need for more efficient and accessible techniques.22

The motivation for the development of this work is related to the advancement of benthic habitat23

mapping using underwater seafloor images from the hierarchical BenthicNet dataset (Lowe et al.24

2024; Misiuk et al. 2024). This dataset is a collection of global seafloor images with corresponding25

annotation files which are labelled according to the CATAMI classification scheme (Althaus, Hill,26

Edwards, et al. 2014; Althaus, Hill, Ferrari, et al. 2015). We selected two sub-datasets: German27

Bank 2010 and Substrate (depth 2). These datasets are available as one-hot classifications and rep-28

resents images which are known to be difficult because of low inter-class heterogeneity represented29

across the different samples (Xu et al. 2024; Humblot-Renaux et al. 2024).30

In this study, we propose last-layer committee machines (LLCMs) as an ensemble method using31

shared network parameters for a classifier consisting of M committee machines (i.e., linear layers).32

We demonstrate the requisite network diversity of the penultimate layer is facilitated by random33

weight initialization and can be increased by enabling different hyperparameters during training34

such as logit normalization (Wei et al. 2022) or label smoothing (Szegedy et al. 2015). We intro-35
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duce and demonstrate LLCMs on the MNIST dataset before evaluating on the substantially more36

difficult subsets of the BenthicNet dataset. LLCMs offers a comparable (or competitive) strategy for37

Bayesian approximations, where uncertainty quantifications are obtained in a single forward-pass38

during inference for both the dataset and single predictions.39

2 Methods40

2.1 Last-layer committee machines41

A committee machine (or committee method) is a form of an ensemble learner used to boost model42

performance by averaging over multiple models, often used with classification and regression trees43

such as random forests. In the case of neural networks, average probability distributions can be44

computed as,45

p̄(y|x;w) =
1

M

M∑
m=1

p(y|x;wm) (1)

where M represents the number of models and individual probability distributions are calculated46

from output logits from using network weights wm and the softmax function. These deep ensem-47

bles often require substantial computational effort and memory usage, which is largely the result48

of averaging large networks and/or datasets. Rather than using the full network as ensembles, we49

propose to use a list of linear layers as a last-layer committee machine as part of the network archi-50

tecture. Training such a network involves backpropagating the mean loss of the committee machine,51

which effectively results with gradient updates from each committee machine member (Figure 1).52

Figure 1: Network architecture of a last-layer committee machine. Input features are obtained from
a network which are subsequently passed to the LLCM module. For each forward pass, mean loss is
computed using M committee machine members which is then backpropagated during training. At
inference time, a distribution of softmax distributions is obtained by averaging committee machine
members.

For every forward-pass during training, each member of the committee machine receives identi-53

cal feature representations; therefore, network diversity or loss exploration during backpropagation54

is dependent on the initialization of each member. That is, if committee machine members are55

identically initialized, they will all have the same weights during and after training. If they are non-56

identically initialized, each committee machine member will explore its own loss landscape. We57

show that including techniques such as, logit normalization, label smoothing, and/or class weight-58

ing during training can influence the degree of network diversity of model weights of the LLCM59

module.60

These simple modifications result with a network architecture that can provide model uncertainty for61

both the dataset and single samples at inference. It drastically reduces computational and memory62

intensive requirements and can be parallelized and/or scaled to multiple devices. In addition, LLCMs63

can be used with several feature extracting networks, such as MLPs, CNNs, ViT, ResNets, etc.64
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2.2 Parametric confidence score metric65

To evaluate performance and model uncertainty, a parametric confidence score metric was developed66

that uses the top-2 mean probabilities and their corresponding standard deviations from predicted67

mean softmax distributions (Figure 2).68

This approach provided a metric whereby
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Figure 2: Calculation of confidence score and
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j (second argmax) = argmax2 P , and k a pa-
rameter for scaling standard deviations. Class la-
bel i is only returned if confidence score > 0 oth-
erwise, the sample is referred to a domain expert
for review.
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scores can be modulated by parameter k and70

standard deviations of the top-2 mean softmax71

probabilities. This effectively results with pre-72

dictions based on model uncertainty, reflective73

on the factor of the standard deviations. We74

used multiple k values and results were re-75

ported for accuracy, F1-score, and confusion76

matrices. We plotted accuracy with respect77

to the fraction of remaining of samples after78

applying each k-value. Correct and incorrect79

model predictions were computed from confu-80

sion matrices and also plotted against remain-81

ing samples. Together, these plots provide82

valuable insights on model performance, un-83

certainty, and a visual representation to com-84

pare different models and hyperparameters.85

3 Experiments86

3.1 Network diversity of LLCMs87

Our initial concern with this approach was that averaging committee members would decrease net-88

work diversity or will would converge during training. To investigate this, we created a 2-block CNN89

(Conv2d-ReLU-MaxPool2d) with a LLCM module consisting of 10 committee members with 204890

input features and 10 output features (classes). After training the MNIST dataset, each committee91

member was flattened and the coefficient of variations (CV) for the learned weights were computed92

(i.e., 2048 × 10 weights per member). Committee members with similar CV values would equate93

to being similar; therefore, we report the standard deviations of CV values across all committee94

machine members (Table 1).95

Table 1: Model performances using a 10-member LLCM and the MNIST dataset.

Model1 Accuracy F1-score CS2 BS3 ECE4 CVσ
5

A: −/−/− 0.991 0.991 0.979 0.003 0.004 9.537
B: −/+/− 0.990 0.991 0.776 0.072 0.181 906.146
C: +/+/− 0.989 0.989 0.771 0.074 0.185 8372.234
D: +/−/− 0.991 0.991 0.979 0.003 0.003 9.414
E: +/−/+ 0.992 0.992 0.841 0.026 0.115 25.502
F: −/−/+ 0.992 0.992 0.842 0.026 0.115 23.713
A:6−/−/− 0.991 0.991 0.980 0.003 0.001 0.0

1 Models A-F are defined based on training hyperparameters using class weights
/ logit normalization / label smoothing (amount of smoothing, 0.1). These hy-
perparameters are either applied (denoted by +) or omitted (denoted by −). 2

Confidence score (CS) is defined as the difference between the top-2 mean soft-
max probabilities. 3 Brier score (BS). 4 Expected calibration error (ECE). 5 Refer
to text. 6 All committee machine members weights were initialized with ones.

The last entry of Table 1 shows the result where all committee machine members had weights ini-96

tialized to ones. This resulted with a CVσ of 0.0, which indicates that all members are identical.97

However, by using random initialization of weights with/without different training hyperparame-98
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ters, a diverse range of committee machine members can be obtained. We do observe from the BS99

and ECE, that models may require additional calibration (e.g., temperature scaling).100

3.2 Comparison of model uncertainty using LLCMs, BNNs, and Monte Carlo Dropouts101

We compared model uncertainty of the LLCM method to Bayesian model averaging (BMA) and102

Monte Carlo (MC) dropout using the parametric confidence score metric (Figure 2). We converted103

the CNN described above by replacing the LLCM with a single classifier and then used the utilities104

from the Pyro framework (Bingham et al. 2019) to convert the network to a Bayesian model. For the105

MC dropout experiments, we added a dropout layer at the end of each block before sampling with a106

rate of 0.1. In the case of the LLMC, we used a 100-member committee machine. Figure 3a show107

the results for the MNIST dataset.108
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Figure 3: Parametric sigma plots for BMA, MC dropout, and LLCM using the (a) MNIST and (b)
German Bank 2010 datasets. For both the MC dropout and LLCM, results are reported using class
weights and logit normalization. BMA and MC dropouts were performed using 100 sampling of
weights.

Model uncertainty can be realized by noticing the increase in accuracy as the k×σ increases, which109

removes uncertain model predictions. An important feature of this plot is the differential decay rates110

for the correct model predictions (dashed line) and the incorrect model predictions (dotted lines) for111

each model. This preferred removal of samples offers a utility to: 1) identify uncertain samples, and112

2) boost overall performance and model confidence.113

We next investigated the more challenging BenthicNet dataset. As an example, we show the results114

from the German Bank 2010 dataset (Figure 3b). In this case, we used a BenthicNet pre-trained115

ResNet-50 network (Xu et al. 2024) to create a last-layer BNN, LLCM, and added dropout layers116

(p = 0.01) after each ReLU activation for the MC dropout experiments. Immediately, we see117

the effects of using a challenging wild type dataset. However, even in this case we can identify118

uncertain samples that require external review. All models used for both datasets were capable of119

evaluating model uncertainty and resulted with uncertain samples with LLCMs being comparable120

(or competitive) with current approaches.121

4 Conclusions122

In this study, we proposed the LLCMs as a method to evaluate model uncertainty and identify123

uncertain samples for review by a domain expert. For areas such as health, autonomous driving,124

ocean management, and other high-risk areas deploying machine learning, having a human-in-loop125

during decision-making can be beneficial, if not essential. The LLCM method presented here scales126

well both on model sizes and datasets, offering an efficient approach for Bayesian approximations127

and a strategy to identify uncertain model predictions.128
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