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ABSTRACT

Direct Preference Optimization (DPO) is a widely adopted offline preference op-
timization algorithm, valued for its simplicity and training stability. However, it
is susceptible to overfitting and performance collapse. To overcome these limi-
tations, we introduce Linear Preference Optimization (LPO), a novel alignment
framework that incorporates three key innovations. First, we achieve gradient de-
coupling by replacing the log-sigmoid function with an absolute difference loss,
isolating the optimization dynamics more effectively. Second, we enhance train-
ing stability by incorporating an offset constraint and a positive regularization
term, ensuring consistent response quality. Third, we implement controllable re-
jection suppression through gradient separation, which features a straightforward
estimation process and a tunable coefficient to regulate the rate of rejection prob-
ability descent. Extensive experiments demonstrate that LPO consistently outper-
forms DPO across diverse tasks, including general text processing, mathematics,
text-to-speech (TTS), and automatic speech recognition (ASR). These findings es-
tablish LPO as a robust, versatile, and tunable paradigm for preference alignment.
Source code and models will be released in the future.

1 INTRODUCTION

The alignment of large language models (LLMs) with human preferences has become a critical
step in developing capable and safe AI assistants. Reinforcement Learning from Human Feedback
(RLHF) Ouyang et al. (2022a), particularly through proximal policy optimization (PPO) Schulman
et al. (2017a), has established the dominant paradigm for this alignment. Although effective, PPO
suffers from significant complexity, requiring multiple models (reward model, reference policy, ac-
tive policy) and intricate online sampling and optimization processes, leading to high computational
costs and implementation instability. To address these limitations, Direct Preference Optimization
(DPO) Rafailov et al. (2023) emerged as a simpler and more stable alternative. DPO reframes pref-
erence learning as a supervised loss function directly applied to the policy network, bypassing the
need for explicit reward modeling or online RL.

Despite its elegance and widespread adoption, DPO exhibits several critical shortcomings. First, the
inherent coupling within the log-sigmoid function forces the optimization of log-probability of the
chosen and the rejected response to be interdependent. This often manifests itself as an undesir-
able and significant decrease in the logarithmic probability of the responses chosen during training,
which can degrade their inherent quality even as the preference objective improves. Second, DPO is
highly sensitive to the quality and noise level within preference datasets. Suboptimal or ambiguous
preference pairs can lead to overfitting and subpar performance. Third, DPO lacks explicit mecha-
nisms to control the magnitude of the gap between the log-probabilities of the chosen and rejected
responses, which can lead to overoptimization and reduced generalization.

To overcome these fundamental limitations of DPO, we propose Linear Preference Optimization
(LPO), a novel preference alignment algorithm built upon three key innovations:

• Gradient Decoupling via Absolute Regulation: We replace the ’log-sigmoid’ function
with the absolute difference function. This crucial modification decouples the gradients
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flowing back to the chosen and rejected log-probabilities, enabling more independent and
targeted optimization of each term.

• Stability Enhancement via Offset and Positive Constraint: Inspired by Offset-DPO
(ODPO) Amini et al. (2024) and Identity Preference Optimization (IPO) Azar et al. (2023),
We introduce an offset µ to constrain the log-probability gap between chosen and rejected
responses, preventing it from becoming too large and improving generalization. Simulta-
neously, inspired by DPOP Pal et al. (2024a), We introduce an explicit positive constraint
to address the problematic decrease in the log-probability of chosen responses observed in
standard DPO.

• Controlled Rejection Suppression via Gradient Separation: Leveraging the Straight-
Through Estimator (STE) technique Esser et al. (2021), we strategically detach the compu-
tational graph (using ‘tensor.detach()‘) to isolate the gradients of the chosen and rejected
log-probabilities. This allows us to introduce a control coefficient r2 specifically on the
gradient path influencing the log-probability of the rejected response. By modulating r2,
we gain fine-grained control over the rate at which the log-probability of rejected responses
is suppressed during optimization.

Experiments demonstrate that LPO achieves strong performance on instruction-following (MT-
Bench Bai et al. (2024), AlignBench Liu et al. (2023)), mathematical reasoning (GSM8K Cobbe
et al. (2021)), and speech tasks (TTS, ASR), with ablations confirming the effectiveness of r2.

2 RELATED WORKS

Current LLMs exhibit strong capabilities in following human instructions Yang et al. (2025); Liu
et al. (2024), demonstrating their utility in diverse applications such as text generation, question an-
swering, and conversational agents. These models benefit from extensive training on varied datasets,
enabling accurate understanding and responses to user inputs. Their performance is further improved
through techniques like RLHF, which aligns model outputs with human preferences Schulman et al.
(2017b). This iterative refinement not only enhances responsiveness but also ensures adherence to
ethical guidelines and user expectations. However, RLHF requires a separately trained reward model
Christiano et al. (2017); Ouyang et al. (2022b), necessitating the simultaneous loading of four dis-
tinct models. This process is computationally intensive and prone to instability during training
Rafailov et al. (2023). To address these challenges, Direct Preference Optimization (DPO, Rafailov
et al. (2023)) introduces a parameterization method for the reward model that derives the optimal
policy via a closed-form solution, simplifying traditional RLHF issues by recasting them into a
straightforward classification loss function.

Despite its advantages, DPO training is susceptible to overfitting, as indicated by decreasing prob-
abilities for both positive and negative samples Feng et al. (2024b). To address this, several en-
hancements have been proposed, including DPOP Pal et al. (2024b) and IPO Azar et al. (2024).
IPO explores the theoretical foundations of RLHF and DPO and introduces a pairwise preference
loss function called ”Identity Preference Optimization.” This approach mitigates overfitting by pe-
nalizing preference margins that exceed a specified regularization threshold, improving the model’s
generalization capabilities. Meanwhile, DPOP Pal et al. (2024b) incorporates a penalty term for pos-
itive samples into its objective function to counter declining positive sample probabilities. Another
enhancement, SimPO Meng et al. (2024), leverages the average log-probability of sequences as an
implicit reward function. This structure not only improves alignment with the model’s generation
behavior but also eliminates the need for a reference model, significantly enhancing computational
efficiency and reducing memory consumption. In our approach, we modify DPO by replacing the
log-sigmoid function with an absolute value function and introducing SimPO’s length normaliza-
tion. Furthermore, we decouple gradient computations for positive and negative samples, enabling
explicit control over the gradient magnitude for negative samples. This targeted optimization im-
proves the model’s overall performance while addressing key limitations of preference optimization
methods.
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3 METHODS

3.1 LIMITATIONS OF DPO

DPO reformulates RLHF as a maximum likelihood optimization problem, eliminating the need for
an explicit reward model:

LDPO(πθ, πref) =− E(x,yw,yl)∼D

[
log σ

(
β · log πθ(yw|x)

πref(yw|x)
− β · log πθ(yl|x)

πref(yl|x)

)]
(1)

Here σ signifies the logistic function; D = {(xi, yiw, y
i
l)}Ni=1 represents the dataset, where xi rep-

resents the prompt, and yiw and yil denote the chosen response and rejected response for the input
prompt x respectively; The term πθ refers to the policy model to be optimized, which is initialized
from the Supervised Fine-Tuning (SFT) model, while πref denotes the Reference model, also derived
from the SFT model.

Let x1 = log πθ(yw|x)
πref(yw|x) , and x2 = log πθ(yl|x)

πref(yl|x) Feng et al. (2024a), rewrite the above equation as:

LDPO(πθ, πref) = −E(x,yw,yl)∼D

[
log σ(βx1 − βx2)

]
(2)

Taking the partial derivatives with respect to x1 and x2, respectively, we obtain:
∂LDPO(x1, x2)

∂x1
=− βxβ

2

x1(x
β
1 + xβ

2 )

∂LDPO(x1, x2)

∂x2
=− βxβ−1

2

xβ
1 + xβ

2

(3)

Then ∂LDPO(x1,x2)
∂x1

is divided by ∂LDPO(x1,x2)
∂x2

, and we can obtain:

∣∣∣∣∂LDPO(x1, x2)

∂x1

/
∂LDPO(x1, x2)

∂x2

∣∣∣∣ = x2

x1
(4)

According to the Bradley-Terry(BT) Bradley & Terry (1952) model and the DPO training objective,
maximizing the DPO likelihood enforces the condition x1 > x2. Consequently, the gradient asso-
ciated with x1 (the chosen response) is smaller than the gradient associated with x2 (the rejected
response). Moreover, as training progresses, the logistic function’s diminishing effect causes x2

to become significantly smaller than x1, resulting in the gradient from x2 dominating. This phe-
nomenon drives the log-probabilities of rejected responses to disproportionately low values, often
unnecessarily so in practical applications.

The loss of DPO inherently amplifies the difference x1 − x2, leading to potential variations in the
dynamics and trends of x1 and x2: Case 1: x1 ↑, x2 ↓, the rate of x1 rising is slightly higher than
x2 descending. Case 2: x1 ↓, x2 ↓, the rate of x1 descending is lower than x2. Case 3: x1 ↑, x2 ↑,
the rate of x1 rising is higher than x2.

Among the three scenarios, Case 1 represents the ideal optimization target for DPO, wherein x1

marginally increases while x2 decreases at a proportional and acceptable rate. However, during
practical DPO training, it is common to observe a simultaneous decrease in both x1 and x2. This
concurrent decline can adversely affect model performance, thereby diminishing the overall effec-
tiveness of the training process.

Therefore, DPO can be categorized into two key aspects:

(i) The gradient contributions from the chosen responses are consistently smaller than those from the
rejected responses. This imbalance causes the optimization process to disproportionately prioritize

3
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reducing the log-probabilities of the rejected samples. Furthermore, the characteristics of the sig-
moid function amplify this issue, resulting in an excessively large decrease in the log-probabilities
of the rejected responses.

(ii) Since the objective of DPO training is fundamentally to increase the difference between x1 and
x2, it frequently leads to both values decreasing simultaneously. This simultaneous decline results in
a reduction in the model’s performance rather than an improvement, undermining the effectiveness
of the training process.

3.2 LINEAR PREFERENCE OPTIMIZATION: DECOUPLING THE GRADIENT BETWEEN CHOSEN
AND REJECTED

Eq.1 shows that the DPO target function can be represented as LDPO(x1, x2) = f(x1, x2). Accord-
ing to Eq.2, the gradients ∂LDPO(x1,x2)

∂x1
and ∂LDPO(x1,x2)

∂x2
incorporate nonlinear terms involving both

x1 and x2. Therefore, we proceed to linearize the mathematical expression of DPO to facilitate
further analysis and optimization.

To enhance LPO function, we replace DPO’s log-sigmoid function with the absolute function. We
also introduce an offset inspired by IPO Azar et al. (2023) and ODPO Amini et al. (2024), incor-
porate a positive term motivated by DPOP Pal et al. (2024a), and apply length normalization to
both chosen and rejected log-probabilities similar to SimPO Meng et al. (2024). The resulting LPO
function can be expressed as follows:

LLPO = 2β ·
∣∣∣∣xnorm

1 − xnorm
2 − 1

2β

∣∣∣∣+ λ ·max(0,−x1) (5)

where β and λ are hyperparameters controlling the offset and the magnitude of the positive term,
respectively, while xnorm

1 = x1

lenw
and xnorm

2 = x2

lenl
represent the length-normalized log-probabilities

of the chosen and rejected responses, respectively, where lenw denotes the length of the chosen
response, and lenl denotes the length of the rejected response (Note: since lenl and lenw are con-
stants, and for the sake of formula clarity, we will continue to use x1 and x2 to represent xnorm

1 and
xnorm
2 in the following sections).

The partial derivatives of LPO function with respect to the variables x1 and x2 can be expressed as
follows Feng et al. (2024a):


∂LLPO(x1,x2)

∂x1
= −2β · sgn(x1 − x2 − 1

2β ) + C

∂LLPO(x1,x2)
∂x2

= −2β · sgn(x1 − x2 − 1
2β )

(6)

Where sgn(u) is the sign function, which is defined as 1 if u > 0, -1 if u < 0, and 0 if u = 0.
The constant C is defined as C = λ if x1 < 0, and C = 0 otherwise. This constant plays a crucial
role in adjusting the gradient based on the value of x1, ensuring that the optimization process is
influenced appropriately depending on whether the chosen response log-probability is negative or
not. These partial derivatives allow us to analyze how changes in the log-probabilities of the chosen
and rejected responses affect the overall optimization objective, providing insights into the dynamics
of the optimization process.

We divide ∂LLPO(x1,x2)
∂x1

by ∂LLPO(x1,x2)
∂x2

to obtain the following expression:

∂LLPO (x1, x2)

∂x1

/
∂LLPO (x1, x2)

∂x2
=

−2β · sgn(x1 − x2 − 1
2β ) + C

2β · sgn(x1 − x2 − 1
2β )

(7)

This simplification reveals that the ratio of x1 and x2 becomes a constant, and the relative magnitude
of their gradients can be controlled by β and λ. Meanwhile, to more effectively control the descent
rate of x2, we utilize the Straight-Through Estimator (STE), as introduced in Esser et al. (2021).
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This technique enables us to propagate gradients through discrete operations while maintaining the
ability to effectively optimize continuous variables, thereby decoupling the gradients of the chosen
and rejected log-probabilities in Eq. 1. As following:


Lx1

LPO-ste = r1 · 2β
∣∣∣x1 − x2.detach()− 1

2β

∣∣∣+ λ ·max(0,−x1)

Lx2

LPO-ste = r2 · 2β
∣∣∣x1.detach()− x2 − 1

2β

∣∣∣+ λ ·max(0,−x1.detach())
(8)

By applying the STE, we can isolate the gradients of the chosen and rejected log-probabilities,
allowing for separate adjustment of their descent rates. This separation enhances the flexibility of
our optimization process, facilitating finer control over the learning dynamics and improving overall
model performance.

Ultimately, the expression for LPO-ste can be formulated as follows:

LLPO-ste =
2

r1 + r2
· (r1 · Lx1

LPO-ste + r2 · Lx2

LPO-ste) (9)

In this expression, Lx1

LPO-ste and Lx2

LPO-ste represent the losses corresponding to the chosen and re-
jected responses, respectively, while r1 and r2 are coefficients that control the descent rates for these
two components. By using the STE, we ensure that gradients are effectively managed during the
optimization process, allowing for improved performance in preference alignment tasks.

In the practical application of LPO-ste, r1 is typically fixed at 1.0, while r2 is adjusted within the
range [0.05, 3.0]. Fig. 1 illustrates the descent rate of the rejected responses and the ascent rate of the
chosen responses under varying r2 values. Adjusting the size of r2 clearly enables precise control
over how quickly the chosen responses increase and how rapidly the rejected responses decrease, as
illustrated in Fig. 1. This capability enables us to fine-tune the model’s performance effectively.
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Figure 1: The changes of chosen and reject are shown when r2 takes values of 0.1, 0.4, 0.8, and 1.0.
As r2 increases, the descent rate rises while the corresponding upward trend in ”chosen” diminishes.
This matches the theoretical analysis of the relative gradient changes of LPO.

3.3 PREFERENCE PAIRS CONSTRUCTION

In the SPIN Chen et al. (2024), it is noted that after SFT training, a general model’s output still
displays certain discrepancies when compared to the Ground Truth. Iterative DPO Pang et al. (2024)
suggests that a reward model can be utilized to select samples with the highest and lowest scores for
constructing preference pairs.

Consequently, we propose a novel method for constructing preference pairs without relying on a
reward model. In this approach, the chosen sample is considered a sufficiently good answer, while
the rejected sample is generated using the SFT model’s inference hyperparameters, with both top-p
and temperature set to 1.0.

The specific algorithm for this preference pair construction is detailed in Algorithm 1. This approach
enables preference pairs to be generated efficiently, minimizing reliance on supplementary models
and thereby streamlining the optimization process.
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Algorithm 1 LPO Preference Pair Construction (LPPC)

Require:
1: D =

{
xi, yi

}N

i=1
: where xi represents the prompt of the preference optimization dataset and yi

represents the corresponding Ground Truth.
2: πθ(x): the Supervised Fine-tuning (SFT) model.

Ensure:
3: Step 1: Construct Chosen:
4: Dchosen =

{
xi, yichosen ≡ yi

}N

i=1
, where yichosen is always equal to the corresponding yi.

5: Step 2: Construct Reject:

6: Dreject =
{
xi, yireject ≡ πθ(x

i|topp = 1.0, temp = 1.0)
}N

i=1

7: Output:DLPPC =
{
xi, yichosen ≡ yi, yireject ≡ πθ(x

i)
}N

i=1

4 EXPERIMENTS

To validate the effectiveness of the proposed algorithm, comprehensive experiments were conducted
across four distinct domains: general text tasks (e.g. writing, summarization, and question answer-
ing), domain-specific tasks (e.g. mathematical reasoning), text-to-speech (TTS) speech generation
tasks, and automatic speech recognition (ASR) tasks.

4.1 RESULTS ON GENERAL TASKS

We use Qwen2.5-7B Team (2024) as our base model and Infinity-Instruct Li et al. (2025) as the
source dataset. For supervised fine-tuning (SFT), we sample 290k examples to train the model,
denoted as qwen2.5-SFT (details in Appendix B).

To evaluate algorithmic robustness during alignment, we employ two types of preference data:
Infinity-Preference: A high-quality preference dataset with subtle distinctions between chosen and
rejected responses, offering a challenging and low-noise benchmark. Infinity-instruct-1w: A nois-
ier dataset constructed by sampling 10k examples from Infinity-Instruct, using original responses as
chosen and Qwen2.5-SFT-generated responses (with temperature and top-p set to 1.0) as rejected.

Following prior work Zheng et al. (2023), we use GPT-4 for evaluation due to its high agreement
with human assessment and cost-effectiveness. We report results on MT-Bench Bai et al. (2024)
(covering writing, STEM, reasoning, etc.) and AlignBench Liu et al. (2023) (including math, role-
play, logic, etc.), both employing GPT-4 as judge.

We compare against vanilla DPO Rafailov et al. (2023) with β = 0.1 as the baseline. LPO hyperpa-
rameters are specified in Appendix Table 7.

Table 1: LPO performance on MT-Bench trained on Infinity-Preference/Infinity-Instruct-1W dataset

Metho Turn writing stem roleplay reasoning math humanities extraction coding avg

SFT 1 9.1/9.1 8.7/8.7 8.2/8.2 6.6/6.6 8.5/8.5 9.2/9.2 8.8/8.8 5.5/5.5 7.65/7.652 6.7/6.7 7.3/7.3 7.7/7.7 5.3/5.3 5.6/5.6 9.4/9.4 8.9/8.9 7.0/7.0

DPO 1 9.2/8.9 9.3/8.7 8.8/8.7 6.4/7.3 9.2/8.5 9.2/8.5 8.6/9.7 7.0/6.1 8.20/7.632 8.3/7.4 7.7/7.1 8.4/7.7 5.5/5.9 6.2/5.5 9.8/9.1 10.0/7.3 7.6/5.7

LPO 1 9.1/9.0 8.9/9.1 8.5/8.4 8.1/8.2 8.8/8.4 8.9/9.0 8.1/8.8 7.9/5.4 8.16/8.022 7.9/8.3 7.6/7.5 8.0/7.9 6.3/7.5 6.8/5.7 9.5/9.3 8.8/9.9 7.4/6.0

As presented in Tables 1 and 2, the LPO method demonstrates substantial improvements over the
SFT model, achieving a 6.37% increase on MT-Bench and a 2.24% enhancement on AlignBench
when trained on Infinity-Preference. Additionally, it yields a 4.81% improvement on MT-Bench
when utilizing the Infinity-Instruct-1w dataset.

Although DPO also achieves performance gains on Infinity-Preference, its results exhibit a slight de-
cline on MT-Bench and a more considerable drop on AlignBench when trained on Infinity-Instruct-
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Table 2: LPO performance on AlignBench trained on infinity-perference/Infinity-Instruct-1W
dataset

Task SFT DPO LPO
Professional Skill 6.62/6.62 7.12/6.29 6.59/6.12

Chinese Comprehension 5.82/5.82 6.25/5.74 6.13/5.77
Basic Task 6.45/6.45 6.22/5.89 6.35/6.16

Math Computation 6.45/6.45 6.65/6.07 6.49/6.99
Text Writing 5.65/5.65 5.21/5.86 6.16/6.65

Comprehensive Q&A 6.23/6.23 7.23/7.18 7.26/6.07
Roleplay 6.55/6.55 6.61/5.59 6.92/5.69

Logical Reasoning 5.66/5.66 5.46/5.14 5.89/5.38
Chinese Reasoning 6.06/6.06 6.05/5.61 6.14/6.18
Chinese Language 6.22/6.22 6.61/6.09 6.57 /5.91

Overall Score 6.14/6.14 6.34/5.85 6.36/6.05

1w. This disparity can be attributed to the nature of these datasets: Infinity-Preference features sub-
tler distinctions and poses greater learning challenges, whereas Infinity-Instruct-1w provides more
distinct preference signals, making it less difficult to learn from.

These findings underscore that LPO is not only more robust but also more consistent across datasets
of varying quality. In contrast, DPO is highly sensitive to the characteristics of the data and is more
prone to overfitting on simpler datasets. Furthermore, LPO demonstrates a particular advantage in
logical reasoning tasks, while DPO performs better in question-answering scenarios. Additional
evaluations specific to mathematics are provided in the subsequent section.

4.2 RESULTS ON MATH TASKS

We initialize from a general-task pre-trained SFT model and perform alignment using a dataset
constructed via step-DPO Lai et al. (2024) (see Appendix C for details). We evaluate on the
GSM8K benchmark Cobbe et al. (2021) under zero-shot inference for real-world relevance, com-
paring against the official Qwen2.5-Instruct model. Results are shown in Table 3.

Table 3: LPO performance on GSM8K

Model Version Qwen2.5-Instruct SFT DPO LPO
score 87.19 84.15 82.34 88.86

As shown in Table 3, LPO achieves a score of 88.86 on the GSM8K benchmark, representing a
4.71-point improvement over the SFT model and surpassing the performance of Qwen2.5-Instruct.
In contrast, DPO exhibits a 1.81-point degradation compared to the SFT baseline. As noted in DPOP,
DPO often fails to achieve strong results on mathematical reasoning tasks.

4.3 RESULTS ON TEXT-TO-SPEECH TASKS

We validate LPO’s capability under such conditions by extending Qwen-2.5-7B’s audio token capac-
ity and performing incremental pre-training on 322B text and speech tokens. And then The model
is instruction-tuned on 440k TTS samples (UniTTS-SFT) and aligned via LPO (UniTTS-LPO). For
pre-training and instruction tuning details, see Wang et al. (2025).

The LPO dataset is built by generating three candidate responses per prompt and pairing each with
the reference, yielding three preference pairs per sample. Training hyperparameters are in Appendix
C.

The model is evaluated on a 0–5 scale in: 1) Fidelity: Accuracy in reproducing the original
sound, including timbre, pitch, and acoustic characteristics. 2) Stability: Absence of playback
issues—stuttering, skipping, or interruptions. 3) Naturalness: Resemblance to natural speech with-
out robotic artifacts. 4) Emotional Expression: Ability to convey intended emotions such as joy or
sadness.

7
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Table 4: Comparison of UniTTS-SFT and UniTTS-LPO models

Model Fidelity Stability Naturalness Emotional expressiveness
UniTTS-SFT 4.43 5 4.77 4.23
UniTTS-LPO 4.8 4.97 4.94 4.6

Table 4 shows that the LPO algorithm demonstrates significant improvements in emotional expres-
siveness and fidelity compared to the SFT model, while exhibiting a slight decrease in stability. This
outcome validates the effectiveness of the LPO algorithm in the field of speech generation.

4.4 RESULTS ON AUTOMATIC SPEECH RECOGNITION TASK

We use AISHELL-1 (Chinese) and LibriSpeech (English) benchmark to evaluate the LPO’s perfor-
mance on the ASR task.

The LPO training data is constructed via two methods: Model-based: The SFT model generates
rejected samples, which are paired with reference samples. Perturbation-based: Rejected samples
are generated from reference samples by adding noise (insertion, deletion, and repetition Li et al.
(2022)) at noise ratio η = 0.1.

These methods produce distinct rejected samples: model-based yields homophonic heterographs,
while perturbation-based introduces controlled noise. Pairs with identical chosen and rejected sam-
ples are excluded. (Data quality outweighs quantity—1k high-quality samples proved more benefi-
cial than 200k ordinary ones in our experiments.)

We use CER for Chinese and WER for English evaluation. As shown in Table 5, although the base
model does not achieve SOTA performance after SFT, LPO effectively reduces recognition error
rates.

Table 5: Comparison of ASR-SFT and ASR-LPO models

Benchmark ASR-LPO ASR-SFT
Candidate method LPO r2 CER/WER (%) CER/WER (%)

AISHELL-1

Model-based
1.0 3.583

3.868

2.0 3.621
3.0 3.655

Perturbation-based
1.0 3.583
2.0 3.567
3.0 3.694

LibriSpeech-test-clean

Model-based
1.0 6.81

7.222

2.0 6.927
3.0 6.927

Perturbation-based
1.0 6.965
2.0 6.874
3.0 6.684

4.5 ANALYSIS OF MULTI-EPOCH WITH DIFFERENT r2

Analysis of Overfitting Phenomenon: During DPO training, models are prone to overfitting and
typically require both reduced learning rates and early stopping mechanisms. To verify whether the
LPO algorithm exhibits similar susceptibility to overfitting, we replicated the experimental setup
from the mathematics-specific chapter. This involved evaluating model performance on the GSM8K
task across varying training epochs, while maintaining zero-shot inference during assessment.

As shown in Fig.2, DPO achieves its best performance in the first epoch but drops rapidly after
the second epoch, even falling below the SFT model performance. In contrast, LPO shows steady
improvement over the first three epochs, reaching its peak at the third epoch. This comparison
demonstrates that LPO is less prone to overfitting compared to DPO.
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Figure 2: GSM8K scores over training epochs on math tasks.

The influence of the coefficient of determination of r2:

In the algorithm analysis section, we demonstrate how the r2 coefficient regulates the rate of de-
cline for rejected responses and the rate of increase for chosen responses, thereby modifying the
model’s performance. We validated the experimental outcomes for different r2 coefficients across
both general tasks and the mathematics-specific domain.

For the general tasks, following the experimental setup detailed in Section 4.1, r2 coefficients were
selected from the range [1, 1.5, 2, 3]. For vertically specific math tasks, using the configuration
described in Section 4.2, r2 coefficients were tested at values of [0.1, 0.2, 1, 2]. The corresponding
experimental results are illustrated in Fig. 3a and Fig. 3b.

(a) (b)

Figure 3: We tested the variation of model performance with the r2 coefficient: (a) Performance on
the MT-Bench leaderboard for general tasks as r2 varies; (b) Performance on the GSM8K leader-
board for math tasks as r2 varies.

As shown in Fig. 3a and Fig. 3b, our experimental results demonstrate two key conclusions: 1)
Model performance varies on the leaderboard with different r2 coefficients. Thus, adjusting the r2
coefficient is necessary to prevent a rapid decline in rejection rate that causes overfitting. 2) The
difficulty of learning varies across tasks. The r2 coefficient should be adjusted based on the rate of
loss decrease for different tasks.

5 CONCLUSION

In this work, we first identify a critical limitation in DPO training: the simultaneous degradation
of probabilities for both chosen and rejected responses during optimization. To address this issue,
we propose the LPO algorithm, which decouples gradient control for chosen and rejected responses
via the Straight-Through Estimator (STE). Our method regulates the rejection probability descent
rate through parameter r2 while incorporating a positive reinforcement term to ensure monotonic
improvement in the chosen response probability. Experimental results demonstrate consistent per-
formance gains across general NLP tasks, specialized mathematical domains, and text-to-speech
(TTS) applications, confirming LPO’s robustness and broad applicability.
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APPENDIX

A ALIGNMENT TRAINING FRAMEWORK DEVELOPMENT

We conducted SFT and alignment training using the pai-megatron-patch framework. Since the
framework lacks native support for alignment algorithms like DPO and LPO, we implemented cus-
tom modifications with the following key enhancements:

1) Added DPO/LPO algorithm support: The upgraded training pipeline now handles million-scale
alignment datasets efficiently through mmap-format data loading, enabling rapid training initializa-
tion.
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2) Extended multimodal capabilities: Beyond text modality, we implemented comprehensive speech
modality support—including dataset construction, loading pipelines, and training workflows—with
distributed inference during data preprocessing.

We’ve open-sourced this enhanced training framework to facilitate community adoption, enabling
researchers to build upon our implementation or reproduce paper results.

B SFT EXPERIMENTAL SETUP

Infinity-Instruct is an open-source, high-quality dataset. We selected a subset of 290K training
samples from it for supervised fine-tuning (SFT). The base model used was Qwen2.5-7B, with
detailed training parameters provided in Table 6.

Table 6: Model training parameters for general task

Parameter Name Parameter Value
BATCH SIZE 128

LR 9e-6

C LPO EXPERIMENTAL SETUP

Table 7 presents the experimental settings for LPO across general tasks, domain-specific mathemat-
ical tasks, and TTS tasks.

Table 7: Training parameters for LPO

Parameter Name General Task Math Task TTS Task
R1 1.0 1.0 1.0
R2 2.0 0.2 0.4

BATCH SIZE 24 24 120
β 0.2 0.2 0.2
γ 10.0 10.0 10.0

LR 2e-7 2e-7 2e-7

LARGE LANGUAGE MODEL USE DECLARATION

In the preparation of this work, the authors used deepseek to polish and improve the language flu-
ency. The tool was primarily employed for grammar checking, sentence restructuring, and enhanc-
ing academic phrasing.

The authors carefully reviewed and edited the output to ensure the integrity of the academic con-
tent. The authors take full responsibility for the entire content of this publication, including all text
modified with LLM assistance.
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