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Abstract

Multimodal Named Entity Recognition and001
Grounding (MNERG) aims to extract paired002
textual and visual entities from texts and im-003
ages. It has been well explored through a two-004
step paradigm: initially identifying potential005
visual entities using object detection methods006
and then aligning the extracted textual entities007
with their corresponding visual entities. How-008
ever, when it comes to fine-grained MNERG,009
the long-tailed distribution of textual entity cat-010
egories and the performance of object detectors011
limit the effectiveness of traditional methods.012
Specifically, more detailed classification leads013
to many low-frequency categories, and existing014
object detection methods often fail to pinpoint015
subtle regions within images. To address these016
challenges, we propose the Granular Entity017
Mapper (GEM) framework. Firstly, we design018
a multi-granularity entity recognition module,019
followed by a reranking module based on the020
Multimodal Large Language Model (MLLM)021
to incorporate hierarchical information of en-022
tity categories, visual cues, and external tex-023
tual resources collectively for accurate fine-024
grained textual entity recognition. Then, we025
utilize a pre-trained Large Visual Language026
Model (LVLM) as an implicit visual entity027
grounder that directly deduces relevant visual028
entity regions from the entire image without the029
need for bounding box training. Experimental030
results on the GMNER and FMNERG datasets031
demonstrate that our GEM framework achieves032
state-of-the-art results on the fine-grained con-033
tent extraction task.034

1 Introduction035

Multimodal Named Entity Recognition and036

Grounding (MNERG) aims to recognize named en-037

tities and corresponding image regions from mul-038

timodal data, which is crucial for various appli-039

cations, including multimodal knowledge graph040

construction, video recommendation, and multi-041

modal chatbot. Typical MNERG approaches often042

Figure 1: An example to illustrate the fine-grained MN-
ERG. The textual entity is annotated by highlighting,
and the visual entity is annotated by the bounding box.

involve a two-step framework (Yu et al., 2023), 043

where a well-trained object detection model is uti- 044

lized to extract image regions as potential visual en- 045

tities. Then, a cross-modality modeling framework 046

is leveraged to extract and link textual entities with 047

corresponding potential visual entities, enabling 048

multimodal entity alignment. Along this line, nu- 049

merous efforts have been recently dedicated to ex- 050

ploring this problem, and notable performances 051

have been achieved. 052

Moreover, to better capture the complexity of 053

the real world, fine-grained MNERG endeavors 054

to classify textual entities into more detailed cat- 055

egories and extract smaller, more precise visual 056

entity regions. Indeed, delving into fine-grained 057

MNERG reveals new challenges and limitations. 058

On the one hand, fine-grained textual entities 059

often suffer from the problem of long-tailed distri- 060

bution, necessitating external information sources 061

to achieve precise recognition and classification 062

of these textual entities. On the other hand, fine- 063

grained visual entities often exhibit a wide variety 064

of sizes, which challenges traditional object detec- 065

tion methods in consistently recalling them and 066

further hinders multimodal entity alignment. For 067

example, as shown in Figure 1, the textual entity 068

One Direction requires common knowledge about 069

the band and the individuals in the image to help 070

discriminate it from other organization categories. 071

Additionally, existing object detection methods can 072
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only detect coarse-grained potential visual entity073

regions in the figure, and the logo as the corre-074

sponding visual entity does not appear among the075

candidates due to its small size. Therefore, sup-076

plementing the valuable knowledge and clues and077

tracing relevant regions directly from the images is078

essential for fine-grained content extraction.079

Fortunately, recent years have witnessed the080

prosperity of multimodal large models (Li et al.,081

2022, 2023b; Liu et al., 2023), which have shown082

advanced capabilities in comprehending relation-083

ships and reasoning in complex scenarios involv-084

ing texts and images. Inspired by such progress,085

we fully utilize the cross-modal interacting capa-086

bilities of various multimodal large models and087

propose a novel fine-grained MNERG framework,088

named Granular Entity Mapper (GEM), to address089

the above challenges.090

Firstly, we employ a knowledge-enhanced multi-091

granular entity recognition module, followed by092

a multimodal reranking module, to incorporate093

external textual knowledge, structured informa-094

tion, and visual cues collectively for accurate fine-095

grained textual entity recognition. Specifically, we096

acquire rich external knowledge from Large Lan-097

guage Models (LLMs) through prompts and then098

preliminarily recognize entities constrained by the099

entity category hierarchy to enhance long-tailed cat-100

egories. Leveraging the powerful relationship com-101

prehension and endogenous multimodal knowledge102

of Multimodal Large Language Models (MLLMs1),103

we rerank the predicted textual entity categories104

to differentiate long-tailed categories from similar105

categories. Secondly, we utilize a Large Visual106

Language Model (LVLM) as an implicit grounder107

to establish associations between textual entities108

and their corresponding visual entity regions, en-109

abling the recognition of visual entities even with-110

out training on annotated bounding boxes. Due to111

the numerous natural text and image alignments112

during the pre-training stage, our grounder is suit-113

able for open-vocabulary textual entities and can114

directly identify the corresponding regions across115

the image, overcoming the limitations associated116

with traditional object detectors for fine-grained117

visual entity grounding.118

The main contributions of our work can be sum-119

marized as follows:120

1In this paper, MLLM refers to the training of multimodal
large models aligned with large language models, whereas
LVLM primarily undergoes typical multimodal pre-training.

• We propose leveraging multi-granularity, multi- 121

perspective information to enhance the recogni- 122

tion of fine-grained textual entities. 123

• We propose employing an implicit paradigm to 124

effectively pinpoint fine-grained visual entity re- 125

gions directly from images, eliminating the re- 126

liance on preliminary object detection. 127

• Extensive experiments show that our framework 128

achieves state-of-the-art results on the GMNER 129

and FMNERG datasets and significantly im- 130

proves fine-grained entity extraction. 131

2 Related Work 132

2.1 Multimodal Named Entity Recognition 133

Multimodal Named Entity Recognition is a pivotal 134

task designed to extract entities from social media 135

texts with the help of images. Previous approaches 136

in MNER could be broadly categorized into two 137

types: (1) Modal-Interaction based: BMA (Moon 138

et al., 2018) and ADACAN (Zhang et al., 2018) 139

utilized various attention mechanisms to establish 140

relationships between texts and images. UMT (Yu 141

et al., 2020) pioneered using a multimodal trans- 142

former for this task, while CAT (Wang et al., 2022c) 143

further refined cross-attention representation by in- 144

corporating label semantics. (2) Knowledge-based: 145

ITA (Wang et al., 2022b) extracted sample knowl- 146

edge from images and MoRe (Wang et al., 2022a) 147

went a step further by retrieving information from 148

Wikipedia. PGIM (Li et al., 2023a) had stood out 149

by using demonstrations to extract implicit knowl- 150

edge from LLMs. 151

2.2 Entity Grounding 152

Entity grounding involves ascertaining the rele- 153

vance of a textual entity to an image and pinpoint- 154

ing the most probable region where it appears. Pre- 155

vious methods (Wang et al., 2023; Yu et al., 2023) 156

used a Cross-Modality Transformer (CMT) to cal- 157

culate the similarity between extracted textual enti- 158

ties and candidate visual entities identified by ob- 159

ject detection (Zhang et al., 2021b; Girshick, 2015). 160

H-index and Tiger (Wang et al., 2023; Yu et al., 161

2023) used a special token to represent the relation- 162

ships between textual entities and images, facilitat- 163

ing the matching of candidate visual entities. 164

2.3 Multimodal Named Entity Recognition 165

and Grounding 166

This task integrates multimodal named entity recog- 167

nition with entity grounding to extract structured 168
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Figure 2: The overall framework of our GEM. (a) Knowledge-enhanced multi-granularity textual entity recognition.
(b) MLLM-based textual entity category reranking. (c) LVLM-based implicit visual entity grounding.

information from texts and images simultaneously.169

It combines the above-mentioned methods and170

follows a two-step paradigm. Additionally, H-171

index and Tiger (Wang et al., 2023; Yu et al.,172

2023) introduced a new paradigm that used a spe-173

cial token to predict the relevance between textual174

and visual entities. Among them, Tiger achieved175

certain improvements in fine-grained textual en-176

tity recognition by simultaneously predicting la-177

bels at both coarse and fine granularities. How-178

ever, along with previous methods, they grappled179

with the long-tailed distribution of fine-grained180

categories and lacked valid candidate regions for181

fine-grained visual entities. Meanwhile, previous182

knowledge-based methods (Wang et al., 2022a; Li183

et al., 2023a) either introduced misleading noise184

or required numerous manually annotated samples,185

making it difficult to aid fine-grained textual entity186

recognition. Our work integrates multi-granularity,187

multi-perspective information to deeply mine fine-188

grained textual entities and directly extracts the189

visual region from the image rather than relying on190

predefined candidates.191

3 Method192

In this section, we first formulate the fine-grained193

MNERG task and then explain our framework in194

detail. Our GEM comprises three main modules:195

(1) The Knowledge-enhanced multi-granularity tex-196

tual entity recognition module first leverages exter-197

nal auxiliary knowledge and the hierarchical struc-198

ture of entity categories to preliminarily recognize199

textual entities. (2) The MLLM-based textual entity200

category reranking module comprehensively uti- 201

lizes multimodal clues extracted by cross-modality 202

interaction for accurate entity category prediction, 203

combined with a filtering regime. (3) The LVLM- 204

based implicit visual entity grounding module uti- 205

lizes an LVLM to match textual and visual entities. 206

3.1 Problem Formulation 207

Given a sentence T and the associated image I , the 208

goal of fine-grained MNERG is to extract a set of 209

triples S expressed as: 210

{(e1, c1, o1), (e2, c2, o2), . . . , (eN , cN , oN )}, (1) 211

where ei represents the i-th textual entity in sen- 212

tence T , ci represents the category of textual entity 213

ei, oi represents the visual entity region correspond- 214

ing to textual entity ei in image I , N represents the 215

number of textual entities in sentence T . If the tex- 216

tual entity has a corresponding visual entity in the 217

image, oi is a four-dimensional vector containing 218

the coordinates of the bounding box; otherwise, oi 219

is None. oi can be expressed as: 220

oi =

{
None, ungrounded,

(xi1, y
i
1, x

i
2, y

i
2), grounded,

(2) 221

where (xi1, y
i
1) and (xi2, y

i
2) separately represent 222

the top-left and bottom-right coordinates of the 223

bounding box for the i-th entity. 224

3.2 Knowledge-enhanced Multi-granularity 225

Textual Entity Recognition Module 226

To augment the long-tailed textual entity category 227

with valuable knowledge, we employ an LLM to 228
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incorporate external auxiliary knowledge. Subse-229

quently, we utilize a modified multi-granularity230

NER model to recognize textual entities by inte-231

grating the entity category hierarchy.232

3.2.1 Knowledge Augmentation233

With the help of the LLM’s internal knowledge,234

valuable information is provided to support both235

entity classification and span recognition, thereby236

enhancing the model’s ability to identify out-237

of-vocabulary textual entities such as Redmi R7.238

Specifically, we concatenate the text with the cor-239

responding image caption acquired by BLIP-2 (Li240

et al., 2023b) and feed them into the LLM with de-241

signed Instruction to obtain the auxiliary knowl-242

edge. Subsequently, we concatenate the text with243

the acquired knowledge using a special token244

⟨SEP ⟩ to delineate them, as expressed:245

(t1, t2, . . . , tN1 , ⟨SEP ⟩, a1, a2, . . . , aN2), (3)246

where ti represents the input token of text, ai is the247

auxiliary knowledge token, which is then fed into a248

modified NER model for encoding and getting the249

representation of the sequence:250

(y1, y2, . . . , yN1 , yN1+1, . . . , yN1+N2+1). (4)251

3.2.2 Multi-Granularity Prediction252

As shown in Figure 2 (a), we have modified the typ-253

ical NER model into a dual-path structure with in-254

dependent parameters, enabling simultaneous pre-255

dictions at both coarse and fine granularity. Specif-256

ically, we set different output dimensions of the257

fully connected layer to map various granularities,258

while a Conditional Random Field (CRF) (Huang259

et al., 2015) layer refines the sequence labeling. We260

define the probability of the label sequence c given261

the input sentence T , so the CRF refine the labels262

can be expressed as:263

P (c|T ) =

N1+N2+1∏
i=1

ψ(ci−1, ci, yi)

∑
c′∈C

N1+N2+1∏
i=1

ψ(c′i−1, c
′
i, yi)

, (5)264

where ψ(ci−1, ci, yi) and ψ(c′i−1, c
′
i, yi) are poten-265

tial functions. We use the negative log-likelihood266

as the loss function for the input sequence with267

gold labels c∗ for different granularities:268

Lc
NLL(θ) = − logPθ(c

∗
c |S), (6)269

270
Lf
NLL(θ) = − logPθ(c

∗
f |S), (7)271

272
LNLL = αLc

NLL + (1− α)Lf
NLL, (8)273

where Lc
NLL and Lf

NLL respectively represent the 274

loss for coarse and fine granularity and α is the 275

weight coefficient to balance the losses. 276

3.2.3 Multi-Granularity Augmentation 277

We will now describe how multi-granularity infor- 278

mation improves predictions for long-tailed cat- 279

egories. The logit prediction within the coarse- 280

grained categories is extracted, and a learnable 281

transition matrix is utilized to boost the proba- 282

bilities of corresponding fine-grained categories. 283

Specifically, we denote the logit prediction by the 284

fully connected layer within the coarse-grained cat- 285

egories as (yc1, y
c
2, . . . , y

c
N1+N2+1) and fine-grained 286

logit prediction as (yf1 , y
f
2 , . . . , y

f
N1+N2+1), where 287

yci ∈ RCc and yfi ∈ RCf . Here, Cc and Cf rep- 288

resent the number of coarse and fine granularity 289

categories, respectively. Then, a learnable transi- 290

tion matrix M ∈ RCc×Cf transitions yci and adds 291

it to yfi with a weight β: 292

yfi = βMyci + (1− β)yfi . (9) 293

Notably, M is initialized with the co-occurrence 294

frequency of coarse and fine granularity categories 295

and then normalized. 296

3.3 MLLM-based Textual Entity Category 297

Reranking Module 298

For further differentiation of long-tailed categories 299

from others based on previous granularity augmen- 300

tation, we employ the MLLM as a multimodal 301

reranker combined with a sample filtering mecha- 302

nism to refine appropriate samples. 303

3.3.1 Sample Filter and Selection 304

Previous findings (Zhang et al., 2024; Ma et al., 305

2023) have revealed that LLMs are suitable for 306

hard samples. Inspired by them, we filter and select 307

such challenging samples for further processing. 308

Specifically, we extract textual entity embeddings 309

(ye1i
, ye2i

, . . . , yeMi
) and pool these tokens to form 310

the textual entity’s representation. Here, eji repre- 311

sents the j-th token of the i-th textual entity. We 312

then merge the logits of B-I within the same cate- 313

gory and apply softmax to represent the probabili- 314

ties (p(xei1 ), p(x
ei
2 ), . . . , p(x

ei
Cf

)) of each category. 315

Subsequently, we calculate the information entropy 316

H(p) of the distribution to evaluate the difficulty 317

associated with the textual entity as follows: 318

H(p(ei)) = −
Cf∑
j

p(xeij ) log p(x
ei
j ). (10) 319
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Using a predefined threshold γ, we filter and further320

process samples with information entropy that ex-321

ceeds this value. Notably, we consider the remain-322

ing samples to be well-processed by the previous323

modules and not require further processing.324

3.3.2 Entity Category Reranking325

To avoid excessive textual entity categories from326

interfering with the MLLM, we select the topK327

categories with the highest probabilities as can-328

didates, based on the predicted probabilities329

(p(x1), p(x2), . . . , p(xCf
)). The sample is then330

formatted as (Instruction, I, T, candidates) and331

input into the instruction-tuned MLLM for rerank-332

ing to select the best category. Actually, the can-333

didates usually belong to the same coarse-grained334

categories due to the multi-granularity augmenta-335

tion. Therefore, the long-tailed categories can be336

further differentiated from similar categories.337

To instruction-tune the MLLM, we construct a338

candidate set of length K including the golden339

label,K−2 fine-grained categories within the same340

coarse-grained category, and one distinct category341

from a different category. This enhances robustness342

by accounting for occasional misclassifications of343

the coarse-grained category by the model.344

3.4 LVLM-based Implicit Visual Entity345

Grounding Module346

Visual entity grounding involves two primary steps:347

confirming the relevance of a textual entity to an348

image and precisely grounding the visual region349

within the image. Consequently, an LVLM is350

trained on the relevance between entities and im-351

ages and subsequently infers the grounding regions352

using an implicit paradigm. Notably, to align with353

the labeling method of visual entities, we generate354

bounding boxes for grounding positions using a355

visual prompt model.356

3.4.1 Textual Entity-Image Matching357

We finetune an off-the-shelf LVLM (BLIP) (Li358

et al., 2022) equipped with its Image-Text-Match359

head serving as a binary classifier to determine the360

textual entity’s relevance (PT , PF ) to the image.361

Here, PT denotes the probability that the entity362

matches the picture, and PF denotes the probability363

that it does not. Meanwhile, we construct a dataset364

formulated as (ei, Instruction, ci, I, label) to365

finetune our model. The label is a boolean value in-366

dicating whether the corresponding visual entity is367

present in the image. We include entity categories368

because entities sharing the same name but belong- 369

ing to different categories may represent different 370

elements in the image, such as the athlete Jordan 371

and the brand Jordan. 372

3.4.2 Visual Entity Tracing 373

In fact, we can trace the visual entity’s position 374

to explain why the classifier identifies the textual 375

entity relevant to the image. For the textual en- 376

tity determined to be relevant to the image, we 377

extract PT and apply gradient-based weighting 378

(Selvaraju et al., 2017; Tiong et al., 2022) to the 379

cross-attention maps, deriving importance scores 380

for various regions within the image as follows: 381

si =
1

H

S∑
j=1

H∑
h=1

max(0,
∂PT

∂A
(h)
ji

)A
(h)
ji . (11) 382

Here, H refers to the total count of attention heads, 383

S denotes the overall length of the tokens, and 384

A
(h)
ji denotes the attention score between the i-th 385

patch and the j-th token within the h-th attention 386

head. We then resize the score map to match the 387

size of the original image, allowing us to assess 388

the importance of each region. Having obtained 389

the importance distribution of the image regions 390

associated with the textual entity, we consider the 391

region with the highest importance score as the po- 392

tential key visual entity linked to the textual entity. 393

This process effectively establishes a connection 394

between the textual entity and the relevant visual 395

region within the image. 396

3.4.3 Bounding Box Generation 397

Visual entities are typically represented using 398

bounding boxes. Therefore, we need to transform 399

the importance distribution into specific coordi- 400

nates. However, there is often a discrepancy be- 401

tween the identified importance region and the tar- 402

get bounding box. We must deduce the bounding 403

box from the region of local importance. SEEM 404

(Zou et al., 2023) is a visual prompt model that can 405

separate the object using a pointed hint to generate 406

its mask. Therefore, we use it to isolate the entity 407

object based on the coordinates of the highest score 408

point within the score map. Subsequently, we de- 409

rive the bounding box coordinates as our final pre- 410

diction based on the generated mask. During this 411

process, we deduced the grounding region of the 412

visual entity solely based on the relationships be- 413

tween textual entities and images, thus eliminating 414

the need for training with extensive hand-annotated 415

bounding boxes in the dataset. 416
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Modality Methods
GMNER FMNERG

MNERG MNER EEG MNERG MNER EEG

Text

HBiLSTM-CRF-None 42.07 75.58 47.49 33.57 59.29 46.07
Bert-None 42.96 77.30 47.63 33.77 59.47 46.94

Bert-CRF-None 43.78 77.93 48.07 34.95 60.72 47.67
BART / T5-Paraphrase-None 44.82 79.83 48.99 37.33 65.07 48.97

Text+Image

GVATT-OD-EVG 48.57 76.26 53.32 40.32 60.35 54.35
UMT-OD-EVG 50.29 78.58 54.78 41.32 61.63 54.43

UMGF-OD-EVG 51.67 78.83 55.74 41.92 61.79 54.75
ITA-OD-EVG 51.56 79.37 55.69 42.78 63.21 57.26

BART / MMT5-OD-EVG 52.45 80.39 55.66 45.21 66.61 58.18
H-Index / TIGER 56.41 79.73 61.18 46.55 64.91 61.96
GEM (BERT) 59.83 ± 0.21 83.15 ± 0.12 63.16 ± 0.09 50.54 ± 0.19 68.09 ± 0.15 63.59 ± 0.07

GEM (RoBERTa) 61.54 ± 0.17 84.81 ± 0.06 64.49 ± 0.10 52.48 ± 0.14 70.80 ± 0.11 65.52 ± 0.05

Table 1: Performance comparison between GEM and all the baselines. Results for all baselines are sourced
from Wang et al. (2023); Yu et al. (2023), and the best results are highlighted in bold. Importantly, we utilize
VinVL (Zhang et al., 2021b) as the main object detection method, denoted as OD, and employ RCNN (Girshick,
2015) in some baseline evaluations of the GMNER dataset. The mean and standard deviation across all the metrics
are obtained through three random runs.

4 Experiments417

4.1 Settings418

Datasets We conducted experiments using two419

public MNERG datasets: GMNER and FMN-420

ERG. Notably, the GMNER dataset includes only421

four coarse-grained categories for textual entities,422

whereas the FMNERG dataset labels eight coarse-423

grained and fifty-one fine-grained categories. More424

details are in Appendix A.425

Baselines To evaluate the performance of our426

framework in FMNERG, we benchmarked our427

approach with the following baselines: (1) Text-428

only: (Huang et al., 2015; Devlin et al., 2019; Lewis429

et al., 2020; Raffel et al., 2020) Only extracting tex-430

tual entities. (2) EVG-based: (Jia et al., 2023; Yu431

et al., 2020; Wang et al., 2022b) Extracting textual432

entities, then selecting corresponding visual enti-433

ties. (3) Unified-Generative: (Wang et al., 2023; Yu434

et al., 2023) Simultaneously capturing textual and435

corresponding visual entities with a multi-modality436

generative model. More details are in Appendix B.437

Evaluation Referring to prior work, we assessed438

our framework’s performance across three distinct439

subtasks. (1) Multimodal Named Entity Recogni-440

tion (MNER) involves predicting the correct textual441

entity spans and their types. (2) Entity Extraction442

& Grounding (EEG) entails identifying both the443

textual entity spans and their corresponding visual444

entities. We apply a threshold of 0.5 for filtering In-445

tersection over Union (IoU) scores between ground446

truth and predicted bounding boxes. (3) Multi-447

modal Named Entity Recognition and Grounding448

(MNERG) comprehensively evaluate the perfor- 449

mance of both MNER and EEG, ensuring the ac- 450

curacy of the triplet (ei, ci, oi). All subtasks were 451

evaluated using the F1-score. 452

Implementations All model components run on 453

a single NVIDIA RTX 4090 GPU using PyTorch. 454

We set α = 0.1, β = 0.1 for textual entity recogni- 455

tion and selected ChatGPT as our knowledge base. 456

Additionally, we set γ = 0.2 for sample filtering 457

and employed LoRA with rank = 64 to instruction- 458

tune LLaVA (Liu et al., 2023) for reranking. The 459

BLIP (Li et al., 2022) was fine-tuned to assess the 460

relevance between textual entities and images. To 461

ensure fair comparisons, we present results using 462

both BERT (Devlin et al., 2019) and RoBERTa 463

(Liu et al., 2019) as backbone networks. Since 464

the GMNER dataset contains only coarse-grained 465

textual entity categories, we removed the multi- 466

granularity module and ensured that all categories 467

were considered during reranking. More details are 468

in Appendix C. 469

4.2 Comparison with Baselines 470

The performance comparison of our GEM and the 471

baselines is detailed in Table 1. We have the fol- 472

lowing observations: (1) Our GEM consistently 473

achieves the best performance across all subtasks 474

using both BERT and RoBERTa, with a maximum 475

absolute improvement of 5.13% and 5.93% for the 476

entire assessment in the GMNER and FMNERG 477

datasets, respectively. This indicates that our model 478

provides additional capabilities beyond those of the 479

backbone models. (2) In multimodal named entity 480

6



Methods Coarse-grained Fine-grained
Pre Rec F1 Pre Rec F1

Textual entity
Base model 80.92 82.89 81.89 66.79 67.40 67.10

Multi 81.37 83.29 82.32 67.74 68.56 68.15
Rerank 81.07 82.99 82.02 68.92 69.64 69.28

Multi+Rerank 81.23 83.49 82.34 70.25 71.36 70.80
Visual entity

CMT-RCNN 63.89 62.94 63.41 16.70 15.35 16.00
CMT-VinVL 63.47 62.02 62.73 18.71 17.08 17.86

GEM-wo 62.39 63.10 62.74 25.77 26.25 26.01
GEM 66.29 67.04 66.66 35.64 36.38 36.01

Table 2: Performance comparison across different gran-
ularities in textual entity recognition and visual entity
grounding. Evaluations are based on precision, recall,
and F1-score. The term "Multi" denotes the module that
incorporates multi-granularity information.

recognition, our model achieves a 4.19% higher481

score than the previous best result in the FMNERG482

dataset, demonstrating its ability to capture textual483

entities at a finer granularity level. (3) In entity484

extraction and grounding, we achieve obvious im-485

provements that surpass the progress in entity span486

predictions across all datasets. This proves that487

even without training with bounding boxes, we can488

accurately identify visual entities and link them to489

corresponding textual entities.490

4.3 Fine-grained Content Performance491

We compared textual entity recognition and visual492

entity grounding across various modules and granu-493

larities within the FMNERG dataset to validate our494

approach’s effectiveness on fine-grained content.495

In fine-grained textual entity recognition, we em-496

ployed a typical NER model with auxiliary knowl-497

edge as the base model. Then we evaluated the498

effects of refining the base model’s results either499

by incorporating multi-granularity information or500

by using a reranking module. As shown in ta-501

ble 2, fine-grained categories exhibit more remark-502

able improvement compared to coarse-grained cat-503

egories, demonstrating that the performance en-504

hancement in fine-grained categories stems from505

a better comprehension of detailed content across506

different modalities rather than a general enhance-507

ment. Multi-granularity information primarily508

boosts the logit prediction of long-tailed categories509

without directly distinguishing them from others.510

However, it provides better base candidates for511

reranking and further differentiates the long-tailed512

category from other similar categories. Combining513

them leads to cooperative improvement.514
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Figure 3: Performance comparison between GEM and
its variants. We omit the MGP and MGA components
and represent them with dashed lines aligned with AK
values for consistent comparison in the GMNER dataset.

In fine-grained visual entity grounding, we for- 515

mulated the visual entity with an area less than 516

one-fiftieth of the image as the fine-grained visual 517

entity. The Cross Modality Transformer (CMT) 518

was selected as our base model, which effectively 519

linked textual entities to their corresponding vi- 520

sual entities identified by object detection. Vari- 521

ous object detection (Girshick, 2015; Zhang et al., 522

2021b) methods were employed to support CMT. 523

Notably, the model variant GEM-wo represents 524

our approach using the same initial model weights 525

but without training under the textual entity-image 526

matching task. From Table 2, it is evident that our 527

GEM and its variant significantly outperform the 528

typical method in fine-grained visual entity ground- 529

ing by a large margin. This superior performance is 530

due to the direct grounding of visual entities across 531

the entire image with strong text-object alignment 532

capability, breaking away from previous non-end- 533

to-end grounding processes. Additionally, we note 534

that our GEM performs better than its variant, indi- 535

cating that our textual entity-image matching sig- 536

nificantly enhances the alignment between textual 537

and visual entities, rather than relying solely on the 538

text-image alignment from the pre-training stage. 539

4.4 Ablation Analysis 540

To verify the effectiveness of each design in our 541

model, we compared GEM with five variants eval- 542

uated on the MNER subtask: 543

• w/o-KA removes knowledge augmentation. 544

• w/o-MGP removes multi-granularity prediction. 545

• w/o-MGA removes multi-granularity augmenta- 546

tion (excluding the transition matrix). 547

• w/o-SF removes sample filter. 548

• w/o-CR removes category reranking. 549

According to the results shown in Figure 3, GEM 550

outperforms all its variants. Specifically, the w/o- 551
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Figure 4: Performance comparison across different mod-
els in textual entity category reranking.

KA underperforms compared to other variants,552

highlighting that the base model’s performance sets553

the upper limit for textual entity recognition. Since554

NER is a strict matching problem, providing the555

valuable knowledge not only enhances span predic-556

tion but also boosts the logit prediction for relevant557

entity categories. Meanwhile, we can see that w/o-558

MGA shows a relative performance degradation559

compared to w/o MGP, proving that fine-grained560

logit augmentation is essential for deriving extra561

knowledge from coarse-grained information. Be-562

sides, we observe a performance decrease when563

removing the sample filter, illustrating that the base564

and reranking models have different expertise in565

textual entity recognition. Therefore, combining566

them is crucial to enhance the final results. No-567

tably, the performance degrades when we discard568

the reranking, indicating a necessity for the MLLM569

to provide essential multimodal knowledge to help570

distinguish the textual entity.571

5 Discussion572

In this section, we detail our preference for using573

the MLLM with instruction-tuning for reranking574

instead of a larger model with in-context learning.575

Furthermore, our results show that the BLIP outper-576

forms existing MLLMs in visual entity grounding.577

More discussions are in Appendix D, E, F.578

5.1 Different Models for Reranking579

We compared the reranking capabilities across580

various modalities and sizes of models, feeding581

text-only models with captions instead of images.582

Specifically, we used in-context learning to prompt583

GPT models, and the "−h" notation indicates that584

we provided heuristic candidate logit predictions to585

the models to avoid overconfidence in their internal586

knowledge like prophet (Shao et al., 2023).587

According to Figure 4, we can see that LLaVA588

performs best across all models, indicating that the589

Methods Coarse-grained Fine-grained
Pre Rec F1 Pre Rec F1

LLaVA 54.88 55.64 55.26 21.59 22.01 21.80
BLIP-2 61.98 61.19 61.58 29.06 28.69 28.87
BLIP 66.29 67.04 66.66 35.64 36.38 36.01

Table 3: Performance comparison with LLaVA, BLIP-2,
BLIP in visual entity grounding.

acquisition of additional multimodal information 590

aids in comprehending the meaning of samples. 591

LLaMA3 outperforms BLIP-2 due to its superior 592

instruction-following and text comprehension ca- 593

pabilities during the pre-training stage. However, 594

the GPT series exhibits a remarkable decline in 595

performance within the few-shot setting, even with 596

heuristic hints. This demonstrates that in-context 597

learning struggles to grasp the reranking paradigm 598

for entity classification, highlighting the superiority 599

of our instruction-tuning reranking paradigm. 600

5.2 Different Models for Visual Grounding 601

To illustrate why we chose BLIP as the implicit 602

visual entity grounder, we instruction-tuned widely 603

used MLLMs (LLaVA, BLIP-2) to assess the rel- 604

evance between textual entities and images. Sub- 605

sequently, we extracted PT to weight the feature 606

maps in the visual encoder appropriately. 607

As shown in Table 3, BLIP consistently outper- 608

forms other MLLMs across all scores. This supe- 609

riority can be attributed to two main factors: (1) 610

Alignment Bias. MLLMs typically align the vi- 611

sual embeddings with the text rather than with the 612

original image, introducing biases in visual entity 613

grounding. (2) Alignment Absence. MLLMs are 614

mainly trained with generation loss to align with 615

the text, which makes it difficult to extract effective 616

region-specific information and tends to distribute 617

the information across the entire image. 618

6 Conclusion 619

In this paper, we introduced GEM, a novel frame- 620

work for fine-grained multimodal named entity 621

recognition and grounding based on integrated 622

multi-granularity and multi-level information. By 623

harnessing the rich multimodal knowledge and 624

linguistic understanding from multimodal pre- 625

training, we enhanced the comprehension of fine- 626

grained information in both images and texts. Ex- 627

tensive experimental results demonstrated the su- 628

perior performance of the GEM framework. 629
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7 Limitations630

We briefly mention some limitations of our work.631

First, we have adopted caption information for pre-632

liminary entity recognition, however this may lead633

to missing information and introduce noise into634

the subsequent reranking process. Moreover, al-635

though our grounding paradigm demonstrates re-636

markable performance for fine-grained visual en-637

tities, it faces challenges when pinpointing certain638

very large regions, revealing a gap in our box gen-639

eration method.640
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Appendix851

A Datasets852

Statistics GMNER FMNERG
Train Valid Test Train Valid Test

Number 7000 1500 1500 7000 1500 1500
Entity 11782 2453 2543 11779 2450 2543

Groundable Entity 4694 986 1036 4733 991 1046
Box 5680 1166 1244 5723 1171 1254

Table 4: Data statistics across the GMNERG and FMN-
ERG datasets.

We have compiled statistics for the GMNER and853

FMNERG datasets, including the total number of854

data entries, the number of entities, the number855

of entities with corresponding visual regions, and856

the number of visual entities, as detailed in Table857

4. Specifically, the GMNER dataset contains four858

categories, while the FMNERG dataset includes859

eight coarse-grained categories and fifty-one fine-860

grained categories.861

B Baselines862

To evaluate the proposed framework, we adopt mul-863

tiple frameworks and methods for comparison. Be-864

low are descriptions of these baseline approaches:865

• Text-only. Extracting text entities without cor-866

responding visual entities. HBiLSTM-CRF867

(Huang et al., 2015) uses an LSTM to encode868

the text sequence, followed by a CRF layer to869

classify the token categories. Bert and Bert-CRF870

(Devlin et al., 2019) replace the former backbone871

model with BERT. T5 and BART (Lewis et al.,872

2020; Raffel et al., 2020) treat entity recognition873

as a sequence generation task, using their gen-874

erative capabilities to predict entities along with875

their categories.876

• EVG-based. Firstly, text entities are extracted us-877

ing various multimodal named entity recognition878

methods. Subsequently, corresponding visual879

entities that have been identified through object880

detection methods are selected. Two target de-881

tection models, RCNN and VinVL, (Zhang et al.,882

2021b; Girshick, 2015) are utilized to extract po-883

tential visual entities. GVATT (Lu et al., 2018)884

uses visual embeddings to initialize the hidden885

states of an LSTM, integrating visual context into886

the text processing sequence. UMT (Yu et al.,887

2020) employs a multimodal transformer to fuse888

image and text features, enhancing the interac-889

tion between modalities for improved recognition890

accuracy. UMGF (Zhang et al., 2021a) uses a891

graph-based approach to fuse multi-level modal- 892

ity features, providing a structured way to inte- 893

grate diverse information sources. ITA (Wang 894

et al., 2022b) supplements the model with sample 895

knowledge for knowledge augmentation, aiming 896

to enrich the contextual understanding of the en- 897

tities. MMT5 and BART (Lewis et al., 2020; 898

Raffel et al., 2020) treat entity recognition as a 899

multimodal sequence generation task. Utilizing 900

their generative capabilities, they predict entities 901

along with their categories, effectively leveraging 902

both text and image inputs. 903

• Unified-Generative. Simultaneously extracting 904

text entities and selecting corresponding visual 905

entities identified through object detection meth- 906

ods. Tiger and H-Index (Wang et al., 2023; Yu 907

et al., 2023) use a multimodal sequence genera- 908

tion approach to simultaneously generate text en- 909

tities and corresponding visual tokens, effectively 910

integrating text and image data for enhanced en- 911

tity recognition. 912

C Implementation Details 913

We conducted all experiments using a single 914

NVIDIA RTX 4090 GPU and in the PyTorch frame- 915

work. For optimization, we utilized the AdamW 916

optimizer (Loshchilov and Hutter, 2019) to mini- 917

mize the loss function. We set α = β = 0.1 for 918

textual entity recognition and γ = 0.2 for filtering 919

samples across all datasets. The learning rate was 920

set to 5e− 6, and a linear scheduler was employed 921

to control it. The maximum sentence input length 922

was capped at 256, and the mini-batch size was 923

set to 4. The model underwent training for a total 924

of 10 epochs. Additionally, We employed LoRA 925

with the rank = 64 to instruction-tune LLaVA (Liu 926

et al., 2023) for reranking within the top5 cate- 927

gories, with a learning rate of 5e − 6 over three 928

epochs. We also fine-tuned BLIP (Li et al., 2022) 929

with a learning rate of 5e− 5 for one epoch. 930

D Different LLMs for Span Prediction 931

We compared the effectiveness of knowledge aug- 932

mentation in different LLMs in assisting with tex- 933

tual entity span prediction, as shown in Table 5. 934

The performance of span prediction significantly 935

improves with the assistance of any LLM, indicat- 936

ing that using LLMs as knowledge suppliers en- 937

ables models to effectively capture phrases outside 938

the vocabulary. Furthermore, the more common 939

knowledge integrated into the LLM, the better its 940

recognition performance. 941
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Models GMNER FMNERG
Pre Rec F1 Pre Rec F1

- 87.01 87.43 87.22 87.24 87.58 87.41
LLaMA2-7B 87.62 88.03 87.82 87.58 87.99 87.78
LLaMA3-8B 87.91 88.25 88.08 87.11 89.03 88.06

ChatGPT 87.10 89.78 88.42 86.67 89.61 88.12

Table 5: Performance comparison across different
LLMs on entity span prediction.
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Figure 5: Prediction accuracy across varying levels of
uncertainty in different settings.

E The Threshold for the Sample Filter942

We explore the trend in which the precision of en-943

tity classification and the precision of the Top 5944

categories vary with increasing uncertainty, and945

how the reranking model adjusts to identify the946

optimal threshold.947

As shown in Figure 5, we observe a relatively948

clear trend: as the uncertainty of the predicted949

entity increases, the precision of entity classifica-950

tion decreases significantly. For the MLLM-based951

reranking model, this decline is more gradual, in-952

dicating that the MLLM performs better with diffi-953

cult samples. We select the approximate value of γ954

where the precision levels of the reranking model955

and the base model converge as the threshold to956

filter samples.957

F The number of candidates958

We evaluate our model with different numbers of959

candidate categories, denoted as K. As shown in960

Figure 6, results across various models indicate961

that K = 5 yields the best performance. When K962

decreases, the probability of the ground truth being963
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Figure 6: Performance comparison across various val-
ues of K for candidate categories.

among the candidates diminishes. Conversely, as 964

K increases, the inclusion of too many candidates 965

makes it challenging for the model to select the 966

most accurate prediction. 967

G Prompt template 968

We present the template for various instructions 969

used at different stages of our process. In Table 970

6, the GEM prompts the LLM by integrating text 971

with the image caption to acquire the necessary 972

knowledge. Notably, to acquire a stable format 973

output, we opt for JSON as the output format. In 974

Table 7, we pass the text and the image, label the 975

entity with a special sign, and provide candidate 976

categories to prompt our reranking model to select 977

the best category. In Table 8, we simply concate- 978

nate the entity, given instruction, and category to 979

feed into the grounding model, which then assesses 980

the relevance between the text entity and the image. 981
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Example 1
Query:
Here’s a tweet content: Details on our newly announced Federation Business Data Lake Solution
:. Accordingly, it is corresponding caption: a screen shot of the federation business data lake 10.
Please explain the tweet and especially some of the words in it according to your knowledge and
answer in the format of json like: “explanation”: “ ”
Answer:
The tweet is announcing a new solution called Federation Business Data Lake. The solution is likely
designed to help businesses store and manage their data in a central repository, known as a data lake.
A data lake is a large storage system that allows for the collection, storage, and analysis of large
amounts of structured and unstructured data from various sources.
Example 2
Query:
Here’s a tweet content: i gotta feeling by the black eyed peas blocked you belong with me by taylor
swift. Accordingly, it is corresponding caption: a screenshot of the youtube app showing the
different videos. Please explain the tweet and especially some of the words in it according to your
knowledge and answer in the format of json like: “explanation”: “ ”
Answer:
The tweet is referencing the songs ’I Gotta Feeling’ by The Black Eyed Peas and ’You Belong With
Me’ by Taylor Swift being blocked on YouTube. ’I Gotta Feeling’ is a popular dance-pop song
released in 2009, while ’You Belong With Me’ is a country-pop song released in 2008. The tweet
suggests that the user may have tried to access these songs on YouTube but found that they were
blocked.
Example 3
Query:
Here’s a tweet content: Leonardo DiCaprio and Kate Moss on their way to an art show in New York
City(1993) Accordingly, it is corresponding caption: a man and woman standing in the middle
of a city street. Please explain the tweet and especially some of the words in it according to your
knowledge and answer in the format of json like: “explanation”: “ ”
Answer:
The tweet is referencing a photograph of Leonardo DiCaprio and Kate Moss attending an art show in
New York City in 1993. Leonardo DiCaprio and Kate Moss are both well-known actors and models.
In the image, a man and woman (presumably Leonardo DiCaprio and Kate Moss) are seen standing
in the middle of a city street, likely on their way to the art show. The tweet is highlighting a moment
from their past where they attended a cultural event together.

Table 6: Templates for knowledge augmentation module.

13



Example 1
Query:
Here’s a tweet along with its image, where the entities of the text have been labeled using &&, and
you need to determine his category from the candidate set.
Text: The geometry of plants . Garfield(&&) Park(&&) Conservatory.
Candidate: ["park", "continent", "city", "country", "software"].
Answer:
park
Example 2
Query:
Here’s a tweet along with its image, where the entities of the text have been labeled using &&, and
you need to determine his category from the candidate set.
Text: Golden(&&) State(&&) Warriors(&&) win NBA championship against Cleveland Cavaliers.
Candidate: ["company", "sports_team", "sports_league", "magazine", "social_organization"].
Answer:
sports_team
Example 3
Query:
Here’s a tweet along with its image, where the entities of the text have been labeled using &&, and
you need to determine his category from the candidate set.
Text: RT @ AwkwardGoogle : Harry(&&) Potter(&&).
Candidate: ["author", "character", "coach", "event_other", "actor"].
Answer:
character

Table 7: Templates for reranking module.

Example 1: Cleveland is belong sports_team.
Example 2: taylor swift is belong musician.
Example 3: The Edge of the Sea is belong written_work.

Table 8: Templates for grounding module.
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