
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

NEAR-OPTIMAL CONVERGENCE
OF ACCELERATED GRADIENT METHODS
UNDER GENERALIZED AND (L0, L1)–SMOOTHNESS

Anonymous authors
Paper under double-blind review

ABSTRACT

We study first-order methods for convex optimization problems with functions f sat-
isfying the recently proposed ℓ-smoothness condition

∥∥∇2f(x)
∥∥ ≤ ℓ (∥∇f(x)∥) ,

which generalizes the L–smoothness and (L0, L1)–smoothness. While accelerated
gradient descent (AGD) is known to reach the optimal complexity O(

√
LR/

√
ε)

under L–smoothness, where ε is an error tolerance and R is the distance between a
starting and an optimal point, existing extensions to ℓ–smoothness either incur extra
dependence on the initial gradient, suffer exponential factors in L1R, or require
costly auxiliary sub-routines, leaving open whether an AGD-type O(

√
ℓ(0)R/

√
ε)

rate is possible for small–ε, even in the (L0, L1)-smoothness case. We resolve this
open question. Developing new proof techniques, we achieve O(

√
ℓ(0)R/

√
ε)

oracle complexity for small–ε and virtually any ℓ. For instance, for (L0, L1)-
smoothness, our bound O(

√
L0R/

√
ε) is provably optimal in the small-ε regime

and removes all non-constant multiplicative factors present in prior accelerated
algorithms.

1 INTRODUCTION

We focus on optimization problems

min
x∈Rd

f(x), (1)

where f : Rd → R ∪ {∞} is a convex function. We aim to find an ε-solution, x̄ ∈ Rd, such that
f(x̄) − infx∈Rd f(x) ≤ ε. We define X =

{
x ∈ Rd | f(x) <∞

}
, and assume that X is an open

and d–dimensional convex set, f is smooth on X , and continuous on the closure of X . We define
R :=

∥∥x0 − x∗
∥∥ , where x0 ∈ X is a starting point of numerical methods.

Under the L–smoothness assumption, i.e., ∥∇f(x)−∇f(y)∥ ≤ L ∥x− y∥ or
∥∥∇2f(x)

∥∥ ≤ L for
all x, y ∈ X , the problem is well studied. In particular, it is known that one can find an ε-solution after
O
(√

LR/
√
ε
)

gradient calls using the fast/accelerated gradient descent method (AGD) by Nesterov
(1983), which is also optimal (Nemirovskij & Yudin, 1983; Nesterov, 2018). This result improves the
oracle complexity O

(
LR2

/ε
)

(# of gradient calculations) of gradient descent (GD).

In this work, we investigate the modern ℓ–smoothness assumption (Li et al., 2024a), which states
that

∥∥∇2f(x)
∥∥ ≤ ℓ(∥∇f(x)∥) for all x ∈ X (see Assumption 2.1), where ℓ is any non-decreasing,

positive, locally Lipschitz function. This generalizes the classical L–smoothness assumption, which
corresponds to the special case ℓ(s) = L. An important example of this framework is the (L0, L1)–
smoothness condition (Zhang et al., 2020), obtained by setting ℓ(s) = L0 + L1s, which yields∥∥∇2f(x)

∥∥ ≤ L0 + L1 ∥∇f(x)∥ for all x ∈ X .
There are many functions that are captured by ℓ–smoothness but not by L–smoothness. For instance,
f(x) = xp for p > 2, f(x) = ex, and f(x) = − log x all satisfy ℓ–smoothness (with a proper ℓ) but
violate the standard L–smoothness condition (Li et al., 2024a). Moreover, there is growing evidence
that ℓ–smoothness is a more appropriate assumption for modern machine learning problems (Zhang
et al., 2020; Chen et al., 2023; Cooper, 2024; Tyurin, 2025).

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Table 1: Convergence rates for various AGD methods for small error tolerance ε up to constant
factors (in the case of (L0, L1)-Smoothness, the comparison is valid at least for all ε ≤ L0/L

4
1R

2).
Abbreviations: R :=

∥∥x0 − x∗
∥∥ , ε = error tolerance, x0 is a starting point, ∆ := f(x0)− f(x∗),

MR̄ is defined in Theorem 5.1.

Setting Oracle Complexity References Required Parameters

L–Smoothness
√

LR√
ε

(Nesterov, 1983) L

(L0, L1)–Smoothness

√
L0+L1∥∇f(x0)∥R

√
ε

(Li et al., 2024a) L0, L1, R,∆

exp(L1R) ×
√

L0R
√

ε
(Gorbunov et al., 2025) L0, L1

ν ×
√

L0R
√

ε
,

where ν is not a universal constant and
may depend on parameters of f,ε, andR

(Vankov et al., 2024)
L0, L1,

params for auxiliary problem
(e.g., # of inner iterations)

√
L0R
√

ε
Sec. 3.1, 4.1, or Thm. 4.3 (new) L0, L1, R,∆

(semi-adaptive toR,∆)

General result
with any ℓ

√
ℓ(∥∇f(x0)∥)R

√
ε

(Li et al., 2024a) L0, L1, R,∆

√
ℓ(0)R
√

ε
Corollary 5.3 (new) L0, L1, R,∆,MR̄

Despite the recent significant interest in ℓ–smoothness, to the best of our knowledge, one important
open problem remains:

Under ℓ–smoothness and (L0, L1)–smoothness, for a small ε, is it possible to
design a method with oracle complexity O

(√
ℓ(0)R/

√
ε
)

and O
(√

L0R/
√
ε
)
, respec-

tively?

In this work, using new proof techniques, we provide an affirmative answer to this question by
developing new approaches that work for all ε > 0 and achieve the optimal complexity under
(L0, L1)–smoothness for small ε.

1.1 RELATED WORK

Nonconvex optimization with (L0, L1)–smoothness. While we focus on convex problems, we
now recall the modern results in the non-convex setting. Zhang et al. (2020) is the seminal work
that considers (L0, L1)–smoothness. They developed a clipped version of GD that finds an ε–
stationary point after O

(
L0∆/ε+ L2

1∆/L0

)
iterations1. There are many subsequent works on (L0, L1)–

smoothness, including (Crawshaw et al., 2022; Chen et al., 2023; Wang et al., 2023; Koloskova et al.,
2023; Li et al., 2024a;b; Hübler et al., 2024; Vankov et al., 2024). Under (L0, L1)–smoothness,
the state-of-the-art theoretical oracle complexity O (L0∆/ε+ L1∆/

√
ε) was proved by Vankov et al.

(2024).

Nonconvex optimization with ℓ–smoothness. The paper by Li et al. (2024a) is the seminal
work that introduces the ℓ–smoothness assumption. In their version of GD, the result depends on
ℓ(
∥∥∇f(x0)∥∥)/ε and requires ℓ to grow more slowly than s2. Subsequently, Tyurin (2025) improved

their oracle complexity and provided the current state-of-the-art complexity. For instance, under
(ρ, L0, L1)–smoothness, i.e.,

∥∥∇2f(x)
∥∥ ≤ L0 + L1 ∥∇f(x)∥ρ for all x ∈ X , Tyurin (2025) guaran-

tee L0∆/ε+ L1∆/ε(2−ρ)/2 instead of (L0∆+L1∥∇f(x0)∥ρ
∆)/ε from Li et al. (2024a) when 0 ≤ ρ ≤ 2.

Convex optimization with (L0, L1)–smoothness and ℓ–smoothness. Under the (L0, L1)–
smoothness assumption, convex problems were considered in (Koloskova et al., 2023; Li et al.,
2024a; Takezawa et al., 2024). Gorbunov et al. (2025); Vankov et al. (2024) concurrently obtained

1An ε–stationary point is a point x̄ such that ∥∇f(x̄)∥2 ≤ ε; ∆ := f(x0)− f∗, where x0 is a starting point
of numerical methods.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

the oracle complexity O
(
L0R

2
/ε+ L2

1R
2
)
. Then, the non-dominant term L2

1R
2 was improved to

L0R
2
/ε+min

{
L1∆

1/2R/ε1/2, L2
1R

2, L1∥∇f(x0)∥R2
/ε
}

by Tyurin (2025). Lobanov et al. (2024) also
analyzed the possibility of improving L2

1R
2 in the region where the gradient of f is large. The

ℓ–smoothness assumption in the contexts of online learning and mirror descent was considered in
(Xie et al., 2024; Yu et al., 2025).

Accelerated convex optimization. The aforementioned results were derived using non-accelerated
gradient descent methods. Under (L0, L1)–smoothness, accelerated variants of GD were studied by
Li et al. (2024a); Gorbunov et al. (2025); Vankov et al. (2024). However, for small ε, the approach of
Gorbunov et al. (2025) leads to the complexity exp(L1R)

√
L0R/

√
ε (up to constant factors), with an

exponential dependence on L1 and R, while the method proposed by Vankov et al. (2024) requires
solving an auxiliary one-dimensional optimization problem at each iteration, leading to the oracle
complexity O

(
ν ×

√
L0R/

√
ε
)
, where ν is a non-constant multiplicative factor arising from solving

the auxiliary problem. In the context of the ℓ–smoothness assumption, Li et al. (2024a) established a
complexity bound of O(

√
ℓ(∥∇f(x0)∥)R/

√
ε). The current state-of-the-art accelerated methods leave

open the question of whether it is possible to achieve the oracle complexities O
(√

L0R/
√
ε
)

and
O
(√

ℓ(0)R/
√
ε
)

when ε is small.

1.2 CONTRIBUTIONS

We develop new proof techniques to analyze Algorithms 1 and 2, which, to the best of our knowledge,
achieve for the first time oracle complexities of O

(√
ℓ(0)R/

√
ε
)

and O
(√

L0R/
√
ε
)

for small ε, under ℓ–
smoothness and (L0, L1)–smoothness, respectively. These results represent a significant improvement
over previous works (Li et al., 2024a; Gorbunov et al., 2025; Vankov et al., 2024) (Table 1). Moreover,
our bound under (L0, L1)–smoothness is optimal in the small-ε regime.

We begin in Section 3, which establishes the O
(√

ℓ(0)R/
√
ε
)

rate for small ε with subquadratic and
quadratic ℓ. In Section 4, we present Algorithm 2, which is more robust to input parameters and
achieves an improved rate in the non-dominant terms, at least in the case of (L0, L1)–smoothness.
Finally, in Section 5, we show that Algorithm 1 attains the O

(√
ℓ(0)R/

√
ε
)

rate (for small ε) for all
non-decreasing positive locally Lipschitz ℓ.

2 PRELIMINARIES

Notations: R+ := [0,∞); N := {1, 2, . . . }; ∥x∥ denotes the standard Euclidean norm for all
x ∈ Rd; ⟨x, y⟩ =

∑d
i=1 xiyi denotes the standard dot product; ∥A∥ denotes the standard spectral

norm for all A ∈ Rd×d; g = O(f) : there exists C > 0 such that g(z) ≤ C × f(z) for all z ∈ Z;
g = Ω(f) : there exists C > 0 such that g(z) ≥ C × f(z) for all z ∈ Z; g ≃ h : g and h are equal
up to a universal positive constant; ProjX̄ (x) denotes the standard Euclidean projection of x onto the
convex closed set X̄ .
We consider the following assumption (Li et al., 2024a):
Assumption 2.1. A function f : Rd → R ∪ {∞} is ℓ–smooth if f is twice differentiable on X , f is
continuous on the closure of X , and there exists a non-decreasing positive locally Lipschitz function
ℓ : [0,∞) → (0,∞) such that ∥∥∇2f(x)

∥∥ ≤ ℓ(∥∇f(x)∥) (2)

for all x ∈ X .

The assumption includes L–smoothness when ℓ(s) = L, (L0, L1)–smoothness when ℓ(s) = L0 +
L1s, and (ρ, L0, L1)–smoothness, i.e.,

∥∥∇2f(x)
∥∥ ≤ L0 + L1 ∥∇f(x)∥ρ for all x ∈ X , when

ℓ(s) = L0 +L1s
ρ, where L,L0, L1, ρ ≥ 0 are some fixed constants. While Assumption 2.1 requires

twice differentiability, the main theorems and algorithms do not directly rely on it. Let us recall the
following lemma, which follows from Assumption 2.1:
Lemma 2.2 (Tyurin (2025)). For all x, y ∈ X such that ∥y − x∥ ∈ [0, qmax(∥∇f(x)∥)), if f is
ℓ–smooth (Assumption 2.1), then

∥∇f(y)−∇f(x)∥ ≤ q−1(∥y − x∥ ; ∥∇f(x)∥), (3)

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Algorithm 1 Accelerated Gradient Descent (AGD) with ℓ-Smoothness

1: Input: starting point x0 ∈ X , function ℓ from Assumption 2.1, parameters δ and R̄
2: Starting from x0, run GD from (Tyurin, 2025) until f(x̄)− f(x∗) ≤ δ/2,

where x̄ is the output point of GD
3: Init y0 = u0 = x̄
4: Set Γ0 = δ/R̄2

5: Set γ = 1/ (2ℓ (0))
6: for k = 0, 1, . . . do
7: αk =

√
γΓk

8: yk+1 = 1
1+αk

yk + αk

1+αk
uk − γ

1+αk
∇f(yk)

9: uk+1 = ProjX̄
(
uk − αk

Γk
∇f(yk+1)

)
(X̄ is the closure of X )

10: Γk+1 = Γk/(1 + αk)
11: end for

where q(s; a) :=
∫ s
0

dv
ℓ(a+v) , q

−1 is the inverse of q with respect to s, and qmax(a) :=
∫∞
0

dv
ℓ(a+v) .

Not requiring twice differentiability, we can assume that (3) holds instead of (2). The main reason
why we start with (2) is because it is arguably more interpretable. Next, we assume the convexity of
f :

Assumption 2.3. A function f : Rd → R∪{∞} is convex and attains the minimum at a (non-unique)
x∗ ∈ Rd. We define R :=

∥∥x0 − x∗
∥∥ , where x0 is a starting point of numerical methods.

In the theoretical analysis and proofs, it is useful to define the ψ–function:

Definition 2.4 (ψ and ψ−1 functions). Let Assumption 2.1 hold. We define the function ψ : R+ →
R+ such that ψ(x) = x2

2ℓ(4x) , and ψ−1 : [0, ψ(∆max)) → [0,∆max) as its (standard) inverse, where
∆max ∈ (0,∞] is the largest constant such that ψ is strictly increasing on2 [0,∆max).

3 SUBQUADRATIC AND QUADRATIC GROWTH OF ℓ

We are ready to present our first result. Consider Algorithm 1, which consists of two phases: first,
we run (non-accelerated) GD, and then we run an accelerated version of GD. Later, we will present
Algorithm 2, which avoids the first phase. We first state the convergence rate of Algorithm 1 and
then discuss and explain it in more detail. We begin by stating a standard result from the theory
of accelerated methods (Nesterov, 2018; Lan, 2020; Stonyakin et al., 2021) concerning auxiliary
sequences, which control convergence rates:

Theorem 3.1. For any Γ0 > 0 and γ ≥ 0, let αk ≥
√
γΓk and Γk+1 = Γk/(1 + αk) for all k ≥ 0.

Then, Γk+1 ≤ 9

γ(k+1−k̄)
2 for all k ≥ k̄ := max

{
1 + 1

2 log3/2

(
γΓ0

4

)
, 0
}
.

The following result provides the convergence rate of Algorithm 1 for ℓ such that ψ(x) = x2

2ℓ(4x) is
strictly increasing, which holds, for instance, under (L0, L1)–smoothness.

Theorem 3.2. Suppose that Assumptions 2.1 and 2.3 hold. Let ψ : R+ → R+ such that ψ(x) =
x2

2ℓ(4x) be strictly increasing. Then Algorithm 1 guarantees that

f(yk+1)− f(x∗) ≤ Γk+1R̄
2 ≤ 18ℓ (0) R̄2(

k + 1− k̄
)2 (4)

for all k ≥ k̄ := max
{
1 + 1

2 log3/2

(
Γ0

8ℓ(0)

)
, 0
}

with any δ ∈ (0,∞] such that ℓ
(
8
√
δℓ (0)

)
≤

2ℓ (0) and any R̄ ≥ R :=
∥∥x0 − x∗

∥∥ .
2∆max > 0 due to Lemma B.4.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

The theorem establishes the desired 1/k2 convergence rate of accelerated methods. However, the
method enters this regime only after running the GD method and after the initial k̄ steps of the
accelerated steps. The main and final result, which captures the total oracle complexity, is presented
below.

Theorem 3.3. Consider the assumptions and results of Theorem 3.2. The oracle complexity (i.e., the
number of gradient calls) required to find an ε–solution is

5
√
ℓ(0)R̄√
ε

+ k(δ), (5)

for all δ ≥ 0 such that ℓ
(
8
√
δℓ (0)

)
≤ 2ℓ (0) , where k(δ) := max

{
1 + 1

2 log3/2

(
δ

8ℓ(0)R̄2

)
, 0
}
+

kGD(δ), kGD(δ) is the oracle complexity of GD for finding a point x̄ such that f(x̄)− f(x∗) ≤ δ/2.

Corollary 3.4. In Theorem 3.3, minimizing over δ and taking R̄ = R :=
∥∥x0 − x∗

∥∥ , the oracle
complexity is

5
√
ℓ(0)R√
ε

+ min
δ≥0 : ℓ

(
8
√
δℓ(0)

)
≤2ℓ(0)

k(δ)

︸ ︷︷ ︸
does not depend on ε

. (6)

3.1 EXAMPLE: (L0, L1)–SMOOTHNESS

We now consider an example and apply the result for (L0, L1)–smooth functions. In this case,
ℓ(s) = L0 + L1s. First, we need to find the proper set of δ from Theorem 3.2: ℓ(8

√
δℓ (0)) ≤

2ℓ(0) ⇔ L0 + L1(8
√
δL0) ≤ 2L0 ⇔ δ ≤ L0/(64L

2
1). Second, we need to find kGD(δ). Using

Table 2 from (Tyurin, 2025), or the results by Gorbunov et al. (2025); Vankov et al. (2024), kGD(δ) =

O
(
L0R

2
/δ +min

{
L1∆

1/2R/δ1/2, L2
1R

2, L1∥∇f(x0)∥R2
/δ
})

= O
(
L0R

2

δ

)
= O

(
L0R̄

2

δ

)
for all δ ≤

L0/(64L
2
1). Substituting to (5), we get the total oracle complexity

O
(√

L0R̄√
ε

+ min
0≤δ≤L0/(64L2

1)

[
max

{
log

(
δ

L0R̄2

)
, 0

}
+
L0R̄

2

δ

])
, (7)

Taking δ = min{L0/(64L
2
1), (L0R̄

2)/64} (which might not be the optimal choice, but a sufficient
choice to show that the first term dominates if ε is small), we get

(7) = O
(√

L0R̄√
ε

+ L2
1R̄

2

)
= O

(√
L0R√
ε

+ L2
1R

2

)
, (8)

where we choose R̄ = R. Unlike Li et al. (2024a); Gorbunov et al. (2025); Vankov et al. (2024),
we get O(

√
L0R/

√
ε) for small ε. Moreover, this complexity is optimal (Nemirovskij & Yudin, 1983;

Nesterov, 2018) for small ε in the sense that for any L0 > 0 and L1 ≥ 0, it is possible to find an
(L0, L1)–smooth function (the (L0, 0)–smooth function from Section 2.1.2 of (Nesterov, 2018)) such
that the required number of oracle calls is Ω(

√
L0R/

√
ε) for small ε.

One can repeat these steps for any ℓ such that ψ is strictly increasing. Nevertheless, even without
these derivations, we establish the total oracle complexity O(

√
ℓ(0)R/

√
ε) in (6) for small ε.

3.2 DISCUSSION

The closest work to the complexity O
(√

L0R/
√
ε
)
, when ε is small, is (Vankov et al., 2024). Using

the same idea as in (Vankov et al., 2024), in Algorithm 1, we run GD until f(x̄) − f(x∗) ≤ δ/2.
However, the next steps and proof techniques are new. Using the “warm-start” point x̄, it becomes
easier for Algorithm 1 to run accelerated steps because we take δ such that ℓ(4

∥∥∇f(y0)∥∥) ≤ 2ℓ(0)
(Lemma E.1), meaning that we start from the region where the local smoothness constant is almost
ℓ(0). The main challenge is to ensure that the next points yk of Algorithm 1 never leave this region.
To ensure that, using the method from (Nesterov et al., 2021), Vankov et al. (2024) utilize the
monotonicity of their accelerated method and the fact that their points do not leave the region with

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

small smoothness. However, it is not for free and requires ν extra oracle calls in each iteration, where
ν is not a universal constant and depends on the parameters of f leading to a suboptimal complexity.

In contrast, our method follows the standard approach, where only one gradient is computed per
iteration. We use the version of the accelerated method from (Wei & Chen, 2025)[Section D.2], with
some minor but important modifications. The method itself is very similar to the one from (Allen-Zhu
& Orecchia, 2014), for instance. However, the proof technique is very different, which is the main
reason we focus on Algorithm 1. While for L–smooth functions the proof technique from (Wei &
Chen, 2025) does not offer any advantages over, for example, (Nesterov, 1983) because the result
in (Nesterov, 1983) is optimal. In the case of functions with generalized smoothness, it becomes
particularly useful, as shown in the following section.

3.3 PROOF SKETCH

As in most proofs, we define the Lyapunov function Vk := f(yk)− f(x∗) + Γk

2

∥∥uk − x∗
∥∥2 . The

first important observation is that in Vk we use yk, the point where the gradient is actually computed.
This is important, and we will see why later.

Using mathematical induction, let us assume that we have run Algorithm 1 up to kth iteration,
ℓ
(
4
∥∥∇f(yk)∥∥) ≤ 2ℓ(0), and Vk ≤

(∏k−1
i=0

1
1+αi

)
V0. We choose Γ0 such that V0 ≤ δ. The base

case with k = 0 is true because we run GD until ℓ(4
∥∥∇f(y0)∥∥) ≤ 2ℓ(0). Now, instead of k + 1th

consider the steps

αk,γ =
√
γΓk,

yk+1
γ =

1

1 + αk,γ
yk +

αk,γ
1 + αk,γ

uk − γ

1 + αk,γ
∇f(yk),

uk+1
γ = ProjX̄

(
uk − αk,γ

Γk
∇f(yk+1

γ )

)
,

Γk+1,γ = Γk/(1 + αk,γ),

(9)

where γ is a free parameter. These steps are equivalent to k + 1th iteration when γ = 1/ (2ℓ (0)) .
However, we have not proved that we are allowed to use this γ yet. For these steps, we can prove a
standard descent lemma, Lemma D.1:[

(1 + αk,γ)(f(y
k+1
γ )− f(x∗)) +

(1 + αk,γ)Γk+1,γ

2

∥∥uk+1
γ − x∗

∥∥2]− Vk

≤ 1

2

(
γ − 1

ℓ(2 ∥∇f(yk)∥+
∥∥∇f(yk+1

γ )
∥∥)
)∥∥∇f(yk+1

γ )−∇f(yk)
∥∥2 . (10)

For now, let us assume that f is L–smooth. Then the rest of the proof becomes straightforward. In
this case, ℓ(2

∥∥∇f(yk)∥∥ + ∥∥∇f(yk+1
γ )

∥∥) = L, and we can take γ = 1/2L ≡ 1/(2ℓ(0)) to ensure
that (1 + αk)Vk+1 ≤ Vk because the first bracket [. . . ] = (1 + αk)Vk+1. Then, we should unroll the
recursion and use Theorem 3.1 to get the classical 1/k2 rate (Nesterov, 1983).

However, under Assumption 2.1, ℓ(2
∥∥∇f(yk)∥∥+ ∥∥∇f(yk+1

γ )
∥∥) depends on

∥∥∇f(yk+1
γ )

∥∥, and we
encounter a “chicken-and-egg” dilemma: in order to choose γ, we need to know

∥∥∇f(yk+1
γ )

∥∥, which
in turn depends on γ. Our resolution is the following. Let us choose the smallest γ∗ ≥ 0 such that

g(γ) := γ − 1

ℓ(2 ∥∇f(yk)∥+
∥∥∇f(yk+1

γ )
∥∥) = 0,

which exists and is positive because g(γ) is continuous, g(0) < 0, and g(γ̄) ≥ 0 for γ̄ = 1
ℓ(2∥∇f(yk)∥) .

It is possible that we are “unlucky” and γ∗ is very small, leading to a slow convergence rate and
preventing us from choosing γ = 1/(2ℓ(0)). Surprisingly, it is possible to show that γ∗ ≥ 1/(2ℓ(0)).
Indeed, using (10), for all γ ≤ γ∗, we have f(yk+1

γ )− f(x∗) ≤ Vk ≤ V0. Recall that we choose Γ0

such that V0 ≤ δ. Thus, f(yk+1
γ )− f(x∗) ≤ δ. This is the key inequality in the proof, which allows

us to conclude that the function gap with yk+1
γ is bounded, thus justifying the choice of the Lyapunov

function.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Algorithm 2 AGD with ℓ-smoothness and increasing step sizes (without GD pre-running)

1: Input: starting point x0 ∈ X , function ℓ from Assumption 2.1, parameters Γ0 and R̄
2: Init y0 = u0 = x0

3: Define ψ(x) = x2

2ℓ(4x) (assume that ψ is invertible on R+)
4: for k = 0, 1, . . . do
5: γk = 1/ℓ

(
4ψ−1

(
ΓkR̄

2
))

6: αk =
√
γkΓk

7: yk+1 = 1
1+αk

yk + αk

1+αk
uk − γk

1+αk
∇f(yk)

8: uk+1 = ProjX̄
(
uk − αk

Γk
∇f(yk+1)

)
(X̄ is the closure of X )

9: Γk+1 = Γk/(1 + αk)
10: end for

It left to use Lemma E.1, which allows us to bound ℓ(4 ∥∇f(y)∥) if we can bound f(y)− f(x∗) ≤ δ
for all y ∈ X . Thus, ℓ

(
4
∥∥∇f(yk+1

γ )
∥∥) ≤ 2ℓ(0) for all γ ≤ γ∗. Recalling the definition of γ∗ :

γ∗ =
1

ℓ(2 ∥∇f(yk)∥+
∥∥∇f(yk+1

γ∗ )
∥∥) ≥ 1

max{ℓ(4 ∥∇f(yk)∥), ℓ(4
∥∥∇f(yk+1

γ∗ )
∥∥)} ≥ 1

2ℓ(0)
.

Finally, this means that we can take γ = 1/(2ℓ(0)), (9) reduces to the k + 1th step of Algorithm 1,
ℓ
(
4
∥∥∇f(yk+1)

∥∥) ≤ 2ℓ(0), and Vk+1 ≤
(∏k

i=0
1

1+αi

)
V0 due to (10). We have proved the next

step of mathematical induction and (4).

The way we resolve the “chicken-and-egg” dilemma can be an interesting proof trick in other
optimization contexts. Note that our method is not necessarily monotonic, but the proof still allows us
to show that the method never leaves the region where the local smoothness constant is almost ℓ(0).

4 STABILITY WITH RESPECT TO INPUT PARAMETERS AND IMPROVED RATES

While, to the best of our knowledge, Algorithm 1 is the first algorithm with O
(√

ℓ(0)R/
√
ε
)

complexity,
it has two limitations: it runs GD at the beginning, and it requires a good estimate ofR when selecting
R̄. We resolve these issues in Algorithm 2, which is similar to Algorithm 1, but the former does not
run GD at the beginning, uses the step sizes γk = 1/ℓ

(
4ψ−1

(
ΓkR̄

2
))
, and requires Γ0 as an input.

Theorem 4.1. Suppose that Assumptions 2.1 and 2.3 hold. Let ψ : R+ → R+ such that ψ(x) =
x2

2ℓ(4x) be strictly increasing and lim
x→∞

ψ(x) = ∞. Then Algorithm 2 guarantees that

f(yk+1)− f(x∗) ≤ Γk+1R
2

for all k ≥ 0 with Γ0 ≥ 2(f(x0)−f(x∗))

∥x0−x∗∥2 and R̄ ≥ R.

Theorem 4.2. Consider the assumptions and results of Theorem 4.1. The oracle complexity (i.e., the
number of gradient calls) required to find an ε–solution is

5
√
ℓ(0)R√
ε

+max

{
2 + log3/2

(
Γ0

4ℓ(0)

)
, 0

}
+ kinit︸ ︷︷ ︸

does not depend on ε

(11)

with Γ0 ≥ 2(f(x0)−f(x∗))

∥x0−x∗∥2 , R̄ ≥ R, and kinit being the smallest integer such that

ℓ

(
24

√
ℓ(4ψ−1(Γ0R̄2))ℓ(0)R̄2

k2init

)
≤ 2ℓ (0) .

Comparing (11) and (7), one can see that Algorithm 2 is stable with respect to the choice of R̄ and
Γ0. Ideally, it is better to choose Γ0 = 2(f(x0)−f(x∗))

∥x0−x∗∥2 and R̄ = R. However, if we overestimate R̄
and Γ0, the penalty for this appears in the term that does not depend on ε. In the next section, we
consider an example to illustrate this.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

4.1 EXAMPLE: (L0, L1)–SMOOTHNESS

To find the oracle complexity, we have to estimate kinit. In the case of (L0, L1)–smoothness, we can

find kinit from the equality L0+L1

√
(L0 + L1ψ−1

(
Γ0R̄2

)
)L0R̄2/k2init ≃ 2L0 (we ignore constants

for simplicity), where ψ−1 is the inverse of x2/(2(L0+4L1x)). If Γ0R̄
2 ≥ L0/L1, then the equality

is equivalent to kinit ≃
√
L2
1R̄

2 + L4
1Γ0R̄4/L0. Otherwise, kinit ≃

√
L2
1R̄

2 + L3
1R̄

3
√
Γ0/L0. Thus,

using (11), the total oracle complexity

O

(√
L0R√
ε

+ L1R̄+ L2
1R̄

2

√
Γ0

L0
+max

{
log

(
Γ0

L0

)
, 0

})
, (12)

where the first term is stable to the choice of R̄ and Γ0.

4.2 SPECIALIZATION FOR (L0, L1)–SMOOTHNESS

The previous theorems work with any ℓ such that ψ(x) = x2

2ℓ(4x) is strictly increasing on R+ and
lim
x→∞

ψ(x) = ∞. It turns out that we can improve (12) and refine Theorem 4.2 in the case of

(L0, L1)–smoothness.
Theorem 4.3. Consider the assumptions and results of Theorem 4.1 with ℓ(s) = L0 + L1s. The
oracle complexity (i.e., the number of gradient calls) required to find an ε–solution is

O
(√

L0R√
ε

+max

{
L1R̄ log

(
min

{
L2
1R̄

2Γ0

L0
,
Γ0R

2

ε

})
, 0

}
+max

{
log

(
Γ0

L0

)
, 0

})
(13)

with Γ0 ≥ 2(f(x0)−f(x∗))

∥x0−x∗∥2 and R̄ ≥ R.

The non-dominant term in (13) is better than that of (12), and is better than that of (8) when
Γ0 = 2∆/R2 and R̄ = R.

4.3 DISCUSSION AND PROOF SKETCH

Unlike Algorithm 1, Algorithm 2 starts from x0 where the initial local smoothness might be large.
Nevertheless, the proof follows the proof techniques from Section 3.3 with one important difference:
using mathematical induction, we prove that

∥∥∇f(yk)∥∥ ≤ ψ−1(ΓkR̄
2) for all k ≥ 0. This inequality

means that
∥∥∇f(yk)∥∥ can be bounded by a decreasing sequence, and after several iterations, all yk

satisfy ℓ(4
∥∥∇f(yk)∥∥) ≤ 2ℓ(0), allowing us to get O(

√
ℓ(0)R/

√
ε) complexity for small–ε.

5 SUPERQUADRATIC GROWTH OF ℓ

In the previous sections, we provided convergence rates under the assumption that ψ is strictly
increasing. For instance, the previous theory applies to (ρ, L0, L1)–smooth functions only if ρ ≤ 2.
For cases where ψ is not necessarily strictly increasing, we can prove the following theorems.
Theorem 5.1. Suppose that Assumptions 2.1 and 2.3 hold. Let ψ : R+ → R+ such that
ψ(x) = x2

2ℓ(4x) be not necessarily strictly increasing. Find the largest ∆max ∈ (0,∞] such that ψ
is strictly increasing on [0,∆max). For all δ ∈ [0, ψ(∆max)), find the unique ∆left(δ) ∈ [0,∆max)
and the smallest3 ∆right(δ) ∈ [∆max,∞] such that ψ(∆left(δ)) = δ and ψ(∆right(δ)) = δ.
Take any δ ∈ [0, 12ψ(∆max)] such that ℓ(4∆left(δ)) ≤ 2ℓ(0) and ∆right(δ) ≥ 2MR̄, where4

MR̄ := max
∥x−x∗∥≤2R̄

∥∇f(x)∥ . Then Algorithm 1 guarantees that

f(yk+1)− f(x∗) ≤ Γk+1R̄
2 ≤ 18ℓ (0) R̄2(

k + 1− k̄
)2

3if the set {x ∈ [∆max,∞) : ψ(x) = δ} is empty, then ∆right(δ) = ∞
4or is it sufficient to find any MR̄ such that MR̄ ≥ max

∥x−x∗∥≤2R̄
∥∇f(x)∥ .

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

for all k ≥ k̄ := max
{
1 + 1

2 log3/2

(
Γ0

8ℓ(0)

)
, 0
}

with any R̄ ≥
∥∥x0 − x∗

∥∥ .
In order to apply the theorem and algorithm, we first have to find the largest ∆max ∈ (0,∞] such
that ψ is strictly increasing on [0,∆max). If ψ is strictly increasing on R+, then ∆max = ∞. Next,
we should find ∆left(δ) and ∆right(δ) for all δ ∈ [0, ψ(∆max)). The point ∆left(δ) ∈ [0,∆max) is the
solution of ψ(∆left(δ)) = δ, which exists and is unique for all δ ∈ [0, ψ(∆max)) because ψ is strictly
increasing on [0,∆max). Notice that ψ(x) > δ for all x ∈ (∆left(δ),∆max). Thus, there are two
options: either ψ(x) > δ for all x ∈ (∆left(δ),∞), and we define ∆right(δ) = ∞, or there exists the
first moment ∆right(δ) ∈ [∆max,∞) when ψ(∆right(δ)) = δ. In other words, ∆right(δ) is the second
time when ψ intersects δ. We define the set of δ allowed to use in the algorithm:

Q := {δ ∈ [0, ψ(∆max)/2] : ℓ(4∆left(δ)) ≤ 2ℓ(0),∆right(δ) ≥ 2MR̄} .

Theorem 5.2. Consider the assumptions and results of Theorem 5.1. The oracle complexity (i.e., the
number of gradient calls) required to find an ε–solution is

5
√
ℓ(0)R̄√
ε

+ k(δ)

for all δ ∈ Q, where k(δ) := max
{
1 + 1

2 log3/2

(
δ

8ℓ(0)R̄2

)
, 0
}
+ kGD(δ), kGD(δ) is the oracle

complexity of GD for finding a point x̄ such that f(x̄)− f(x∗) ≤ δ/2.

Corollary 5.3. In Theorem 5.2, minimizing over δ and taking R̄ = R :=
∥∥x0 − x∗

∥∥ , the oracle
complexity is

5
√
ℓ(0)R√
ε

+ min
δ∈Q

k(δ)︸ ︷︷ ︸
does not depend on ε

. (14)

In Section E.3.1, we consider an example, (ρ, L0, L1)–smoothness, to illustrate how to use the
theorem, and show that it guarantees a rate of

√
L0R/

√
ε rate for any ρ ≥ 0 and a sufficiently small ε.

The main observation in (14) is that we obtain the
√
ℓ(0)R/

√
ε rate for small ε, given an appropriate or

optimal choice of δ that minimizes k(δ). The main difference between Theorem 5.2 and Theorem 3.3
is that the rate in Theorem 5.2 depends on MR̄ and requires its estimate.

5.1 DISCUSSION AND PROOF SKETCH

In the superquadratic case, we use Algorithm 1 instead of Algorithm 2 because the latter relies on
the fact that ψ is invertible on R+. The former algorithm does not need this and allows us to get
the

√
L0R/

√
ε rate for small–ε. While once again the proof of Theorem 5.2 follows the discussion

from Section 3.3, there is one important difference. Since ψ might not be invertible, we cannot
conclude that

∥∥∇f(yk)∥∥ ≤ ψ−1(δ) if f(yk) − f(x∗) ≤ δ. Instead, we can only guarantee that
if f(yk) − f(x∗) ≤ δ and δ ∈ [0, ψ (∆max)), then either

∥∥∇f(yk)∥∥ ≤ ∆left(δ) or
∥∥∇f(yk)∥∥ ≥

∆right(δ), where ∆max,∆left(δ), and ∆right(δ) are defined in Section 5. The latter case is “bad” for
the analysis. To avoid it, we take δ such that ∆right(δ) ≥ 2MR̄ = max∥x−x∗∥≤2R̄ ∥∇f(x)∥ and,
using mathematical induction, ensure that

∥∥∇f(yk)∥∥ ≤ MR̄. To get the last bound, we prove that
yk never leaves the ball B(x∗, 2R̄), which requires additional technical steps. Thus, we are left
with the “good” case

∥∥∇f(yk)∥∥ ≤ ∆left(δ), which yields ℓ(4
∥∥∇f(yk)∥∥) ≤ 2ℓ(0) for δ such that

ℓ(4∆left(δ)) ≤ 2ℓ(0).

6 CONCLUSION

While we have achieved a better oracle complexity for small ε, the optimal non-dominant term for
large ε, which can improve the terms not depending on ε in Corollaries 3.4, 5.3 and Theorem 4.2
for ℓ–smooth functions, remains unclear and require further investigations. Moreover, it would be
interesting to extend our results to stochastic and finite-sum settings (Schmidt et al., 2017; Lan, 2020),
and develop adaptive versions of the methods than do not depend on L0, L1, R,∆. We leave these
directions for future work, which can build on our new insights and algorithms.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Zeyuan Allen-Zhu and Lorenzo Orecchia. Linear coupling: An ultimate unification of gradient and
mirror descent. arXiv preprint arXiv:1407.1537, 2014.

Ziyi Chen, Yi Zhou, Yingbin Liang, and Zhaosong Lu. Generalized-smooth nonconvex optimization is
as efficient as smooth nonconvex optimization. In International Conference on Machine Learning,
pp. 5396–5427. PMLR, 2023.

Y Cooper. A theoretical study of the (L0, L1)-smoothness condition in deep learning. In OPT 2024:
Optimization for Machine Learning, 2024.

Michael Crawshaw, Mingrui Liu, Francesco Orabona, Wei Zhang, and Zhenxun Zhuang. Robustness
to unbounded smoothness of generalized signsgd. Advances in Neural Information Processing
Systems, 35:9955–9968, 2022.

Eduard Gorbunov, Nazarii Tupitsa, Sayantan Choudhury, Alen Aliev, Peter Richtárik, Samuel Horváth,
and Martin Takáč. Methods for convex (L0, L1)-smooth optimization: Clipping, acceleration, and
adaptivity. In International Conference on Learning Representations, 2025.

Florian Hübler, Junchi Yang, Xiang Li, and Niao He. Parameter-agnostic optimization under relaxed
smoothness. In International Conference on Artificial Intelligence and Statistics, pp. 4861–4869.
PMLR, 2024.

Anastasia Koloskova, Hadrien Hendrikx, and Sebastian U Stich. Revisiting gradient clipping:
Stochastic bias and tight convergence guarantees. In International Conference on Machine
Learning, pp. 17343–17363. PMLR, 2023.

Guanghui Lan. First-order and stochastic optimization methods for machine learning. Springer,
2020.

Haochuan Li, Jian Qian, Yi Tian, Alexander Rakhlin, and Ali Jadbabaie. Convex and non-convex
optimization under generalized smoothness. Advances in Neural Information Processing Systems,
36, 2024a.

Haochuan Li, Alexander Rakhlin, and Ali Jadbabaie. Convergence of adam under relaxed assumptions.
Advances in Neural Information Processing Systems, 36, 2024b.

Aleksandr Lobanov, Alexander Gasnikov, Eduard Gorbunov, and Martin Takáč. Linear convergence
rate in convex setup is possible! gradient descent method variants under (L0, L1)-smoothness.
arXiv preprint arXiv:2412.17050, 2024.

Arkadij Semenovič Nemirovskij and David Borisovich Yudin. Problem complexity and method
efficiency in optimization. 1983.

Yurii Nesterov. A method of solving a convex programming problem with convergence rate o (1/k**
2). Doklady Akademii Nauk SSSR, 269(3):543, 1983.

Yurii Nesterov. Lectures on convex optimization, volume 137. Springer, 2018.

Yurii Nesterov, Alexander Gasnikov, Sergey Guminov, and Pavel Dvurechensky. Primal–dual
accelerated gradient methods with small-dimensional relaxation oracle. Optimization Methods and
Software, 36(4):773–810, 2021.

Ralph Tyrell Rockafellar. Convex analysis:(pms-28). 2015.

Mark Schmidt, Nicolas Le Roux, and Francis Bach. Minimizing finite sums with the stochastic
average gradient. Mathematical Programming, 162:83–112, 2017.

Fedor Stonyakin, Alexander Tyurin, Alexander Gasnikov, Pavel Dvurechensky, Artem Agafonov,
Darina Dvinskikh, Mohammad Alkousa, Dmitry Pasechnyuk, Sergei Artamonov, and Victorya
Piskunova. Inexact model: A framework for optimization and variational inequalities. Optimization
Methods and Software, 36(6):1155–1201, 2021.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Yuki Takezawa, Han Bao, Ryoma Sato, Kenta Niwa, and Makoto Yamada. Polyak meets parameter-
free clipped gradient descent. In Advances in Neural Information Processing Systems, 2024.

Alexander Tyurin. Toward a unified theory of gradient descent under generalized smoothness. In
International Conference on Machine Learning, 2025.

Daniil Vankov, Anton Rodomanov, Angelia Nedich, Lalitha Sankar, and Sebastian U Stich. Optimiz-
ing (L0, L1)-smooth functions by gradient methods. arXiv preprint arXiv:2410.10800, 2024.

Bohan Wang, Huishuai Zhang, Zhiming Ma, and Wei Chen. Convergence of adagrad for non-convex
objectives: Simple proofs and relaxed assumptions. In The Thirty Sixth Annual Conference on
Learning Theory, pp. 161–190. PMLR, 2023.

Jingrong Wei and Long Chen. Accelerated over-relaxation heavy-ball method: Achieving global
accelerated convergence with broad generalization. In The International Conference on Learning
Representations, 2025.

Yan-Feng Xie, Peng Zhao, and Zhi-Hua Zhou. Gradient-variation online learning under generalized
smoothness. In Advances in Neural Information Processing Systems, 2024.

Dingzhi Yu, Wei Jiang, Yuanyu Wan, and Lijun Zhang. Mirror descent under generalized smoothness.
arXiv preprint arXiv:2502.00753, 2025.

Jingzhao Zhang, Tianxing He, Suvrit Sra, and Ali Jadbabaie. Why gradient clipping accelerates
training: A theoretical justification for adaptivity. In International Conference on Learning
Representations, 2020.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

CONTENTS

1 Introduction 1

1.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Preliminaries 3

3 Subquadratic and Quadratic Growth of ℓ 4

3.1 Example: (L0, L1)–smoothness . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.3 Proof sketch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4 Stability with Respect to Input Parameters and Improved Rates 7

4.1 Example: (L0, L1)–smoothness . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4.2 Specialization for (L0, L1)–smoothness . . . . . . . . . . . . . . . . . . . . . . . 8

4.3 Discussion and proof sketch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

5 Superquadratic Growth of ℓ 8

5.1 Discussion and proof sketch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

6 Conclusion 9

A Experiments 13

A.1 Comparison with GD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

A.2 Comparison with previous AGD methods . . . . . . . . . . . . . . . . . . . . . . 13

A.3 Sensitivity to the choice of R̄ and Γ0 . . . . . . . . . . . . . . . . . . . . . . . . . 13

A.4 Experiments with Algorithm 1 and non-monotonic ψ . . . . . . . . . . . . . . . . 14

B Auxiliary Lemmas 15

C Rate of the Auxiliary Sequence 16

D Main Descent Lemma 18

E Convergence Theorems 21

E.1 Subquadratic and Quadratic Growth of ℓ . . . . . . . . . . . . . . . . . . . . . . . 21

E.2 Stability with Respect to Input Parameters and Improved Rates . . . . . . . . . . . 23

E.2.1 Specialization for (L0, L1)–smoothness . . . . . . . . . . . . . . . . . . . 26

E.3 Superquadratic Growth of ℓ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

E.3.1 Example: (ρ, L0, L1)–smoothness . . . . . . . . . . . . . . . . . . . . . . 31

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A EXPERIMENTS

A.1 COMPARISON WITH GD

We compare GD (Tyurin, 2025) and AGD (Algorithm 2) on the function f : R2 → R defined as
f(x, y) = ex + e1−x + µ

2 y
2, where µ = 0.001. This function is (3.3 + µ, 1)–smooth and has its

minimum at (0.5, 0). Starting at x0 = (−6,−5), and taking R̄ = 100 ≫ R and Γ0 = 100 ≫ 2∆/R2

(large enough) in Algorithm 2, we obtain Figure 1. In this plot, we observe the distinctive accelerated
convergence rate of Algorithm 2 with non-monotonic behavior, supporting our theoretical results.

0 2500 5000 7500 10000 12500 15000 17500 20000
iterations

10 18

10 15

10 12

10 9

10 6

10 3

100

103

f(y
k )

f(x
* )

GD
AGD

Figure 1: Experiment with ex + e1−x + µ
2 y

2 and µ = 0.001

A.2 COMPARISON WITH PREVIOUS AGD METHODS

Using the same function and setup, we compare our Algorithm 2 with previous accelerated methods
in Figure 2. For all methods, we choose parameter values according to the theorems in their respective
papers. Notice that AGD by Vankov et al. (2024) requires a method that solves an auxiliary problem.
To solve this problem, we use binary search with 10 and 100 steps. In Figure 2, we observe very
different behaviors across the methods. AGD by Li et al. (2024a) has the slowest convergence since
their method chooses a small step size. The method by Vankov et al. (2024) is very sensitive to the
number of inner steps used to solve the auxiliary problem: with only inner step 10 steps, it converges
slowly. At the beginning, the method by Gorbunov et al. (2025) has the fastest convergence, while
our method performs better at lower accuracies.

0 5000 10000 15000 20000 25000 30000
number of oracle calls

10 22

10 18

10 14

10 10

10 6

10 2

102

f(y
k )

f(x
* )

GD
AGD (Li et al.)
AGD (Gorbunov et al.)
AGD (Vankov et al.) (inner steps: 10)
AGD (Vankov et al.) (inner steps: 100)
AGD (ours)

Figure 2: Experiment with ex + e1−x + µ
2 y

2 and µ = 0.001

A.3 SENSITIVITY TO THE CHOICE OF R̄ AND Γ0

We now also check how sensitive our algorithm is to the choice of R̄ and Γ0. In Figures 3 and 4, we
fix the theoretically best values and increase them by 5× and 25×. We observe that the algorithm is
not very sensitive to the choice of Γ0, but more sensitive to the choice of R̄, which is expected since
Γ0 is under the logarithms in (13), while R̄ is not.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

0 2500 5000 7500 10000 12500 15000 17500 20000
iterations

10 18

10 15

10 12

10 9

10 6

10 3

100

103

f(y
k )

f(x
* )

Effect of Increasing  (R fixed)

GD
AGD, =32.51600578852742
AGD, =162.5800289426371
AGD, =812.9001447131856

Figure 3: Sensitivity to increasing Γ0 by 5× and 25×.

0 2500 5000 7500 10000 12500 15000 17500 20000
iterations

10 18

10 15

10 12

10 9

10 6

10 3

100

103

f(y
k )

f(x
* )

Effect of Increasing R (  fixed)

GD
AGD, R=8.200609733428363
AGD, R=41.00304866714182
AGD, R=205.01524333570907

Figure 4: Sensitivity to increasing R̄ by 5× and 25×.

A.4 EXPERIMENTS WITH ALGORITHM 1 AND NON-MONOTONIC ψ

We now consider Algorithm 1 and the results from Section 5. We take the function f : R2 → R
defined as f(x, y) = −

√
x −

√
1− x + µ

2 y
2, where µ = 0.001, which is (3, 4, 10)–smooth. For

this function, we can only use Algorithm 1 with the corresponding non-monotonic ψ. We start at
x0 = (0.3,−0.15) and take R̄ = R in Algorithm 1. Unlike Algorithm 2, we have to choose δ.We can
take MR̄ = 4.47 ≥ max∥x−x∗∥≤2R̄ ∥∇f(x)∥ , which we estimated numerically. Then, we choose δ
according to (52), where the latter choice was derived for (ρ, L0, L1)–smooth functions. The results
are presented in Figure 5. In practice, we observe that the required number of GD steps is small,
less than 10, and thus the GD iterations in Algorithm 1 are almost invisible in the plot. Similarly to
Section A.1, AGD converges non-monotonically faster than GD.

0 2500 5000 7500 10000 12500 15000 17500 20000
iterations

10 18

10 15

10 12

10 9

10 6

10 3

100

103

f(y
k )

f(x
* )

GD
AGD

Figure 5: Experiment with −
√
x−

√
1− x+ µ

2 y
2 and µ = 0.001

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

B AUXILIARY LEMMAS

In the proofs, we use the following useful lemma from (Tyurin, 2025), which generalizes the key
inequality from Theorem 2.1.5 of (Nesterov, 2018).

Lemma B.1 (Tyurin (2025)). For all x, y ∈ X , if f is ℓ–smooth (Assumption 2.1) and convex
(Assumption 2.3), then

∥∇f(x)−∇f(y)∥2
∫ 1

0

1− v

ℓ(∥∇f(x)∥+ ∥∇f(x)−∇f(y)∥ v)
dv ≤ f(x)− f(y)− ⟨∇f(y), x− y⟩ .

(15)

The following lemma ensures that it is “safe” to take steps with proper step sizes.

Lemma B.2 (Tyurin (2025)). Under Assumption 2.1, for a fixed x ∈ X , the point y = x+ th ∈ X
for all t ∈

[
0,
∫∞
0

dv
ℓ(∥∇f(x)∥+v)

)
and h ∈ Rd such that ∥h∥ = 1.

We now prove two important lemmas that allow us to bound the norm ∥∇f(y)∥ given an upper bound
on f(y)− f(x∗).

Lemma B.3. [Strictly Increasing ψ] Under Assumptions 2.1 and 2.3, let f(y) − f(x∗) ≤ δ for
some y ∈ X , δ > 0 and ψ : R+ → R+ such that ψ(x) = x2

2ℓ(4x) is strictly increasing, then
∥∇f(y)∥ ≤ ψ−1(δ) if δ ∈ im(ψ).

Proof. Using Lemma B.1 and the fact that ℓ is non-decreasing,

δ ≥ f(y)− f(x∗) ≥ ∥∇f(y)∥2
∫ 1

0

1− v

ℓ(∥∇f(y)∥+ ∥∇f(y)∥ v)
dv

≥ ∥∇f(y)∥2

2ℓ(4 ∥∇f(y)∥)
= ψ (∥∇f(y)∥) .

It left to invert ψ to get the result.

Lemma B.4. [Not Necessarily Strictly Increasing ψ] Under Assumptions 2.1 and 2.3, let ψ : R+ →
R+ such that ψ(x) = x2

2ℓ(4x) is not necessarily strictly increasing.

1. There exists the largest ∆max ∈ (0,∞] such that ψ is strictly increasing on [0,∆max),

2. For all δ ∈ [0, ψ(∆max)), there exists the unique ∆left(δ) ∈ [0,∆max) and the smallest5

∆right(δ) ∈ [∆max,∞] such that ψ(∆left(δ)) = δ and ψ(∆right(δ)) = δ.

3. For all δ ∈ [0, ψ(∆max)), if ∆right(δ) <∞ and δ > δ̄ ≥ 0, then ∆right(δ̄) > ∆right(δ).

4. If f(y)−f(x∗) ≤ δ for some y ∈ X and δ ∈ [0, ψ (∆max)), then either ∥∇f(y)∥ ≤ ∆left(δ)
or ∥∇f(y)∥ ≥ ∆right(δ).

Proof. 1. Since ℓ is non-decreasing and locally Lipschitz, there exists ∆̄1 > 0 such that

2ℓ(4y)− 2ℓ(4x) ≤M(y − x)

for all 0 ≤ x < y ≤ ∆̄1 and for some M ≡M(∆̄1, ℓ) > 0. Thus,

x22ℓ(4y) ≤ x22ℓ(4x) +Mx2(y − x). (16)

Moreover, there exists ∆̄2 > 0 such that

Mx2 < (y + x)2ℓ(4x)

5if the set {x ∈ [∆max,∞) : ψ(x) = δ} is empty, then ∆right(δ) = ∞

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

for all 0 ≤ x < y ≤ ∆̄2 since 2ℓ(4x) ≥ ℓ(0) > 0, the l.h.s O(x2), and the r.h.s. Ω(x). Combining
with (16),

x22ℓ(4y) < x22ℓ(4x) + 2ℓ(4x)(y + x)(y − x) = y22ℓ(4x)

and

x2

2ℓ(4x)
<

y2

2ℓ(4y)

for all 0 ≤ x < y ≤ min{∆̄1, ∆̄2}, meaning that ψ is locally strictly increasing on the interval
[0,∆max) for some largest ∆max ∈ (0,∞].

2. ∆left(δ) exists since ψ is locally strictly increasing on the interval [0,∆max). On the interval
[∆max,∞), either ψ intersects δ for the first time at ∆right(δ) or we can take ∆right(δ) = ∞.

3. Since ∆right(δ) is the first time when ψ intersects δ for x ∈ [∆max,∞) and δ < ψ(∆max), then
ψ(x) > δ for all x ∈ [∆max,∆right(δ)). Thus, if we decrease δ and take δ̄ < δ, then ∆right(δ̄) can
only increase or stay the same. However, if ∆right(δ̄) stays the same, i.e., ∆right(δ̄) = ∆right(δ), then
∆right(δ̄) is the first time when ψ intersects δ, which is impossible due to the continuity of ψ and the
fact that ∆right(δ̄) is the first time when ψ intersects δ̄ < δ.

4. Using the same reasoning as in the proof of Lemma B.3:

δ ≥ ψ (∥∇f(y)∥) . (17)

Due to the previous properties, either ∥∇f(y)∥ ≤ ∆left(δ) or ∥∇f(y)∥ ≥ ∆right(δ) because ψ (x) >
δ for all x ∈ (∆left(δ),∆right(δ)).

C RATE OF THE AUXILIARY SEQUENCE

Theorem 3.1. For any Γ0 > 0 and γ ≥ 0, let αk ≥
√
γΓk and Γk+1 = Γk/(1 + αk) for all k ≥ 0.

Then, Γk+1 ≤ 9

γ(k+1−k̄)
2 for all k ≥ k̄ := max

{
1 + 1

2 log3/2

(
γΓ0

4

)
, 0
}
.

Proof. By the definition of Γk+1 and αk,

Γk+1 ≤ Γk
1 +

√
γΓk

for all k ≥ 0. Instead of Γk, consider the sequence Γ̄k such that

Γ̄k+1 =
Γ̄k

1 +
√
γΓ̄k

for all k ≥ 0 and Γ̄0 = Γ0. Using mathematical induction, notice that Γ̄k+1 ≥ Γk+1. Indeed, the
function x

1+
√
γx is increasing6 for all x ≥ 0 and

Γk+1 ≤ Γk
1 +

√
γΓk

≤ Γ̄k

1 +
√
γΓ̄k

= Γ̄k+1

if Γk ≤ Γ̄k. If we bound Γ̄k+1, then we can bound Γk+1. Next,

1

Γ̄k+1
− 1

Γ̄k
=

√
γ

Γ̄k

Let us define tk := 1
Γ̄k

for all k ≥ 0, then

tk+1 − tk =
√
γtk. (18)

6( x
1+

√
γx

)′ =
1+

√
γx
2

(1+
√
γx)2

> 0 for all x ≥ 0.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

and

(t
1/2
k+1 + t

1/2
k )(t

1/2
k+1 − t

1/2
k ) =

√
γtk (19)

for all k ≥ 0. We now fix any k ≥ 0. There are two options:
Option 1: t1/2k ≤

√
γ

2 .
In this case, using (18),

tk+1 = tk +
√
γtk ≤ γ

4
+
γ

2
=

3γ

4

and

2
√
γ(t

1/2
k+1 − t

1/2
k ) ≥

√
γtk

due to (19). Rearranging the terms,

t
1/2
k+1 ≥ 3

2
t
1/2
k ≥

(
3

2

)k+1

t
1/2
0 , (20)

where we unroll the recursion since t1/20 ≤ · · · ≤ t
1/2
k ≤

√
γ

2 .

Option 2: t1/2k >
√
γ

2 .
Using (18),

tk+1 = tk +
√
γtk ≤ tk + 2tk ≤ 3tk

and

3t
1/2
k (t

1/2
k+1 − t

1/2
k ) ≥

√
γtk

due to (19), which yields

t
1/2
k+1 ≥ t

1/2
k +

√
γ

3
. (21)

Let k∗ ≥ 0 be the smallest index such that t1/2k∗ >
√
γ

2 . Unrolling (21),

t
1/2
k+1 ≥ t

1/2
k∗ + (k + 1− k∗)

√
γ

3
(22)

for all k ≥ k∗. If k∗ = 0, then

t
1/2
k+1 ≥ (k + 1)

√
γ

3
. (23)

Otherwise, by the definition of k∗,(
3

2

)k∗−1

t
1/2
0

(20)

≤ t
1/2
k∗−1 ≤

√
γ

2
,

which yields

k∗ ≤ 1 +
1

2
log3/2

(
γ

4t0

)
and

t
1/2
k+1 ≥

(
k + 1−

(
1 +

1

2
log3/2

(
γ

4t0

))) √
γ

3
, (24)

due to (22). Combining the cases with k∗ = 0 and k∗ > 0, we get

t
1/2
k+1 ≥

(
k + 1− k̄

) √γ
3

(25)

for all k ≥ k̄ := max
{
1 + 1

2 log3/2

(
γ
4t0

)
, 0
}
. It left to recall that tk = 1/Γ̄k and Γ̄k ≥ Γk for all

k ≥ 0 to obtain the result.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

D MAIN DESCENT LEMMA

Lemma D.1. Suppose that Assumptions 2.1 and 2.3 hold. Consider Algorithm 1 up to the kth iteration
and the following virtual steps:

αk(γ) ≡ αk,γ =
√
γΓk,

yk+1(γ) ≡ yk+1
γ =

1

1 + αk,γ
yk +

αk,γ
1 + αk,γ

uk − γ

1 + αk,γ
∇f(yk),

uk+1(γ) ≡ uk+1
γ = ProjX̄

(
uk − αk,γ

Γk
∇f(yk+1

γ )

)
,

Γk+1(γ) ≡ Γk+1,γ = Γk/(1 + αk,γ),

(26)

where 0 ≤ γ ≤ 1
ℓ(2∥∇f(yk)∥) is a free parameter, yk ∈ X , and uk ∈ X̄ . Then, the steps (26) are

well-defined, yk+1
γ ∈ X , and uk+1

γ ∈ X̄ , and

(1 + αk,γ)(f(y
k+1
γ )− f(x∗)) +

(1 + αk,γ)Γk+1,γ

2

∥∥uk+1
γ − x∗

∥∥2 − ((f(yk)− f(x∗)) +
Γk
2

∥∥uk − x∗
∥∥2)

≤ 1

2

(
γ − 1

ℓ(2 ∥∇f(yk)∥+
∥∥∇f(yk+1

γ )
∥∥)
)∥∥∇f(yk+1

γ )−∇f(yk)
∥∥2 .

Proof. (The following steps up to (27) may be skipped by the reader if X = Rn)
Clearly, uk+1

γ ∈ X̄ due the projection operator. However, we have to check that yk+1
γ ∈ X to make

sure the steps are well-defined. Notice that

yk+1
γ =

1

1 + αk,γ

(
yk − γ∇f(yk)

)
+

αk,γ
1 + αk,γ

uk

Moreover, yk − γ∇f(yk) ∈ X . If ∇f(yk) = 0, then it is trivial. Otherwise,

yk − γ∇f(yk) = yk − γ
∥∥∇f(yk)∥∥ ∇f(yk)

∥∇f(yk)∥
∈ X

due to Lemma B.2 because

γ
∥∥∇f(yk)∥∥ ≤

∥∥∇f(yk)∥∥
ℓ(2 ∥∇f(yk)∥)

≤
∫ ∞

0

dv

ℓ(∥∇f(yk)∥+ v)
.

for all γ ≤ 1
ℓ(2∥∇f(yk)∥) . In total, yk+1

γ ∈ X since X is an open convex set, uk ∈ X̄ , and 1
1+αk,γ

̸= 0

(as it is a convex combination of a point from X and a point from X̄ with a non-zero weight; see
(Rockafellar, 2015)[Theorem 6.1]).

Consider the difference

f(yk+1
γ )− f(x∗) +

Γk+1,γ

2

∥∥uk+1
γ − x∗

∥∥2 − ((f(yk)− f(x∗)) +
Γk
2

∥∥uk − x∗
∥∥2) . (27)

Rearranging the terms, we get

f(yk+1
γ )− f(x∗) +

Γk+1,γ

2

∥∥uk+1
γ − x∗

∥∥2 − ((f(yk)− f(x∗)) +
Γk
2

∥∥uk − x∗
∥∥2)

= −(f(yk)− f(yk+1
γ )−

〈
∇f(yk+1

γ ), yk − yk+1
γ

〉
)

+
〈
∇f(yk+1

γ ), yk+1
γ − yk

〉
+

Γk+1,γ − Γk
2

∥∥uk+1
γ − x∗

∥∥2 + Γk
2

(∥∥uk+1
γ − x∗

∥∥2 − ∥∥uk − x∗
∥∥2) .

Since Γk = (1 + αk,γ)Γk+1,γ ,

f(yk+1
γ )− f(x∗) +

(1 + αk,γ)Γk+1,γ

2

∥∥uk+1
γ − x∗

∥∥2 − ((f(yk)− f(x∗)) +
Γk
2

∥∥uk − x∗
∥∥2)

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

= −(f(yk)− f(yk+1
γ )−

〈
∇f(yk+1

γ ), yk − yk+1
γ

〉
)

+
〈
∇f(yk+1

γ ), yk+1
γ − yk

〉
+

Γk
2

(∥∥uk+1
γ − x∗

∥∥2 − ∥∥uk − x∗
∥∥2) .

Due to ∥a∥2 − ∥a+ b∥2 = −∥b∥2 − 2 ⟨a, b⟩ for all a, b ∈ Rd,

f(yk+1
γ )− f(x∗) +

(1 + αk,γ)Γk+1,γ

2

∥∥uk+1
γ − x∗

∥∥2 − ((f(yk)− f(x∗)) +
Γk
2

∥∥uk − x∗
∥∥2)

= −(f(yk)− f(yk+1
γ )−

〈
∇f(yk+1

γ ), yk − yk+1
γ

〉
)

+
〈
∇f(yk+1

γ ), yk+1
γ − yk

〉
+

Γk
2

(
−
∥∥uk − uk+1

γ

∥∥2 − 2
〈
uk+1
γ − x∗, uk − uk+1

γ

〉)
.

(28)
Consider the last inner product:

−
〈
uk+1
γ − x∗, uk − uk+1

γ

〉
=

〈
uk+1
γ − x∗,

(
uk − αk,γ

Γk
∇f(yk+1

γ )

)
− uk

〉
+

〈
uk+1
γ − x∗, uk+1

γ −
(
uk − αk,γ

Γk
∇f(yk+1

γ )

)〉
.

Using uk+1
γ = ProjX̄

(
uk − αk,γ

Γk
∇f(yk+1

γ )
)

and the projection property

⟨ProjX̄ (y)− x,ProjX̄ (y)− y⟩ ≤ 0 for all y ∈ Rd, x ∈ X̄ , we have

−
〈
uk+1
γ − x∗, uk − uk+1

γ

〉
≤
〈
uk+1
γ − x∗,

(
uk − αk,γ

Γk
∇f(yk+1

γ )

)
− uk

〉
= −

〈
uk+1
γ − x∗,

αk,γ
Γk

∇f(yk+1
γ )

〉
.

Substituting to (28),

f(yk+1
γ )− f(x∗) +

(1 + αk,γ)Γk+1,γ

2

∥∥uk+1
γ − x∗

∥∥2 − ((f(yk)− f(x∗)) +
Γk
2

∥∥uk − x∗
∥∥2)

= −(f(yk)− f(yk+1
γ )−

〈
∇f(yk+1

γ ), yk − yk+1
γ

〉
)

+
〈
∇f(yk+1

γ ), yk+1
γ − yk

〉
+

Γk
2

(
−
∥∥uk − uk+1

γ

∥∥2 − 2

〈
uk+1
γ − x∗,

αk,γ
Γk

∇f(yk+1
γ )

〉)
= −(f(yk)− f(yk+1

γ )−
〈
∇f(yk+1

γ ), yk − yk+1
γ

〉
)

+
〈
∇f(yk+1

γ ), yk+1
γ − yk

〉
− Γk

2

∥∥uk − uk+1
γ

∥∥2
− αk,γ

〈
uk+1
γ − x∗,∇f(yk+1

γ )
〉

= −(f(yk)− f(yk+1
γ )−

〈
∇f(yk+1

γ ), yk − yk+1
γ

〉
)

+
〈
∇f(yk+1

γ ), yk+1
γ − yk − αk,γ(u

k+1
γ − yk+1

γ )
〉

− Γk
2

∥∥uk − uk+1
γ

∥∥2
− αk,γ

〈
yk+1
γ − x∗,∇f(yk+1

γ )
〉
.

In the last two equalities, we rearranged terms. Using the convexity of f, we have −(f(yk+1
γ ) −

f(x∗)) ≥ −
〈
∇f(yk+1

γ ), yk+1
γ − x∗

〉
and

(1 + αk,γ)(f(y
k+1
γ )− f(x∗)) +

(1 + αk,γ)Γk+1,γ

2

∥∥uk+1
γ − x∗

∥∥2 − ((f(yk)− f(x∗)) +
Γk
2

∥∥uk − x∗
∥∥2)

≤ −(f(yk)− f(yk+1
γ )−

〈
∇f(yk+1

γ ), yk − yk+1
γ

〉
)

+
〈
∇f(yk+1

γ ), yk+1
γ − yk − αk,γ(u

k+1
γ − yk+1

γ )
〉

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

− Γk
2

∥∥uk − uk+1
γ

∥∥2
= −(f(yk)− f(yk+1

γ )−
〈
∇f(yk+1

γ ), yk − yk+1
γ

〉
)

+
〈
∇f(yk+1

γ ), (1 + αk,γ)y
k+1
γ − yk − αk,γu

k+1
γ

〉
− Γk

2

∥∥uk − uk+1
γ

∥∥2 .
In the last equality, we rearranged terms. Recall that

(1 + αk,γ)y
k+1
γ − yk = αk,γu

k − γ∇f(yk).
Thus,

(1 + αk,γ)(f(y
k+1
γ )− f(x∗)) +

(1 + αk,γ)Γk+1,γ

2

∥∥uk+1
γ − x∗

∥∥2 − ((f(yk)− f(x∗)) +
Γk
2

∥∥uk − x∗
∥∥2)

≤ −(f(yk)− f(yk+1
γ )−

〈
∇f(yk+1

γ ), yk − yk+1
γ

〉
)

+ αk,γ
〈
∇f(yk+1

γ ), uk − uk+1
γ

〉
− γ

〈
∇f(yk+1

γ ),∇f(yk)
〉

− Γk
2

∥∥uk − uk+1
γ

∥∥2
= −(f(yk)− f(yk+1

γ )−
〈
∇f(yk+1

γ ), yk − yk+1
γ

〉
)

+ αk,γ
〈
∇f(yk+1

γ ), uk − uk+1
γ

〉
− γ

2

∥∥∇f(yk+1
γ )

∥∥2 − γ

2

∥∥∇f(yk)∥∥2 + γ

2

∥∥∇f(yk+1
γ )−∇f(yk)

∥∥2
− Γk

2

∥∥uk − uk+1
γ

∥∥2 ,
where we use −⟨a, b⟩ = 1

2 ∥a− b∥2 − 1
2 ∥a∥

2 − 1
2 ∥b∥

2 for all a, b ∈ Rd. Using Young’s inequality,

(1 + αk,γ)(f(y
k+1
γ )− f(x∗)) +

(1 + αk,γ)Γk+1,γ

2

∥∥uk+1
γ − x∗

∥∥2 − ((f(yk)− f(x∗)) +
Γk
2

∥∥uk − x∗
∥∥2)

≤ −(f(yk)− f(yk+1
γ )−

〈
∇f(yk+1

γ ), yk − yk+1
γ

〉
)

+
γ

2

∥∥∇f(yk+1
γ )

∥∥2 + α2
k,γ

2γ

∥∥uk − uk+1
γ

∥∥2
− γ

2

∥∥∇f(yk+1
γ )

∥∥2 − γ

2

∥∥∇f(yk)∥∥2 + γ

2

∥∥∇f(yk+1
γ )−∇f(yk)

∥∥2
− Γk

2

∥∥uk − uk+1
γ

∥∥2
= −(f(yk)− f(yk+1

γ )−
〈
∇f(yk+1

γ ), yk − yk+1
γ

〉
)

+
α2
k,γ

2γ

∥∥uk − uk+1
γ

∥∥2 − Γk
2

∥∥uk − uk+1
γ

∥∥2
− γ

2

∥∥∇f(yk)∥∥2 + γ

2

∥∥∇f(yk+1
γ )−∇f(yk)

∥∥2 ,
where the terms γ

2

∥∥∇f(yk+1
γ )

∥∥2 are cancelled out. Since αk,γ =
√
γΓk, the terms with∥∥uk − uk+1

γ

∥∥ are also cancelled out and

(1 + αk,γ)(f(y
k+1
γ )− f(x∗)) +

(1 + αk,γ)Γk+1,γ

2

∥∥uk+1
γ − x∗

∥∥2 − ((f(yk)− f(x∗)) +
Γk
2

∥∥uk − x∗
∥∥2)

≤ −(f(yk)− f(yk+1
γ )−

〈
∇f(yk+1

γ ), yk − yk+1
γ

〉
)

− γ

2

∥∥∇f(yk)∥∥2 + γ

2

∥∥∇f(yk+1
γ )−∇f(yk)

∥∥2
≤ −(f(yk)− f(yk+1

γ )−
〈
∇f(yk+1

γ ), yk − yk+1
γ

〉
) +

γ

2

∥∥∇f(yk+1
γ )−∇f(yk)

∥∥2 , (29)

where the last inequality due to γ
2

∥∥∇f(yk)∥∥2 ≥ 0. Using Lemma B.1, we get

f(yk)− f(yk+1
γ )−

〈
∇f(yk+1

γ ), yk − yk+1
γ

〉
20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

≥
∥∥∇f(yk)−∇f(yk+1

γ )
∥∥2 ∫ 1

0

1− v

ℓ(∥∇f(yk)∥+
∥∥∇f(yk)−∇f(yk+1

γ )
∥∥ v)dv

≥
∥∥∇f(yk)−∇f(yk+1

γ )
∥∥2 1

2ℓ(∥∇f(yk)∥+
∥∥∇f(yk)−∇f(yk+1

γ )
∥∥) ,

where we use that ℓ is non-decreasing and bounded the term in the denominator by the maximum
possible value with v = 1. Using triangle’s inequality,

f(yk)− f(yk+1
γ )−

〈
∇f(yk+1

γ ), yk − yk+1
γ

〉
≥
∥∥∇f(yk)−∇f(yk+1

γ )
∥∥2 1

2ℓ(2 ∥∇f(yk)∥+
∥∥∇f(yk+1

γ )
∥∥) ,

Substituting to (29),

(1 + αk,γ)(f(y
k+1
γ )− f(x∗)) +

(1 + αk,γ)Γk+1,γ

2

∥∥uk+1
γ − x∗

∥∥2 − ((f(yk)− f(x∗)) +
Γk
2

∥∥uk − x∗
∥∥2)

≤ 1

2

(
γ − 1

ℓ(2 ∥∇f(yk)∥+
∥∥∇f(yk+1

γ )
∥∥)
)∥∥∇f(yk+1

γ )−∇f(yk)
∥∥2 .

E CONVERGENCE THEOREMS

E.1 SUBQUADRATIC AND QUADRATIC GROWTH OF ℓ

Lemma E.1. Under Assumptions 2.1 and 2.3, let ψ : R+ → R+ such that ψ(x) = x2

2ℓ(4x) is strictly

increasing, f(y)−f(x∗) ≤ δ for some y ∈ X , and any δ ∈ (0,∞] such that ℓ
(
8
√
δℓ (0)

)
≤ 2ℓ (0),

then ℓ (4 ∥∇f(y)∥) ≤ 2ℓ(0).

Proof. With this choice of δ, we get

ℓ (4 ∥∇f(y)∥) ≤ 2ℓ (0)

because, due to f(y)− f(x∗) ≤ δ and Lemma B.3,

ℓ
(
4
∥∥∇f(y0)∥∥) ≤ ℓ

(
4ψ−1(δ)

)
and

ℓ
(
4ψ−1(δ)

)
≤ 2ℓ (0) ⇔

(
ψ−1(δ)

)2
4ℓ (0)

≤
(
ψ−1(δ)

)2
2ℓ (4ψ−1(δ))

ψ(ψ−1(δ))=δ⇔
(
ψ−1(δ)

)2
4ℓ (0)

≤ δ ⇔ ψ−1(δ) ≤ 2
√
δℓ (0)

⇔ δ ≤ ψ
(
2
√
δℓ (0)

)
⇔ δ ≤ 2δℓ (0)

ℓ
(
8
√
δℓ (0)

) ⇔ ℓ
(
8
√
δℓ (0)

)
≤ 2ℓ (0) .

(30)

Theorem 3.2. Suppose that Assumptions 2.1 and 2.3 hold. Let ψ : R+ → R+ such that ψ(x) =
x2

2ℓ(4x) be strictly increasing. Then Algorithm 1 guarantees that

f(yk+1)− f(x∗) ≤ Γk+1R̄
2 ≤ 18ℓ (0) R̄2(

k + 1− k̄
)2 (4)

for all k ≥ k̄ := max
{
1 + 1

2 log3/2

(
Γ0

8ℓ(0)

)
, 0
}

with any δ ∈ (0,∞] such that ℓ
(
8
√
δℓ (0)

)
≤

2ℓ (0) and any R̄ ≥ R :=
∥∥x0 − x∗

∥∥ .
21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Proof. In our proof, we define the Lyapunov function Vk := f(yk) − f(x∗) + Γk

2

∥∥uk − x∗
∥∥2 .

After running GD, we get ℓ
(
4
∥∥∇f(y0)∥∥) ≤ 2ℓ(0) due to Lemma E.1 and the choice of δ. Trivially,

V0 ≤ V0. Due to f(y0) − f(x∗) ≤ δ
2 in Alg. 1 and

∥∥y0 − x∗
∥∥ ≤

∥∥x0 − x∗
∥∥ (GD is monotonic;

(Tyurin, 2025)[Lemma I.2]),

V0 = f(y0)− f(x∗) +
Γ0

2

∥∥y0 − x∗
∥∥2 ≤ δ

2
+

Γ0

2

∥∥y0 − x∗
∥∥2

≤ δ

2
+

Γ0

2

∥∥x0 − x∗
∥∥2 ≤ δ

(31)

since Γ0 = δ
R̄2 and R̄ ≥

∥∥x0 − x∗
∥∥ . Using mathematical induction, we assume that

ℓ
(
4
∥∥∇f(yk)∥∥) ≤ 2ℓ(0) and Vk ≤

(∏k−1
i=0

1
1+αi

)
V0 for some k ≥ 0.

Consider Lemma D.1 and the steps (26). Then,

(1 + αk,γ)(f(y
k+1
γ )− f(x∗)) +

(1 + αk,γ)Γk+1,γ

2

∥∥uk+1
γ − x∗

∥∥2 − ((f(yk)− f(x∗)) +
Γk
2

∥∥uk − x∗
∥∥2)

≤ 1

2

(
γ − 1

ℓ(2 ∥∇f(yk)∥+
∥∥∇f(yk+1

γ )
∥∥)
)∥∥∇f(yk+1

γ )−∇f(yk)
∥∥2 ,

where 0 ≤ γ ≤ 1
ℓ(2∥∇f(yk)∥) is a free parameter. Let us take the smallest γ such that

g(γ) := γ − 1

ℓ(2 ∥∇f(yk)∥+
∥∥∇f(yk+1

γ )
∥∥) = 0

and denote is as γ∗. Such a choice exists because g(γ) is continuous for all γ ≥ 0 as a composition of
continuous functions (yk+1

γ is a continuous function of γ), g(0) = − 1

ℓ(2∥∇f(yk)∥+∥∇f(yk+1
0 )∥) < 0,

and

g(γ̄) = γ̄ − 1

ℓ(2 ∥∇f(yk)∥+
∥∥∇f(yk+1

γ̄ )
∥∥) ≥ γ̄ − 1

ℓ(2 ∥∇f(yk)∥)
= 0

for γ̄ = 1
ℓ(2∥∇f(yk)∥) . Note that γ∗ ≤ 1

ℓ(2∥∇f(yk)∥) . For all γ ≤ γ∗, g(γ) ≤ 0 and

(1 + αk,γ)(f(y
k+1
γ )− f(x∗)) +

(1 + αk,γ)Γk+1,γ

2

∥∥uk+1
γ − x∗

∥∥2
≤ (f(yk)− f(x∗)) +

Γk
2

∥∥uk − x∗
∥∥2 =: Vk,

(32)

which ensures that

f(yk+1
γ )− f(x∗) ≤ Vk.

Recall that Vk ≤ V0
(31)

≤ δ. It means that

f(yk+1
γ )− f(x∗) ≤ δ

and

ℓ
(
4
∥∥∇f(yk+1

γ )
∥∥) ≤ 2ℓ(0)

for all γ ≤ γ∗ due to Lemma E.1. Therefore, by the definition of γ∗ and using ℓ
(
4
∥∥∇f(yk)∥∥) ≤

2ℓ(0),

γ∗ =
1

ℓ(2 ∥∇f(yk)∥+
∥∥∇f(yk+1

γ∗ )
∥∥) ≥ 1

max{ℓ(4 ∥∇f(yk)∥), ℓ(4
∥∥∇f(yk+1

γ∗ )
∥∥)} ≥ 1

2ℓ(0)
,

meaning that we can take γ = 1
2ℓ(0) and (32) holds:

(1 + αk,γ)(f(y
k+1
γ )− f(x∗)) +

(1 + αk,γ)Γk+1,γ

2

∥∥uk+1
γ − x∗

∥∥2 ≤ Vk.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Notice that αk,γ = αk, y
k+1
γ = yk+1, Γk+1,γ = Γk+1, and uk+1

γ = uk+1 with γ = 1
2ℓ(0) . Therefore,

(1 + αk,γ)(f(y
k+1
γ )− f(x∗)) +

(1+αk,γ)Γk+1,γ

2

∥∥uk+1
γ − x∗

∥∥2 = (1 + αk)Vk+1,

ℓ
(
4
∥∥∇f(yk+1)

∥∥) ≤ 2ℓ(0),

and

Vk+1 ≤ 1

1 + αk
Vk ≤

(
k∏
i=0

1

1 + αi

)
V0,

We have proved the next step of the induction. Finally, for all k ≥ 0,

f(yk+1)− f(x∗) ≤ Vk+1 ≤

(
k∏
i=0

1

1 + αi

)(
f(y0)− f(x∗) +

Γ0

2

∥∥y0 − x∗
∥∥2)

= Γ0

(
k∏
i=0

1

1 + αi

)(
1

Γ0
(f(y0)− f(x∗)) +

1

2

∥∥y0 − x∗
∥∥2) .

Since f(y0)− f(x∗) ≤ δ
2 ,
∥∥y0 − x∗

∥∥2 ≤
∥∥x0 − x∗

∥∥2 ≤ R̄2, and Γk+1 = Γ0

(∏k
i=0

1
1+αi

)
,

f(yk+1)− f(x∗) ≤ Γk+1

(
δ

2Γ0
+

1

2
R̄2

)
= Γk+1R̄

2

because Γ0 = δ
R̄2 . It is left to use Theorem 3.1.

Theorem 3.3. Consider the assumptions and results of Theorem 3.2. The oracle complexity (i.e., the
number of gradient calls) required to find an ε–solution is

5
√
ℓ(0)R̄√
ε

+ k(δ), (5)

for all δ ≥ 0 such that ℓ
(
8
√
δℓ (0)

)
≤ 2ℓ (0) , where k(δ) := max

{
1 + 1

2 log3/2

(
δ

8ℓ(0)R̄2

)
, 0
}
+

kGD(δ), kGD(δ) is the oracle complexity of GD for finding a point x̄ such that f(x̄)− f(x∗) ≤ δ/2.

Proof. At the beginning, we run GD, which takes kGD(δ) iterations (i.e., gradient evaluations). Next,
using Theorem 3.1 and the choice of γ = 1

2ℓ(0) ,

Γk+1 ≤ 18ℓ (0)(
k + 1− k̄

)2
for all k ≥ k̄ := max

{
1 + 1

2 log3/2

(
Γ0

8ℓ(0)

)
, 0
}
. Taking

k ≥
5
√
ℓ (0)R̄√
ε

+ k̄,

we get f(yk+1)− f(x∗) ≤ ε due to Theorem 3.2.

E.2 STABILITY WITH RESPECT TO INPUT PARAMETERS AND IMPROVED RATES

Theorem 4.1. Suppose that Assumptions 2.1 and 2.3 hold. Let ψ : R+ → R+ such that ψ(x) =
x2

2ℓ(4x) be strictly increasing and lim
x→∞

ψ(x) = ∞. Then Algorithm 2 guarantees that

f(yk+1)− f(x∗) ≤ Γk+1R
2

for all k ≥ 0 with Γ0 ≥ 2(f(x0)−f(x∗))

∥x0−x∗∥2 and R̄ ≥ R.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Proof. In our proof, we define the Lyapunov function Vk := f(yk) − f(x∗) + Γk

2

∥∥uk − x∗
∥∥2 .

Trivially, V0 ≤ V0 and

V0 = f(y0)− f(x∗) +
Γ0

2

∥∥y0 − x∗
∥∥2 ≤ Γ0R

2 ≤ Γ0R̄
2 (33)

when Γ0 ≥ 2(f(x0)−f(x∗))

∥x0−x∗∥2 = 2(f(y0)−f(x∗))

∥y0−x∗∥2 and R̄ ≥ R. Moreover,

f(y0)− f(x∗) ≤ Γ0R̄
2.

Due to Lemma B.3, ∥∥∇f(y0)∥∥ ≤ ψ−1(Γ0R̄
2).

Using mathematical induction, we assume that
∥∥∇f(yk)∥∥ ≤ ψ−1(ΓkR̄

2) and Vk ≤(∏k−1
i=0

1
1+αi

)
V0 for some k ≥ 0.

Consider Lemma D.1 and the steps (26). Then,

(1 + αk,γ)(f(y
k+1
γ )− f(x∗)) +

(1 + αk,γ)Γk+1,γ

2

∥∥uk+1
γ − x∗

∥∥2 − ((f(yk)− f(x∗)) +
Γk
2

∥∥uk − x∗
∥∥2)

≤ 1

2

(
γ − 1

ℓ(2 ∥∇f(yk)∥+
∥∥∇f(yk+1

γ )
∥∥)
)∥∥∇f(yk+1

γ )−∇f(yk)
∥∥2 ,

where 0 ≤ γ ≤ 1
ℓ(2∥∇f(yk)∥) is a free parameter. Let us take the smallest γ such that

g(γ) := γ − 1

ℓ(2 ∥∇f(yk)∥+
∥∥∇f(yk+1

γ )
∥∥) = 0

and denote is as γ∗ (exists similarly to the proof of Theorem 3.2 and γ∗ ≤ 1
ℓ(2∥∇f(yk)∥) ). For all

γ ≤ γ∗, g(γ) ≤ 0 and

(1 + αk,γ)(f(y
k+1
γ )− f(x∗)) +

(1 + αk,γ)Γk+1,γ

2

∥∥uk+1
γ − x∗

∥∥2
≤ (f(yk)− f(x∗)) +

Γk
2

∥∥uk − x∗
∥∥2 =: Vk.

(34)

Recall that

Vk ≤

(
k−1∏
i=0

1

1 + αi

)
V0 =

Γk
Γ0
V0

(33)

≤ ΓkR̄
2.

Therefore,

f(yk+1
γ )− f(x∗)

(34)

≤ ΓkR̄
2

1 + αk,γ

and ∥∥∇f(yk+1
γ )

∥∥ ≤ ψ−1

(
ΓkR̄

2

1 + αk,γ

)
≤ ψ−1

(
ΓkR̄

2
)

(35)

for all γ ≤ γ∗ due to Lemma B.3. Therefore, by the definition of γ∗ and using
∥∥∇f(yk)∥∥ ≤

ψ−1(ΓkR̄
2),

γ∗ =
1

ℓ(2 ∥∇f(yk)∥+
∥∥∇f(yk+1

γ∗ )
∥∥) ≥ 1

max{ℓ(4 ∥∇f(yk)∥), ℓ(4
∥∥∇f(yk+1

γ∗ )
∥∥)} ≥ 1

ℓ
(
4ψ−1

(
ΓkR̄2

)) ,
meaning that we can take γk = 1

ℓ(4ψ−1(ΓkR̄2))
and (32) holds:

(1 + αk,γ)(f(y
k+1
γ )− f(x∗)) +

(1 + αk,γ)Γk+1,γ

2

∥∥uk+1
γ − x∗

∥∥2 ≤ Vk.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Notice that αk,γ = αk, y
k+1
γ = yk+1, Γk+1,γ = Γk+1, and uk+1

γ = uk+1 with γ = 1

ℓ(4ψ−1(ΓkR̄2))
.

Therefore, (1 + αk,γ)(f(y
k+1
γ )− f(x∗)) +

(1+αk,γ)Γk+1,γ

2

∥∥uk+1
γ − x∗

∥∥2 = (1 + αk)Vk+1,∥∥∇f(yk+1)
∥∥ (35)

≤ ψ−1

(
ΓkR̄

2

1 + αk

)
= ψ−1

(
Γk+1R̄

2
)

and

Vk+1 ≤ 1

1 + αk
Vk ≤

(
k∏
i=0

1

1 + αi

)
V0,

We have proved the next step of the induction. Finally, for all k ≥ 0,

f(yk+1)− f(x∗) ≤ Vk+1 ≤ Γk+1

(
1

Γ0
(f(y0)− f(x∗)) +

1

2

∥∥y0 − x∗
∥∥2) ≤ Γk+1

∥∥x0 − x∗
∥∥2

because Γ0 ≥ 2(f(y0)−f(x∗))

∥y0−x∗∥2 , Γk+1 = Γ0

(∏k
i=0

1
1+αi

)
, and y0 = x0.

Theorem 4.2. Consider the assumptions and results of Theorem 4.1. The oracle complexity (i.e., the
number of gradient calls) required to find an ε–solution is

5
√
ℓ(0)R√
ε

+max

{
2 + log3/2

(
Γ0

4ℓ(0)

)
, 0

}
+ kinit︸ ︷︷ ︸

does not depend on ε

(11)

with Γ0 ≥ 2(f(x0)−f(x∗))

∥x0−x∗∥2 , R̄ ≥ R, and kinit being the smallest integer such that

ℓ

(
24

√
ℓ(4ψ−1(Γ0R̄2))ℓ(0)R̄2

k2init

)
≤ 2ℓ (0) .

Proof. Since γk = 1/ℓ
(
4ψ−1

(
ΓkR̄

2
))

≥ γ0 := 1/ℓ
(
4ψ−1

(
Γ0R̄

2
))

for all k ≥ 0 in Algorithm 2,
and by Theorem 3.1, we conclude that

Γk ≤
9ℓ
(
4ψ−1

(
Γ0R̄

2
))(

k − k̄1
)2 (36)

for all k > k̄1 := max

{
1 + 1

2 log3/2

(
Γ0

4ℓ(4ψ−1(Γ0R̄2))

)
, 0

}
. As in the proof of Lemma E.1 (take

δ = ΓkR̄
2 in (30)):

ℓ
(
4ψ−1

(
ΓkR̄

2
))

≤ 2ℓ(0) ⇔ ℓ

(
8
√
ΓkR̄2ℓ (0)

)
≤ 2ℓ (0) . (37)

Let kinit be the smallest integer such that

ℓ

24

√
ℓ
(
4ψ−1

(
Γ0R̄2

))
ℓ (0) R̄2

k2init

 ≤ 2ℓ (0) .

Note that kinit <∞, because ℓ is non-decreasing and continuous. Thus,

ℓ

(
8
√

ΓkR̄2ℓ (0)

)
≤ 2ℓ (0)

for all k ≥ kinit + k̄1 due to (36), and γk ≥ 1
2ℓ(0) for all k ≥ kinit + k̄1 due to (37). We now repeat

the previous arguments once again. Using Theorem 3.1 with Γ0 ≡ Γkinit+k̄1 , we conclude that

Γk+1+kinit+k̄1 ≤ 19ℓ(0)(
k + 1− k̄

)2
25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

for all k ≥ k̄ := max
{
1 + 1

2 log3/2

(
Γkinit+k̄1

8ℓ(0)

)
, 0
}
. It left to choose k ≥ k̄ such that

19ℓ(0)R2(
k + 1− k̄

)2 ≤ ε

and use Theorem 4.1 to get the total oracle complexity

5
√
ℓ(0)R√
ε

+max

{
1 +

1

2
log3/2

(
Γkinit+k̄1

8ℓ(0)

)
, 0

}
+ kinit +max

{
1 +

1

2
log3/2

(
Γ0

4ℓ
(
4ψ−1

(
Γ0R̄2

))) , 0}

≤
5
√
ℓ(0)R√
ε

+ kinit +max

{
2 + log3/2

(
Γ0

4ℓ(0)

)
, 0

}
because Γk ≤ Γ0 for all k ≥ 0 and ℓ is non-decreasing.

E.2.1 SPECIALIZATION FOR (L0, L1)–SMOOTHNESS

Theorem 4.3. Consider the assumptions and results of Theorem 4.1 with ℓ(s) = L0 + L1s. The
oracle complexity (i.e., the number of gradient calls) required to find an ε–solution is

O
(√

L0R√
ε

+max

{
L1R̄ log

(
min

{
L2
1R̄

2Γ0

L0
,
Γ0R

2

ε

})
, 0

}
+max

{
log

(
Γ0

L0

)
, 0

})
(13)

with Γ0 ≥ 2(f(x0)−f(x∗))

∥x0−x∗∥2 and R̄ ≥ R.

Proof. Since ψ(x) = x2

2L0+8L1x
, we get

ψ−1(t) = 4L1t+
√
16L2

1t
2 + 2L0t ≤ 8L1t+

√
2L0t

for all t ≥ 0, and

γk =
1

ℓ
(
4ψ−1

(
ΓkR̄2

)) ≥ 1

L0 + 4L1(8L1ΓkR̄2 +
√
2L0ΓkR̄2)

=
1

L0 + 32L2
1ΓkR̄

2 + 4L1

√
2L0ΓkR̄2

AM-GM
≥ 1

2L0 + 48L2
1R̄

2Γk
.

Let 0 ≤ k∗ <∞ be the smallest k such that L2
1R̄

2Γk < L0. For all k < k∗, we get L2
1R̄

2Γk ≥ L0,
γk ≥ 1

50L2
1R̄

2Γk
, and αk ≥ 1

8L1R̄
since Γk is decreasing. Then,

Γk+1 ≤ Γk

1 + 1
8L1R̄

.

for all k < k∗. We can unroll the recursion to get

Γk+1 ≤

(
1

1 + 1
8L1R̄

)k+1

Γ0 ≤ exp

(
− k + 1

8L1R̄+ 1

)
Γ0. (38)

for all k < k∗. For all k ≥ k∗, L2
1R̄

2Γk < L0, γk ≥ 1
50L0

, and can we use Theorem 3.1 starting
form the index k∗ :

Γk+k∗ ≤ 450L0(
k − k̄

)2
for all k > k̄, where

k̄ := max

{
1 +

1

2
log3/2

(
Γk∗

200L0

)
, 0

}
≤ max

{
1 +

1

2
log3/2

(
Γ0

200L0

)
, 0

}
, (39)

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

where the first inequality due to Γk∗ ≤ Γ0. If k∗ = 0, then

Γk ≤ 450L0(
k − k̄

)2
for all k > k̄. If k∗ > 0, then

L0

L2
1R̄

2
≤ Γk∗−1

(38)

≤ exp

(
− k∗ − 1

8L1R̄+ 1

)
Γ0

and

k∗ ≤ 1 +
(
8L1R̄+ 1

)
log

(
L2
1R̄

2Γ0

L0

)
.

In total,

k∗ ≤ max

{
1 +

(
8L1R̄+ 1

)
log

(
L2
1R̄

2Γ0

L0

)
, 0

}
. (40)

There are two main regimes of Γk. The first regime is

Γk ≤ 450L0(
k − (k̄ + k∗)

)2 (41)

for all k > k̄ + k∗, and for all

k ≥ max

{
1 +

(
8L1R̄+ 1

)
log

(
L2
1R̄

2Γ0

L0

)
, 0

}
+max

{
2 + 3 log

(
Γ0

200L0

)
, 0

}
,

due to (39) and (40). The second regime is

Γk ≤ exp

(
− k

8L1R̄+ 1

)
Γ0 (42)

for all k ≤ k∗ due to (38).

Using Theorem 4.1,

f(yk+1)− f(x∗) ≤ Γk+1R
2.

If L
2
1R̄

2Γ0

L0
≤ Γ0R

2

ε , then f(yk+1)− f(x∗) ≤ ε after

O
(√

L0R√
ε

+max

{(
L1R̄+ 1

)
log

(
L2
1R̄

2Γ0

L0

)
, 0

}
+max

{
log

(
Γ0

L0

)
, 0

})
iterations due to (41). If L2

1R̄
2Γ0

L0
> Γ0R

2

ε and k∗ > (8L1R̄ + 1) log
(
(Γ0R

2)/ε
)
, then f(yk+1) −

f(x∗) ≤ ε after

O
(
(L1R̄+ 1) log

(
Γ0R

2

ε

))
iterations due to (42). If L2

1R̄
2Γ0

L0
> Γ0R

2

ε and k∗ ≤ (8L1R̄ + 1) log
(
(Γ0R

2)/ε
)
, then f(yk+1) −

f(x∗) ≤ ε after

O
(√

L0R√
ε

+ (L1R̄+ 1) log

(
Γ0R

2

ε

)
+max

{
log

(
Γ0

L0

)
, 0

})
iterations due to (41). It left to combine all cases.

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

E.3 SUPERQUADRATIC GROWTH OF ℓ

Theorem 5.1. Suppose that Assumptions 2.1 and 2.3 hold. Let ψ : R+ → R+ such that
ψ(x) = x2

2ℓ(4x) be not necessarily strictly increasing. Find the largest ∆max ∈ (0,∞] such that ψ
is strictly increasing on [0,∆max). For all δ ∈ [0, ψ(∆max)), find the unique ∆left(δ) ∈ [0,∆max)
and the smallest7 ∆right(δ) ∈ [∆max,∞] such that ψ(∆left(δ)) = δ and ψ(∆right(δ)) = δ.
Take any δ ∈ [0, 12ψ(∆max)] such that ℓ(4∆left(δ)) ≤ 2ℓ(0) and ∆right(δ) ≥ 2MR̄, where8

MR̄ := max
∥x−x∗∥≤2R̄

∥∇f(x)∥ . Then Algorithm 1 guarantees that

f(yk+1)− f(x∗) ≤ Γk+1R̄
2 ≤ 18ℓ (0) R̄2(

k + 1− k̄
)2

for all k ≥ k̄ := max
{
1 + 1

2 log3/2

(
Γ0

8ℓ(0)

)
, 0
}

with any R̄ ≥
∥∥x0 − x∗

∥∥ .
Proof. In our proof, we define the Lyapunov function Vk := f(yk)− f(x∗) + Γk

2

∥∥uk − x∗
∥∥2 .

(Base case:) Clearly,
∥∥u0 − x∗

∥∥ =
∥∥y0 − x∗

∥∥ ≤
∥∥x0 − x∗

∥∥ ≤ 2R̄ due the the monotonicity of GD
(Tyurin, 2025)[Lemma I.2] and R̄ ≥ R. Thus,∥∥∇f(y0)∥∥ ≤ max

∥x−x∗∥≤2R̄
∥∇f(x)∥ ≤MR̄.

Using Lemma B.4, either
∥∥∇f(y0)∥∥ ≤ ∆left(δ) or

∥∥∇f(y0)∥∥ ≥ ∆right(δ). However, the latter is not
possible because ∆right(δ) > MR̄ and

∥∥∇f(y0)∥∥ ≤ MR̄. Thus, ℓ
(
4
∥∥∇f(y0)∥∥) ≤ ℓ(4∆left(δ)) ≤

2ℓ(0), where the last inequality due to the conditions of the theorem.

Trivially, V0 ≤ V0 and

V0 = f(y0)− f(x∗) +
Γ0

2

∥∥y0 − x∗
∥∥2 ≤ δ

2
+

Γ0

2

∥∥y0 − x∗
∥∥2

≤ δ

2
+

Γ0

2

∥∥x0 − x∗
∥∥2 ≤ δ

(43)

since Γ0 = δ
R̄2 and R̄ ≥

∥∥x0 − x∗
∥∥ . Using mathematical induction, we assume that

ℓ
(
4
∥∥∇f(yk)∥∥) ≤ 2ℓ(0),

Vk ≤

(
k−1∏
i=0

1

1 + αi

)
V0, (44)

∥∥uk − x∗
∥∥ ≤ 2R̄, and

∥∥yk − x∗
∥∥ ≤ 2R̄ for some k ≥ 0 (the base case has been proved in the

previous steps).

Consider Lemma D.1 and the steps (26). Then,

(1 + αk,γ)(f(y
k+1
γ )− f(x∗)) +

(1 + αk,γ)Γk+1,γ

2

∥∥uk+1
γ − x∗

∥∥2 − ((f(yk)− f(x∗)) +
Γk
2

∥∥uk − x∗
∥∥2)

≤ 1

2

(
γ − 1

ℓ(2 ∥∇f(yk)∥+
∥∥∇f(yk+1

γ )
∥∥)
)∥∥∇f(yk+1

γ )−∇f(yk)
∥∥2 ,

where 0 ≤ γ ≤ 1
ℓ(2∥∇f(yk)∥) is a free parameter. Let us take the smallest γ such that

g(γ) := γ − 1

ℓ(2 ∥∇f(yk)∥+
∥∥∇f(yk+1

γ )
∥∥) = 0

7if the set {x ∈ [∆max,∞) : ψ(x) = δ} is empty, then ∆right(δ) = ∞
8or is it sufficient to find any MR̄ such that MR̄ ≥ max

∥x−x∗∥≤2R̄
∥∇f(x)∥ .

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

and denote is as γ∗ (exists similarly to the proof of Theorem 3.2 and γ∗ ≤ 1
ℓ(2∥∇f(yk)∥) ). For all

γ ≤ γ∗, g(γ) ≤ 0 and

(1 + αk,γ)(f(y
k+1
γ )− f(x∗)) +

(1 + αk,γ)Γk+1,γ

2

∥∥uk+1
γ − x∗

∥∥2
≤ (f(yk)− f(x∗)) +

Γk
2

∥∥uk − x∗
∥∥2 =: Vk,

(45)

which ensures that

f(yk+1
γ )− f(x∗) ≤ Vk

(44)

≤ V0
(43)

≤ δ. (46)

Moreover, due to (45) and (26), we have

Γk
2

∥∥uk+1
γ − x∗

∥∥2 =
(1 + αk,γ)Γk+1,γ

2

∥∥uk+1
γ − x∗

∥∥2 ≤ Vk

(44)

≤

(
k−1∏
i=0

1

1 + αi

)
V0 =

Γk
Γ0

(
(f(y0)− f(x∗)) +

Γ0

2

∥∥u0 − x∗
∥∥2)

Alg. 1
≤ Γk

(
δ

2Γ0
+

1

2

∥∥u0 − x∗
∥∥2) ≤ ΓkR̄

2,

where the last inequality due to Γ0 = δ
R̄2 and

∥∥u0 − x∗
∥∥2 ≤ R̄2. Thus,∥∥uk+1

γ − x∗
∥∥2 ≤ 2R̄ (47)

for all γ ≤ γ∗. Now, consider yk+1
γ from (26):∥∥yk+1

γ − x∗
∥∥

=

∥∥∥∥ 1

1 + αk,γ
yk +

αk,γ
1 + αk,γ

uk − γ

1 + αk,γ
∇f(yk)− x∗

∥∥∥∥
=

∥∥∥∥ 1

1 + αk,γ

((
yk − γ∇f(yk)

)
− x∗

)
+

αk,γ
1 + αk,γ

(uk − x∗)

∥∥∥∥
≤ 1

1 + αk,γ

∥∥(yk − γ∇f(yk)
)
− x∗

∥∥+ αk,γ
1 + αk,γ

∥∥uk − x∗
∥∥ ,

(48)

where we use Triangle’s inequality. Notice that

γ ≤ 1

ℓ(2 ∥∇f(yk)∥)
(49)

for all γ ≤ γ∗ because γ∗ ≤ 1
ℓ(2∥∇f(yk)∥) . Thus,∥∥(yk − γ∇f(yk)

)
− x∗

∥∥2 =
∥∥yk − x∗

∥∥2 − 2γ
〈
yk − x∗,∇f(yk)

〉
+ γ2

∥∥∇f(yk)∥∥2
L. B.1
≤
∥∥yk − x∗

∥∥2 + 2γ

(
f(x∗)− f(yk)−

∥∥∇f(yk)∥∥2 ∫ 1

0

1− v

ℓ(∥∇f(yk)∥ v)
dv

)
+ γ2

∥∥∇f(yk)∥∥2
≤
∥∥yk − x∗

∥∥2 + γ
∥∥∇f(yk)∥∥2(γ − 2

∫ 1

0

1− v

ℓ(∥∇f(yk)∥ v)
dv

)
.

In the last inequality, we use f(x∗)− f(yk) ≤ 0. Next,∥∥(yk − γ∇f(yk)
)
− x∗

∥∥2 (49)

≤
∥∥yk − x∗

∥∥2 + γ
∥∥∇f(yk)∥∥2( 1

ℓ(2 ∥∇f(yk)∥)
− 2

∫ 1

0

1− v

ℓ(∥∇f(yk)∥ v)
dv

)
≤
∥∥yk − x∗

∥∥2 + γ
∥∥∇f(yk)∥∥2( 1

ℓ(2 ∥∇f(yk)∥)
− 1

ℓ(∥∇f(yk)∥)

)
≤
∥∥yk − x∗

∥∥2
29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

because ℓ is non-decreasing. Thus, by the induction assumption,
∥∥(yk − γ∇f(yk)

)
− x∗

∥∥ ≤∥∥yk − x∗
∥∥ ≤ 2R̄,

∥∥uk − x∗
∥∥ ≤ 2R̄, and∥∥yk+1

γ − x∗
∥∥ ≤ 2R̄ (50)

for all γ ≤ γ∗, due to (48).

Thus, ∥∥∇f(yk+1
γ )

∥∥ ≤ max
∥x−x∗∥≤2R̄

∥∇f(x)∥ ≤MR̄.

Using (46) and Lemma B.4, either
∥∥∇f(yk+1

γ )
∥∥ ≤ ∆left(δ) or

∥∥∇f(yk+1
γ )

∥∥ ≥ ∆right(δ). However,
the latter is not possible because ∆right(δ) > MR̄ and

∥∥∇f(yk+1
γ )

∥∥ ≤MR̄. Thus,

ℓ
(
4
∥∥∇f(yk+1

γ )
∥∥) ≤ ℓ(4∆left(δ)) ≤ 2ℓ(0). (51)

Therefore, by the definition of γ∗ and using ℓ
(
4
∥∥∇f(yk)∥∥) ≤ 2ℓ(0),

γ∗ =
1

ℓ(2 ∥∇f(yk)∥+
∥∥∇f(yk+1

γ∗ )
∥∥) ≥ 1

max{ℓ(4 ∥∇f(yk)∥), ℓ(4
∥∥∇f(yk+1

γ∗ )
∥∥)} ≥ 1

2ℓ(0)
,

meaning that we can take γ = 1
2ℓ(0) and (45) holds:

(1 + αk,γ)(f(y
k+1
γ )− f(x∗)) +

(1 + αk,γ)Γk+1,γ

2

∥∥uk+1
γ − x∗

∥∥2 ≤ Vk.

Notice that αk,γ = αk, y
k+1
γ = yk+1, Γk+1,γ = Γk+1, and uk+1

γ = uk+1 with γ = 1
2ℓ(0) . Therefore,

(1 + αk,γ)(f(y
k+1
γ )− f(x∗)) +

(1+αk,γ)Γk+1,γ

2

∥∥uk+1
γ − x∗

∥∥2 = (1 + αk)Vk+1,

ℓ
(
4
∥∥∇f(yk+1)

∥∥) (51)

≤ 2ℓ(0),

Vk+1 ≤ 1

1 + αk
Vk ≤

(
k∏
i=0

1

1 + αi

)
V0,

∥∥uk+1 − x∗
∥∥2 (47)

≤ 2R̄,

and ∥∥yk+1 − x∗
∥∥ (50)

≤ 2R̄.

We have proved the next step of the induction. Finally, for all k ≥ 0,

f(yk+1)− f(x∗) ≤ Vk+1 ≤

(
k∏
i=0

1

1 + αi

)(
f(y0)− f(x∗) +

Γ0

2

∥∥y0 − x∗
∥∥2)

≤ Γ0

(
k∏
i=0

1

1 + αi

)(
δ

2Γ0
+

1

2

∥∥y0 − x∗
∥∥2) ≤ Γk+1R̄

2

because GD by (Tyurin, 2025)[Lemma I.2] returns x̄ = y0 such that
∥∥y0 − x∗

∥∥ ≤
∥∥x0 − x∗

∥∥ ≤ R̄.

Moreover, we use Γ0 = δ
R̄2 and Γk+1 = Γ0

(∏k
i=0

1
1+αi

)
. It is left to use Theorem 3.1.

Theorem 5.2. Consider the assumptions and results of Theorem 5.1. The oracle complexity (i.e., the
number of gradient calls) required to find an ε–solution is

5
√
ℓ(0)R̄√
ε

+ k(δ)

for all δ ∈ Q, where k(δ) := max
{
1 + 1

2 log3/2

(
δ

8ℓ(0)R̄2

)
, 0
}
+ kGD(δ), kGD(δ) is the oracle

complexity of GD for finding a point x̄ such that f(x̄)− f(x∗) ≤ δ/2.

Proof. The proof of this theorem repeats the proof of Theorem 3.3, with the only change being that
the conditions on δ are different.

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

E.3.1 EXAMPLE: (ρ, L0, L1)–SMOOTHNESS

To explain how Theorem 5.2 and Corollary 5.3 work, let us consider (ρ, L0, L1)–smoothness
with ℓ(x) = L0 + L1x

ρ and ρ > 0. In this case, ψ(x) ≃ x2

L0+L1xρ , which is strictly in-
creasing until ∆max = ∞ if ρ ≤ 2, and until ∆max = (2L0/((ρ − 2)L1))

1/ρ if ρ > 2.

If ρ ≤ 2, then Q :=
{
δ ≥ 0 : ℓ(4ψ−1(δ)) ≤ 2ℓ(0)

}
=
{
δ ≥ 0 : ℓ(8

√
δℓ (0)) ≤ 2ℓ (0)

}
={

δ ≥ 0 : δ ≤ L
2/ρ−1
0 /(64L

2/ρ
1 )

}
and, using the result from Table 2 by Tyurin (2025) with ρ < 2

and Theorem 5.2,

5
√
ℓ(0)R̄√
ε

+min
δ∈Q

k(δ)

= O
(√

L0R̄√
ε

+min
δ∈Q

[
max

{
log

(
δ

L0R̄2

)
, 0

}
+
L0R̄

2

δ
+
L1∆

ρ/2R̄2−ρ

δ1−ρ/2

])
= O

(√
L0R√
ε

+
L1∆

ρ/2

L
1−ρ/2
0

+ L
2/ρ
1 L

2−2/ρ
0 R2 +

L
2/ρ
1 ∆ρ/2R2−ρ

L
2/ρ+ρ/2−2
0

)
.

where ∆ := f(x0)− f(x∗), and we take R̄ = R and δ = min{L2/ρ−1
0 /L

2/ρ
1 , L0R̄

2}/64 to get the
last complexity (which might not be the optimal choice, but a sufficient choice to show that the first
term dominates if ε is small). Similarly, for the case ρ = 2, the oracle complexity at least

O
(√

L0R√
ε

+
L0R

2

δ̄
+
L1M

ρ
0R

2

δ̄

)
with δ̄ = min{L2/ρ−1

0 /L
2/ρ
1 , L0R

2}/64 and R̄ = R, where we take the GD rate from (Li et al.,
2024a; Tyurin, 2025).

We now consider the case ρ > 2. Let us define ∆1 := 1/2(L0/L1)
1/ρ. Notice that ∆max ≥ ∆1.

For all δ ∈ [0, ψ(∆1)), we can find ∆left(δ) = ψ−1(δ) ≃
√
L0δ. For all x ≥ ∆max, ψ(x) is

decreasing, and ψ(x) ≃ x2

L1xρ Thus, ∆right(δ) ≃ (L1δ)
1/(2−ρ) and we should minimize k(δ) over

the set {δ ∈ [0, L
2/ρ−1
0 /L

2/ρ
1 ] : δ ≤ L0/L

2
1, δ ≤ (1/(2MR̄))

ρ−2/L1} ⊆ Q (up to constant factors).
It is sufficient to take

δ̄ := min{L2/ρ−1
0 /L

2/ρ
1 , L0/L

2
1, (1/(2MR̄))

ρ−2/L1, L0R̄
2} (52)

to get the complexity

O
(√

L0R√
ε

+min
δ∈Q

k(δ)

)
= O

(√
L0R√
ε

+
L0R

2

δ̄
+
L1M

ρ
0R

2

δ̄

)
,

where M0 :=
∥∥∇f(x0)∥∥ , kGD(δ) is derived using (Li et al., 2024a; Tyurin, 2025), and we take

R̄ = R. Thus, we can guarantee the
√
L0R/

√
ε rate for any ρ ≥ 0 and a sufficiently small ε.

31


	Introduction
	Related work
	Contributions

	Preliminaries
	Subquadratic and Quadratic Growth of 
	Example: (L0, L1)–smoothness
	Discussion
	Proof sketch

	Stability with Respect to Input Parameters and Improved Rates
	Example: (L0, L1)–smoothness
	Specialization for (L0, L1)–smoothness
	Discussion and proof sketch

	Superquadratic Growth of 
	Discussion and proof sketch

	Conclusion
	Experiments
	Comparison with GD
	Comparison with previous AGD methods
	Sensitivity to the choice of siunitxunit-deprecatedࡡ爠barbarR and 0
	Experiments with Algorithm 1 and non-monotonic 

	Auxiliary Lemmas
	Rate of the Auxiliary Sequence
	Main Descent Lemma
	Convergence Theorems
	Subquadratic and Quadratic Growth of 
	Stability with Respect to Input Parameters and Improved Rates
	Specialization for (L0, L1)–smoothness

	Superquadratic Growth of 
	Example: (, L0, L1)–smoothness



