

000 001 002 003 004 005 006 007 008 009 010 011 012 NEAR-OPTIMAL CONVERGENCE OF ACCELERATED GRADIENT METHODS UNDER GENERALIZED AND (L_0, L_1) -SMOOTHNESS

007 **Anonymous authors**
008 Paper under double-blind review

011 ABSTRACT

013 We study first-order methods for convex optimization problems with functions f sat-
014 isfying the recently proposed ℓ -smoothness condition $\|\nabla^2 f(x)\| \leq \ell(\|\nabla f(x)\|)$,
015 which generalizes the L -smoothness and (L_0, L_1) -smoothness. While accelerated
016 gradient descent (AGD) is known to reach the optimal complexity $\mathcal{O}(\sqrt{L}R/\sqrt{\varepsilon})$
017 under L -smoothness, where ε is an error tolerance and R is the distance between a
018 starting and an optimal point, existing extensions to ℓ -smoothness either incur extra
019 dependence on the initial gradient, suffer exponential factors in $L_1 R$, or require
020 costly auxiliary sub-routines, leaving open whether an AGD-type $\mathcal{O}(\sqrt{\ell(0)}R/\sqrt{\varepsilon})$
021 rate is possible for small- ε , even in the (L_0, L_1) -smoothness case. We resolve this
022 open question. Developing new proof techniques, we achieve $\mathcal{O}(\sqrt{\ell(0)}R/\sqrt{\varepsilon})$
023 oracle complexity for small- ε and virtually any ℓ . For instance, for (L_0, L_1) -
024 smoothness, our bound $\mathcal{O}(\sqrt{L_0}R/\sqrt{\varepsilon})$ is provably optimal in the small- ε regime
025 and removes all non-constant multiplicative factors present in prior accelerated
026 algorithms.

027 028 1 INTRODUCTION

029 We focus on optimization problems

$$032 \min_{x \in \mathbb{R}^d} f(x), \quad (1)$$

034 where $f : \mathbb{R}^d \rightarrow \mathbb{R} \cup \{\infty\}$ is a convex function. We aim to find an ε -solution, $\bar{x} \in \mathbb{R}^d$, such that
035 $f(\bar{x}) - \inf_{x \in \mathbb{R}^d} f(x) \leq \varepsilon$. We define $\mathcal{X} = \{x \in \mathbb{R}^d \mid f(x) < \infty\}$, and assume that \mathcal{X} is an open
036 and d -dimensional convex set, f is smooth on \mathcal{X} , and continuous on the closure of \mathcal{X} . We define
037 $R := \|x^0 - x^*\|$, where $x^0 \in \mathcal{X}$ is a starting point of numerical methods.

038 Under the L -smoothness assumption, i.e., $\|\nabla f(x) - \nabla f(y)\| \leq L \|x - y\|$ or $\|\nabla^2 f(x)\| \leq L$ for
039 all $x, y \in \mathcal{X}$, the problem is well studied. In particular, it is known that one can find an ε -solution after
040 $\mathcal{O}(\sqrt{L}R/\sqrt{\varepsilon})$ gradient calls using the fast/accelerated gradient descent method (AGD) by [Nesterov \(1983\)](#), which is also optimal ([Nemirovskij & Yudin, 1983](#); [Nesterov, 2018](#)). This result improves the
041 oracle complexity $\mathcal{O}(LR^2/\varepsilon)$ (# of gradient calculations) of gradient descent (GD).

042 In this work, we investigate the modern ℓ -smoothness assumption ([Li et al., 2024a](#)), which states
043 that $\|\nabla^2 f(x)\| \leq \ell(\|\nabla f(x)\|)$ for all $x \in \mathcal{X}$ (see [Assumption 2.1](#)), where ℓ is any non-decreasing,
044 positive, locally Lipschitz function. This generalizes the classical L -smoothness assumption, which
045 corresponds to the special case $\ell(s) = L$. An important example of this framework is the (L_0, L_1) -
046 smoothness condition ([Zhang et al., 2020](#)), obtained by setting $\ell(s) = L_0 + L_1 s$, which yields
047 $\|\nabla^2 f(x)\| \leq L_0 + L_1 \|\nabla f(x)\|$ for all $x \in \mathcal{X}$.

048 There are many functions that are captured by ℓ -smoothness but not by L -smoothness. For instance,
049 $f(x) = x^p$ for $p > 2$, $f(x) = e^x$, and $f(x) = -\log x$ all satisfy ℓ -smoothness (with a proper ℓ) but
050 violate the standard L -smoothness condition ([Li et al., 2024a](#)). Moreover, there is growing evidence
051 that ℓ -smoothness is a more appropriate assumption for modern machine learning problems ([Zhang
052 et al., 2020](#); [Chen et al., 2023](#); [Cooper, 2024](#); [Tyurin, 2025](#)).

054
055 Table 1: Convergence rates for various AGD methods for small error tolerance ε up to constant
056 factors (in the case of (L_0, L_1) -Smoothness, the comparison is valid at least for all $\varepsilon \leq L_0/L_1^4 R^2$).
057 Abbreviations: $R := \|x^0 - x^*\|$, ε = error tolerance, x^0 is a starting point, $\Delta := f(x^0) - f(x^*)$,
058 M_R is defined in Theorem 5.1.

Setting	Oracle Complexity	References	Required Parameters
L -Smoothness	$\frac{\sqrt{L}R}{\sqrt{\varepsilon}}$	(Nesterov, 1983)	L
(L_0, L_1) -Smoothness	$\frac{\sqrt{L_0 + L_1} \ \nabla f(x^0)\ R}{\sqrt{\varepsilon}}$	(Li et al., 2024a)	L_0, L_1, R, Δ
	$\exp(L_1 R) \times \frac{\sqrt{L_0} R}{\sqrt{\varepsilon}}$	(Gorbunov et al., 2025)	L_0, L_1
	$\nu \times \frac{\sqrt{L_0} R}{\sqrt{\varepsilon}}$, where ν is not a universal constant and may depend on parameters of f, ε , and R	(Vankov et al., 2024)	L_0, L_1 , params for auxiliary problem (e.g., # of inner iterations)
	$\frac{\sqrt{L_0} R}{\sqrt{\varepsilon}}$	Sec. 3.1, 4.1, or Thm. 4.3 (new)	L_0, L_1, R, Δ (semi-adaptive to R, Δ)
General result with any ℓ	$\frac{\sqrt{\ell}(\ \nabla f(x^0)\) R}{\sqrt{\varepsilon}}$	(Li et al., 2024a)	L_0, L_1, R, Δ
	$\frac{\sqrt{\ell(0)} R}{\sqrt{\varepsilon}}$	Corollary 5.3 (new)	L_0, L_1, R, Δ, M_R

076
077 Despite the recent significant interest in ℓ -smoothness, to the best of our knowledge, one important
078 *open problem* remains:

079
080 Under ℓ -smoothness and (L_0, L_1) -smoothness, for a small ε , is it possible to
081 design a method with oracle complexity $\mathcal{O}(\sqrt{\ell(0)}R/\sqrt{\varepsilon})$ and $\mathcal{O}(\sqrt{L_0}R/\sqrt{\varepsilon})$, respec-
082 tively?

083
084 In this work, using new proof techniques, we provide an *affirmative answer* to this question by
085 developing new approaches that work for all $\varepsilon > 0$ and achieve the optimal complexity under
086 (L_0, L_1) -smoothness for small ε .

087 1.1 RELATED WORK

089
090 **Nonconvex optimization with (L_0, L_1) -smoothness.** While we focus on convex problems, we
091 now recall the modern results in the non-convex setting. Zhang et al. (2020) is the seminal work
092 that considers (L_0, L_1) -smoothness. They developed a clipped version of GD that finds an ε -
093 stationary point after $\mathcal{O}(L_0\Delta/\varepsilon + L_1^2\Delta/L_0)$ iterations¹. There are many subsequent works on (L_0, L_1) -
094 smoothness, including (Crawshaw et al., 2022; Chen et al., 2023; Wang et al., 2023; Koloskova et al.,
095 2023; Li et al., 2024a,b; Hübner et al., 2024; Vankov et al., 2024). Under (L_0, L_1) -smoothness,
096 the state-of-the-art theoretical oracle complexity $\mathcal{O}(L_0\Delta/\varepsilon + L_1\Delta/\sqrt{\varepsilon})$ was proved by Vankov et al.
097 (2024).

098
099 **Nonconvex optimization with ℓ -smoothness.** The paper by Li et al. (2024a) is the seminal
100 work that introduces the ℓ -smoothness assumption. In their version of GD, the result depends on
101 $\ell(\|\nabla f(x^0)\|)/\varepsilon$ and requires ℓ to grow more slowly than s^2 . Subsequently, Tyurin (2025) improved
102 their oracle complexity and provided the current state-of-the-art complexity. For instance, under
103 (ρ, L_0, L_1) -smoothness, i.e., $\|\nabla^2 f(x)\| \leq L_0 + L_1 \|\nabla f(x)\|^\rho$ for all $x \in \mathcal{X}$, Tyurin (2025) guaran-
104 tees $L_0\Delta/\varepsilon + L_1\Delta/\varepsilon^{(2-\rho)/2}$ instead of $(L_0\Delta + L_1\|\nabla f(x^0)\|^\rho\Delta)/\varepsilon$ from Li et al. (2024a) when $0 \leq \rho \leq 2$.

105
106 **Convex optimization with (L_0, L_1) -smoothness and ℓ -smoothness.** Under the (L_0, L_1) -
107 smoothness assumption, convex problems were considered in (Koloskova et al., 2023; Li et al.,
108 2024a; Takezawa et al., 2024). Gorbunov et al. (2025); Vankov et al. (2024) concurrently obtained

109
110 ¹An ε -stationary point is a point \bar{x} such that $\|\nabla f(\bar{x})\|^2 \leq \varepsilon$; $\Delta := f(x^0) - f^*$, where x^0 is a starting point
111 of numerical methods.

108 the oracle complexity $\mathcal{O}(L_0 R^2/\varepsilon + L_1^2 R^2)$. Then, the non-dominant term $L_1^2 R^2$ was improved to
 109 $L_0 R^2/\varepsilon + \min\{L_1 \Delta^{1/2} R/\varepsilon^{1/2}, L_1^2 R^2, L_1 \|\nabla f(x^0)\| R^2/\varepsilon\}$ by [Tyurin \(2025\)](#). [Lobanov et al. \(2024\)](#) also
 110 analyzed the possibility of improving $L_1^2 R^2$ in the region where the gradient of f is large. The
 111 ℓ -smoothness assumption in the contexts of online learning and mirror descent was considered in
 112 ([Xie et al., 2024](#); [Yu et al., 2025](#)).
 113

114 **Accelerated convex optimization.** The aforementioned results were derived using non-accelerated
 115 gradient descent methods. Under (L_0, L_1) -smoothness, accelerated variants of GD were studied by
 116 [Li et al. \(2024a\)](#); [Gorbunov et al. \(2025\)](#); [Vankov et al. \(2024\)](#). However, for small ε , the approach of
 117 [Gorbunov et al. \(2025\)](#) leads to the complexity $\exp(L_1 R) \sqrt{L_0} R / \sqrt{\varepsilon}$ (up to constant factors), with an
 118 exponential dependence on L_1 and R , while the method proposed by [Vankov et al. \(2024\)](#) requires
 119 solving an auxiliary one-dimensional optimization problem at each iteration, leading to the oracle
 120 complexity $\mathcal{O}(\nu \times \sqrt{L_0} R / \sqrt{\varepsilon})$, where ν is a non-constant multiplicative factor arising from solving
 121 the auxiliary problem. In the context of the ℓ -smoothness assumption, [Li et al. \(2024a\)](#) established a
 122 complexity bound of $\mathcal{O}(\sqrt{\ell(\|\nabla f(x^0)\|)} R / \sqrt{\varepsilon})$. The current state-of-the-art accelerated methods leave
 123 open the question of whether it is possible to achieve the oracle complexities $\mathcal{O}(\sqrt{L_0} R / \sqrt{\varepsilon})$ and
 124 $\mathcal{O}(\sqrt{\ell(0)} R / \sqrt{\varepsilon})$ when ε is small.
 125

1.2 CONTRIBUTIONS

127 We develop new proof techniques to analyze [Algorithms 1](#) and [2](#), which, to the best of our knowledge,
 128 achieve for the first time oracle complexities of $\mathcal{O}(\sqrt{\ell(0)} R / \sqrt{\varepsilon})$ and $\mathcal{O}(\sqrt{L_0} R / \sqrt{\varepsilon})$ for small ε , under ℓ -
 129 smoothness and (L_0, L_1) -smoothness, respectively. These results represent a significant improvement
 130 over previous works ([Li et al., 2024a](#); [Gorbunov et al., 2025](#); [Vankov et al., 2024](#)) (Table 1). Moreover,
 131 our bound under (L_0, L_1) -smoothness is optimal in the small- ε regime.
 132

133 We begin in [Section 3](#), which establishes the $\mathcal{O}(\sqrt{\ell(0)} R / \sqrt{\varepsilon})$ rate for small ε with subquadratic and
 134 quadratic ℓ . In [Section 4](#), we present [Algorithm 2](#), which is more robust to input parameters and
 135 achieves an improved rate in the non-dominant terms, at least in the case of (L_0, L_1) -smoothness.
 136 Finally, in [Section 5](#), we show that [Algorithm 1](#) attains the $\mathcal{O}(\sqrt{\ell(0)} R / \sqrt{\varepsilon})$ rate (for small ε) for all
 137 non-decreasing positive locally Lipschitz ℓ .
 138

2 PRELIMINARIES

140 **Notations:** $\mathbb{R}_+ := [0, \infty)$; $\mathbb{N} := \{1, 2, \dots\}$; $\|x\|$ denotes the standard Euclidean norm for all
 141 $x \in \mathbb{R}^d$; $\langle x, y \rangle = \sum_{i=1}^d x_i y_i$ denotes the standard dot product; $\|A\|$ denotes the standard spectral
 142 norm for all $A \in \mathbb{R}^{d \times d}$; $g = \mathcal{O}(f)$: there exists $C > 0$ such that $g(z) \leq C \times f(z)$ for all $z \in \mathcal{Z}$;
 143 $g = \Omega(f)$: there exists $C > 0$ such that $g(z) \geq C \times f(z)$ for all $z \in \mathcal{Z}$; $g \simeq h$: g and h are equal
 144 up to a universal positive constant; $\text{Proj}_{\bar{\mathcal{X}}}(x)$ denotes the standard Euclidean projection of x onto the
 145 convex closed set $\bar{\mathcal{X}}$.
 146

147 We consider the following assumption ([Li et al., 2024a](#)):

148 **Assumption 2.1.** A function $f : \mathbb{R}^d \rightarrow \mathbb{R} \cup \{\infty\}$ is ℓ -smooth if f is twice differentiable on \mathcal{X} , f is
 149 continuous on the closure of \mathcal{X} , and there exists a *non-decreasing positive locally Lipschitz* function
 150 $\ell : [0, \infty) \rightarrow (0, \infty)$ such that

$$151 \quad \|\nabla^2 f(x)\| \leq \ell(\|\nabla f(x)\|) \quad (2)$$

152 for all $x \in \mathcal{X}$.
 153

154 The assumption includes L -smoothness when $\ell(s) = L$, (L_0, L_1) -smoothness when $\ell(s) = L_0 +$
 155 $L_1 s$, and (ρ, L_0, L_1) -smoothness, i.e., $\|\nabla^2 f(x)\| \leq L_0 + L_1 \|\nabla f(x)\|^\rho$ for all $x \in \mathcal{X}$, when
 156 $\ell(s) = L_0 + L_1 s^\rho$, where $L, L_0, L_1, \rho \geq 0$ are some fixed constants. While [Assumption 2.1](#) requires
 157 twice differentiability, the main theorems and algorithms do not directly rely on it. Let us recall the
 158 following lemma, which follows from [Assumption 2.1](#):

159 **Lemma 2.2** ([Tyurin \(2025\)](#)). *For all $x, y \in \mathcal{X}$ such that $\|y - x\| \in [0, q_{\max}(\|\nabla f(x)\|)]$, if f is
 160 ℓ -smooth (Assumption 2.1), then*

$$161 \quad \|\nabla f(y) - \nabla f(x)\| \leq q^{-1}(\|y - x\|; \|\nabla f(x)\|), \quad (3)$$

162 **Algorithm 1** Accelerated Gradient Descent (AGD) with ℓ -Smoothness

163
164 1: **Input:** starting point $x^0 \in \mathcal{X}$, function ℓ from Assumption 2.1, parameters δ and \bar{R}
165 2: Starting from x^0 , run GD from (Tyurin, 2025) until $f(\bar{x}) - f(x^*) \leq \delta/2$,
166 where \bar{x} is the output point of GD
167 3: Init $y^0 = u^0 = \bar{x}$
168 4: Set $\Gamma_0 = \delta/\bar{R}^2$
169 5: Set $\gamma = 1/(2\ell(0))$
170 6: **for** $k = 0, 1, \dots$ **do**
171 7: $\alpha_k = \sqrt{\gamma\Gamma_k}$
172 8: $y^{k+1} = \frac{1}{1+\alpha_k}y^k + \frac{\alpha_k}{1+\alpha_k}u^k - \frac{\gamma}{1+\alpha_k}\nabla f(y^k)$
173 9: $u^{k+1} = \text{Proj}_{\bar{\mathcal{X}}}\left(u^k - \frac{\alpha_k}{\Gamma_k}\nabla f(y^{k+1})\right)$ ($\bar{\mathcal{X}}$ is the closure of \mathcal{X})
174 10: $\Gamma_{k+1} = \Gamma_k/(1 + \alpha_k)$
175 11: **end for**

177 where $q(s; a) := \int_0^s \frac{dv}{\ell(a+v)}$, q^{-1} is the inverse of q with respect to s , and $q_{\max}(a) := \int_0^\infty \frac{dv}{\ell(a+v)}$.

178 Not requiring twice differentiability, we can assume that (3) holds instead of (2). The main reason
179 why we start with (2) is because it is arguably more interpretable. Next, we assume the convexity of
180 f :

181 **Assumption 2.3.** A function $f : \mathbb{R}^d \rightarrow \mathbb{R} \cup \{\infty\}$ is convex and attains the minimum at a (non-unique)
182 $x^* \in \mathbb{R}^d$. We define $R := \|x^0 - x^*\|$, where x^0 is a starting point of numerical methods.

183 In the theoretical analysis and proofs, it is useful to define the ψ -function:
184

185 **Definition 2.4** (ψ and ψ^{-1} functions). Let Assumption 2.1 hold. We define the function $\psi : \mathbb{R}_+ \rightarrow$
186 \mathbb{R}_+ such that $\psi(x) = \frac{x^2}{2\ell(4x)}$, and $\psi^{-1} : [0, \psi(\Delta_{\max})) \rightarrow [0, \Delta_{\max}]$ as its (standard) inverse, where
187 $\Delta_{\max} \in (0, \infty]$ is the largest constant such that ψ is strictly increasing on² $[0, \Delta_{\max}]$.
188

3 SUBQUADRATIC AND QUADRATIC GROWTH OF ℓ

191 We are ready to present our first result. Consider Algorithm 1, which consists of two phases: first,
192 we run (non-accelerated) GD, and then we run an accelerated version of GD. Later, we will present
193 Algorithm 2, which avoids the first phase. We first state the convergence rate of Algorithm 1 and
194 then discuss and explain it in more detail. We begin by stating a standard result from the theory
195 of accelerated methods (Nesterov, 2018; Lan, 2020; Stonyakin et al., 2021) concerning auxiliary
196 sequences, which control convergence rates:

197 **Theorem 3.1.** For any $\Gamma_0 > 0$ and $\gamma \geq 0$, let $\alpha_k \geq \sqrt{\gamma\Gamma_k}$ and $\Gamma_{k+1} = \Gamma_k/(1 + \alpha_k)$ for all $k \geq 0$.
198 Then, $\Gamma_{k+1} \leq \frac{9}{\gamma(k+1-\bar{k})^2}$ for all $k \geq \bar{k} := \max\left\{1 + \frac{1}{2}\log_{3/2}\left(\frac{\gamma\Gamma_0}{4}\right), 0\right\}$.

200 The following result provides the convergence rate of Algorithm 1 for ℓ such that $\psi(x) = \frac{x^2}{2\ell(4x)}$ is
201 strictly increasing, which holds, for instance, under (L_0, L_1) -smoothness.

202 **Theorem 3.2.** Suppose that Assumptions 2.1 and 2.3 hold. Let $\psi : \mathbb{R}_+ \rightarrow \mathbb{R}_+$ such that $\psi(x) =$
203 $\frac{x^2}{2\ell(4x)}$ be strictly increasing. Then Algorithm 1 guarantees that

204
$$f(y^{k+1}) - f(x^*) \leq \Gamma_{k+1}\bar{R}^2 \leq \frac{18\ell(0)\bar{R}^2}{(k+1-\bar{k})^2} \quad (4)$$

205 for all $k \geq \bar{k} := \max\left\{1 + \frac{1}{2}\log_{3/2}\left(\frac{\Gamma_0}{8\ell(0)}\right), 0\right\}$ with any $\delta \in (0, \infty]$ such that $\ell\left(8\sqrt{\delta\ell(0)}\right) \leq$
206 $2\ell(0)$ and any $\bar{R} \geq R := \|x^0 - x^*\|$.

212 ² $\Delta_{\max} > 0$ due to Lemma B.4.

The theorem establishes the desired $1/k^2$ convergence rate of accelerated methods. However, the method enters this regime only after running the GD method and after the initial \bar{k} steps of the accelerated steps. The main and final result, which captures the total oracle complexity, is presented below.

Theorem 3.3. *Consider the assumptions and results of Theorem 3.2. The oracle complexity (i.e., the number of gradient calls) required to find an ε -solution is*

$$\frac{5\sqrt{\ell(0)\bar{R}}}{\sqrt{\varepsilon}} + k(\delta), \quad (5)$$

for all $\delta \geq 0$ such that $\ell(8\sqrt{\delta\ell(0)}) \leq 2\ell(0)$, where $k(\delta) := \max\left\{1 + \frac{1}{2}\log_{3/2}\left(\frac{\delta}{8\ell(0)\bar{R}^2}\right), 0\right\} + k_{\text{GD}}(\delta)$, $k_{\text{GD}}(\delta)$ is the oracle complexity of GD for finding a point \bar{x} such that $f(\bar{x}) - f(x^*) \leq \delta/2$.

Corollary 3.4. *In Theorem 3.3, minimizing over δ and taking $\bar{R} = R := \|x^0 - x^*\|$, the oracle complexity is*

$$\frac{5\sqrt{\ell(0)R}}{\sqrt{\varepsilon}} + \underbrace{\min_{\delta \geq 0 : \ell(8\sqrt{\delta\ell(0)}) \leq 2\ell(0)} k(\delta)}_{\text{does not depend on } \varepsilon}. \quad (6)$$

3.1 EXAMPLE: (L_0, L_1) -SMOOTHNESS

We now consider an example and apply the result for (L_0, L_1) -smooth functions. In this case, $\ell(s) = L_0 + L_1 s$. First, we need to find the proper set of δ from Theorem 3.2: $\ell(8\sqrt{\delta\ell(0)}) \leq 2\ell(0) \Leftrightarrow L_0 + L_1(8\sqrt{\delta L_0}) \leq 2L_0 \Leftrightarrow \delta \leq L_0/(64L_1^2)$. Second, we need to find $k_{\text{GD}}(\delta)$. Using Table 2 from (Tyurin, 2025), or the results by Gorbunov et al. (2025); Vankov et al. (2024), $k_{\text{GD}}(\delta) = \mathcal{O}(L_0R^2/\delta + \min\{L_1\Delta^{1/2}R/\delta^{1/2}, L_1^2R^2, L_1\|\nabla f(x^0)\|R^2/\delta\}) = \mathcal{O}\left(\frac{L_0R^2}{\delta}\right) = \mathcal{O}\left(\frac{L_0\bar{R}^2}{\delta}\right)$ for all $\delta \leq L_0/(64L_1^2)$. Substituting to (5), we get the total oracle complexity

$$\mathcal{O}\left(\frac{\sqrt{L_0}\bar{R}}{\sqrt{\varepsilon}} + \min_{0 \leq \delta \leq L_0/(64L_1^2)} \left[\max\left\{\log\left(\frac{\delta}{L_0\bar{R}^2}\right), 0\right\} + \frac{L_0\bar{R}^2}{\delta} \right] \right), \quad (7)$$

Taking $\delta = \min\{L_0/(64L_1^2), (L_0\bar{R}^2)/64\}$ (which might not be the optimal choice, but a sufficient choice to show that the first term dominates if ε is small), we get

$$(7) = \mathcal{O}\left(\frac{\sqrt{L_0}\bar{R}}{\sqrt{\varepsilon}} + L_1^2\bar{R}^2\right) = \mathcal{O}\left(\frac{\sqrt{L_0}R}{\sqrt{\varepsilon}} + L_1^2R^2\right), \quad (8)$$

where we choose $\bar{R} = R$. Unlike Li et al. (2024a); Gorbunov et al. (2025); Vankov et al. (2024), we get $\mathcal{O}(\sqrt{L_0}R/\sqrt{\varepsilon})$ for small ε . Moreover, this complexity is optimal (Nemirovskij & Yudin, 1983; Nesterov, 2018) for small ε in the sense that for any $L_0 > 0$ and $L_1 \geq 0$, it is possible to find an (L_0, L_1) -smooth function (the $(L_0, 0)$ -smooth function from Section 2.1.2 of (Nesterov, 2018)) such that the required number of oracle calls is $\Omega(\sqrt{L_0}R/\sqrt{\varepsilon})$ for small ε .

One can repeat these steps for any ℓ such that ψ is strictly increasing. Nevertheless, even without these derivations, we establish the total oracle complexity $\mathcal{O}(\sqrt{\ell(0)R}/\sqrt{\varepsilon})$ in (6) for small ε .

3.2 DISCUSSION

The closest work to the complexity $\mathcal{O}(\sqrt{L_0}R/\sqrt{\varepsilon})$, when ε is small, is (Vankov et al., 2024). Using the same idea as in (Vankov et al., 2024), in Algorithm 1, we run GD until $f(\bar{x}) - f(x^*) \leq \delta/2$. However, the next steps and proof techniques are new. Using the “warm-start” point \bar{x} , it becomes easier for Algorithm 1 to run accelerated steps because we take δ such that $\ell(4\|\nabla f(y^0)\|) \leq 2\ell(0)$ (Lemma E.1), meaning that we start from the region where the local smoothness constant is almost $\ell(0)$. The main challenge is to ensure that the next points y^k of Algorithm 1 never leave this region. To ensure that, using the method from (Nesterov et al., 2021), Vankov et al. (2024) utilize the monotonicity of their accelerated method and the fact that their points do not leave the region with

270 small smoothness. However, it is not for free and requires ν extra oracle calls in each iteration, where
 271 ν is not a universal constant and depends on the parameters of f leading to a suboptimal complexity.
 272

273 In contrast, our method follows the standard approach, where only one gradient is computed per
 274 iteration. We use the version of the accelerated method from (Wei & Chen, 2025)[Section D.2], with
 275 some minor but important modifications. The method itself is very similar to the one from (Allen-Zhu
 276 & Orecchia, 2014), for instance. However, the proof technique is very different, which is the main
 277 reason we focus on Algorithm 1. While for L -smooth functions the proof technique from (Wei &
 278 Chen, 2025) does not offer any advantages over, for example, (Nesterov, 1983) because the result
 279 in (Nesterov, 1983) is optimal. In the case of functions with generalized smoothness, it becomes
 280 particularly useful, as shown in the following section.

281 **3.3 PROOF SKETCH**

283 As in most proofs, we define the Lyapunov function $V_k := f(y^k) - f(x^*) + \frac{\Gamma_k}{2} \|u^k - x^*\|^2$. The
 284 first important observation is that in V_k we use y^k , the point where the gradient is actually computed.
 285 This is important, and we will see why later.

286 Using mathematical induction, let us assume that we have run Algorithm 1 up to k^{th} iteration,
 287 $\ell(4\|\nabla f(y^k)\|) \leq 2\ell(0)$, and $V_k \leq \left(\prod_{i=0}^{k-1} \frac{1}{1+\alpha_i}\right) V_0$. We choose Γ_0 such that $V_0 \leq \delta$. The base
 288 case with $k = 0$ is true because we run GD until $\ell(4\|\nabla f(y^0)\|) \leq 2\ell(0)$. Now, instead of $k + 1^{\text{th}}$
 289 consider the steps
 290

$$\begin{aligned} \alpha_{k,\gamma} &= \sqrt{\gamma\Gamma_k}, \\ y_{\gamma}^{k+1} &= \frac{1}{1+\alpha_{k,\gamma}}y^k + \frac{\alpha_{k,\gamma}}{1+\alpha_{k,\gamma}}u^k - \frac{\gamma}{1+\alpha_{k,\gamma}}\nabla f(y^k), \\ u_{\gamma}^{k+1} &= \text{Proj}_{\mathcal{X}}\left(u^k - \frac{\alpha_{k,\gamma}}{\Gamma_k}\nabla f(y_{\gamma}^{k+1})\right), \\ \Gamma_{k+1,\gamma} &= \Gamma_k/(1+\alpha_{k,\gamma}), \end{aligned} \tag{9}$$

297 where γ is a free parameter. These steps are equivalent to $k + 1^{\text{th}}$ iteration when $\gamma = 1/(2\ell(0))$.
 298 However, we have not proved that we are allowed to use this γ yet. For these steps, we can prove a
 299 standard descent lemma, Lemma D.1:
 300

$$\begin{aligned} &\left[(1+\alpha_{k,\gamma})(f(y_{\gamma}^{k+1}) - f(x^*)) + \frac{(1+\alpha_{k,\gamma})\Gamma_{k+1,\gamma}}{2} \|u_{\gamma}^{k+1} - x^*\|^2 \right] - V_k \\ &\leq \frac{1}{2} \left(\gamma - \frac{1}{\ell(2\|\nabla f(y^k)\| + \|\nabla f(y_{\gamma}^{k+1})\|)} \right) \|\nabla f(y_{\gamma}^{k+1}) - \nabla f(y^k)\|^2. \end{aligned} \tag{10}$$

307 For now, let us assume that f is L -smooth. Then the rest of the proof becomes straightforward. In
 308 this case, $\ell(2\|\nabla f(y^k)\| + \|\nabla f(y_{\gamma}^{k+1})\|) = L$, and we can take $\gamma = 1/2L \equiv 1/(2\ell(0))$ to ensure
 309 that $(1+\alpha_k)V_{k+1} \leq V_k$ because the first bracket $[\dots] = (1+\alpha_k)V_{k+1}$. Then, we should unroll the
 310 recursion and use Theorem 3.1 to get the classical $1/k^2$ rate (Nesterov, 1983).

311 However, under Assumption 2.1, $\ell(2\|\nabla f(y^k)\| + \|\nabla f(y_{\gamma}^{k+1})\|)$ depends on $\|\nabla f(y_{\gamma}^{k+1})\|$, and we
 312 encounter a “chicken-and-egg” dilemma: in order to choose γ , we need to know $\|\nabla f(y_{\gamma}^{k+1})\|$, which
 313 in turn depends on γ . Our resolution is the following. Let us choose the smallest $\gamma^* \geq 0$ such that
 314

$$g(\gamma) := \gamma - \frac{1}{\ell(2\|\nabla f(y^k)\| + \|\nabla f(y_{\gamma}^{k+1})\|)} = 0,$$

315 which exists and is positive because $g(\gamma)$ is continuous, $g(0) < 0$, and $g(\bar{\gamma}) \geq 0$ for $\bar{\gamma} = \frac{1}{\ell(2\|\nabla f(y^k)\|)}$.
 316 It is possible that we are “unlucky” and γ^* is very small, leading to a slow convergence rate and
 317 preventing us from choosing $\gamma = 1/(2\ell(0))$. Surprisingly, it is possible to show that $\gamma^* \geq 1/(2\ell(0))$.
 318 Indeed, using (10), for all $\gamma \leq \gamma^*$, we have $f(y_{\gamma}^{k+1}) - f(x^*) \leq V_k \leq V_0$. Recall that we choose Γ_0
 319 such that $V_0 \leq \delta$. Thus, $f(y_{\gamma}^{k+1}) - f(x^*) \leq \delta$. This is the key inequality in the proof, which allows
 320 us to conclude that the function gap with y_{γ}^{k+1} is bounded, thus justifying the choice of the Lyapunov
 321 function.
 322

324 **Algorithm 2** AGD with ℓ -smoothness and increasing step sizes (without GD pre-running)

325

326 1: **Input:** starting point $x^0 \in \mathcal{X}$, function ℓ from Assumption 2.1, parameters Γ_0 and \bar{R}

327 2: Init $y^0 = u^0 = x^0$

328 3: Define $\psi(x) = \frac{x^2}{2\ell(4x)}$ (assume that ψ is invertible on \mathbb{R}_+)

329 4: **for** $k = 0, 1, \dots$ **do**

330 5: $\gamma_k = 1/\ell(4\psi^{-1}(\Gamma_k \bar{R}^2))$

331 6: $\alpha_k = \sqrt{\gamma_k \Gamma_k}$

332 7: $y^{k+1} = \frac{1}{1+\alpha_k} y^k + \frac{\alpha_k}{1+\alpha_k} u^k - \frac{\gamma_k}{1+\alpha_k} \nabla f(y^k)$

333 8: $u^{k+1} = \text{Proj}_{\bar{\mathcal{X}}} \left(u^k - \frac{\alpha_k}{\Gamma_k} \nabla f(y^{k+1}) \right)$ ($\bar{\mathcal{X}}$ is the closure of \mathcal{X})

334 9: $\Gamma_{k+1} = \Gamma_k / (1 + \alpha_k)$

335 10: **end for**

337

338 It left to use Lemma E.1, which allows us to bound $\ell(4 \|\nabla f(y)\|)$ if we can bound $f(y) - f(x^*) \leq \delta$

339 for all $y \in \mathcal{X}$. Thus, $\ell(4 \|\nabla f(y_\gamma^{k+1})\|) \leq 2\ell(0)$ for all $\gamma \leq \gamma^*$. Recalling the definition of γ^* :

340

$$\gamma^* = \frac{1}{\ell(2 \|\nabla f(y^k)\| + \|\nabla f(y_{\gamma^*}^{k+1})\|)} \geq \frac{1}{\max\{\ell(4 \|\nabla f(y^k)\|), \ell(4 \|\nabla f(y_{\gamma^*}^{k+1})\|\})} \geq \frac{1}{2\ell(0)}.$$

341

342

343 Finally, this means that we can take $\gamma = 1/(2\ell(0))$, (9) reduces to the $k+1^{\text{th}}$ step of Algorithm 1,

344 $\ell(4 \|\nabla f(y^{k+1})\|) \leq 2\ell(0)$, and $V_{k+1} \leq \left(\prod_{i=0}^k \frac{1}{1+\alpha_i} \right) V_0$ due to (10). We have proved the next

345 step of mathematical induction and (4).

346

347 The way we resolve the “chicken-and-egg” dilemma can be an interesting proof trick in other

348 optimization contexts. Note that our method is not necessarily monotonic, but the proof still allows us

349 to show that the method never leaves the region where the local smoothness constant is almost $\ell(0)$.

350

351 4 STABILITY WITH RESPECT TO INPUT PARAMETERS AND IMPROVED RATES

352

353 While, to the best of our knowledge, Algorithm 1 is the first algorithm with $\mathcal{O}(\sqrt{\ell(0)R}/\sqrt{\varepsilon})$ complexity,

354 it has two limitations: it runs GD at the beginning, and it requires a good estimate of R when selecting

355 \bar{R} . We resolve these issues in Algorithm 2, which is similar to Algorithm 1, but the former does not

356 run GD at the beginning, uses the step sizes $\gamma_k = 1/\ell(4\psi^{-1}(\Gamma_k \bar{R}^2))$, and requires Γ_0 as an input.

357 **Theorem 4.1.** Suppose that Assumptions 2.1 and 2.3 hold. Let $\psi : \mathbb{R}_+ \rightarrow \mathbb{R}_+$ such that $\psi(x) =$

358 $\frac{x^2}{2\ell(4x)}$ be strictly increasing and $\lim_{x \rightarrow \infty} \psi(x) = \infty$. Then Algorithm 2 guarantees that

359

$$360 f(y^{k+1}) - f(x^*) \leq \Gamma_{k+1} R^2$$

361 for all $k \geq 0$ with $\Gamma_0 \geq \frac{2(f(x^0) - f(x^*))}{\|x^0 - x^*\|^2}$ and $\bar{R} \geq R$.

362

363 **Theorem 4.2.** Consider the assumptions and results of Theorem 4.1. The oracle complexity (i.e., the

364 number of gradient calls) required to find an ε -solution is

365

$$366 \frac{5\sqrt{\ell(0)R}}{\sqrt{\varepsilon}} + \underbrace{\max \left\{ 2 + \log_{3/2} \left(\frac{\Gamma_0}{4\ell(0)} \right), 0 \right\} + k_{\text{init}}}_{367 \text{does not depend on } \varepsilon} \quad (11)$$

368

369 with $\Gamma_0 \geq \frac{2(f(x^0) - f(x^*))}{\|x^0 - x^*\|^2}$, $\bar{R} \geq R$, and k_{init} being the smallest integer such that

370

$$371 \ell \left(24 \sqrt{\frac{\ell(4\psi^{-1}(\Gamma_0 \bar{R}^2)) \ell(0) \bar{R}^2}{k_{\text{init}}^2}} \right) \leq 2\ell(0).$$

372

373

374 Comparing (11) and (7), one can see that Algorithm 2 is stable with respect to the choice of \bar{R} and

375 Γ_0 . Ideally, it is better to choose $\Gamma_0 = \frac{2(f(x^0) - f(x^*))}{\|x^0 - x^*\|^2}$ and $\bar{R} = R$. However, if we overestimate \bar{R}

376 and Γ_0 , the penalty for this appears in the term that does not depend on ε . In the next section, we

377 consider an example to illustrate this.

378 4.1 EXAMPLE: (L_0, L_1) -SMOOTHNESS
379

380 To find the oracle complexity, we have to estimate k_{init} . In the case of (L_0, L_1) -smoothness, we can
381 find k_{init} from the equality $L_0 + L_1 \sqrt{(L_0 + L_1 \psi^{-1}(\Gamma_0 \bar{R}^2)) L_0 \bar{R}^2 / k_{\text{init}}^2} \simeq 2L_0$ (we ignore constants
382 for simplicity), where ψ^{-1} is the inverse of $x^2/(2(L_0 + 4L_1 x))$. If $\Gamma_0 \bar{R}^2 \geq L_0 / L_1$, then the equality
383 is equivalent to $k_{\text{init}} \simeq \sqrt{L_1^2 \bar{R}^2 + L_1^4 \Gamma_0 \bar{R}^4 / L_0}$. Otherwise, $k_{\text{init}} \simeq \sqrt{L_1^2 \bar{R}^2 + L_1^3 \bar{R}^3 \sqrt{\Gamma_0 / L_0}}$. Thus,
384 using (11), the total oracle complexity
385

$$386 \mathcal{O} \left(\frac{\sqrt{L_0} R}{\sqrt{\varepsilon}} + L_1 \bar{R} + L_1^2 \bar{R}^2 \sqrt{\frac{\Gamma_0}{L_0}} + \max \left\{ \log \left(\frac{\Gamma_0}{L_0} \right), 0 \right\} \right), \quad (12)$$

389 where the first term is stable to the choice of \bar{R} and Γ_0 .
390

391 4.2 SPECIALIZATION FOR (L_0, L_1) -SMOOTHNESS
392

393 The previous theorems work with any ℓ such that $\psi(x) = \frac{x^2}{2\ell(4x)}$ is strictly increasing on \mathbb{R}_+ and
394 $\lim_{x \rightarrow \infty} \psi(x) = \infty$. It turns out that we can improve (12) and refine Theorem 4.2 in the case of
395 (L_0, L_1) -smoothness.
396

397 **Theorem 4.3.** *Consider the assumptions and results of Theorem 4.1 with $\ell(s) = L_0 + L_1 s$. The
398 oracle complexity (i.e., the number of gradient calls) required to find an ε -solution is*

$$399 \mathcal{O} \left(\frac{\sqrt{L_0} R}{\sqrt{\varepsilon}} + \max \left\{ L_1 \bar{R} \log \left(\min \left\{ \frac{L_1^2 \bar{R}^2 \Gamma_0}{L_0}, \frac{\Gamma_0 R^2}{\varepsilon} \right\} \right), 0 \right\} + \max \left\{ \log \left(\frac{\Gamma_0}{L_0} \right), 0 \right\} \right) \quad (13)$$

400 with $\Gamma_0 \geq \frac{2(f(x^0) - f(x^*))}{\|x^0 - x^*\|^2}$ and $\bar{R} \geq R$.
401

402 The non-dominant term in (13) is better than that of (12), and is better than that of (8) when
403 $\Gamma_0 = 2\Delta/R^2$ and $\bar{R} = R$.
404

405 4.3 DISCUSSION AND PROOF SKETCH
406

407 Unlike Algorithm 1, Algorithm 2 starts from x^0 where the initial local smoothness might be large.
408 Nevertheless, the proof follows the proof techniques from Section 3.3 with one important difference:
409 using mathematical induction, we prove that $\|\nabla f(y^k)\| \leq \psi^{-1}(\Gamma_k \bar{R}^2)$ for all $k \geq 0$. This inequality
410 means that $\|\nabla f(y^k)\|$ can be bounded by a decreasing sequence, and after several iterations, all y^k
411 satisfy $\ell(4\|\nabla f(y^k)\|) \leq 2\ell(0)$, allowing us to get $\mathcal{O}(\sqrt{\ell(0)R}/\sqrt{\varepsilon})$ complexity for small- ε .
412

413 5 SUPERQUADRATIC GROWTH OF ℓ
414

415 In the previous sections, we provided convergence rates under the assumption that ψ is strictly
416 increasing. For instance, the previous theory applies to (ρ, L_0, L_1) -smooth functions only if $\rho \leq 2$.
417 For cases where ψ is not necessarily strictly increasing, we can prove the following theorems.
418

419 **Theorem 5.1.** *Suppose that Assumptions 2.1 and 2.3 hold. Let $\psi : \mathbb{R}_+ \rightarrow \mathbb{R}_+$ such that
420 $\psi(x) = \frac{x^2}{2\ell(4x)}$ be not necessarily strictly increasing. Find the largest $\Delta_{\text{max}} \in (0, \infty]$ such that ψ
421 is strictly increasing on $[0, \Delta_{\text{max}}]$. For all $\delta \in [0, \psi(\Delta_{\text{max}})]$, find the unique $\Delta_{\text{left}}(\delta) \in [0, \Delta_{\text{max}}]$
422 and the smallest³ $\Delta_{\text{right}}(\delta) \in [\Delta_{\text{max}}, \infty]$ such that $\psi(\Delta_{\text{left}}(\delta)) = \delta$ and $\psi(\Delta_{\text{right}}(\delta)) = \delta$.
423 Take any $\delta \in [0, \frac{1}{2}\psi(\Delta_{\text{max}})]$ such that $\ell(4\Delta_{\text{left}}(\delta)) \leq 2\ell(0)$ and $\Delta_{\text{right}}(\delta) \geq 2M_{\bar{R}}$, where⁴
424 $M_{\bar{R}} := \max_{\|x - x^*\| \leq 2\bar{R}} \|\nabla f(x)\|$. Then Algorithm 1 guarantees that*

$$425 f(y^{k+1}) - f(x^*) \leq \Gamma_{k+1} \bar{R}^2 \leq \frac{18\ell(0) \bar{R}^2}{(k+1-\bar{k})^2}$$

426 ³if the set $\{x \in [\Delta_{\text{max}}, \infty) : \psi(x) = \delta\}$ is empty, then $\Delta_{\text{right}}(\delta) = \infty$
427

428 ⁴or is it sufficient to find any $M_{\bar{R}}$ such that $M_{\bar{R}} \geq \max_{\|x - x^*\| \leq 2\bar{R}} \|\nabla f(x)\|$.
429

432 for all $k \geq \bar{k} := \max \left\{ 1 + \frac{1}{2} \log_{3/2} \left(\frac{\Gamma_0}{8\ell(0)} \right), 0 \right\}$ with any $\bar{R} \geq \|x^0 - x^*\|$.
 433

434 In order to apply the theorem and algorithm, we first have to find the largest $\Delta_{\max} \in (0, \infty]$ such
 435 that ψ is strictly increasing on $[0, \Delta_{\max}]$. If ψ is strictly increasing on \mathbb{R}_+ , then $\Delta_{\max} = \infty$. Next,
 436 we should find $\Delta_{\text{left}}(\delta)$ and $\Delta_{\text{right}}(\delta)$ for all $\delta \in [0, \psi(\Delta_{\max})]$. The point $\Delta_{\text{left}}(\delta) \in [0, \Delta_{\max}]$ is the
 437 solution of $\psi(\Delta_{\text{left}}(\delta)) = \delta$, which exists and is unique for all $\delta \in [0, \psi(\Delta_{\max})]$ because ψ is strictly
 438 increasing on $[0, \Delta_{\max}]$. Notice that $\psi(x) > \delta$ for all $x \in (\Delta_{\text{left}}(\delta), \Delta_{\max})$. Thus, there are two
 439 options: either $\psi(x) > \delta$ for all $x \in (\Delta_{\text{left}}(\delta), \infty)$, and we define $\Delta_{\text{right}}(\delta) = \infty$, or there exists the
 440 first moment $\Delta_{\text{right}}(\delta) \in [\Delta_{\max}, \infty)$ when $\psi(\Delta_{\text{right}}(\delta)) = \delta$. In other words, $\Delta_{\text{right}}(\delta)$ is the second
 441 time when ψ intersects δ . We define the set of δ allowed to use in the algorithm:

$$442 Q := \{\delta \in [0, \psi(\Delta_{\max})/2] : \ell(4\Delta_{\text{left}}(\delta)) \leq 2\ell(0), \Delta_{\text{right}}(\delta) \geq 2M_{\bar{R}}\}.$$

443

444 **Theorem 5.2.** *Consider the assumptions and results of Theorem 5.1. The oracle complexity (i.e., the
 445 number of gradient calls) required to find an ε -solution is*

$$446 \frac{5\sqrt{\ell(0)\bar{R}}}{\sqrt{\varepsilon}} + k(\delta)$$

447 for all $\delta \in Q$, where $k(\delta) := \max \left\{ 1 + \frac{1}{2} \log_{3/2} \left(\frac{\delta}{8\ell(0)\bar{R}^2} \right), 0 \right\} + k_{\text{GD}}(\delta)$, $k_{\text{GD}}(\delta)$ is the oracle
 448 complexity of GD for finding a point \bar{x} such that $f(\bar{x}) - f(x^*) \leq \delta/2$.

449 **Corollary 5.3.** *In Theorem 5.2, minimizing over δ and taking $\bar{R} = R := \|x^0 - x^*\|$, the oracle
 450 complexity is*

$$451 \frac{5\sqrt{\ell(0)R}}{\sqrt{\varepsilon}} + \underbrace{\min_{\delta \in Q} k(\delta)}_{\text{does not depend on } \varepsilon}.$$

452 In Section E.3.1, we consider an example, (ρ, L_0, L_1) -smoothness, to illustrate how to use the
 453 theorem, and show that it guarantees a rate of $\sqrt{L_0}R/\sqrt{\varepsilon}$ rate for any $\rho \geq 0$ and a sufficiently small ε .
 454 The main observation in (14) is that we obtain the $\sqrt{\ell(0)R}/\sqrt{\varepsilon}$ rate for small ε , given an appropriate or
 455 optimal choice of δ that minimizes $k(\delta)$. The main difference between Theorem 5.2 and Theorem 3.3
 456 is that the rate in Theorem 5.2 depends on $M_{\bar{R}}$ and requires its estimate.

457

458 5.1 DISCUSSION AND PROOF SKETCH

459

460 In the superquadratic case, we use Algorithm 1 instead of Algorithm 2 because the latter relies on
 461 the fact that ψ is invertible on \mathbb{R}_+ . The former algorithm does not need this and allows us to get
 462 the $\sqrt{L_0}R/\sqrt{\varepsilon}$ rate for small ε . While once again the proof of Theorem 5.2 follows the discussion
 463 from Section 3.3, there is one important difference. Since ψ might not be invertible, we cannot
 464 conclude that $\|\nabla f(y^k)\| \leq \psi^{-1}(\delta)$ if $f(y^k) - f(x^*) \leq \delta$. Instead, we can only guarantee that
 465 if $f(y^k) - f(x^*) \leq \delta$ and $\delta \in [0, \psi(\Delta_{\max})]$, then either $\|\nabla f(y^k)\| \leq \Delta_{\text{left}}(\delta)$ or $\|\nabla f(y^k)\| \geq$
 466 $\Delta_{\text{right}}(\delta)$, where Δ_{\max} , $\Delta_{\text{left}}(\delta)$, and $\Delta_{\text{right}}(\delta)$ are defined in Section 5. The latter case is “bad” for
 467 the analysis. To avoid it, we take δ such that $\Delta_{\text{right}}(\delta) \geq 2M_{\bar{R}} = \max_{\|x-x^*\| \leq 2\bar{R}} \|\nabla f(x)\|$ and,
 468 using mathematical induction, ensure that $\|\nabla f(y^k)\| \leq M_{\bar{R}}$. To get the last bound, we prove that
 469 y^k never leaves the ball $B(x^*, 2\bar{R})$, which requires additional technical steps. Thus, we are left
 470 with the “good” case $\|\nabla f(y^k)\| \leq \Delta_{\text{left}}(\delta)$, which yields $\ell(4\|\nabla f(y^k)\|) \leq 2\ell(0)$ for δ such that
 471 $\ell(4\Delta_{\text{left}}(\delta)) \leq 2\ell(0)$.

472

473 6 CONCLUSION

474

475 While we have achieved a better oracle complexity for small ε , the optimal non-dominant term for
 476 large ε , which can improve the terms not depending on ε in Corollaries 3.4, 5.3 and Theorem 4.2
 477 for ℓ -smooth functions, remains unclear and require further investigations. Moreover, it would be
 478 interesting to extend our results to stochastic and finite-sum settings (Schmidt et al., 2017; Lan, 2020),
 479 and develop adaptive versions of the methods than do not depend on L_0, L_1, R, Δ . We leave these
 480 directions for future work, which can build on our new insights and algorithms.

486 REFERENCES
487488 Zeyuan Allen-Zhu and Lorenzo Orecchia. Linear coupling: An ultimate unification of gradient and
489 mirror descent. *arXiv preprint arXiv:1407.1537*, 2014.490 Ziyi Chen, Yi Zhou, Yingbin Liang, and Zhaosong Lu. Generalized-smooth nonconvex optimization is
491 as efficient as smooth nonconvex optimization. In *International Conference on Machine Learning*,
492 pp. 5396–5427. PMLR, 2023.493 Y Cooper. A theoretical study of the (L_0, L_1) -smoothness condition in deep learning. In *OPT 2024: Optimization for Machine Learning*, 2024.494 Michael Crawshaw, Mingrui Liu, Francesco Orabona, Wei Zhang, and Zhenxun Zhuang. Robustness
495 to unbounded smoothness of generalized signsgd. *Advances in Neural Information Processing Systems*,
496 35:9955–9968, 2022.497 Eduard Gorbunov, Nazarii Tupitsa, Sayantan Choudhury, Alen Aliev, Peter Richtárik, Samuel Horváth,
498 and Martin Takáč. Methods for convex (L_0, L_1) -smooth optimization: Clipping, acceleration, and
499 adaptivity. In *International Conference on Learning Representations*, 2025.500 Florian Hübler, Junchi Yang, Xiang Li, and Niao He. Parameter-agnostic optimization under relaxed
501 smoothness. In *International Conference on Artificial Intelligence and Statistics*, pp. 4861–4869.
502 PMLR, 2024.503 Anastasia Koloskova, Hadrien Hendrikx, and Sebastian U Stich. Revisiting gradient clipping:
504 Stochastic bias and tight convergence guarantees. In *International Conference on Machine
505 Learning*, pp. 17343–17363. PMLR, 2023.506 Guanghui Lan. *First-order and stochastic optimization methods for machine learning*. Springer,
507 2020.508 Haochuan Li, Jian Qian, Yi Tian, Alexander Rakhlin, and Ali Jadbabaie. Convex and non-convex
509 optimization under generalized smoothness. *Advances in Neural Information Processing Systems*,
510 36, 2024a.511 Haochuan Li, Alexander Rakhlin, and Ali Jadbabaie. Convergence of adam under relaxed assumptions.
512 *Advances in Neural Information Processing Systems*, 36, 2024b.513 Aleksandr Lobanov, Alexander Gasnikov, Eduard Gorbunov, and Martin Takáč. Linear convergence
514 rate in convex setup is possible! gradient descent method variants under (L_0, L_1) -smoothness.
515 *arXiv preprint arXiv:2412.17050*, 2024.516 Arkadij Semenovič Nemirovskij and David Borisovich Yudin. Problem complexity and method
517 efficiency in optimization. 1983.518 Yurii Nesterov. A method of solving a convex programming problem with convergence rate $o(1/k^{**})$
519 2). *Doklady Akademii Nauk SSSR*, 269(3):543, 1983.520 Yurii Nesterov. *Lectures on convex optimization*, volume 137. Springer, 2018.521 Yurii Nesterov, Alexander Gasnikov, Sergey Guminov, and Pavel Dvurechensky. Primal–dual
522 accelerated gradient methods with small-dimensional relaxation oracle. *Optimization Methods and
523 Software*, 36(4):773–810, 2021.

524 Ralph Tyrell Rockafellar. Convex analysis:(pms-28). 2015.

525 Mark Schmidt, Nicolas Le Roux, and Francis Bach. Minimizing finite sums with the stochastic
526 average gradient. *Mathematical Programming*, 162:83–112, 2017.527 Fedor Stonyakin, Alexander Tyurin, Alexander Gasnikov, Pavel Dvurechensky, Artem Agafonov,
528 Darina Dvinskikh, Mohammad Alkousa, Dmitry Pasechnyuk, Sergei Artamonov, and Victorya
529 Piskunova. Inexact model: A framework for optimization and variational inequalities. *Optimization
530 Methods and Software*, 36(6):1155–1201, 2021.

540 Yuki Takezawa, Han Bao, Ryoma Sato, Kenta Niwa, and Makoto Yamada. Polyak meets parameter-
541 free clipped gradient descent. In *Advances in Neural Information Processing Systems*, 2024.
542

543 Alexander Tyurin. Toward a unified theory of gradient descent under generalized smoothness. In
544 *International Conference on Machine Learning*, 2025.

545 Daniil Vankov, Anton Rodomanov, Angelia Nedich, Lalitha Sankar, and Sebastian U Stich. Optimiz-
546 ing (L_0, L_1) -smooth functions by gradient methods. *arXiv preprint arXiv:2410.10800*, 2024.
547

548 Bohan Wang, Huishuai Zhang, Zhiming Ma, and Wei Chen. Convergence of adagrad for non-convex
549 objectives: Simple proofs and relaxed assumptions. In *The Thirty Sixth Annual Conference on*
550 *Learning Theory*, pp. 161–190. PMLR, 2023.

551 Jingrong Wei and Long Chen. Accelerated over-relaxation heavy-ball method: Achieving global
552 accelerated convergence with broad generalization. In *The International Conference on Learning*
553 *Representations*, 2025.

554 Yan-Feng Xie, Peng Zhao, and Zhi-Hua Zhou. Gradient-variation online learning under generalized
555 smoothness. In *Advances in Neural Information Processing Systems*, 2024.
556

557 Dingzhi Yu, Wei Jiang, Yuanyu Wan, and Lijun Zhang. Mirror descent under generalized smoothness.
558 *arXiv preprint arXiv:2502.00753*, 2025.

559 Jingzhao Zhang, Tianxing He, Suvrit Sra, and Ali Jadbabaie. Why gradient clipping accelerates
560 training: A theoretical justification for adaptivity. In *International Conference on Learning*
561 *Representations*, 2020.

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594	CONTENTS	
595		
596		
597	1 Introduction	1
598	1.1 Related work	2
599	1.2 Contributions	3
600		
601		
602	2 Preliminaries	3
603		
604	3 Subquadratic and Quadratic Growth of ℓ	4
605	3.1 Example: (L_0, L_1) -smoothness	5
606	3.2 Discussion	5
607	3.3 Proof sketch	6
608		
609		
610	4 Stability with Respect to Input Parameters and Improved Rates	7
611	4.1 Example: (L_0, L_1) -smoothness	8
612	4.2 Specialization for (L_0, L_1) -smoothness	8
613	4.3 Discussion and proof sketch	8
614		
615		
616		
617	5 Superquadratic Growth of ℓ	8
618	5.1 Discussion and proof sketch	9
619		
620		
621	6 Conclusion	9
622		
623	A Experiments	13
624	A.1 Comparison with GD	13
625	A.2 Comparison with previous AGD methods	13
626	A.3 Sensitivity to the choice of \bar{R} and Γ_0	13
627	A.4 Experiments with Algorithm 1 and non-monotonic ψ	14
628		
629		
630		
631	B Auxiliary Lemmas	15
632		
633	C Rate of the Auxiliary Sequence	16
634		
635	D Main Descent Lemma	18
636		
637	E Convergence Theorems	21
638		
639	E.1 Subquadratic and Quadratic Growth of ℓ	21
640	E.2 Stability with Respect to Input Parameters and Improved Rates	23
641	E.2.1 Specialization for (L_0, L_1) -smoothness	26
642	E.3 Superquadratic Growth of ℓ	28
643	E.3.1 Example: (ρ, L_0, L_1) -smoothness	31
644		
645		
646		
647		

648
649

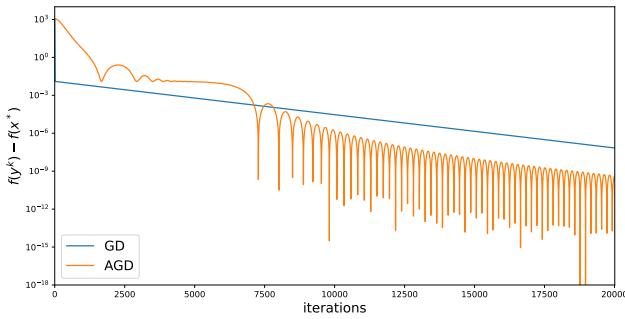
A EXPERIMENTS

650
651

A.1 COMPARISON WITH GD

652
653
654
655
656
657

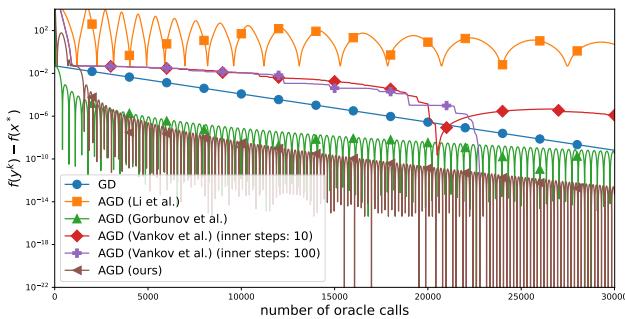
We compare GD (Tyurin, 2025) and AGD (Algorithm 2) on the function $f : \mathbb{R}^2 \rightarrow \mathbb{R}$ defined as $f(x, y) = e^x + e^{1-x} + \frac{\mu}{2}y^2$, where $\mu = 0.001$. This function is $(3.3 + \mu, 1)$ -smooth and has its minimum at $(0.5, 0)$. Starting at $x^0 = (-6, -5)$, and taking $\bar{R} = 100 \gg R$ and $\Gamma_0 = 100 \gg 2\Delta/R^2$ (large enough) in Algorithm 2, we obtain Figure 1. In this plot, we observe the distinctive accelerated convergence rate of Algorithm 2 with non-monotonic behavior, supporting our theoretical results.

658
659
660
661
662
663
664
665
666
667
668669
670
671

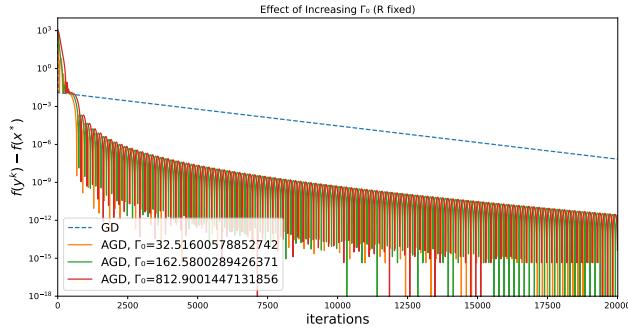
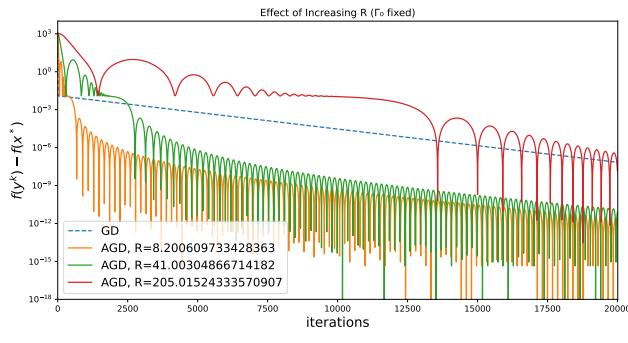
A.2 COMPARISON WITH PREVIOUS AGD METHODS

672
673
674
675
676
677
678
679
680
681
682

Using the same function and setup, we compare our Algorithm 2 with previous accelerated methods in Figure 2. For all methods, we choose parameter values according to the theorems in their respective papers. Notice that AGD by Vankov et al. (2024) requires a method that solves an auxiliary problem. To solve this problem, we use binary search with 10 and 100 steps. In Figure 2, we observe very different behaviors across the methods. AGD by Li et al. (2024a) has the slowest convergence since their method chooses a small step size. The method by Vankov et al. (2024) is very sensitive to the number of inner steps used to solve the auxiliary problem: with only inner step 10 steps, it converges slowly. At the beginning, the method by Gorbunov et al. (2025) has the fastest convergence, while our method performs better at lower accuracies.

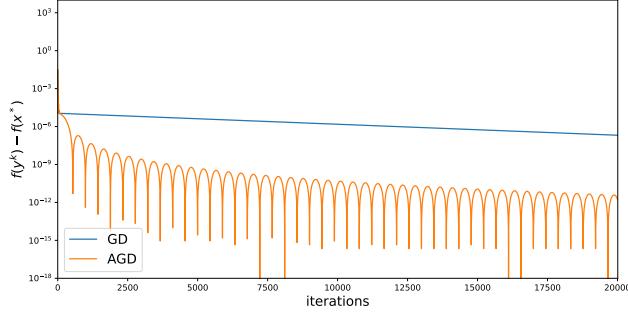
683
684
685
686
687
688
689
690
691
692
693694
695
696A.3 SENSITIVITY TO THE CHOICE OF \bar{R} AND Γ_0 697
698
699
700
701

We now also check how sensitive our algorithm is to the choice of \bar{R} and Γ_0 . In Figures 3 and 4, we fix the theoretically best values and increase them by $5\times$ and $25\times$. We observe that the algorithm is not very sensitive to the choice of Γ_0 , but more sensitive to the choice of \bar{R} , which is expected since Γ_0 is under the logarithms in (13), while \bar{R} is not.

Figure 3: Sensitivity to increasing Γ_0 by 5× and 25×.Figure 4: Sensitivity to increasing \bar{R} by 5× and 25×.

A.4 EXPERIMENTS WITH ALGORITHM 1 AND NON-MONOTONIC ψ

We now consider Algorithm 1 and the results from Section 5. We take the function $f : \mathbb{R}^2 \rightarrow \mathbb{R}$ defined as $f(x, y) = -\sqrt{x} - \sqrt{1-x} + \frac{\mu}{2}y^2$, where $\mu = 0.001$, which is $(3, 4, 10)$ -smooth. For this function, we can only use Algorithm 1 with the corresponding non-monotonic ψ . We start at $x^0 = (0.3, -0.15)$ and take $\bar{R} = R$ in Algorithm 1. Unlike Algorithm 2, we have to choose δ . We can take $M_{\bar{R}} = 4.47 \geq \max_{\|x-x^*\| \leq 2\bar{R}} \|\nabla f(x)\|$, which we estimated numerically. Then, we choose δ according to (52), where the latter choice was derived for (ρ, L_0, L_1) -smooth functions. The results are presented in Figure 5. In practice, we observe that the required number of GD steps is small, less than 10, and thus the GD iterations in Algorithm 1 are almost invisible in the plot. Similarly to Section A.1, AGD converges non-monotonically faster than GD.

Figure 5: Experiment with $-\sqrt{x} - \sqrt{1-x} + \frac{\mu}{2}y^2$ and $\mu = 0.001$

756 **B AUXILIARY LEMMAS**
757

758 In the proofs, we use the following useful lemma from (Tyurin, 2025), which generalizes the key
759 inequality from Theorem 2.1.5 of (Nesterov, 2018).

760 **Lemma B.1** (Tyurin (2025)). *For all $x, y \in \mathcal{X}$, if f is ℓ -smooth (Assumption 2.1) and convex
761 (Assumption 2.3), then*

$$763 \quad \|\nabla f(x) - \nabla f(y)\|^2 \int_0^1 \frac{1-v}{\ell(\|\nabla f(x)\| + \|\nabla f(x) - \nabla f(y)\| v)} dv \leq f(x) - f(y) - \langle \nabla f(y), x - y \rangle. \quad (15)$$

767 The following lemma ensures that it is “safe” to take steps with proper step sizes.

768 **Lemma B.2** (Tyurin (2025)). *Under Assumption 2.1, for a fixed $x \in \mathcal{X}$, the point $y = x + th \in \mathcal{X}$
769 for all $t \in \left[0, \int_0^\infty \frac{dv}{\ell(\|\nabla f(x)\| + v)}\right)$ and $h \in \mathbb{R}^d$ such that $\|h\| = 1$.*

772 We now prove two important lemmas that allow us to bound the norm $\|\nabla f(y)\|$ given an upper bound
773 on $f(y) - f(x^*)$.

774 **Lemma B.3.** [Strictly Increasing ψ] *Under Assumptions 2.1 and 2.3, let $f(y) - f(x^*) \leq \delta$ for
775 some $y \in \mathcal{X}, \delta > 0$ and $\psi : \mathbb{R}_+ \rightarrow \mathbb{R}_+$ such that $\psi(x) = \frac{x^2}{2\ell(4x)}$ is strictly increasing, then
776 $\|\nabla f(y)\| \leq \psi^{-1}(\delta)$ if $\delta \in \text{im}(\psi)$.*

778 *Proof.* Using Lemma B.1 and the fact that ℓ is non-decreasing,

$$780 \quad \delta \geq f(y) - f(x^*) \geq \|\nabla f(y)\|^2 \int_0^1 \frac{1-v}{\ell(\|\nabla f(y)\| + \|\nabla f(y)\| v)} dv \\ 781 \\ 782 \\ 783 \\ 784 \quad \geq \frac{\|\nabla f(y)\|^2}{2\ell(4\|\nabla f(y)\|)} = \psi(\|\nabla f(y)\|).$$

785 It left to invert ψ to get the result. □

787 **Lemma B.4.** [Not Necessarily Strictly Increasing ψ] *Under Assumptions 2.1 and 2.3, let $\psi : \mathbb{R}_+ \rightarrow$
788 \mathbb{R}_+ such that $\psi(x) = \frac{x^2}{2\ell(4x)}$ is not necessarily strictly increasing.*

- 790 1. *There exists the largest $\Delta_{\max} \in (0, \infty]$ such that ψ is strictly increasing on $[0, \Delta_{\max}]$,*
- 792 2. *For all $\delta \in [0, \psi(\Delta_{\max})]$, there exists the unique $\Delta_{\text{left}}(\delta) \in [0, \Delta_{\max}]$ and the smallest⁵
793 $\Delta_{\text{right}}(\delta) \in [\Delta_{\max}, \infty]$ such that $\psi(\Delta_{\text{left}}(\delta)) = \delta$ and $\psi(\Delta_{\text{right}}(\delta)) = \delta$.*
- 794 3. *For all $\delta \in [0, \psi(\Delta_{\max})]$, if $\Delta_{\text{right}}(\delta) < \infty$ and $\delta > \bar{\delta} \geq 0$, then $\Delta_{\text{right}}(\bar{\delta}) > \Delta_{\text{right}}(\delta)$.*
- 796 4. *If $f(y) - f(x^*) \leq \delta$ for some $y \in \mathcal{X}$ and $\delta \in [0, \psi(\Delta_{\max})]$, then either $\|\nabla f(y)\| \leq \Delta_{\text{left}}(\delta)$
797 or $\|\nabla f(y)\| \geq \Delta_{\text{right}}(\delta)$.*

799 *Proof.* 1. Since ℓ is non-decreasing and locally Lipschitz, there exists $\bar{\Delta}_1 > 0$ such that

$$801 \quad 2\ell(4y) - 2\ell(4x) \leq M(y - x)$$

803 for all $0 \leq x < y \leq \bar{\Delta}_1$ and for some $M \equiv M(\bar{\Delta}_1, \ell) > 0$. Thus,

$$804 \quad x^2 2\ell(4y) \leq x^2 2\ell(4x) + Mx^2(y - x). \quad (16)$$

806 Moreover, there exists $\bar{\Delta}_2 > 0$ such that

$$808 \quad Mx^2 < (y + x)2\ell(4x)$$

809 ⁵if the set $\{x \in [\Delta_{\max}, \infty) : \psi(x) = \delta\}$ is empty, then $\Delta_{\text{right}}(\delta) = \infty$

810 for all $0 \leq x < y \leq \bar{\Delta}_2$ since $2\ell(4x) \geq \ell(0) > 0$, the l.h.s $\mathcal{O}(x^2)$, and the r.h.s. $\Omega(x)$. Combining
 811 with (16),
 812

$$813 \quad x^2 2\ell(4y) < x^2 2\ell(4x) + 2\ell(4x)(y+x)(y-x) = y^2 2\ell(4x)$$

814 and
 815

$$816 \quad \frac{x^2}{2\ell(4x)} < \frac{y^2}{2\ell(4y)}$$

817 for all $0 \leq x < y \leq \min\{\bar{\Delta}_1, \bar{\Delta}_2\}$, meaning that ψ is locally strictly increasing on the interval
 818 $[0, \Delta_{\max}]$ for some largest $\Delta_{\max} \in (0, \infty]$.
 819

820 2. $\Delta_{\text{left}}(\delta)$ exists since ψ is locally strictly increasing on the interval $[0, \Delta_{\max}]$. On the interval
 821 $[\Delta_{\max}, \infty)$, either ψ intersects δ for the first time at $\Delta_{\text{right}}(\delta)$ or we can take $\Delta_{\text{right}}(\delta) = \infty$.
 822

823 3. Since $\Delta_{\text{right}}(\delta)$ is the first time when ψ intersects δ for $x \in [\Delta_{\max}, \infty)$ and $\delta < \psi(\Delta_{\max})$, then
 824 $\psi(x) > \delta$ for all $x \in [\Delta_{\max}, \Delta_{\text{right}}(\delta))$. Thus, if we decrease δ and take $\bar{\delta} < \delta$, then $\Delta_{\text{right}}(\bar{\delta})$ can
 825 only increase or stay the same. However, if $\Delta_{\text{right}}(\bar{\delta})$ stays the same, i.e., $\Delta_{\text{right}}(\bar{\delta}) = \Delta_{\text{right}}(\delta)$, then
 826 $\Delta_{\text{right}}(\bar{\delta})$ is the first time when ψ intersects δ , which is impossible due to the continuity of ψ and the
 827 fact that $\Delta_{\text{right}}(\bar{\delta})$ is the first time when ψ intersects $\bar{\delta} < \delta$.
 828

829 4. Using the same reasoning as in the proof of Lemma B.3:

$$830 \quad \delta \geq \psi(\|\nabla f(y)\|). \quad (17)$$

831 Due to the previous properties, either $\|\nabla f(y)\| \leq \Delta_{\text{left}}(\delta)$ or $\|\nabla f(y)\| \geq \Delta_{\text{right}}(\delta)$ because $\psi(x) >$
 832 δ for all $x \in (\Delta_{\text{left}}(\delta), \Delta_{\text{right}}(\delta))$. \square
 833

834 C RATE OF THE AUXILIARY SEQUENCE

835 **Theorem 3.1.** For any $\Gamma_0 > 0$ and $\gamma \geq 0$, let $\alpha_k \geq \sqrt{\gamma\Gamma_k}$ and $\Gamma_{k+1} = \Gamma_k/(1 + \alpha_k)$ for all $k \geq 0$.
 836 Then, $\Gamma_{k+1} \leq \frac{9}{\gamma(k+1-\bar{k})^2}$ for all $k \geq \bar{k} := \max\left\{1 + \frac{1}{2}\log_{3/2}\left(\frac{\gamma\Gamma_0}{4}\right), 0\right\}$.
 837

838 *Proof.* By the definition of Γ_{k+1} and α_k ,

$$839 \quad \Gamma_{k+1} \leq \frac{\Gamma_k}{1 + \sqrt{\gamma\Gamma_k}}$$

840 for all $k \geq 0$. Instead of Γ_k , consider the sequence $\bar{\Gamma}_k$ such that
 841

$$842 \quad \bar{\Gamma}_{k+1} = \frac{\bar{\Gamma}_k}{1 + \sqrt{\gamma\bar{\Gamma}_k}}$$

843 for all $k \geq 0$ and $\bar{\Gamma}_0 = \Gamma_0$. Using mathematical induction, notice that $\bar{\Gamma}_{k+1} \geq \Gamma_{k+1}$. Indeed, the
 844 function $\frac{x}{1+\sqrt{\gamma x}}$ is increasing⁶ for all $x \geq 0$ and
 845

$$846 \quad \Gamma_{k+1} \leq \frac{\Gamma_k}{1 + \sqrt{\gamma\Gamma_k}} \leq \frac{\bar{\Gamma}_k}{1 + \sqrt{\gamma\bar{\Gamma}_k}} = \bar{\Gamma}_{k+1}$$

847 if $\Gamma_k \leq \bar{\Gamma}_k$. If we bound $\bar{\Gamma}_{k+1}$, then we can bound Γ_{k+1} . Next,
 848

$$849 \quad \frac{1}{\bar{\Gamma}_{k+1}} - \frac{1}{\bar{\Gamma}_k} = \sqrt{\frac{\gamma}{\bar{\Gamma}_k}}$$

850 Let us define $t_k := \frac{1}{\bar{\Gamma}_k}$ for all $k \geq 0$, then
 851

$$852 \quad t_{k+1} - t_k = \sqrt{\gamma t_k}. \quad (18)$$

853 ⁶ $(\frac{x}{1+\sqrt{\gamma x}})' = \frac{1+\frac{\sqrt{\gamma x}}{2}}{(1+\sqrt{\gamma x})^2} > 0$ for all $x \geq 0$.

864 and

$$(t_{k+1}^{1/2} + t_k^{1/2})(t_{k+1}^{1/2} - t_k^{1/2}) = \sqrt{\gamma t_k} \quad (19)$$

867 for all $k \geq 0$. We now fix any $k \geq 0$. There are two options:

868 **Option 1:** $t_k^{1/2} \leq \frac{\sqrt{\gamma}}{2}$.

869 In this case, using (18),

$$t_{k+1} = t_k + \sqrt{\gamma t_k} \leq \frac{\gamma}{4} + \frac{\gamma}{2} = \frac{3\gamma}{4}$$

870 and

$$2\sqrt{\gamma}(t_{k+1}^{1/2} - t_k^{1/2}) \geq \sqrt{\gamma t_k}$$

871 due to (19). Rearranging the terms,

$$t_{k+1}^{1/2} \geq \frac{3}{2}t_k^{1/2} \geq \left(\frac{3}{2}\right)^{k+1} t_0^{1/2}, \quad (20)$$

872 where we unroll the recursion since $t_0^{1/2} \leq \dots \leq t_k^{1/2} \leq \frac{\sqrt{\gamma}}{2}$.

873 **Option 2:** $t_k^{1/2} > \frac{\sqrt{\gamma}}{2}$.

874 Using (18),

$$t_{k+1} = t_k + \sqrt{\gamma t_k} \leq t_k + 2t_k \leq 3t_k$$

875 and

$$3t_k^{1/2}(t_{k+1}^{1/2} - t_k^{1/2}) \geq \sqrt{\gamma t_k}$$

876 due to (19), which yields

$$t_{k+1}^{1/2} \geq t_k^{1/2} + \frac{\sqrt{\gamma}}{3}. \quad (21)$$

877 Let $k^* \geq 0$ be the smallest index such that $t_{k^*}^{1/2} > \frac{\sqrt{\gamma}}{2}$. Unrolling (21),

$$t_{k+1}^{1/2} \geq t_{k^*}^{1/2} + (k+1-k^*)\frac{\sqrt{\gamma}}{3} \quad (22)$$

878 for all $k \geq k^*$. If $k^* = 0$, then

$$t_{k+1}^{1/2} \geq (k+1)\frac{\sqrt{\gamma}}{3}. \quad (23)$$

879 Otherwise, by the definition of k^* ,

$$\left(\frac{3}{2}\right)^{k^*-1} t_0^{1/2} \stackrel{(20)}{\leq} t_{k^*-1}^{1/2} \leq \frac{\sqrt{\gamma}}{2},$$

880 which yields

$$k^* \leq 1 + \frac{1}{2} \log_{3/2} \left(\frac{\gamma}{4t_0} \right)$$

881 and

$$t_{k+1}^{1/2} \geq \left(k+1 - \left(1 + \frac{1}{2} \log_{3/2} \left(\frac{\gamma}{4t_0} \right) \right) \right) \frac{\sqrt{\gamma}}{3}, \quad (24)$$

882 due to (22). Combining the cases with $k^* = 0$ and $k^* > 0$, we get

$$t_{k+1}^{1/2} \geq (k+1-\bar{k}) \frac{\sqrt{\gamma}}{3} \quad (25)$$

883 for all $k \geq \bar{k} := \max \left\{ 1 + \frac{1}{2} \log_{3/2} \left(\frac{\gamma}{4t_0} \right), 0 \right\}$. It left to recall that $t_k = 1/\bar{\Gamma}_k$ and $\bar{\Gamma}_k \geq \Gamma_k$ for all

884 $k \geq 0$ to obtain the result.

885 \square

918 **D MAIN DESCENT LEMMA**
919

920 **Lemma D.1.** Suppose that Assumptions 2.1 and 2.3 hold. Consider Algorithm 1 up to the k^{th} iteration
921 and the following virtual steps:

$$\begin{aligned}
923 \quad \alpha_k(\gamma) &\equiv \alpha_{k,\gamma} = \sqrt{\gamma \Gamma_k}, \\
924 \quad y^{k+1}(\gamma) &\equiv y_\gamma^{k+1} = \frac{1}{1 + \alpha_{k,\gamma}} y^k + \frac{\alpha_{k,\gamma}}{1 + \alpha_{k,\gamma}} u^k - \frac{\gamma}{1 + \alpha_{k,\gamma}} \nabla f(y^k), \\
925 \quad u^{k+1}(\gamma) &\equiv u_\gamma^{k+1} = \text{Proj}_{\bar{\mathcal{X}}} \left(u^k - \frac{\alpha_{k,\gamma}}{\Gamma_k} \nabla f(y_\gamma^{k+1}) \right), \\
926 \quad \Gamma_{k+1}(\gamma) &\equiv \Gamma_{k+1,\gamma} = \Gamma_k / (1 + \alpha_{k,\gamma}),
\end{aligned} \tag{26}$$

927 where $0 \leq \gamma \leq \frac{1}{\ell(2\|\nabla f(y^k)\|)}$ is a free parameter, $y^k \in \mathcal{X}$, and $u^k \in \bar{\mathcal{X}}$. Then, the steps (26) are
928 well-defined, $y_\gamma^{k+1} \in \mathcal{X}$, and $u_\gamma^{k+1} \in \bar{\mathcal{X}}$, and

$$\begin{aligned}
929 \quad (1 + \alpha_{k,\gamma})(f(y_\gamma^{k+1}) - f(x^*)) + \frac{(1 + \alpha_{k,\gamma})\Gamma_{k+1,\gamma}}{2} \|u_\gamma^{k+1} - x^*\|^2 - \left((f(y^k) - f(x^*)) + \frac{\Gamma_k}{2} \|u^k - x^*\|^2 \right) \\
930 \quad \leq \frac{1}{2} \left(\gamma - \frac{1}{\ell(2\|\nabla f(y^k)\| + \|\nabla f(y_\gamma^{k+1})\|)} \right) \|\nabla f(y_\gamma^{k+1}) - \nabla f(y^k)\|^2.
\end{aligned}$$

931 *Proof.* (The following steps up to (27) may be skipped by the reader if $\mathcal{X} = \mathbb{R}^n$)
932 Clearly, $u_\gamma^{k+1} \in \bar{\mathcal{X}}$ due to the projection operator. However, we have to check that $y_\gamma^{k+1} \in \mathcal{X}$ to make
933 sure the steps are well-defined. Notice that

$$934 \quad y_\gamma^{k+1} = \frac{1}{1 + \alpha_{k,\gamma}} (y^k - \gamma \nabla f(y^k)) + \frac{\alpha_{k,\gamma}}{1 + \alpha_{k,\gamma}} u^k$$

935 Moreover, $y^k - \gamma \nabla f(y^k) \in \mathcal{X}$. If $\nabla f(y^k) = 0$, then it is trivial. Otherwise,

$$936 \quad y^k - \gamma \nabla f(y^k) = y^k - \gamma \|\nabla f(y^k)\| \frac{\nabla f(y^k)}{\|\nabla f(y^k)\|} \in \mathcal{X}$$

937 due to Lemma B.2 because

$$938 \quad \gamma \|\nabla f(y^k)\| \leq \frac{\|\nabla f(y^k)\|}{\ell(2\|\nabla f(y^k)\|)} \leq \int_0^\infty \frac{dv}{\ell(\|\nabla f(y^k)\| + v)}.$$

939 for all $\gamma \leq \frac{1}{\ell(2\|\nabla f(y^k)\|)}$. In total, $y_\gamma^{k+1} \in \mathcal{X}$ since \mathcal{X} is an open convex set, $u^k \in \bar{\mathcal{X}}$, and $\frac{1}{1 + \alpha_{k,\gamma}} \neq 0$
940 (as it is a convex combination of a point from \mathcal{X} and a point from $\bar{\mathcal{X}}$ with a non-zero weight; see
941 (Rockafellar, 2015)[Theorem 6.1]).

942 Consider the difference

$$943 \quad f(y_\gamma^{k+1}) - f(x^*) + \frac{\Gamma_{k+1,\gamma}}{2} \|u_\gamma^{k+1} - x^*\|^2 - \left((f(y^k) - f(x^*)) + \frac{\Gamma_k}{2} \|u^k - x^*\|^2 \right). \tag{27}$$

944 Rearranging the terms, we get

$$\begin{aligned}
945 \quad &f(y_\gamma^{k+1}) - f(x^*) + \frac{\Gamma_{k+1,\gamma}}{2} \|u_\gamma^{k+1} - x^*\|^2 - \left((f(y^k) - f(x^*)) + \frac{\Gamma_k}{2} \|u^k - x^*\|^2 \right) \\
946 \quad &= -(f(y^k) - f(y_\gamma^{k+1})) - \langle \nabla f(y_\gamma^{k+1}), y^k - y_\gamma^{k+1} \rangle \\
947 \quad &\quad + \langle \nabla f(y_\gamma^{k+1}), y_\gamma^{k+1} - y^k \rangle \\
948 \quad &\quad + \frac{\Gamma_{k+1,\gamma} - \Gamma_k}{2} \|u_\gamma^{k+1} - x^*\|^2 + \frac{\Gamma_k}{2} (\|u_\gamma^{k+1} - x^*\|^2 - \|u^k - x^*\|^2).
\end{aligned}$$

949 Since $\Gamma_k = (1 + \alpha_{k,\gamma})\Gamma_{k+1,\gamma}$,

$$950 \quad f(y_\gamma^{k+1}) - f(x^*) + \frac{(1 + \alpha_{k,\gamma})\Gamma_{k+1,\gamma}}{2} \|u_\gamma^{k+1} - x^*\|^2 - \left((f(y^k) - f(x^*)) + \frac{\Gamma_k}{2} \|u^k - x^*\|^2 \right)$$

$$\begin{aligned}
&= -(f(y^k) - f(y_\gamma^{k+1}) - \langle \nabla f(y_\gamma^{k+1}), y^k - y_\gamma^{k+1} \rangle) \\
&\quad + \langle \nabla f(y_\gamma^{k+1}), y_\gamma^{k+1} - y^k \rangle \\
&\quad + \frac{\Gamma_k}{2} \left(\|u_\gamma^{k+1} - x^*\|^2 - \|u^k - x^*\|^2 \right).
\end{aligned}$$

Due to $\|a\|^2 - \|a + b\|^2 = -\|b\|^2 - 2\langle a, b \rangle$ for all $a, b \in \mathbb{R}^d$,

$$\begin{aligned}
&f(y_\gamma^{k+1}) - f(x^*) + \frac{(1 + \alpha_{k,\gamma})\Gamma_{k+1,\gamma}}{2} \|u_\gamma^{k+1} - x^*\|^2 - \left((f(y^k) - f(x^*)) + \frac{\Gamma_k}{2} \|u^k - x^*\|^2 \right) \\
&= -(f(y^k) - f(y_\gamma^{k+1}) - \langle \nabla f(y_\gamma^{k+1}), y^k - y_\gamma^{k+1} \rangle) \\
&\quad + \langle \nabla f(y_\gamma^{k+1}), y_\gamma^{k+1} - y^k \rangle \\
&\quad + \frac{\Gamma_k}{2} \left(-\|u^k - u_\gamma^{k+1}\|^2 - 2\langle u_\gamma^{k+1} - x^*, u^k - u_\gamma^{k+1} \rangle \right).
\end{aligned} \tag{28}$$

Consider the last inner product:

$$\begin{aligned}
&- \langle u_\gamma^{k+1} - x^*, u^k - u_\gamma^{k+1} \rangle \\
&= \left\langle u_\gamma^{k+1} - x^*, \left(u^k - \frac{\alpha_{k,\gamma}}{\Gamma_k} \nabla f(y_\gamma^{k+1}) \right) - u^k \right\rangle + \left\langle u_\gamma^{k+1} - x^*, u_\gamma^{k+1} - \left(u^k - \frac{\alpha_{k,\gamma}}{\Gamma_k} \nabla f(y_\gamma^{k+1}) \right) \right\rangle.
\end{aligned}$$

Using $u_\gamma^{k+1} = \text{Proj}_{\bar{\mathcal{X}}} \left(u^k - \frac{\alpha_{k,\gamma}}{\Gamma_k} \nabla f(y_\gamma^{k+1}) \right)$ and the projection property $\langle \text{Proj}_{\bar{\mathcal{X}}}(y) - x, \text{Proj}_{\bar{\mathcal{X}}}(y) - y \rangle \leq 0$ for all $y \in \mathbb{R}^d, x \in \bar{\mathcal{X}}$, we have

$$-\langle u_\gamma^{k+1} - x^*, u^k - u_\gamma^{k+1} \rangle \leq \left\langle u_\gamma^{k+1} - x^*, \left(u^k - \frac{\alpha_{k,\gamma}}{\Gamma_k} \nabla f(y_\gamma^{k+1}) \right) - u^k \right\rangle = -\left\langle u_\gamma^{k+1} - x^*, \frac{\alpha_{k,\gamma}}{\Gamma_k} \nabla f(y_\gamma^{k+1}) \right\rangle.$$

Substituting to (28),

$$\begin{aligned}
&f(y_\gamma^{k+1}) - f(x^*) + \frac{(1 + \alpha_{k,\gamma})\Gamma_{k+1,\gamma}}{2} \|u_\gamma^{k+1} - x^*\|^2 - \left((f(y^k) - f(x^*)) + \frac{\Gamma_k}{2} \|u^k - x^*\|^2 \right) \\
&= -(f(y^k) - f(y_\gamma^{k+1}) - \langle \nabla f(y_\gamma^{k+1}), y^k - y_\gamma^{k+1} \rangle) \\
&\quad + \langle \nabla f(y_\gamma^{k+1}), y_\gamma^{k+1} - y^k \rangle \\
&\quad + \frac{\Gamma_k}{2} \left(-\|u^k - u_\gamma^{k+1}\|^2 - 2\left\langle u_\gamma^{k+1} - x^*, \frac{\alpha_{k,\gamma}}{\Gamma_k} \nabla f(y_\gamma^{k+1}) \right\rangle \right) \\
&= -(f(y^k) - f(y_\gamma^{k+1}) - \langle \nabla f(y_\gamma^{k+1}), y^k - y_\gamma^{k+1} \rangle) \\
&\quad + \langle \nabla f(y_\gamma^{k+1}), y_\gamma^{k+1} - y^k \rangle \\
&\quad - \frac{\Gamma_k}{2} \|u^k - u_\gamma^{k+1}\|^2 \\
&\quad - \alpha_{k,\gamma} \langle u_\gamma^{k+1} - x^*, \nabla f(y_\gamma^{k+1}) \rangle \\
&= -(f(y^k) - f(y_\gamma^{k+1}) - \langle \nabla f(y_\gamma^{k+1}), y^k - y_\gamma^{k+1} \rangle) \\
&\quad + \langle \nabla f(y_\gamma^{k+1}), y_\gamma^{k+1} - y^k - \alpha_{k,\gamma}(u_\gamma^{k+1} - y_\gamma^{k+1}) \rangle \\
&\quad - \frac{\Gamma_k}{2} \|u^k - u_\gamma^{k+1}\|^2 \\
&\quad - \alpha_{k,\gamma} \langle y_\gamma^{k+1} - x^*, \nabla f(y_\gamma^{k+1}) \rangle.
\end{aligned}$$

In the last two equalities, we rearranged terms. Using the convexity of f , we have $-(f(y_\gamma^{k+1}) - f(x^*)) \geq -\langle \nabla f(y_\gamma^{k+1}), y_\gamma^{k+1} - x^* \rangle$ and

$$\begin{aligned}
&(1 + \alpha_{k,\gamma})(f(y_\gamma^{k+1}) - f(x^*)) + \frac{(1 + \alpha_{k,\gamma})\Gamma_{k+1,\gamma}}{2} \|u_\gamma^{k+1} - x^*\|^2 - \left((f(y^k) - f(x^*)) + \frac{\Gamma_k}{2} \|u^k - x^*\|^2 \right) \\
&\leq -(f(y^k) - f(y_\gamma^{k+1}) - \langle \nabla f(y_\gamma^{k+1}), y^k - y_\gamma^{k+1} \rangle) \\
&\quad + \langle \nabla f(y_\gamma^{k+1}), y_\gamma^{k+1} - y^k - \alpha_{k,\gamma}(u_\gamma^{k+1} - y_\gamma^{k+1}) \rangle
\end{aligned}$$

$$\begin{aligned}
& -\frac{\Gamma_k}{2} \|u^k - u_\gamma^{k+1}\|^2 \\
& = -(f(y^k) - f(y_\gamma^{k+1}) - \langle \nabla f(y_\gamma^{k+1}), y^k - y_\gamma^{k+1} \rangle) \\
& \quad + \langle \nabla f(y_\gamma^{k+1}), (1 + \alpha_{k,\gamma})y_\gamma^{k+1} - y^k - \alpha_{k,\gamma}u_\gamma^{k+1} \rangle \\
& \quad - \frac{\Gamma_k}{2} \|u^k - u_\gamma^{k+1}\|^2.
\end{aligned}$$

In the last equality, we rearranged terms. Recall that

$$(1 + \alpha_{k,\gamma})y_\gamma^{k+1} - y^k = \alpha_{k,\gamma}u^k - \gamma \nabla f(y^k).$$

Thus,

$$\begin{aligned}
& (1 + \alpha_{k,\gamma})(f(y_\gamma^{k+1}) - f(x^*)) + \frac{(1 + \alpha_{k,\gamma})\Gamma_{k+1,\gamma}}{2} \|u_\gamma^{k+1} - x^*\|^2 - \left((f(y^k) - f(x^*)) + \frac{\Gamma_k}{2} \|u^k - x^*\|^2 \right) \\
& \leq -(f(y^k) - f(y_\gamma^{k+1}) - \langle \nabla f(y_\gamma^{k+1}), y^k - y_\gamma^{k+1} \rangle) \\
& \quad + \alpha_{k,\gamma} \langle \nabla f(y_\gamma^{k+1}), u^k - u_\gamma^{k+1} \rangle - \gamma \langle \nabla f(y_\gamma^{k+1}), \nabla f(y^k) \rangle \\
& \quad - \frac{\Gamma_k}{2} \|u^k - u_\gamma^{k+1}\|^2 \\
& = -(f(y^k) - f(y_\gamma^{k+1}) - \langle \nabla f(y_\gamma^{k+1}), y^k - y_\gamma^{k+1} \rangle) \\
& \quad + \alpha_{k,\gamma} \langle \nabla f(y_\gamma^{k+1}), u^k - u_\gamma^{k+1} \rangle \\
& \quad - \frac{\gamma}{2} \|\nabla f(y_\gamma^{k+1})\|^2 - \frac{\gamma}{2} \|\nabla f(y^k)\|^2 + \frac{\gamma}{2} \|\nabla f(y_\gamma^{k+1}) - \nabla f(y^k)\|^2 \\
& \quad - \frac{\Gamma_k}{2} \|u^k - u_\gamma^{k+1}\|^2,
\end{aligned}$$

where we use $-\langle a, b \rangle = \frac{1}{2} \|a - b\|^2 - \frac{1}{2} \|a\|^2 - \frac{1}{2} \|b\|^2$ for all $a, b \in \mathbb{R}^d$. Using Young's inequality,

$$\begin{aligned}
& (1 + \alpha_{k,\gamma})(f(y_\gamma^{k+1}) - f(x^*)) + \frac{(1 + \alpha_{k,\gamma})\Gamma_{k+1,\gamma}}{2} \|u_\gamma^{k+1} - x^*\|^2 - \left((f(y^k) - f(x^*)) + \frac{\Gamma_k}{2} \|u^k - x^*\|^2 \right) \\
& \leq -(f(y^k) - f(y_\gamma^{k+1}) - \langle \nabla f(y_\gamma^{k+1}), y^k - y_\gamma^{k+1} \rangle) \\
& \quad + \frac{\gamma}{2} \|\nabla f(y_\gamma^{k+1})\|^2 + \frac{\alpha_{k,\gamma}^2}{2\gamma} \|u^k - u_\gamma^{k+1}\|^2 \\
& \quad - \frac{\gamma}{2} \|\nabla f(y_\gamma^{k+1})\|^2 - \frac{\gamma}{2} \|\nabla f(y^k)\|^2 + \frac{\gamma}{2} \|\nabla f(y_\gamma^{k+1}) - \nabla f(y^k)\|^2 \\
& \quad - \frac{\Gamma_k}{2} \|u^k - u_\gamma^{k+1}\|^2 \\
& = -(f(y^k) - f(y_\gamma^{k+1}) - \langle \nabla f(y_\gamma^{k+1}), y^k - y_\gamma^{k+1} \rangle) \\
& \quad + \frac{\alpha_{k,\gamma}^2}{2\gamma} \|u^k - u_\gamma^{k+1}\|^2 - \frac{\Gamma_k}{2} \|u^k - u_\gamma^{k+1}\|^2 \\
& \quad - \frac{\gamma}{2} \|\nabla f(y^k)\|^2 + \frac{\gamma}{2} \|\nabla f(y_\gamma^{k+1}) - \nabla f(y^k)\|^2,
\end{aligned}$$

where the terms $\frac{\gamma}{2} \|\nabla f(y_\gamma^{k+1})\|^2$ are cancelled out. Since $\alpha_{k,\gamma} = \sqrt{\gamma\Gamma_k}$, the terms with $\|u^k - u_\gamma^{k+1}\|$ are also cancelled out and

$$\begin{aligned}
& (1 + \alpha_{k,\gamma})(f(y_\gamma^{k+1}) - f(x^*)) + \frac{(1 + \alpha_{k,\gamma})\Gamma_{k+1,\gamma}}{2} \|u_\gamma^{k+1} - x^*\|^2 - \left((f(y^k) - f(x^*)) + \frac{\Gamma_k}{2} \|u^k - x^*\|^2 \right) \\
& \leq -(f(y^k) - f(y_\gamma^{k+1}) - \langle \nabla f(y_\gamma^{k+1}), y^k - y_\gamma^{k+1} \rangle) \\
& \quad - \frac{\gamma}{2} \|\nabla f(y^k)\|^2 + \frac{\gamma}{2} \|\nabla f(y_\gamma^{k+1}) - \nabla f(y^k)\|^2 \\
& \leq -(f(y^k) - f(y_\gamma^{k+1}) - \langle \nabla f(y_\gamma^{k+1}), y^k - y_\gamma^{k+1} \rangle) + \frac{\gamma}{2} \|\nabla f(y_\gamma^{k+1}) - \nabla f(y^k)\|^2,
\end{aligned} \tag{29}$$

where the last inequality due to $\frac{\gamma}{2} \|\nabla f(y^k)\|^2 \geq 0$. Using Lemma B.1, we get

$$f(y^k) - f(y_\gamma^{k+1}) - \langle \nabla f(y_\gamma^{k+1}), y^k - y_\gamma^{k+1} \rangle$$

$$\begin{aligned}
&\geq \|\nabla f(y^k) - \nabla f(y_\gamma^{k+1})\|^2 \int_0^1 \frac{1-v}{\ell(\|\nabla f(y^k)\| + \|\nabla f(y^k) - \nabla f(y_\gamma^{k+1})\| v)} dv \\
&\geq \|\nabla f(y^k) - \nabla f(y_\gamma^{k+1})\|^2 \frac{1}{2\ell(\|\nabla f(y^k)\| + \|\nabla f(y^k) - \nabla f(y_\gamma^{k+1})\|)},
\end{aligned}$$

where we use that ℓ is non-decreasing and bounded the term in the denominator by the maximum possible value with $v = 1$. Using triangle's inequality,

$$f(y^k) - f(y_\gamma^{k+1}) - \langle \nabla f(y_\gamma^{k+1}), y^k - y_\gamma^{k+1} \rangle \geq \|\nabla f(y^k) - \nabla f(y_\gamma^{k+1})\|^2 \frac{1}{2\ell(2\|\nabla f(y^k)\| + \|\nabla f(y_\gamma^{k+1})\|)},$$

Substituting to (29),

$$\begin{aligned}
&(1 + \alpha_{k,\gamma})(f(y_\gamma^{k+1}) - f(x^*)) + \frac{(1 + \alpha_{k,\gamma})\Gamma_{k+1,\gamma}}{2} \|u_\gamma^{k+1} - x^*\|^2 - \left((f(y^k) - f(x^*)) + \frac{\Gamma_k}{2} \|u^k - x^*\|^2 \right) \\
&\leq \frac{1}{2} \left(\gamma - \frac{1}{\ell(2\|\nabla f(y^k)\| + \|\nabla f(y_\gamma^{k+1})\|)} \right) \|\nabla f(y_\gamma^{k+1}) - \nabla f(y^k)\|^2.
\end{aligned}$$

□

E CONVERGENCE THEOREMS

E.1 SUBQUADRATIC AND QUADRATIC GROWTH OF ℓ

Lemma E.1. *Under Assumptions 2.1 and 2.3, let $\psi : \mathbb{R}_+ \rightarrow \mathbb{R}_+$ such that $\psi(x) = \frac{x^2}{2\ell(4x)}$ is strictly increasing, $f(y) - f(x^*) \leq \delta$ for some $y \in \mathcal{X}$, and any $\delta \in (0, \infty]$ such that $\ell(8\sqrt{\delta\ell(0)}) \leq 2\ell(0)$, then $\ell(4\|\nabla f(y)\|) \leq 2\ell(0)$.*

Proof. With this choice of δ , we get

$$\ell(4\|\nabla f(y)\|) \leq 2\ell(0)$$

because, due to $f(y) - f(x^*) \leq \delta$ and Lemma B.3,

$$\ell(4\|\nabla f(y^0)\|) \leq \ell(4\psi^{-1}(\delta))$$

and

$$\begin{aligned}
\ell(4\psi^{-1}(\delta)) \leq 2\ell(0) &\Leftrightarrow \frac{(\psi^{-1}(\delta))^2}{4\ell(0)} \leq \frac{(\psi^{-1}(\delta))^2}{2\ell(4\psi^{-1}(\delta))} \stackrel{\psi(\psi^{-1}(\delta))=\delta}{\Leftrightarrow} \frac{(\psi^{-1}(\delta))^2}{4\ell(0)} \leq \delta \Leftrightarrow \psi^{-1}(\delta) \leq 2\sqrt{\delta\ell(0)} \\
&\Leftrightarrow \delta \leq \psi(2\sqrt{\delta\ell(0)}) \Leftrightarrow \delta \leq \frac{2\delta\ell(0)}{\ell(8\sqrt{\delta\ell(0)})} \Leftrightarrow \ell(8\sqrt{\delta\ell(0)}) \leq 2\ell(0).
\end{aligned} \tag{30}$$

□

Theorem 3.2. *Suppose that Assumptions 2.1 and 2.3 hold. Let $\psi : \mathbb{R}_+ \rightarrow \mathbb{R}_+$ such that $\psi(x) = \frac{x^2}{2\ell(4x)}$ be strictly increasing. Then Algorithm 1 guarantees that*

$$f(y^{k+1}) - f(x^*) \leq \Gamma_{k+1}\bar{R}^2 \leq \frac{18\ell(0)\bar{R}^2}{(k+1-\bar{k})^2} \tag{4}$$

for all $k \geq \bar{k} := \max \left\{ 1 + \frac{1}{2} \log_{3/2} \left(\frac{\Gamma_0}{8\ell(0)} \right), 0 \right\}$ with any $\delta \in (0, \infty]$ such that $\ell(8\sqrt{\delta\ell(0)}) \leq 2\ell(0)$ and any $\bar{R} \geq R := \|x^0 - x^*\|$.

1134 *Proof.* In our proof, we define the Lyapunov function $V_k := f(y^k) - f(x^*) + \frac{\Gamma_k}{2} \|u^k - x^*\|^2$.
 1135 After running GD, we get $\ell(4 \|\nabla f(y^0)\|) \leq 2\ell(0)$ due to Lemma E.1 and the choice of δ . Trivially,
 1136 $V_0 \leq V_0$. Due to $f(y^0) - f(x^*) \leq \frac{\delta}{2}$ in Alg. 1 and $\|y^0 - x^*\| \leq \|x^0 - x^*\|$ (GD is monotonic;
 1137 (Tyurin, 2025)[Lemma I.2]),

$$\begin{aligned} V_0 &= f(y^0) - f(x^*) + \frac{\Gamma_0}{2} \|y^0 - x^*\|^2 \leq \frac{\delta}{2} + \frac{\Gamma_0}{2} \|y^0 - x^*\|^2 \\ &\leq \frac{\delta}{2} + \frac{\Gamma_0}{2} \|x^0 - x^*\|^2 \leq \delta \end{aligned} \quad (31)$$

1143 since $\Gamma_0 = \frac{\delta}{R^2}$ and $\bar{R} \geq \|x^0 - x^*\|$. Using mathematical induction, we assume that
 1144 $\ell(4 \|\nabla f(y^k)\|) \leq 2\ell(0)$ and $V_k \leq \left(\prod_{i=0}^{k-1} \frac{1}{1+\alpha_i}\right) V_0$ for some $k \geq 0$.

1146 Consider Lemma D.1 and the steps (26). Then,

$$\begin{aligned} (1 + \alpha_{k,\gamma})(f(y_\gamma^{k+1}) - f(x^*)) &+ \frac{(1 + \alpha_{k,\gamma})\Gamma_{k+1,\gamma}}{2} \|u_\gamma^{k+1} - x^*\|^2 - \left((f(y^k) - f(x^*)) + \frac{\Gamma_k}{2} \|u^k - x^*\|^2 \right) \\ &\leq \frac{1}{2} \left(\gamma - \frac{1}{\ell(2 \|\nabla f(y^k)\| + \|\nabla f(y_\gamma^{k+1})\|)} \right) \|\nabla f(y_\gamma^{k+1}) - \nabla f(y^k)\|^2, \end{aligned}$$

1153 where $0 \leq \gamma \leq \frac{1}{\ell(2 \|\nabla f(y^k)\|)}$ is a free parameter. Let us take the smallest γ such that

$$g(\gamma) := \gamma - \frac{1}{\ell(2 \|\nabla f(y^k)\| + \|\nabla f(y_\gamma^{k+1})\|)} = 0$$

1158 and denote it as γ^* . Such a choice exists because $g(\gamma)$ is continuous for all $\gamma \geq 0$ as a composition of
 1159 continuous functions (y_γ^{k+1} is a continuous function of γ), $g(0) = -\frac{1}{\ell(2 \|\nabla f(y^k)\| + \|\nabla f(y_0^{k+1})\|)} < 0$,
 1160 and

$$g(\bar{\gamma}) = \bar{\gamma} - \frac{1}{\ell(2 \|\nabla f(y^k)\| + \|\nabla f(y_\gamma^{k+1})\|)} \geq \bar{\gamma} - \frac{1}{\ell(2 \|\nabla f(y^k)\|)} = 0$$

1164 for $\bar{\gamma} = \frac{1}{\ell(2 \|\nabla f(y^k)\|)}$. Note that $\gamma^* \leq \frac{1}{\ell(2 \|\nabla f(y^k)\|)}$. For all $\gamma \leq \gamma^*$, $g(\gamma) \leq 0$ and

$$\begin{aligned} (1 + \alpha_{k,\gamma})(f(y_\gamma^{k+1}) - f(x^*)) &+ \frac{(1 + \alpha_{k,\gamma})\Gamma_{k+1,\gamma}}{2} \|u_\gamma^{k+1} - x^*\|^2 \\ &\leq (f(y^k) - f(x^*)) + \frac{\Gamma_k}{2} \|u^k - x^*\|^2 =: V_k, \end{aligned} \quad (32)$$

1170 which ensures that

$$f(y_\gamma^{k+1}) - f(x^*) \leq V_k.$$

1173 Recall that $V_k \stackrel{(31)}{\leq} V_0 \leq \delta$. It means that

$$f(y_\gamma^{k+1}) - f(x^*) \leq \delta$$

1176 and

$$\ell(4 \|\nabla f(y_\gamma^{k+1})\|) \leq 2\ell(0)$$

1180 for all $\gamma \leq \gamma^*$ due to Lemma E.1. Therefore, by the definition of γ^* and using $\ell(4 \|\nabla f(y^k)\|) \leq$
 1181 $2\ell(0)$,

$$\gamma^* = \frac{1}{\ell(2 \|\nabla f(y^k)\| + \|\nabla f(y_{\gamma^*}^{k+1})\|)} \geq \frac{1}{\max\{\ell(4 \|\nabla f(y^k)\|), \ell(4 \|\nabla f(y_{\gamma^*}^{k+1})\|\})} \geq \frac{1}{2\ell(0)},$$

1185 meaning that we can take $\gamma = \frac{1}{2\ell(0)}$ and (32) holds:

$$(1 + \alpha_{k,\gamma})(f(y_\gamma^{k+1}) - f(x^*)) + \frac{(1 + \alpha_{k,\gamma})\Gamma_{k+1,\gamma}}{2} \|u_\gamma^{k+1} - x^*\|^2 \leq V_k.$$

1188 Notice that $\alpha_{k,\gamma} = \alpha_k$, $y_\gamma^{k+1} = y^{k+1}$, $\Gamma_{k+1,\gamma} = \Gamma_{k+1}$, and $u_\gamma^{k+1} = u^{k+1}$ with $\gamma = \frac{1}{2\ell(0)}$. Therefore,
 1189 $(1 + \alpha_{k,\gamma})(f(y_\gamma^{k+1}) - f(x^*)) + \frac{(1 + \alpha_{k,\gamma})\Gamma_{k+1,\gamma}}{2} \|u_\gamma^{k+1} - x^*\|^2 = (1 + \alpha_k)V_{k+1}$,
 1190

$$1191 \quad 1192 \quad \ell(4\|\nabla f(y^{k+1})\|) \leq 2\ell(0),$$

1193 and

$$1194 \quad 1195 \quad V_{k+1} \leq \frac{1}{1 + \alpha_k} V_k \leq \left(\prod_{i=0}^k \frac{1}{1 + \alpha_i} \right) V_0,$$

1196 We have proved the next step of the induction. Finally, for all $k \geq 0$,

$$1197 \quad 1198 \quad f(y^{k+1}) - f(x^*) \leq V_{k+1} \leq \left(\prod_{i=0}^k \frac{1}{1 + \alpha_i} \right) \left(f(y^0) - f(x^*) + \frac{\Gamma_0}{2} \|y^0 - x^*\|^2 \right) \\ 1199 \quad 1200 \quad = \Gamma_0 \left(\prod_{i=0}^k \frac{1}{1 + \alpha_i} \right) \left(\frac{1}{\Gamma_0} (f(y^0) - f(x^*)) + \frac{1}{2} \|y^0 - x^*\|^2 \right).$$

1201 Since $f(y^0) - f(x^*) \leq \frac{\delta}{2}$, $\|y^0 - x^*\|^2 \leq \|x^0 - x^*\|^2 \leq \bar{R}^2$, and $\Gamma_{k+1} = \Gamma_0 \left(\prod_{i=0}^k \frac{1}{1 + \alpha_i} \right)$,

$$1202 \quad 1203 \quad f(y^{k+1}) - f(x^*) \leq \Gamma_{k+1} \left(\frac{\delta}{2\Gamma_0} + \frac{1}{2} \bar{R}^2 \right) = \Gamma_{k+1} \bar{R}^2$$

1204 because $\Gamma_0 = \frac{\delta}{\bar{R}^2}$. It is left to use Theorem 3.1. \square

1205 **Theorem 3.3.** *Consider the assumptions and results of Theorem 3.2. The oracle complexity (i.e., the
 1206 number of gradient calls) required to find an ε -solution is*

$$1207 \quad 1208 \quad \frac{5\sqrt{\ell(0)}\bar{R}}{\sqrt{\varepsilon}} + k(\delta), \quad (5)$$

1209 for all $\delta \geq 0$ such that $\ell(8\sqrt{\delta\ell(0)}) \leq 2\ell(0)$, where $k(\delta) := \max \left\{ 1 + \frac{1}{2} \log_{3/2} \left(\frac{\delta}{8\ell(0)\bar{R}^2} \right), 0 \right\} + k_{\text{GD}}(\delta)$, $k_{\text{GD}}(\delta)$ is the oracle complexity of GD for finding a point \bar{x} such that $f(\bar{x}) - f(x^*) \leq \delta/2$.

1210 *Proof.* At the beginning, we run GD, which takes $k_{\text{GD}}(\delta)$ iterations (i.e., gradient evaluations). Next,
 1211 using Theorem 3.1 and the choice of $\gamma = \frac{1}{2\ell(0)}$,

$$1212 \quad 1213 \quad \Gamma_{k+1} \leq \frac{18\ell(0)}{(k + 1 - \bar{k})^2}$$

1214 for all $k \geq \bar{k} := \max \left\{ 1 + \frac{1}{2} \log_{3/2} \left(\frac{\Gamma_0}{8\ell(0)} \right), 0 \right\}$. Taking

$$1215 \quad 1216 \quad k \geq \frac{5\sqrt{\ell(0)}\bar{R}}{\sqrt{\varepsilon}} + \bar{k},$$

1217 we get $f(y^{k+1}) - f(x^*) \leq \varepsilon$ due to Theorem 3.2. \square

1218 E.2 STABILITY WITH RESPECT TO INPUT PARAMETERS AND IMPROVED RATES

1219 **Theorem 4.1.** *Suppose that Assumptions 2.1 and 2.3 hold. Let $\psi : \mathbb{R}_+ \rightarrow \mathbb{R}_+$ such that $\psi(x) =$
 1220 $\frac{x^2}{2\ell(4x)}$ be strictly increasing and $\lim_{x \rightarrow \infty} \psi(x) = \infty$. Then Algorithm 2 guarantees that*

$$1221 \quad 1222 \quad f(y^{k+1}) - f(x^*) \leq \Gamma_{k+1} R^2$$

1223 for all $k \geq 0$ with $\Gamma_0 \geq \frac{2(f(x^0) - f(x^*))}{\|x^0 - x^*\|^2}$ and $\bar{R} \geq R$.

1242 *Proof.* In our proof, we define the Lyapunov function $V_k := f(y^k) - f(x^*) + \frac{\Gamma_k}{2} \|u^k - x^*\|^2$.
 1243 Trivially, $V_0 \leq V_0$ and
 1244

$$1245 \quad V_0 = f(y^0) - f(x^*) + \frac{\Gamma_0}{2} \|y^0 - x^*\|^2 \leq \Gamma_0 R^2 \leq \Gamma_0 \bar{R}^2 \quad (33)$$

1247 when $\Gamma_0 \geq \frac{2(f(x^0) - f(x^*))}{\|x^0 - x^*\|^2} = \frac{2(f(y^0) - f(x^*))}{\|y^0 - x^*\|^2}$ and $\bar{R} \geq R$. Moreover,

$$1249 \quad f(y^0) - f(x^*) \leq \Gamma_0 \bar{R}^2.$$

1250 Due to Lemma B.3,

$$1252 \quad \|\nabla f(y^0)\| \leq \psi^{-1}(\Gamma_0 \bar{R}^2).$$

1254 Using mathematical induction, we assume that $\|\nabla f(y^k)\| \leq \psi^{-1}(\Gamma_k \bar{R}^2)$ and $V_k \leq$
 1255 $\left(\prod_{i=0}^{k-1} \frac{1}{1+\alpha_i}\right) V_0$ for some $k \geq 0$.
 1256

1257 Consider Lemma D.1 and the steps (26). Then,

$$1259 \quad (1 + \alpha_{k,\gamma})(f(y_\gamma^{k+1}) - f(x^*)) + \frac{(1 + \alpha_{k,\gamma})\Gamma_{k+1,\gamma}}{2} \|u_\gamma^{k+1} - x^*\|^2 - \left((f(y^k) - f(x^*)) + \frac{\Gamma_k}{2} \|u^k - x^*\|^2 \right) \\ 1260 \\ 1261 \leq \frac{1}{2} \left(\gamma - \frac{1}{\ell(2\|\nabla f(y^k)\| + \|\nabla f(y_\gamma^{k+1})\|)} \right) \|\nabla f(y_\gamma^{k+1}) - \nabla f(y^k)\|^2,$$

1264 where $0 \leq \gamma \leq \frac{1}{\ell(2\|\nabla f(y^k)\|)}$ is a free parameter. Let us take the smallest γ such that

$$1266 \quad g(\gamma) := \gamma - \frac{1}{\ell(2\|\nabla f(y^k)\| + \|\nabla f(y_\gamma^{k+1})\|)} = 0$$

1268 and denote is as γ^* (exists similarly to the proof of Theorem 3.2 and $\gamma^* \leq \frac{1}{\ell(2\|\nabla f(y^k)\|)}$). For all
 1269 $\gamma \leq \gamma^*$, $g(\gamma) \leq 0$ and
 1270

$$1271 \quad (1 + \alpha_{k,\gamma})(f(y_\gamma^{k+1}) - f(x^*)) + \frac{(1 + \alpha_{k,\gamma})\Gamma_{k+1,\gamma}}{2} \|u_\gamma^{k+1} - x^*\|^2 \\ 1272 \\ 1273 \leq (f(y^k) - f(x^*)) + \frac{\Gamma_k}{2} \|u^k - x^*\|^2 =: V_k. \quad (34)$$

1275 Recall that

$$1277 \quad V_k \leq \left(\prod_{i=0}^{k-1} \frac{1}{1+\alpha_i} \right) V_0 = \frac{\Gamma_k}{\Gamma_0} V_0 \stackrel{(33)}{\leq} \Gamma_k \bar{R}^2.$$

1280 Therefore,

$$1281 \quad f(y_\gamma^{k+1}) - f(x^*) \stackrel{(34)}{\leq} \frac{\Gamma_k \bar{R}^2}{1 + \alpha_{k,\gamma}}$$

1284 and

$$1285 \quad \|\nabla f(y_\gamma^{k+1})\| \leq \psi^{-1} \left(\frac{\Gamma_k \bar{R}^2}{1 + \alpha_{k,\gamma}} \right) \leq \psi^{-1}(\Gamma_k \bar{R}^2) \quad (35)$$

1288 for all $\gamma \leq \gamma^*$ due to Lemma B.3. Therefore, by the definition of γ^* and using $\|\nabla f(y^k)\| \leq$
 1289 $\psi^{-1}(\Gamma_k \bar{R}^2)$,

$$1290 \quad \gamma^* = \frac{1}{\ell(2\|\nabla f(y^k)\| + \|\nabla f(y_\gamma^{k+1})\|)} \geq \frac{1}{\max\{\ell(4\|\nabla f(y^k)\|), \ell(4\|\nabla f(y_\gamma^{k+1})\|)\}} \geq \frac{1}{\ell(4\psi^{-1}(\Gamma_k \bar{R}^2))},$$

1293 meaning that we can take $\gamma_k = \frac{1}{\ell(4\psi^{-1}(\Gamma_k \bar{R}^2))}$ and (32) holds:
 1294

$$1295 \quad (1 + \alpha_{k,\gamma})(f(y_\gamma^{k+1}) - f(x^*)) + \frac{(1 + \alpha_{k,\gamma})\Gamma_{k+1,\gamma}}{2} \|u_\gamma^{k+1} - x^*\|^2 \leq V_k.$$

1296 Notice that $\alpha_{k,\gamma} = \alpha_k$, $y_\gamma^{k+1} = y^{k+1}$, $\Gamma_{k+1,\gamma} = \Gamma_{k+1}$, and $u_\gamma^{k+1} = u^{k+1}$ with $\gamma = \frac{1}{\ell(4\psi^{-1}(\Gamma_k \bar{R}^2))}$.
1297

1298 Therefore, $(1 + \alpha_{k,\gamma})(f(y_\gamma^{k+1}) - f(x^*)) + \frac{(1 + \alpha_{k,\gamma})\Gamma_{k+1,\gamma}}{2} \|u_\gamma^{k+1} - x^*\|^2 = (1 + \alpha_k)V_{k+1}$,
1299

$$1300 \quad \|\nabla f(y^{k+1})\| \stackrel{(35)}{\leq} \psi^{-1} \left(\frac{\Gamma_k \bar{R}^2}{1 + \alpha_k} \right) = \psi^{-1}(\Gamma_{k+1} \bar{R}^2) \\ 1301$$

1302 and

$$1304 \quad V_{k+1} \leq \frac{1}{1 + \alpha_k} V_k \leq \left(\prod_{i=0}^k \frac{1}{1 + \alpha_i} \right) V_0, \\ 1305$$

1306 We have proved the next step of the induction. Finally, for all $k \geq 0$,

$$1308 \quad f(y^{k+1}) - f(x^*) \leq V_{k+1} \leq \Gamma_{k+1} \left(\frac{1}{\Gamma_0} (f(y^0) - f(x^*)) + \frac{1}{2} \|y^0 - x^*\|^2 \right) \leq \Gamma_{k+1} \|x^0 - x^*\|^2 \\ 1309$$

1311 because $\Gamma_0 \geq \frac{2(f(y^0) - f(x^*))}{\|x^0 - x^*\|^2}$, $\Gamma_{k+1} = \Gamma_0 \left(\prod_{i=0}^k \frac{1}{1 + \alpha_i} \right)$, and $y^0 = x^0$. \square
1312

1313 **Theorem 4.2.** *Consider the assumptions and results of Theorem 4.1. The oracle complexity (i.e., the
1314 number of gradient calls) required to find an ε -solution is*

$$1315 \quad \frac{5\sqrt{\ell(0)}R}{\sqrt{\varepsilon}} + \underbrace{\max \left\{ 2 + \log_{3/2} \left(\frac{\Gamma_0}{4\ell(0)} \right), 0 \right\} + k_{\text{init}}}_{\text{does not depend on } \varepsilon} \quad (11) \\ 1316 \\ 1317 \\ 1318$$

1319 with $\Gamma_0 \geq \frac{2(f(x^0) - f(x^*))}{\|x^0 - x^*\|^2}$, $\bar{R} \geq R$, and k_{init} being the smallest integer such that
1320

$$1321 \quad \ell \left(24 \sqrt{\frac{\ell(4\psi^{-1}(\Gamma_0 \bar{R}^2)) \ell(0) \bar{R}^2}{k_{\text{init}}^2}} \right) \leq 2\ell(0). \\ 1322 \\ 1323$$

1324 *Proof.* Since $\gamma_k = 1/\ell(4\psi^{-1}(\Gamma_k \bar{R}^2)) \geq \gamma_0 := 1/\ell(4\psi^{-1}(\Gamma_0 \bar{R}^2))$ for all $k \geq 0$ in Algorithm 2,
1325 and by Theorem 3.1, we conclude that

$$1327 \quad \Gamma_k \leq \frac{9\ell(4\psi^{-1}(\Gamma_0 \bar{R}^2))}{(k - \bar{k}_1)^2} \quad (36) \\ 1328 \\ 1329$$

1330 for all $k > \bar{k}_1 := \max \left\{ 1 + \frac{1}{2} \log_{3/2} \left(\frac{\Gamma_0}{4\ell(4\psi^{-1}(\Gamma_0 \bar{R}^2))} \right), 0 \right\}$. As in the proof of Lemma E.1 (take
1331 $\delta = \Gamma_k \bar{R}^2$ in (30)):

$$1334 \quad \ell(4\psi^{-1}(\Gamma_k \bar{R}^2)) \leq 2\ell(0) \Leftrightarrow \ell \left(8\sqrt{\Gamma_k \bar{R}^2 \ell(0)} \right) \leq 2\ell(0). \quad (37) \\ 1335$$

1336 Let k_{init} be the smallest integer such that

$$1338 \quad \ell \left(24 \sqrt{\frac{\ell(4\psi^{-1}(\Gamma_0 \bar{R}^2)) \ell(0) \bar{R}^2}{k_{\text{init}}^2}} \right) \leq 2\ell(0). \\ 1339 \\ 1340$$

1341 Note that $k_{\text{init}} < \infty$, because ℓ is non-decreasing and continuous. Thus,

$$1343 \quad \ell \left(8\sqrt{\Gamma_k \bar{R}^2 \ell(0)} \right) \leq 2\ell(0) \\ 1344$$

1345 for all $k \geq k_{\text{init}} + \bar{k}_1$ due to (36), and $\gamma_k \geq \frac{1}{2\ell(0)}$ for all $k \geq k_{\text{init}} + \bar{k}_1$ due to (37). We now repeat
1346 the previous arguments once again. Using Theorem 3.1 with $\Gamma_0 \equiv \Gamma_{k_{\text{init}} + \bar{k}_1}$, we conclude that
1347

$$1348 \quad \Gamma_{k+1+k_{\text{init}}+\bar{k}_1} \leq \frac{19\ell(0)}{(k + 1 - \bar{k})^2} \\ 1349$$

1350 for all $k \geq \bar{k} := \max \left\{ 1 + \frac{1}{2} \log_{3/2} \left(\frac{\Gamma_{k_{\text{init}} + \bar{k}_1}}{8\ell(0)} \right), 0 \right\}$. It left to choose $k \geq \bar{k}$ such that

$$\frac{19\ell(0)R^2}{(k + 1 - \bar{k})^2} \leq \varepsilon$$

1355 and use Theorem 4.1 to get the total oracle complexity

$$\begin{aligned} 1357 \quad & \frac{5\sqrt{\ell(0)R}}{\sqrt{\varepsilon}} + \max \left\{ 1 + \frac{1}{2} \log_{3/2} \left(\frac{\Gamma_{k_{\text{init}} + \bar{k}_1}}{8\ell(0)} \right), 0 \right\} + k_{\text{init}} + \max \left\{ 1 + \frac{1}{2} \log_{3/2} \left(\frac{\Gamma_0}{4\ell(4\psi^{-1}(\Gamma_0\bar{R}^2))} \right), 0 \right\} \\ 1358 \quad & \leq \frac{5\sqrt{\ell(0)R}}{\sqrt{\varepsilon}} + k_{\text{init}} + \max \left\{ 2 + \log_{3/2} \left(\frac{\Gamma_0}{4\ell(0)} \right), 0 \right\} \end{aligned}$$

1362 because $\Gamma_k \leq \Gamma_0$ for all $k \geq 0$ and ℓ is non-decreasing. \square

E.2.1 SPECIALIZATION FOR (L_0, L_1) -SMOOTHNESS

Theorem 4.3. Consider the assumptions and results of Theorem 4.1 with $\ell(s) = L_0 + L_1 s$. The oracle complexity (i.e., the number of gradient calls) required to find an ε -solution is

$$\mathcal{O} \left(\frac{\sqrt{L_0}R}{\sqrt{\varepsilon}} + \max \left\{ L_1 \bar{R} \log \left(\min \left\{ \frac{L_1^2 \bar{R}^2 \Gamma_0}{L_0}, \frac{\Gamma_0 R^2}{\varepsilon} \right\} \right), 0 \right\} + \max \left\{ \log \left(\frac{\Gamma_0}{L_0} \right), 0 \right\} \right) \quad (13)$$

1371 with $\Gamma_0 \geq \frac{2(f(x^0) - f(x^*))}{\|x^0 - x^*\|^2}$ and $\bar{R} \geq R$.

1374 *Proof.* Since $\psi(x) = \frac{x^2}{2L_0 + 8L_1 x}$, we get

$$\psi^{-1}(t) = 4L_1 t + \sqrt{16L_1^2 t^2 + 2L_0 t} \leq 8L_1 t + \sqrt{2L_0 t}$$

1378 for all $t \geq 0$, and

$$\begin{aligned} 1380 \quad \gamma_k &= \frac{1}{\ell(4\psi^{-1}(\Gamma_k \bar{R}^2))} \geq \frac{1}{L_0 + 4L_1(8L_1 \Gamma_k \bar{R}^2 + \sqrt{2L_0 \Gamma_k \bar{R}^2})} \\ 1381 \quad &= \frac{1}{L_0 + 32L_1^2 \Gamma_k \bar{R}^2 + 4L_1 \sqrt{2L_0 \Gamma_k \bar{R}^2}} \stackrel{\text{AM-GM}}{\geq} \frac{1}{2L_0 + 48L_1^2 \bar{R}^2 \Gamma_k}. \end{aligned}$$

1385 Let $0 \leq k^* < \infty$ be the smallest k such that $L_1^2 \bar{R}^2 \Gamma_k < L_0$. For all $k < k^*$, we get $L_1^2 \bar{R}^2 \Gamma_k \geq L_0$,
 $\gamma_k \geq \frac{1}{50L_1^2 \bar{R}^2 \Gamma_k}$, and $\alpha_k \geq \frac{1}{8L_1 \bar{R}}$ since Γ_k is decreasing. Then,

$$\Gamma_{k+1} \leq \frac{\Gamma_k}{1 + \frac{1}{8L_1 \bar{R}}}.$$

1390 for all $k < k^*$. We can unroll the recursion to get

$$\Gamma_{k+1} \leq \left(\frac{1}{1 + \frac{1}{8L_1 \bar{R}}} \right)^{k+1} \Gamma_0 \leq \exp \left(-\frac{k+1}{8L_1 \bar{R} + 1} \right) \Gamma_0. \quad (38)$$

1395 for all $k < k^*$. For all $k \geq k^*$, $L_1^2 \bar{R}^2 \Gamma_k < L_0$, $\gamma_k \geq \frac{1}{50L_0}$, and can we use Theorem 3.1 starting
 $\gamma_k \geq \frac{1}{50L_0}$ and can we use Theorem 3.1 starting from the index k^* :

$$\Gamma_{k+k^*} \leq \frac{450L_0}{(k - \bar{k})^2}$$

1401 for all $k > \bar{k}$, where

$$\bar{k} := \max \left\{ 1 + \frac{1}{2} \log_{3/2} \left(\frac{\Gamma_{k^*}}{200L_0} \right), 0 \right\} \leq \max \left\{ 1 + \frac{1}{2} \log_{3/2} \left(\frac{\Gamma_0}{200L_0} \right), 0 \right\}, \quad (39)$$

1404 where the first inequality due to $\Gamma_{k^*} \leq \Gamma_0$. If $k^* = 0$, then
 1405

$$1406 \quad \Gamma_k \leq \frac{450L_0}{(k - \bar{k})^2}$$

$$1407$$

$$1408$$

1409 for all $k > \bar{k}$. If $k^* > 0$, then
 1410

$$1411 \quad \frac{L_0}{L_1^2 \bar{R}^2} \leq \Gamma_{k^*-1} \stackrel{(38)}{\leq} \exp\left(-\frac{k^* - 1}{8L_1 \bar{R} + 1}\right) \Gamma_0$$

$$1412$$

$$1413$$

1414 and
 1415

$$1416 \quad k^* \leq 1 + (8L_1 \bar{R} + 1) \log\left(\frac{L_1^2 \bar{R}^2 \Gamma_0}{L_0}\right).$$

$$1417$$

1418 In total,

$$1419 \quad k^* \leq \max\left\{1 + (8L_1 \bar{R} + 1) \log\left(\frac{L_1^2 \bar{R}^2 \Gamma_0}{L_0}\right), 0\right\}. \quad (40)$$

$$1420$$

$$1421$$

1422 There are two main regimes of Γ_k . The first regime is
 1423

$$1424 \quad \Gamma_k \leq \frac{450L_0}{(k - (\bar{k} + k^*))^2} \quad (41)$$

$$1425$$

$$1426$$

1427 for all $k > \bar{k} + k^*$, and for all
 1428

$$1429 \quad k \geq \max\left\{1 + (8L_1 \bar{R} + 1) \log\left(\frac{L_1^2 \bar{R}^2 \Gamma_0}{L_0}\right), 0\right\} + \max\left\{2 + 3 \log\left(\frac{\Gamma_0}{200L_0}\right), 0\right\},$$

$$1430$$

1431 due to (39) and (40). The second regime is
 1432

$$1433 \quad \Gamma_k \leq \exp\left(-\frac{k}{8L_1 \bar{R} + 1}\right) \Gamma_0 \quad (42)$$

$$1434$$

$$1435$$

1436 for all $k \leq k^*$ due to (38).

1437 Using Theorem 4.1,

$$1439 \quad f(y^{k+1}) - f(x^*) \leq \Gamma_{k+1} R^2.$$

$$1440$$

1441 If $\frac{L_1^2 \bar{R}^2 \Gamma_0}{L_0} \leq \frac{\Gamma_0 R^2}{\varepsilon}$, then $f(y^{k+1}) - f(x^*) \leq \varepsilon$ after
 1442

$$1443 \quad \mathcal{O}\left(\frac{\sqrt{L_0} R}{\sqrt{\varepsilon}} + \max\left\{(L_1 \bar{R} + 1) \log\left(\frac{L_1^2 \bar{R}^2 \Gamma_0}{L_0}\right), 0\right\} + \max\left\{\log\left(\frac{\Gamma_0}{L_0}\right), 0\right\}\right)$$

$$1444$$

$$1445$$

1446 iterations due to (41). If $\frac{L_1^2 \bar{R}^2 \Gamma_0}{L_0} > \frac{\Gamma_0 R^2}{\varepsilon}$ and $k^* > (8L_1 \bar{R} + 1) \log((\Gamma_0 R^2)/\varepsilon)$, then $f(y^{k+1}) - f(x^*) \leq \varepsilon$ after
 1447

$$1448 \quad \mathcal{O}\left((L_1 \bar{R} + 1) \log\left(\frac{\Gamma_0 R^2}{\varepsilon}\right)\right)$$

$$1449$$

$$1450$$

1452 iterations due to (42). If $\frac{L_1^2 \bar{R}^2 \Gamma_0}{L_0} > \frac{\Gamma_0 R^2}{\varepsilon}$ and $k^* \leq (8L_1 \bar{R} + 1) \log((\Gamma_0 R^2)/\varepsilon)$, then $f(y^{k+1}) - f(x^*) \leq \varepsilon$ after
 1453

$$1454 \quad \mathcal{O}\left(\frac{\sqrt{L_0} R}{\sqrt{\varepsilon}} + (L_1 \bar{R} + 1) \log\left(\frac{\Gamma_0 R^2}{\varepsilon}\right) + \max\left\{\log\left(\frac{\Gamma_0}{L_0}\right), 0\right\}\right)$$

$$1455$$

$$1456$$

1457 iterations due to (41). It left to combine all cases. \square

1458 E.3 SUPERQUADRATIC GROWTH OF ℓ
1459

1460 **Theorem 5.1.** Suppose that Assumptions 2.1 and 2.3 hold. Let $\psi : \mathbb{R}_+ \rightarrow \mathbb{R}_+$ such that
1461 $\psi(x) = \frac{x^2}{2\ell(4x)}$ be not necessarily strictly increasing. Find the largest $\Delta_{\max} \in (0, \infty]$ such that ψ
1462 is strictly increasing on $[0, \Delta_{\max}]$. For all $\delta \in [0, \psi(\Delta_{\max})]$, find the unique $\Delta_{\text{left}}(\delta) \in [0, \Delta_{\max}]$
1463 and the smallest⁷ $\Delta_{\text{right}}(\delta) \in [\Delta_{\max}, \infty]$ such that $\psi(\Delta_{\text{left}}(\delta)) = \delta$ and $\psi(\Delta_{\text{right}}(\delta)) = \delta$.
1464 Take any $\delta \in [0, \frac{1}{2}\psi(\Delta_{\max})]$ such that $\ell(4\Delta_{\text{left}}(\delta)) \leq 2\ell(0)$ and $\Delta_{\text{right}}(\delta) \geq 2M_{\bar{R}}$, where⁸
1465 $M_{\bar{R}} := \max_{\|x-x^*\| \leq 2\bar{R}} \|\nabla f(x)\|$. Then Algorithm 1 guarantees that
1466

$$1467 \quad 1468 \quad 1469 \quad f(y^{k+1}) - f(x^*) \leq \Gamma_{k+1} \bar{R}^2 \leq \frac{18\ell(0) \bar{R}^2}{(k+1-\bar{k})^2}$$

1470 for all $k \geq \bar{k} := \max \left\{ 1 + \frac{1}{2} \log_{3/2} \left(\frac{\Gamma_0}{8\ell(0)} \right), 0 \right\}$ with any $\bar{R} \geq \|x^0 - x^*\|$.
1471

1472 *Proof.* In our proof, we define the Lyapunov function $V_k := f(y^k) - f(x^*) + \frac{\Gamma_k}{2} \|u^k - x^*\|^2$.
1473 (Base case:) Clearly, $\|u^0 - x^*\| = \|y^0 - x^*\| \leq \|x^0 - x^*\| \leq 2\bar{R}$ due to the the monotonicity of GD
1474 (Tyurin, 2025)[Lemma I.2] and $\bar{R} \geq R$. Thus,
1475

$$1476 \quad 1477 \quad 1478 \quad \|\nabla f(y^0)\| \leq \max_{\|x-x^*\| \leq 2\bar{R}} \|\nabla f(x)\| \leq M_{\bar{R}}.$$

1479 Using Lemma B.4, either $\|\nabla f(y^0)\| \leq \Delta_{\text{left}}(\delta)$ or $\|\nabla f(y^0)\| \geq \Delta_{\text{right}}(\delta)$. However, the latter is not
1480 possible because $\Delta_{\text{right}}(\delta) > M_{\bar{R}}$ and $\|\nabla f(y^0)\| \leq M_{\bar{R}}$. Thus, $\ell(4\|\nabla f(y^0)\|) \leq \ell(4\Delta_{\text{left}}(\delta)) \leq 2\ell(0)$, where the last inequality due to the conditions of the theorem.
1481

1482 Trivially, $V_0 \leq V_0$ and
1483

$$1484 \quad 1485 \quad 1486 \quad V_0 = f(y^0) - f(x^*) + \frac{\Gamma_0}{2} \|y^0 - x^*\|^2 \leq \frac{\delta}{2} + \frac{\Gamma_0}{2} \|y^0 - x^*\|^2 \\ 1487 \quad 1488 \quad 1489 \quad \leq \frac{\delta}{2} + \frac{\Gamma_0}{2} \|x^0 - x^*\|^2 \leq \delta \quad (43)$$

1490 since $\Gamma_0 = \frac{\delta}{\bar{R}^2}$ and $\bar{R} \geq \|x^0 - x^*\|$. Using mathematical induction, we assume that
1491 $\ell(4\|\nabla f(y^k)\|) \leq 2\ell(0)$,
1492

$$1493 \quad 1494 \quad 1495 \quad V_k \leq \left(\prod_{i=0}^{k-1} \frac{1}{1 + \alpha_i} \right) V_0, \quad (44)$$

1496 $\|u^k - x^*\| \leq 2\bar{R}$, and $\|y^k - x^*\| \leq 2\bar{R}$ for some $k \geq 0$ (the base case has been proved in the
1497 previous steps).

1498 Consider Lemma D.1 and the steps (26). Then,
1499

$$1500 \quad 1501 \quad (1 + \alpha_{k,\gamma})(f(y_{\gamma}^{k+1}) - f(x^*)) + \frac{(1 + \alpha_{k,\gamma})\Gamma_{k+1,\gamma}}{2} \|u_{\gamma}^{k+1} - x^*\|^2 - \left((f(y^k) - f(x^*)) + \frac{\Gamma_k}{2} \|u^k - x^*\|^2 \right) \\ 1502 \quad 1503 \quad \leq \frac{1}{2} \left(\gamma - \frac{1}{\ell(2\|\nabla f(y^k)\| + \|\nabla f(y_{\gamma}^{k+1})\|)} \right) \|\nabla f(y_{\gamma}^{k+1}) - \nabla f(y^k)\|^2,$$

1504 where $0 \leq \gamma \leq \frac{1}{\ell(2\|\nabla f(y^k)\|)}$ is a free parameter. Let us take the smallest γ such that
1505

$$1506 \quad 1507 \quad 1508 \quad g(\gamma) := \gamma - \frac{1}{\ell(2\|\nabla f(y^k)\| + \|\nabla f(y_{\gamma}^{k+1})\|)} = 0$$

1509 ⁷if the set $\{x \in [\Delta_{\max}, \infty) : \psi(x) = \delta\}$ is empty, then $\Delta_{\text{right}}(\delta) = \infty$
1510

1511 ⁸or is it sufficient to find any $M_{\bar{R}}$ such that $M_{\bar{R}} \geq \max_{\|x-x^*\| \leq 2\bar{R}} \|\nabla f(x)\|$.

1512 and denote is as γ^* (exists similarly to the proof of Theorem 3.2 and $\gamma^* \leq \frac{1}{\ell(2\|\nabla f(y^k)\|)}$). For all
 1513 $\gamma \leq \gamma^*$, $g(\gamma) \leq 0$ and
 1514

$$\begin{aligned} 1515 \quad & (1 + \alpha_{k,\gamma})(f(y_\gamma^{k+1}) - f(x^*)) + \frac{(1 + \alpha_{k,\gamma})\Gamma_{k+1,\gamma}}{2} \|u_\gamma^{k+1} - x^*\|^2 \\ 1516 \quad & \leq (f(y^k) - f(x^*)) + \frac{\Gamma_k}{2} \|u^k - x^*\|^2 =: V_k, \\ 1517 \quad & \end{aligned} \tag{45}$$

1518 which ensures that
 1519

$$1520 \quad f(y_\gamma^{k+1}) - f(x^*) \leq V_k \stackrel{(44)}{\leq} V_0 \stackrel{(43)}{\leq} \delta. \tag{46}$$

1521 Moreover, due to (45) and (26), we have
 1522

$$\begin{aligned} 1523 \quad & \frac{\Gamma_k}{2} \|u_\gamma^{k+1} - x^*\|^2 = \frac{(1 + \alpha_{k,\gamma})\Gamma_{k+1,\gamma}}{2} \|u_\gamma^{k+1} - x^*\|^2 \leq V_k \\ 1524 \quad & \stackrel{(44)}{\leq} \left(\prod_{i=0}^{k-1} \frac{1}{1 + \alpha_i} \right) V_0 = \frac{\Gamma_k}{\Gamma_0} \left((f(y^0) - f(x^*)) + \frac{\Gamma_0}{2} \|u^0 - x^*\|^2 \right) \\ 1525 \quad & \stackrel{\text{Alg. 1}}{\leq} \Gamma_k \left(\frac{\delta}{2\Gamma_0} + \frac{1}{2} \|u^0 - x^*\|^2 \right) \leq \Gamma_k \bar{R}^2, \\ 1526 \quad & \end{aligned}$$

1527 where the last inequality due to $\Gamma_0 = \frac{\delta}{\bar{R}^2}$ and $\|u^0 - x^*\|^2 \leq \bar{R}^2$. Thus,
 1528

$$1529 \quad \|u_\gamma^{k+1} - x^*\|^2 \leq 2\bar{R} \tag{47}$$

1530 for all $\gamma \leq \gamma^*$. Now, consider y_γ^{k+1} from (26):
 1531

$$\begin{aligned} 1532 \quad & \|y_\gamma^{k+1} - x^*\| \\ 1533 \quad & = \left\| \frac{1}{1 + \alpha_{k,\gamma}} y^k + \frac{\alpha_{k,\gamma}}{1 + \alpha_{k,\gamma}} u^k - \frac{\gamma}{1 + \alpha_{k,\gamma}} \nabla f(y^k) - x^* \right\| \\ 1534 \quad & = \left\| \frac{1}{1 + \alpha_{k,\gamma}} ((y^k - \gamma \nabla f(y^k)) - x^*) + \frac{\alpha_{k,\gamma}}{1 + \alpha_{k,\gamma}} (u^k - x^*) \right\| \\ 1535 \quad & \leq \frac{1}{1 + \alpha_{k,\gamma}} \|(y^k - \gamma \nabla f(y^k)) - x^*\| + \frac{\alpha_{k,\gamma}}{1 + \alpha_{k,\gamma}} \|u^k - x^*\|, \\ 1536 \quad & \end{aligned} \tag{48}$$

1537 where we use Triangle's inequality. Notice that
 1538

$$1539 \quad \gamma \leq \frac{1}{\ell(2\|\nabla f(y^k)\|)} \tag{49}$$

1540 for all $\gamma \leq \gamma^*$ because $\gamma^* \leq \frac{1}{\ell(2\|\nabla f(y^k)\|)}$. Thus,
 1541

$$\begin{aligned} 1542 \quad & \|(y^k - \gamma \nabla f(y^k)) - x^*\|^2 = \|y^k - x^*\|^2 - 2\gamma \langle y^k - x^*, \nabla f(y^k) \rangle + \gamma^2 \|\nabla f(y^k)\|^2 \\ 1543 \quad & \stackrel{\text{L.B.1}}{\leq} \|y^k - x^*\|^2 + 2\gamma \left(f(x^*) - f(y^k) - \|\nabla f(y^k)\|^2 \int_0^1 \frac{1-v}{\ell(\|\nabla f(y^k)\| v)} dv \right) + \gamma^2 \|\nabla f(y^k)\|^2 \\ 1544 \quad & \leq \|y^k - x^*\|^2 + \gamma \|\nabla f(y^k)\|^2 \left(\gamma - 2 \int_0^1 \frac{1-v}{\ell(\|\nabla f(y^k)\| v)} dv \right). \\ 1545 \quad & \end{aligned}$$

1546 In the last inequality, we use $f(x^*) - f(y^k) \leq 0$. Next,
 1547

$$\begin{aligned} 1548 \quad & \|(y^k - \gamma \nabla f(y^k)) - x^*\|^2 \stackrel{(49)}{\leq} \|y^k - x^*\|^2 + \gamma \|\nabla f(y^k)\|^2 \left(\frac{1}{\ell(2\|\nabla f(y^k)\|)} - 2 \int_0^1 \frac{1-v}{\ell(\|\nabla f(y^k)\| v)} dv \right) \\ 1549 \quad & \leq \|y^k - x^*\|^2 + \gamma \|\nabla f(y^k)\|^2 \left(\frac{1}{\ell(2\|\nabla f(y^k)\|)} - \frac{1}{\ell(\|\nabla f(y^k)\|)} \right) \\ 1550 \quad & \leq \|y^k - x^*\|^2 \\ 1551 \quad & \end{aligned}$$

1566 because ℓ is non-decreasing. Thus, by the induction assumption, $\|(y^k - \gamma \nabla f(y^k)) - x^*\| \leq$
 1567 $\|y^k - x^*\| \leq 2\bar{R}$, $\|u^k - x^*\| \leq 2\bar{R}$, and
 1568

$$\|y_\gamma^{k+1} - x^*\| \leq 2\bar{R} \quad (50)$$

1570 for all $\gamma \leq \gamma^*$, due to (48).

1571 Thus,

$$\|\nabla f(y_\gamma^{k+1})\| \leq \max_{\|x-x^*\| \leq 2\bar{R}} \|\nabla f(x)\| \leq M_{\bar{R}}.$$

1575 Using (46) and Lemma B.4, either $\|\nabla f(y_\gamma^{k+1})\| \leq \Delta_{\text{left}}(\delta)$ or $\|\nabla f(y_\gamma^{k+1})\| \geq \Delta_{\text{right}}(\delta)$. However,
 1576 the latter is not possible because $\Delta_{\text{right}}(\delta) > M_{\bar{R}}$ and $\|\nabla f(y_\gamma^{k+1})\| \leq M_{\bar{R}}$. Thus,

$$\ell(4\|\nabla f(y_\gamma^{k+1})\|) \leq \ell(4\Delta_{\text{left}}(\delta)) \leq 2\ell(0). \quad (51)$$

1579 Therefore, by the definition of γ^* and using $\ell(4\|\nabla f(y^k)\|) \leq 2\ell(0)$,

$$\gamma^* = \frac{1}{\ell(2\|\nabla f(y^k)\| + \|\nabla f(y_{\gamma^*}^{k+1})\|)} \geq \frac{1}{\max\{\ell(4\|\nabla f(y^k)\|), \ell(4\|\nabla f(y_{\gamma^*}^{k+1})\|\})} \geq \frac{1}{2\ell(0)},$$

1582 meaning that we can take $\gamma = \frac{1}{2\ell(0)}$ and (45) holds:

$$(1 + \alpha_{k,\gamma})(f(y_\gamma^{k+1}) - f(x^*)) + \frac{(1 + \alpha_{k,\gamma})\Gamma_{k+1,\gamma}}{2} \|u_\gamma^{k+1} - x^*\|^2 \leq V_k.$$

1586 Notice that $\alpha_{k,\gamma} = \alpha_k$, $y_\gamma^{k+1} = y^{k+1}$, $\Gamma_{k+1,\gamma} = \Gamma_{k+1}$, and $u_\gamma^{k+1} = u^{k+1}$ with $\gamma = \frac{1}{2\ell(0)}$. Therefore,
 1587 $(1 + \alpha_{k,\gamma})(f(y_\gamma^{k+1}) - f(x^*)) + \frac{(1 + \alpha_{k,\gamma})\Gamma_{k+1,\gamma}}{2} \|u^{k+1} - x^*\|^2 = (1 + \alpha_k)V_{k+1}$,

$$\ell(4\|\nabla f(y^{k+1})\|) \stackrel{(51)}{\leq} 2\ell(0),$$

$$V_{k+1} \leq \frac{1}{1 + \alpha_k} V_k \leq \left(\prod_{i=0}^k \frac{1}{1 + \alpha_i} \right) V_0,$$

$$\|u^{k+1} - x^*\|^2 \stackrel{(47)}{\leq} 2\bar{R},$$

1597 and

$$\|y^{k+1} - x^*\| \stackrel{(50)}{\leq} 2\bar{R}.$$

1600 We have proved the next step of the induction. Finally, for all $k \geq 0$,

$$\begin{aligned} 1602 f(y^{k+1}) - f(x^*) &\leq V_{k+1} \leq \left(\prod_{i=0}^k \frac{1}{1 + \alpha_i} \right) \left(f(y^0) - f(x^*) + \frac{\Gamma_0}{2} \|y^0 - x^*\|^2 \right) \\ 1603 &\leq \Gamma_0 \left(\prod_{i=0}^k \frac{1}{1 + \alpha_i} \right) \left(\frac{\delta}{2\Gamma_0} + \frac{1}{2} \|y^0 - x^*\|^2 \right) \leq \Gamma_{k+1}\bar{R}^2 \end{aligned}$$

1607 because GD by (Tyurin, 2025)[Lemma I.2] returns $\bar{x} = y^0$ such that $\|y^0 - x^*\| \leq \|x^0 - x^*\| \leq \bar{R}$.

1609 Moreover, we use $\Gamma_0 = \frac{\delta}{\bar{R}^2}$ and $\Gamma_{k+1} = \Gamma_0 \left(\prod_{i=0}^k \frac{1}{1 + \alpha_i} \right)$. It is left to use Theorem 3.1. \square

1610 **Theorem 5.2.** *Consider the assumptions and results of Theorem 5.1. The oracle complexity (i.e., the
 1611 number of gradient calls) required to find an ε -solution is*

$$\frac{5\sqrt{\ell(0)}\bar{R}}{\sqrt{\varepsilon}} + k(\delta)$$

1615 for all $\delta \in Q$, where $k(\delta) := \max \left\{ 1 + \frac{1}{2} \log_{3/2} \left(\frac{\delta}{8\ell(0)\bar{R}^2} \right), 0 \right\} + k_{\text{GD}}(\delta)$, $k_{\text{GD}}(\delta)$ is the oracle
 1616 complexity of GD for finding a point \bar{x} such that $f(\bar{x}) - f(x^*) \leq \delta/2$.

1618 *Proof.* The proof of this theorem repeats the proof of Theorem 3.3, with the only change being that
 1619 the conditions on δ are different. \square

1620 E.3.1 EXAMPLE: (ρ, L_0, L_1) -SMOOTHNESS
1621

1622 To explain how Theorem 5.2 and Corollary 5.3 work, let us consider (ρ, L_0, L_1) -smoothness
1623 with $\ell(x) = L_0 + L_1 x^\rho$ and $\rho > 0$. In this case, $\psi(x) \simeq \frac{x^2}{L_0 + L_1 x^\rho}$, which is strictly in-
1624 creasing until $\Delta_{\max} = \infty$ if $\rho \leq 2$, and until $\Delta_{\max} = (2L_0/((\rho-2)L_1))^{1/\rho}$ if $\rho > 2$.
1625 If $\rho \leq 2$, then $Q := \{\delta \geq 0 : \ell(4\psi^{-1}(\delta)) \leq 2\ell(0)\} = \{\delta \geq 0 : \ell(8\sqrt{\delta}\ell(0)) \leq 2\ell(0)\} =$
1626 $\{\delta \geq 0 : \delta \leq L_0^{2/\rho-1}/(64L_1^{2/\rho})\}$ and, using the result from Table 2 by [Tyurin \(2025\)](#) with $\rho < 2$
1627 and Theorem 5.2,
1628

$$\begin{aligned} 1630 \quad & \frac{5\sqrt{\ell(0)}\bar{R}}{\sqrt{\varepsilon}} + \min_{\delta \in Q} k(\delta) \\ 1631 \quad & = \mathcal{O}\left(\frac{\sqrt{L_0}\bar{R}}{\sqrt{\varepsilon}} + \min_{\delta \in Q} \left[\max\left\{\log\left(\frac{\delta}{L_0\bar{R}^2}\right), 0\right\} + \frac{L_0\bar{R}^2}{\delta} + \frac{L_1\Delta^{\rho/2}\bar{R}^{2-\rho}}{\delta^{1-\rho/2}} \right] \right) \\ 1632 \quad & = \mathcal{O}\left(\frac{\sqrt{L_0}R}{\sqrt{\varepsilon}} + \frac{L_1\Delta^{\rho/2}}{L_0^{1-\rho/2}} + L_1^{2/\rho}L_0^{2-2/\rho}R^2 + \frac{L_1^{2/\rho}\Delta^{\rho/2}R^{2-\rho}}{L_0^{2/\rho+\rho/2-2}}\right). \\ 1633 \quad & \end{aligned}$$

1634 where $\Delta := f(x^0) - f(x^*)$, and we take $\bar{R} = R$ and $\delta = \min\{L_0^{2/\rho-1}/L_1^{2/\rho}, L_0\bar{R}^2\}/64$ to get the
1635 last complexity (which might not be the optimal choice, but a sufficient choice to show that the first
1636 term dominates if ε is small). Similarly, for the case $\rho = 2$, the oracle complexity at least
1637

$$1641 \quad \mathcal{O}\left(\frac{\sqrt{L_0}R}{\sqrt{\varepsilon}} + \frac{L_0R^2}{\bar{\delta}} + \frac{L_1M_0^\rho R^2}{\bar{\delta}}\right)$$

1642 with $\bar{\delta} = \min\{L_0^{2/\rho-1}/L_1^{2/\rho}, L_0R^2\}/64$ and $\bar{R} = R$, where we take the GD rate from [\(Li et al., 2024a; Tyurin, 2025\)](#).
1643

1644 We now consider the case $\rho > 2$. Let us define $\Delta_1 := 1/2(L_0/L_1)^{1/\rho}$. Notice that $\Delta_{\max} \geq \Delta_1$.
1645 For all $\delta \in [0, \psi(\Delta_1)]$, we can find $\Delta_{\text{left}}(\delta) = \psi^{-1}(\delta) \simeq \sqrt{L_0}\delta$. For all $x \geq \Delta_{\max}$, $\psi(x)$ is
1646 decreasing, and $\psi(x) \simeq \frac{x^2}{L_1x^\rho}$. Thus, $\Delta_{\text{right}}(\delta) \simeq (L_1\delta)^{1/(2-\rho)}$ and we should minimize $k(\delta)$ over
1647 the set $\{\delta \in [0, L_0^{2/\rho-1}/L_1^{2/\rho}] : \delta \leq L_0/L_1^2, \delta \leq (1/(2M_{\bar{R}}))^{\rho-2}/L_1\} \subseteq Q$ (up to constant factors).
1648 It is sufficient to take
1649

$$1650 \quad \bar{\delta} := \min\{L_0^{2/\rho-1}/L_1^{2/\rho}, L_0/L_1^2, (1/(2M_{\bar{R}}))^{\rho-2}/L_1, L_0\bar{R}^2\} \quad (52)$$

1651 to get the complexity
1652

$$1653 \quad \mathcal{O}\left(\frac{\sqrt{L_0}R}{\sqrt{\varepsilon}} + \min_{\delta \in Q} k(\delta)\right) = \mathcal{O}\left(\frac{\sqrt{L_0}R}{\sqrt{\varepsilon}} + \frac{L_0R^2}{\bar{\delta}} + \frac{L_1M_0^\rho R^2}{\bar{\delta}}\right),$$

1654 where $M_0 := \|\nabla f(x^0)\|$, $k_{\text{GD}}(\delta)$ is derived using [\(Li et al., 2024a; Tyurin, 2025\)](#), and we take
1655 $\bar{R} = R$. Thus, we can guarantee the $\sqrt{L_0}R/\sqrt{\varepsilon}$ rate for any $\rho \geq 0$ and a sufficiently small ε .
1656

1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673