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ABSTRACT

We study first-order methods for convex optimization problems with functions f sat-
isfying the recently proposed £-smoothness condition | V2 f(z)|| < £ (||[V f(2)]]),
which generalizes the L—smoothness and (Lg, L1 )-smoothness. While accelerated
gradient descent (AGD) is known to reach the optimal complexity O(v/LR/+/%)
under L—smoothness, where ¢ is an error tolerance and R is the distance between a
starting and an optimal point, existing extensions to /~smoothness either incur extra
dependence on the initial gradient, suffer exponential factors in L; R, or require
costly auxiliary sub-routines, leaving open whether an AGD-type O(1/£(0)R/+/¢)
rate is possible for small-¢, even in the (Lg, L1 )-smoothness case. We resolve this
open question. Developing new proof techniques, we achieve O(1/£(0)R//¢)
oracle complexity for small-¢ and virtually any ¢. For instance, for (Lo, L1)-
smoothness, our bound O(y/LoR/+/2) is provably optimal in the small-¢ regime
and removes all non-constant multiplicative factors present in prior accelerated
algorithms.

1 INTRODUCTION

We focus on optimization problems

min f(z), M

where f : R? — R U {00} is a convex function. We aim to find an e-solution, Z € R%, such that
f(@) — inf,cpa f(z) < e. We define ¥ = {z € R?| f(z) < 0o}, and assume that X' is an open

and d-dimensional convex set, f is smooth on X', and continuous on the closure of X'. We define
R :=||a® — 2*||, where 2° € X is a starting point of numerical methods.

Under the L—smoothness assumption, i.e., |V f(z) — Vf(y)|| < L ||z — y|| or HVQf(a:)H < L for
all z,y € X, the problem is well studied. In particular, it is known that one can find an e-solution after
@) (\ER/ \/5) gradient calls using the fast/accelerated gradient descent method (AGD) by Nesterov
(1983), which is also optimal (Nemirovskij & Yudin, 1983; Nesterov, 2018). This result improves the
oracle complexity O (LRQ/ s) (# of gradient calculations) of gradient descent (GD).

In this work, we investigate the modern /—~smoothness assumption (Li et al., 2024a), which states
that || V2 f(z)|| < £(|V f()]) for all z € X (see Assumption 2.1), where / is any non-decreasing,
positive, locally Lipschitz function. This generalizes the classical L-smoothness assumption, which
corresponds to the special case ¢(s) = L. An important example of this framework is the (Lg, L1)—
smoothness condition (Zhang et al., 2020), obtained by setting ¢(s) = Lo + Lis, which yields
V2f(2)|| < Lo+ L1 |V f ()| forall z € X.

There are many functions that are captured by /—smoothness but not by L—smoothness. For instance,
flx) =2aP forp > 2, f(x) = €%, and f(x) = — log x all satisfy /~smoothness (with a proper ¢) but
violate the standard L—smoothness condition (Li et al., 2024a). Moreover, there is growing evidence
that /—~smoothness is a more appropriate assumption for modern machine learning problems (Zhang
et al., 2020; Chen et al., 2023; Cooper, 2024; Tyurin, 2025).
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Table 1: Convergence rates for various AGD methods for small error tolerance € up to constant
factors (in the case of (Lg, L1)-Smoothness, the comparison is valid at least for all ¢ < Ly/L{R?).
Abbreviations: R := ||z° — 2*||, & = error tolerance, 2 is a starting point, A := f(z) — f(z*),
M, is defined in Theorem 5.1.

Setting

Oracle Complexity References Required Parameters
L-Smoothness % (Nesterov, 1983) L
VLo+L1|[ViE0)| R
% (Li et al., 2024a) Lo, L1, R, A
LoR
exp(L1R) X v (Gorbunov et al., 2025) Lo, L4
(Lo, L1)-Smoothness
v X 7VL\/2R, Lo, L1,
where v is not a universal constant and (Vankov et al., 2024) params for auxiliary problem

may depend on parameters of f,e, and R (e.g., # of inner iterations)

Lo,Li, R, A

LoR
e (semi-adaptive to R, A)

NG Sec. 3.1, 4.1, or Thm. 4.3 (new)

V/[<va(,r0)”)R

General result NG (Lietal., 2024a) Lo,Li1,R,A
with any £
VEHOR [ﬁ R Corollary 5.3 (new) Lo,L1,R,A, M5

Despite the recent significant interest in {—smoothness, to the best of our knowledge, one important
open problem remains:

Under ¢—smoothness and (Lg, L1)-smoothness, for a small ¢, is it possible to
design a method with oracle complexity O(\/@(O)R/ ﬁ) and O(\/LTR/ \/E), respec-
tively?

In this work, using new proof techniques, we provide an affirmative answer to this question by
developing new approaches that work for all ¢ > 0 and achieve the optimal complexity under
(Lo, L1 )-smoothness for small ¢.

1.1 RELATED WORK

Nonconvex optimization with (Lg, L1)-smoothness. While we focus on convex problems, we
now recall the modern results in the non-convex setting. Zhang et al. (2020) is the seminal work
that considers (Lo, L1)-smoothness. They developed a clipped version of GD that finds an e—
stationary point after O (LoA/= + LYA/L, ) iterations'. There are many subsequent works on (L, L1 )-
smoothness, including (Crawshaw et al., 2022; Chen et al., 2023; Wang et al., 2023; Koloskova et al.,
2023; Li et al., 2024a;b; Hiibler et al., 2024; Vankov et al., 2024). Under (L, L1 )—smoothness,
the state-of-the-art theoretical oracle complexity O (LoA/e + L1A/,/z) was proved by Vankov et al.
(2024).

Nonconvex optimization with /~smoothness. The paper by Li et al. (2024a) is the seminal
work that introduces the /~smoothness assumption. In their version of GD, the result depends on
14 (HV f(x) H) /e and requires £ to grow more slowly than s2. Subsequently, Tyurin (2025) improved
their oracle complexity and provided the current state-of-the-art complexity. For instance, under
(p, Lo, L1)-smoothness, i.e., | V2 f(z)| < Lo + Ly ||V f(2)||” for all z € X, Tyurin (2025) guaran-
tee LoA/e 4 LiA/-(2=0)/2 instead of (LoA+L1 || VF(=")|”A)/c from Li et al. (2024a) when 0 < p < 2.

Convex optimization with (L, L;)-smoothness and /—smoothness. Under the (Lo, L1)-
smoothness assumption, convex problems were considered in (Koloskova et al., 2023; Li et al.,
2024a; Takezawa et al., 2024). Gorbunov et al. (2025); Vankov et al. (2024) concurrently obtained

! An e-stationary point is a point Z such that |V f(Z)||* < ; A := f(z°) — f*, where z° is a starting point
of numerical methods.
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the oracle complexity O (LoR”/c + L?R?) . Then, the non-dominant term L? R? was improved to
LoR®/e 4+ min {L1AY2R/c1/2 L2 R2 11|V £(=")||R?/<} by Tyurin (2025). Lobanov et al. (2024) also
analyzed the possibility of improving L? R? in the region where the gradient of f is large. The

{—smoothness assumption in the contexts of online learning and mirror descent was considered in
(Xie et al., 2024; Yu et al., 2025).

Accelerated convex optimization. The aforementioned results were derived using non-accelerated
gradient descent methods. Under (Lo, L1 )-smoothness, accelerated variants of GD were studied by
Li et al. (2024a); Gorbunov et al. (2025); Vankov et al. (2024). However, for small €, the approach of
Gorbunov et al. (2025) leads to the complexity exp(Li R)VLoR/\/z (up to constant factors), with an
exponential dependence on L; and R, while the method proposed by Vankov et al. (2024) requires
solving an auxiliary one-dimensional optimization problem at each iteration, leading to the oracle
complexity O (V x VLoR/ \/E) , where v is a non-constant multiplicative factor arising from solving
the auxiliary problem. In the context of the /~smoothness assumption, Li et al. (2024a) established a
complexity bound of O(V4(IVF(=°)I)R//z). The current state-of-the-art accelerated methods leave
open the question of whether it is possible to achieve the oracle complexities O(\/ER/ \/E) and

O(VHOR//z) when ¢ is small.

1.2 CONTRIBUTIONS

We develop new proof techniques to analyze Algorithms 1 and 2, which, to the best of our knowledge,
achieve for the first time oracle complexities of O (vVA(0)R/,/z) and O (VZoF/\z) for small ¢, under (-~
smoothness and (Lg, L )-smoothness, respectively. These results represent a significant improvement
over previous works (Li et al., 2024a; Gorbunov et al., 2025; Vankov et al., 2024) (Table 1). Moreover,
our bound under (Lg, L1)-smoothness is optimal in the small-¢ regime.

We begin in Section 3, which establishes the O(\/Z(T)R/ \/E) rate for small € with subquadratic and
quadratic /. In Section 4, we present Algorithm 2, which is more robust to input parameters and
achieves an improved rate in the non-dominant terms, at least in the case of (Lg, L1 )—smoothness.
Finally, in Section 5, we show that Algorithm 1 attains the O(\/Z(T)R/ \/E) rate (for small ) for all
non-decreasing positive locally Lipschitz £.

2 PRELIMINARIES

Notations: R, := [0,00); N := {1,2,...}; ||=| denotes the standard Euclidean norm for all
r € RY (z,9) = Z?zl x;y; denotes the standard dot product; || A|| denotes the standard spectral
norm for all A € R¥*9; g = O(f) : there exists C' > 0 such that g(z) < C x f(z) forall z € Z;
g = Q(f) : there exists C' > 0 such that g(z) > C x f(z) forall z € Z; g ~ h : g and h are equal
up to a universal positive constant; Proj 3 () denotes the standard Euclidean projection of x onto the
convex closed set X'

We consider the following assumption (Li et al., 2024a):

Assumption 2.1. A function f : R? — R U {oo} is /—smooth if f is twice differentiable on X, f is
continuous on the closure of X', and there exists a non-decreasing positive locally Lipschitz function
¢ : [0,00) — (0,00) such that

V2 f(@)|| < LIV f()D) ?)
forallz € X.

The assumption includes L—smoothness when £(s) = L, (Lo, L1 )—-smoothness when ¢(s) = Lo +
Lys, and (p, Lo, L1)-smoothness, i.e., | V2f(z)|| < Lo + Ly |V f()|” for all z € X, when
¢(s) = Lo + L1s”, where L, Lo, L1, p > 0 are some fixed constants. While Assumption 2.1 requires
twice differentiability, the main theorems and algorithms do not directly rely on it. Let us recall the
following lemma, which follows from Assumption 2.1:

Lemma 2.2 (Tyurin (2025)). For all x,y € X such that ||y — z|| € [0, gmax([[Vf(X)|)), if f is
{—smooth (Assumption 2.1), then

IVf(y) = V@) < a ly =25 1V F()), ©)
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Algorithm 1 Accelerated Gradient Descent (AGD) with /-Smoothness

1: Input: starting point 2° € X, function ¢ from Assumption 2.1, parameters § and R
2: Starting from 2°, run GD from (Tyurin, 2025) until f(z) — f(z*) < §/2,

where 7 is the output point of GD
0

3 Inity? =u’ =z

4: SetTy=6/R?

5: Sety =1/(2£(0))

6: for k=0,1,... do

7 ap = \/'yF

. k4+1 _ uk

8 Y = 1+aky + 1+(¥k o 1+0(k Vf( )

9:  uFt! =Projg (uk — FEV(y ’“*1)) (X is the closure of X)
10: Tei1 = Fk/(l + Otk)

11: end for
where q(s;a) := fo é(a+v) , ¢~ 1 is the inverse of q with respect to s, and qumax(a fo Z(a+1})

Not requiring twice differentiability, we can assume that (3) holds instead of (2). The main reason
why we start with (2) is because it is arguably more interpretable. Next, we assume the convexity of

f:
Assumption 2.3. A function f : R? — RU{co} is convex and attains the minimum at a (non-unique)
x* € R?. We define R := ||x0 —x* || , where 20 is a starting point of numerical methods.

In the theoretical analysis and proofs, it is useful to define the )—function:

Definition 2.4 (v and ¢! functions) Let Assumption 2.1 hold. We define the function ¢ : Ry —
R such that ¢(z) = 2[(4r cand 1 1 [0,9(Amax)) = [0, Amax) as its (standard) inverse, where
Apax € (0,00] is the largest constant such that 1 is strictly increasing on® [0, A pax ).

3  SUBQUADRATIC AND QUADRATIC GROWTH OF /

We are ready to present our first result. Consider Algorithm 1, which consists of two phases: first,
we run (non-accelerated) GD, and then we run an accelerated version of GD. Later, we will present
Algorithm 2, which avoids the first phase. We first state the convergence rate of Algorithm 1 and
then discuss and explain it in more detail. We begin by stating a standard result from the theory
of accelerated methods (Nesterov, 2018; Lan, 2020; Stonyakin et al., 2021) concerning auxiliary
sequences, which control convergence rates:

Theorem 3.1. Forany Ty > 0 and v > 0, let ay, > \/'yFk and 11 =T /(1 + ay) forall k > 0.
AT

Then, T'11 < mﬂ)rallk > k= max{l + 5 log3/2 ( 0) ,0}

The following result provides the convergence rate of Algorithm 1 for ¢ such that ¢)(x) = ﬁ;) is

strictly increasing, which holds, for instance, under (L, L1 )-smoothness.

Theorem 3.2. Suppose that Assumptions 2.1 and 2.3 hold. Let 1) : Ry — Ry such that ¥(x) =

#L) be strictly increasing. Then Algorithm 1 guarantees that
. _ 18¢(0) R?
PO~ fa) < T B2 < SO @)
(k+1—k)

forallk >k := max{l + %logg,/2 (8};—(00)) ,0} with any 6 € (0, 00| such that ¢ (8\/58 (0)) <
20(0) and any R > R := ||2° — 2| .

2Amax > 0 due to Lemma B.4.
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The theorem establishes the desired 1/x* convergence rate of accelerated methods. However, the
method enters this regime only after running the GD method and after the initial k steps of the
accelerated steps. The main and final result, which captures the total oracle complexity, is presented
below.

Theorem 3.3. Consider the assumptions and results of Theorem 3.2. The oracle complexity (i.e., the
number of gradient calls) required to find an e—solution is

PO 4 k), ®

Sorall § > 0 such that ¢ (8\/66 (O)) < 2£(0), where k(9) := max {1 + %logg)/2 (W) , 0} +
kop(6), kap(0) is the oracle complexity of GD for finding a point T such that f(Z) — f(z*) < 6/2.

Corollary 3.4. In Theorem 3.3, minimizing over § and taking R = R := on — :c*” , the oracle
complexity is

75 VIOR + min k(9) . (6)
Ve 520;2(8,/55(0)) <26(0)

does not depend on &

3.1 EXAMPLE: (Lo, L1)-SMOOTHNESS

We now consider an example and apply the result for (Lg, L1 )-smooth functions. In this case,
£(s) = Lo + Lys. First, we need to find the proper set of § from Theorem 3.2: ¢(81/6¢(0)) <
20(0) & Lo + L1(8v/0Lg) < 2Ly < & < Lo/(64L3). Second, we need to find kgp(5). Using
Table 2 from (Tyurin, 2025), or the results by Gorbunov et al. (2025); Vankov et al. (2024), kgp(0) =

O (ko /s + min { L1855 /2, L3R2, s [ 9560 |[R2f5}) = O (L) = 0 (L) for all § <
Lo/(64L%). Substituting to (5), we get the total oracle complexity

VIoR . 5 LyR?
O 1 — 1,0 7
( Ve +0§6§ILIEI/%64L¥> P\ LR ) L ’ @

Taking 6 = min{Lo/(64L?), (LoR?)/64} (which might not be the optimal choice, but a sufficient
choice to show that the first term dominates if ¢ is small), we get

(=0 (@R + LfRz) =0 (@R + LfRQ) , ®)

where we choose R = R. Unlike Li et al. (2024a); Gorbunov et al. (2025); Vankov et al. (2024),
we get O(VLoR/ /z) for small e. Moreover, this complexity is optimal (Nemirovskij & Yudin, 1983;
Nesterov, 2018) for small ¢ in the sense that for any Ly > 0 and L; > 0, it is possible to find an
(Lo, L1)-smooth function (the (Lg, 0)—smooth function from Section 2.1.2 of (Nesterov, 2018)) such
that the required number of oracle calls is Q(vZoR/\/z) for small €.

One can repeat these steps for any ¢ such that 1) is strictly increasing. Nevertheless, even without
these derivations, we establish the total oracle complexity O(v/#(0)R//¢) in (6) for small €.

3.2 DISCUSSION

The closest work to the complexity O (\/LT]R/ \/5) , when € is small, is (Vankov et al., 2024). Using
the same idea as in (Vankov et al., 2024), in Algorithm 1, we run GD until f(Z) — f(z*) < 9/2.
However, the next steps and proof techniques are new. Using the “warm-start” point Z, it becomes
easier for Algorithm 1 to run accelerated steps because we take ¢ such that ¢(4 |FV FO)|) < 2¢(0)
(Lemma E.1), meaning that we start from the region where the local smoothness constant is almost
¢(0). The main challenge is to ensure that the next points y* of Algorithm 1 never leave this region.
To ensure that, using the method from (Nesterov et al., 2021), Vankov et al. (2024) utilize the
monotonicity of their accelerated method and the fact that their points do not leave the region with
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small smoothness. However, it is not for free and requires v extra oracle calls in each iteration, where
v is not a universal constant and depends on the parameters of f leading to a suboptimal complexity.

In contrast, our method follows the standard approach, where only one gradient is computed per
iteration. We use the version of the accelerated method from (Wei & Chen, 2025)[Section D.2], with
some minor but important modifications. The method itself is very similar to the one from (Allen-Zhu
& Orecchia, 2014), for instance. However, the proof technique is very different, which is the main
reason we focus on Algorithm 1. While for L—smooth functions the proof technique from (Wei &
Chen, 2025) does not offer any advantages over, for example, (Nesterov, 1983) because the result
in (Nesterov, 1983) is optimal. In the case of functions with generalized smoothness, it becomes
particularly useful, as shown in the following section.

3.3 PROOF SKETCH

As in most proofs, we define the Lyapunov function Vj, := f(y*) — f(z*) + %’“ Huk —z* |2 . The

first important observation is that in V}, we use 4/*, the point where the gradient is actually computed.
This is important, and we will see why later.

Using mathematical induction, let us assume that we have run Algorithm 1 up to k™ iteration,
C(4||V£R)]]) < 20(0), and Vi < (Hf;ol H%) V. We choose T such that Vy < 6. The base
case with k = 0 is true because we run GD until £(4 ||V f(3°)||) < 2¢(0). Now, instead of k + 1

consider the steps
Ak~ =/ ’}/Fk,

1 ag
k+1 _ k LIS SR v Y
Yy o TTran’ Ttan, fW"),

X . g,
1 i (4~ S0,

Cry1y =Th/(1+aky),

where 7 is a free parameter. These steps are equivalent to k + 11 iteration when v = 1/ (2£(0)).
However, we have not proved that we are allowed to use this ~y yet. For these steps, we can prove a
standard descent lemma, Lemma D.1:

C))

[ ) ) — s+ LT s o]
< (7 - 1 7 ) VI = vreh) (10)
2" W@V [V )

For now, let us assume that f is L—smooth. Then the rest of the proof becomes straightforward. In
this case, £(2||V f(y")|| + ||Vf(¥¥™)||) = L, and we can take v = 1/2L = 1/(2((0)) to ensure
that (1 4+ ay) Vi1 < Vi because the first bracket [...] = (1 + ag)Vi41. Then, we should unroll the
recursion and use Theorem 3.1 to get the classical 1/ k2 rate (Nesterov, 1983).

However, under Assumption 2.1, £(2 ||V f(y*)|| + HVf(y,’j“) ||) depends on HVf(y’,jH){ , and we
encounter a “chicken-and-egg” dilemma: in order to choose 7, we need to know HV f (y’j“) , which
in turn depends on . Our resolution is the following. Let us choose the smallest v* > 0 such that

1
CIVAII+ IV

which exists and is positive because g(-y) is continuous, g(0) < 0, and g(3) > 0fory = Wl(yk)”)'
It is possible that we are “unlucky” and +* is very small, leading to a slow convergence rate and
preventing us from choosing v = 1/(2¢(0)). Surprisingly, it is possible to show that v* > 1/(2¢(0)).
Indeed, using (10), for all v < ~*, we have f(y’,j“) — f(z*) <V}, < Vp. Recall that we choose I'g
such that Vo < 8. Thus, f(y¥*') — f(2*) < é. This is the key inequality in the proof, which allows
us to conclude that the function gap with y§+1 is bounded, thus justifying the choice of the Lyapunov
function.

=y — 0,
g(v) =7 /
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Algorithm 2 AGD with /-smoothness and increasing step sizes (without GD pre-running)

Input: starting point z° € X', function £ from Assumption 2.1, parameters 'y and R
Init y° = u° = 20
Define 9 (x) = 72@?41)
fork=0,1,... do

= 1/£ (4’¢_1 (FkR2))

(assume that v is invertible on R )

+1 krk k
uFtl = Proj 5 (u V(Y k+1)> (X is the closure of X)
D1 =Ty/(1 + )

Y X D UH LD
Q
N
|

end for

—_

It left to use Lemma E. 1, which allows us to bound £(4 |V f(y)||) if we can bound f(y) — f(z*) <46
forall y € X. Thus, ¢ (4 HVf(y’,jH) H) < 2£(0) for all v < v*. Recalling the definition of v* :

1 1 1
T U2V + [V £@ED) — max{ﬁ @IV LR, L4 |V FEE D = 20(0)
Finally, this means that we can take v = 1/(2¢(0)), (9) reduces to the k + 1" step of Algorithm 1,
C(4|VFERY]) < 20(0), and Viyr < (H ) Vo due to (10). We have proved the next
step of mathematical induction and (4).

*

v

= 01+a

The way we resolve the “chicken-and-egg” dilemma can be an interesting proof trick in other
optimization contexts. Note that our method is not necessarily monotonic, but the proof still allows us
to show that the method never leaves the region where the local smoothness constant is almost £(0).

4  STABILITY WITH RESPECT TO INPUT PARAMETERS AND IMPROVED RATES

While, to the best of our knowledge, Algorithm 1 is the first algorithm with O (\/Z(T) R/ \/E) complexity,
it has two limitations: it runs GD at the beginning, and it requires a good estimate of 12 when selecting
. We resolve these issues in Algorithm 2, which is similar to Algorithm 1, but the former does not
run GD at the beginning, uses the step sizes v, = 1/¢ (41/1’1 (FkRQ)) , and requires I'y as an input.

Thgorem 4.1. Suppose that Assumptions 2.1 and 2.3 hold. Let ¢ : Ry — Ry such that ¢(x) =
% be strictly increasing and mll{go Y(x) = oo. Then Algorithm 2 guarantees that

fy™) = f(a*) < TR
forallk > 0withTy > W and R > R.

Theorem 4.2. Consider the assumptions and results of Theorem 4.1. The oracle complexity (i.e., the
number of gradient calls) required to find an e—solution is

5\/(0)R r
g + max {2 +logs 5 (4((%)) ,o} + Kinit (11)

does not depend on

with Ty > W, R > R, and kiny, being the smallest integer such that
2(41p=1(TgR2))£(0) R2
£<24\/( ( Zﬁn)) © ) < 20(0).

Comparing (11) and (7), one can see that Algorithm 2 is stable with respect to the choice of R and

T'y. Ideally, it is better to choose I'g = W and R = R. However, if we overestimate R

and I'y, the penalty for this appears in the term that does not depend on €. In the next section, we
consider an example to illustrate this.
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4.1 EXAMPLE: (Lo, L1)-SMOOTHNESS

To find the oracle complexity, we have to estimate k;y;;. In the case of (Lg, L1 )-smoothness, we can
find Kinit from the equality Lo + L, \/ (Lo + Liy—" (CoR2)) LoR2 /K2, ~
for simplicity), where 1/ ~! is the inverse of 22/(2(Lo +4Lyz)). If TgR? > Lo/ Ly, then the equality
is equivalent to ki =~ /L?R? + LiToR*/Lg. Otherwise, kini = \/ L3R? + L3R3,/Ty/Lo. Thus,
using (11), the total oracle complexity

<CR Rz\/[:-l—max{log <EZ> 0}), (12)

where the first term is stable to the choice of R and T'.

. =~ 2Lg (we ignore constants

4.2 SPECIALIZATION FOR (Lg, L1)~SMOOTHNESS

The previous theorems work with any ¢ such that ¢(z) = #iz) is strictly increasing on R and

lim 9(xz) = oo. It turns out that we can improve (12) and refine Theorem 4.2 in the case of
T—00

(Lo, L1)-smoothness.

Theorem 4.3. Consider the assumptions and results of Theorem 4.1 with {(s) = Lo + Lys. The
oracle complexity (i.e., the number of gradient calls) required to find an e—solution is

2 72 2
o VLOReraX L1 Rlog ( min @}hR ,0 ¢ + max < log Lo ,0 (13)
\E LO S LO

with 'y > M;{I(Ia;)) and R > R.

ll=°

The non-dominant term in (13) is better than that of (12), and is better than that of (8) when
P() = 2A/R2 and R = R.

4.3 DISCUSSION AND PROOF SKETCH

Unlike Algorithm 1, Algorithm 2 starts from z° where the initial local smoothness might be large.
Nevertheless, the proof follows the proof techniques from SCCthl’l 3.3 with one important difference:
using mathematical induction, we prove that |V f(y*)|| < ¢ ~!(I'x R?) for all k > 0. This 1nequa11ty

means that HV fy®) H can be bounded by a decreasing sequence, and after several iterations, all y/*
satisfy £(4 ||V f(y*)||) < 2¢(0), allowing us to get O(v/¢(0)R/,/z) complexity for small—z.

5 SUPERQUADRATIC GROWTH OF /

In the previous sections, we provided convergence rates under the assumption that v is strictly
increasing. For instance, the previous theory applies to (p, Lo, L1)—smooth functions only if p < 2.
For cases where 1) is not necessarily strictly increasing, we can prove the following theorems.
Theorem 5 1. Suppose that Assumptions 2.1 and 2.3 hold. Let v : Ry — R, such that
U(x) = 5 e( 41,) be not necessarily strictly increasing. Find the largest Apax € (0,00] such that 1
is strictly increasing on [0, Apax). For all § € [0, ¥ (Amax)), find the unique A (0) € [0, Amax)
and the smallest® Aggn(0) € [Amax, 0] such that ¥(Aen(0)) = § and Y(Avgn(8)) = 6.
Take any § € [0, 21(Amax)] such that (40 (5)) < 2£(0) and Agign(8) > 2Mp, where
Mp:= max _ ﬁVf(x)H . Then Algorithm 1 guarantees that
lz—z*|<2R

18¢(0) R?

f(yk+1) - f(x*) < Fk?“rlRQ < m

3if the set {2 € [Amax,00) : ¥(x) = 8} is empty, then Aign(6) = 00

“or is it sufficient to find any M such that Mz > max ||V f(2)|-
lo—a*||<2R
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forallk >k = max{l + %logg/2 (8};—(“0)) ,0} with any R > HxU ,x*H

In order to apply the theorem and algorithm, we first have to find the largest Ap,.x € (0, 00] such
that ¢ is strictly increasing on [0, Ap.x ). If 9 is strictly increasing on R, then A, = co. Next,
we should find Aje(6) and Ayigh(0) for all 6 € [0, 1)(Amax)). The point A (6) € [0, Amax) is the
solution of 1 (A (0)) = J, which exists and is unique for all § € [0, ¢)(Amax)) because v is strictly
increasing on [0, Ay ax). Notice that ¢(z) > § for all z € (A (d), Amax)- Thus, there are two
options: either ¢(x) > ¢ for all z € (Aeq(9), 00), and we define Avign(6) = 00, or there exists the
first moment Ayign () € [Amax, 00) when ¢)(Ayigh(0)) = d. In other words, Ayjgh(0) is the second
time when 1) intersects . We define the set of § allowed to use in the algorithm:

Q :={0 €[0,Y(Amax)/2] : £(4A1e1(0)) < 2£(0), Avigne(0) > 2Mp}.

Theorem 5.2. Consider the assumptions and results of Theorem 5.1. The oracle complexity (i.e., the
number of gradient calls) required to find an e—solution is

VHOfE Vf}?R + k(6)

forall § € Q, where k(J) := max {1 + %logS/Q (#) , 0} + kap(9), kap(9) is the oracle

8e(0) 2
complexity of GD for finding a point T such that f(z) — f(z*) < §/2.
Corollary 5.3. In Theorem 5.2, minimizing over § and taking R = R := HJ:O - a:*” , the oracle
complexity is
5¢(0)R
— i . 14
e + min E(0) (14)

does not depend on &

In Section E.3.1, we consider an example, (p, Lo, L1)-smoothness, to illustrate how to use the
theorem, and show that it guarantees a rate of vZoR/,/ rate for any p > 0 and a sufficiently small ¢.
The main observation in (14) is that we obtain the v/¢(0) R/,/e rate for small &, given an appropriate or
optimal choice of ¢ that minimizes k(J). The main difference between Theorem 5.2 and Theorem 3.3
is that the rate in Theorem 5.2 depends on M and requires its estimate.

5.1 DISCUSSION AND PROOF SKETCH

In the superquadratic case, we use Algorithm 1 instead of Algorithm 2 because the latter relies on
the fact that v is invertible on R . The former algorithm does not need this and allows us to get
the vVLoR/,/z rate for small-. While once again the proof of Theorem 5.2 follows the discussion
from Section 3.3, there is one important difference. Since 1) might not be invertible, we cannot
conclude that ||V f(y*)|| < v=1(6) if f(y*) — f(2*) < 6. Instead, we can only guarantee that
if f(y*) — f(z*) < dand§ € [0, (Amax)), then either |V f(y*)|| < Awr(8) or ||[Vf(*)|| >
Avight(0), where Aoy, Ajere (), and Ayigne(9) are defined in Section 5. The latter case is “bad” for
the analysis. To avoid it, we take 0 such that Aign(0) > 2Mp = max),_,. <2z ||V f(2)| and,
using mathematical induction, ensure that ||V Fk) || < Mpg. To get the last bound, we prove that
y* never leaves the ball B(z*,2R), which requires additional technical steps. Thus, we are left
with the “good” case ||V f(y*)|| < A (5), which yields £(4 ||V f(y")||) < 2£(0) for § such that
(405 (0)) < 26(0).

6 CONCLUSION

While we have achieved a better oracle complexity for small ¢, the optimal non-dominant term for
large ¢, which can improve the terms not depending on ¢ in Corollaries 3.4, 5.3 and Theorem 4.2
for /—smooth functions, remains unclear and require further investigations. Moreover, it would be
interesting to extend our results to stochastic and finite-sum settings (Schmidt et al., 2017; Lan, 2020),
and develop adaptive versions of the methods than do not depend on Lg, L1, R, A. We leave these
directions for future work, which can build on our new insights and algorithms.
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A EXPERIMENTS

A.1 COMPARISON WITH GD

We compare GD (Tyurin, 2025) and AGD (Algorithm 2) on the function f : R? — R defined as
f(z,y) = €” + ' =% + £y, where . = 0.001. This function is (3.3 4 u, 1)-smooth and has its
minimum at (0.5, 0). Starting at #° = (—6, —5), and taking R = 100 > R and Ty = 100 > 24/g?
(large enough) in Algorithm 2, we obtain Figure 1. In this plot, we observe the distinctive accelerated
convergence rate of Algorithm 2 with non-monotonic behavior, supporting our theoretical results.

fly¥) — fix™)

1. W

—— AGD

2500 5000 7500 10000 12500 15000 17500 20000
iterations

Figure 1: Experiment with e® + el =% + %yz and ¢ = 0.001

A.2 COMPARISON WITH PREVIOUS AGD METHODS

Using the same function and setup, we compare our Algorithm 2 with previous accelerated methods
in Figure 2. For all methods, we choose parameter values according to the theorems in their respective
papers. Notice that AGD by Vankov et al. (2024) requires a method that solves an auxiliary problem.
To solve this problem, we use binary search with 10 and 100 steps. In Figure 2, we observe very
different behaviors across the methods. AGD by Li et al. (2024a) has the slowest convergence since
their method chooses a small step size. The method by Vankov et al. (2024) is very sensitive to the
number of inner steps used to solve the auxiliary problem: with only inner step 10 steps, it converges
slowly. At the beginning, the method by Gorbunov et al. (2025) has the fastest convergence, while
our method performs better at lower accuracies.

SRR L T "i*n Tl

- - “mm |”||“|| ’
3

—A— AGD (Gorbunov et al.)
5000 10000 15000 20000 25000
Figure 2: Experiment with e” + ' =% 4+ £42 and y = 0.001

—&— AGD (Vankov et al.) (inner steps: 100)
—< AGD (ours)

.| —®— AGD (Vankov et al.) (inner steps: 10)
0000
number of oracle calls

A.3  SENSITIVITY TO THE CHOICE OF R AND T

We now also check how sensitive our algorithm is to the choice of R and I'g. In Figures 3 and 4, we
fix the theoretically best values and increase them by 5x and 25x. We observe that the algorithm is
not very sensitive to the choice of I'g, but more sensitive to the choice of R, which is expected since
T"y is under the logarithms in (13), while R is not.

13
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Effect of Increasing I (R fixed)

flyk) — fix™)

—— AGD, =32.51600578852742

6D ¥ SN
1079 —— AGD, [=162.5800289426371

—— AGD, 0=812.9001447131856

L

2500 5000 7500 15 20000

7500
iterations

Figure 3: Sensitivity to increasing I'g by 5x and 25x.

Effect of Increasing R (I fixed)

‘mmmﬂmmmmmuHnmmumrwwwm«

mﬂmwm1‘;|«|‘.“m"
-- GD
~——— AGD, R=8.200609733428363
1079 —— AGD, R=41.00304866714182
—— AGD, R=205.01524333570907
w0 2500 5000 7500 10000 12500 15000 17%00 20000
iterations

fly¥) — fix™)

Figure 4: Sensitivity to increasing R by 5x and 25x.

A.4 EXPERIMENTS WITH ALGORITHM | AND NON-MONOTONIC %

We now consider Algorithm 1 and the results from Section 5. We take the function f : R? — R
defined as f(z,y) = —vz — 1 — 2 + §y?, where o = 0.001, which is (3,4, 10)-smooth. For
this function, we can only use Algorithm 1 with the corresponding non-monotonic ). We start at
2% = (0.3,—0.15) and take R = R in Algorithm 1. Unlike Algorithm 2, we have to choose J. We can
take Mp = 4.47 > max|,_,-| <2 ||V f(2)]|, which we estimated numerically. Then, we choose &
according to (52), where the latter choice was derived for (p, Lo, L1)-smooth functions. The results
are presented in Figure 5. In practice, we observe that the required number of GD steps is small,
less than 10, and thus the GD iterations in Algorithm 1 are almost invisible in the plot. Similarly to
Section A.1, AGD converges non-monotonically faster than GD.

1054 — GD
—— AGD

2500 5000 7500 10000 12500 15000 17500
iterations

20000

Figure 5: Experiment with —/z — /1 — 2 + §y? and 1 = 0.001
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B AUXILIARY LEMMAS

In the proofs, we use the following useful lemma from (Tyurin, 2025), which generalizes the key
inequality from Theorem 2.1.5 of (Nesterov, 2018).

Lemma B.1 (Tyurin (2025)). For all x,y € X, if f is {~smooth (Assumption 2.1) and convex
(Assumption 2.3), then

1—vw

9 1
Vi@ -V | e = f(y)|U)dv<f<x>—f<y>—<Vf<y>,x—(1y5>) .

The following lemma ensures that it is “safe” to take steps with proper step sizes.

Lemma B.2 (Tyurin (2025)). Under Assumption 2.1, for a fixed x € X, the pointy = x +th € X
o0 d d -

forallt e [0,[0 W) and h € RY such that ||h|| = 1.

We now prove two important lemmas that allow us to bound the norm ||V f (y)|| given an upper bound
on f(y) — f(x").

Lemma B.3. [Strictly Increasing 1] Under Assumptions 2.1 and 2.3, let f(y) — f(z*) < 0 for
somey € X, > 0and ¢ : Ry — Ry such that (x) = #L) is strictly increasing, then

IVFW)Il < &~1(0) if 6 € im(v)).

Proof. Using Lemma B.1 and the fact that ¢ is non-decreasing,

% 2 1 1—vw
52 10~ 1) 2 IO || 1 oo™
IVl
— T = \Y .
> s = ¢ UV
It left to invert 1) to get the result. O

Lemma B.4. [Not Necessarily Strictly Increasing ] Under Assumptions 2.1 and 2.3, let ¢ : Ry —
2
R such that ¢ (x) = % is not necessarily strictly increasing.
1. There exists the largest Amax € (0, 00] such that 1 is strictly increasing on [0, Apax),

2. Forall § € [0,9(Amax)), there exists the unique A (8) € [0, Apax) and the smallest®
Asight (0) € [Amax, 00] such that Y(Aier(0)) = 0 and Y (Avign(0)) = 9.

3. Forall § € [0,9(Amax)), if Asignt(8) < 00 and § > 5 >0, then Arighl(g) > Avight(0)-
4. If f(y)—f(z*) < 0 forsomey € X and § € (0,9 (Apmax)), then either ||V f(y)|| < Aese(9)
or [Vl = Avign (6).

Proof. 1. Since / is non-decreasing and locally Lipschitz, there exists A; > 0 such that
20(4y) — 20(4z) < M(y — x)
forall 0 < z < y < A and for some M = M(Ay,¢) > 0. Thus,
2220(4y) < x220(4x) + M2?(y — z). (16)
Moreover, there exists Ao > 0 such that

Ma? < (y + x)2¢(4x)

%if the set {x € [Amax, 00) : ¥(z) = &} is empty, then Ayign(d) = oo

15
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forall 0 < x < y < Ay since 24(4x) > £(0) > 0, the Lh.s O(z?), and the r.h.s. Q(z). Combining
with (16),

220(4y) < 2220(4x) + 20(4x) (y + x)(y — ) = y*20(4x)

and

22 y?
<
20(4x) — 20(4y)

forall 0 < x < y < min{A;, Ay}, meaning that ) is locally strictly increasing on the interval
[0, Apax) for some largest Ay € (0, 00].

2. A (0) exists since ¢ is locally strictly increasing on the interval [0, A,ax). On the interval
[Amax, 00), either 1 intersects § for the first time at Ayigne(6) or we can take Ayign(d) = o00.

3. Since Ayign () is the first time when ) intersects ¢ for z € [Aax, oo)fand 0 < T/J(Amax)j then
P(x) > 6 forall z € [Amax, Arigh(9)). Thus, if we decrease ¢ and take 6 < 4, then Asignt (0) can

only increase or stay the same. However, if Aign(6) stays the same, i.e., Aggni(0) = Asigne(J), then

Apight(0) is the Iirst time when 1) intersects §, which i_s impossible due to the continuity of ¢/ and the
fact that Aign () is the first time when ) intersects 6 < 4.

4. Using the same reasoning as in the proof of Lemma B.3:

=y (V@I (17)

Due to the previous properties, either ||V f(y)]| < Aer(0) or |V f(y)|| = Asigne(6) because 1 () >
dforallz € (A]ef[(6)7 Aright(é)). O

C RATE OF THE AUXILIARY SEQUENCE

Theorem 3.1. Forany Ty > 0and v > 0, let o, > /AT, and Ty1 =T /(1 4+ ) forall k > 0.
9 - 1 I
Then, Fk+1 S mfor all k 2 k := max {1 + 3 10g3/2 (%) ’O}
Proof. By the definition of 'y and ay,
Ty
T < —
T AT

for all £ > 0. Instead of I'y, consider the sequence T\, such that

P Lk
k+1 = ——F7—
1+ 7%
forall k > 0and Ty = T'y. Using mathematical induction, notice that fk+1 > I'k41. Indeed, the

. x . . . 6
function ey is increasing” for all z > 0 and

Ty Ty -
Fpy1 < 1+m§ 1+\/ﬁzrk+1
if 'y < ['y. If we bound T 1, then we can bound Iy, ;. Next,
1 1 ¥
Thrn Tn \/;
for all £ > 0, then

tet1 — te = Vit (18)

Let us define t;, := i

6( z )/ — 1+@
L Rvatd (1+y7z)?

> (Qforall z > 0.

16
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and

4172 1/2y,1/2 _ 41/2
R i e EVOT (19)
for all K > 0. We now fix any k > 0. There are two options:

Option 1: tl/2 < \2f
In this case, using (18),

3
lpy1 =t + VtkS%Jrg:%

and

1/2 1/2

2\5(%{5-1 7% / ) > V7t
due to (19). Rearranging the terms,
k+1
3 3
> 5t > <2> to'?, (20)

where we unroll the recursion since té/ << t,i/ ’< 4

Option 2: t1/2 @
Using (18),

the1 =t + VYt <t + 2t < 3t
and
1/2,1/2 1/2
3ty / (t k{H _tk/ ) > V7t
due to (19), which yields

£2 > 24 g @1
Let £* > 0 be the smallest index such that tl/ 2 \25 Unrolling (21),
G2 >0l (1 -k )? 22)
forall £ > k*. If k* = 0, then
1/2 Y
t > (k+1)%—. 23
V(1) 23)

Otherwise, by the definition of k*,

which yields

" 1 v

t,lcflz(k—&—l—(l—i- 1og3/2( )))\g (24)

due to (22). Combining the cases with k* = 0 and k* > 0, we get

and

- Y
/2> (k+1-k) % (25)

forall k > k := max {1 + %log3/2 (ﬁ) 70} . It left to recall that t;, = 1/Ty, and I'y, > T'y, for all
k > 0 to obtain the result.

O
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D MAIN DESCENT LEMMA

Lemma D.1. Suppose that Assumptions 2.1 and 2.3 hold. Consider Algorithm I up to the k' iteration
and the following virtual steps:

ar(7) = aky =V,

1 o
k+1 _ k ko k0 gk
7) = yy T +1+ak7u T fy"),

ukJrl(,y) = u'l?tl Proj ¢ <’LL _ Ok, ’va( k+1)> 7

Lri1(y) =Thq1, =Tk/(1 + akw)»

where 0 < v < m is a free parameter, y* € X, and uF € X. Then, the steps (26) are
well-defined, y**' € X, and uf*' € X, and

k+1(

Y
(26)

(I+ ap ) (fWETY) = f(a) + A+ k) lht1y [+t — x*||2

; (16 = e + T )

2

1 1
< —
2( IV O+ V7

) 19565 — v iH .

Proof. (The following steps up to (27) may be skipped by the reader if A = R™)
Clearly, ’ffl € X due the projection operator. However, we have to check that ka € X to make
sure the steps are well-defined. Notice that

1 o
k+1 _ kT F (R ky &
Yy T ors (y* = V") + v

Moreover, y* — 7V f(y*) € X. If Vf(y*) = 0, then it is trivial. Otherwise,

yk_'va(yk):yk_’Yva H v GX
due to Lemma B.2 because

VIV < sareramD S/0 (NGO +o)

k+1

1
for all v < CNITOIIE In total, y7™" € X since A’ is an open convex set, uF € X, and 1+ak #0

(as it is a convex combination of a point from X" and a point from X with a non-zero welght see
(Rockafellar, 2015)[Theorem 6.1]).
2) .@

(76 - 1@+ 5 e =)
=—(f(") - f(y’§+1) (VI 0 = 5™h)
+(Vf(y k“) yitt — k)
L e G I (e B T )

Consider the difference

r
FAT) = J@t) + =5 [t =

- (6 = 5@+ =

Rearranging the terms, we get

FOAT) = £(@) + R [uk o

Since T'y, = (1 + age,y ) Thop1,45

—Qﬂwwf<»+”wu g

oy, (It ag )i, .2
i) - f(w)+¢!|u§“—

B T

)
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= _(f(yk) _ f(y’f“l) _ <Vf(y§+1)7yk _ y§+1>)
+(VFET), i =)

r
= (fluk = o
Due to |ja]|* — [ja + b]|> = — ||b]|* — 2 (a, b) for all a,b € R,

*

2
— ||u* -2

2 v

2 'y

f(y!;—i_l) _ f(.’f*) + (1 +0ék,’7)1—‘k+1ﬁ ||u§+1 ok _ <(f(yk) _ f(.%'*)) + 7 ||uk —x*

X
2
= () — FE) — (TR, — gt
+(VFET) i =)

+ = (— [|uf — ufj““2 —2(uft — 2 — u’fy+1>) :

)

(28)
Consider the last inner product:

_ <U§+1 et — ufcy+1>
_ /. k+1 * k %y k+1 k k+1 x  k+1 k %k k+1
_<uﬂy —x,(u —F—ka(yw ))—u >+<uv — ", uy —(u —F—ka(y7 )>>

Using  uf™! = Proj v (uk—%wv f(y,’j“)) and the projection property

(Proj 5 (y) — x,Proj ¢ (y) —y) < Oforally € RY x € X, we have
. <u,’§+1 o x*,uk o u,’§+1> < <u,’§+1 _ x*, (uk . Oélic’;'y Vf(yl’jJrl)) N uk> _ <uf§+1 . x*, aIle:y Vf(y5+1)> )

Substituting to (28),

- (6 - s+ 5

(1+ ak,) 2

FOE™) = o) + SR et e

= _(f(yk) _ f(y’,jﬂ) _ <Vf(y§+1),yk _ y’lj+1>)
+(VFET), i =)

I Iy (_ Huk _ ul;+1H2 _9 <u§+1 — ", Oifljvf(ys+1)>>

= —(F") = Fy™) = (VI " = i)

+(VFE), i =)
’2

k_x*

e

- =k
— oy (U =27 V()

= —(fW") = FOETH = (VF@AT), 0 = yE )
H VLA, 5 —yF — ag (Wb — yE L))

s

— gy (Y3t =2t VET)
In the last two equalities, we rearranged terms. Using the convexity of f, we have —(f (yﬂfrl) —
f@*) = = (Vf(ykth), gkt —2*) and

(1+ ) (FATY = F2¥) + % uh*t — 2|

< —(f(") = FWATY) = (V)0 =5 Th)

+ (VLA g — oy — gy (Wl — i)

- (G = sy + 5 k-

19
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el A

= f(f(yk) f(yl,;Jrl) <Vf( k+1)7yk yl’$+1>)
<Vf k+1 (1 + ag Py)y]’;?“rl yk Qg vuk+1>
L'y
2
In the last equality, we rearranged terms. Recall that

1+ ak,v)y’;+1 —y* = akwuk - ’va(yk)-

2
o~

Thus,

(1 + o) (P - o)) + L ellitar ey

< —(fW") = FOETY) = (V@A) 0 —5th))
+ak7’)’ <Vf ']:+1)’uk - ']§+1> - <Vf( §+1)avf(yk)>
T
)
= —(fW") = FOET) = (VAT o =i t)
—I—ak7<Vf( MRS YLV
~ 2w - g IVFII + 5 IV = VwH|
T

2
2

|

Jw* =

2

where we use — (a,b) = L |la — b|> — 1 ||al|* — 3 |[b]|” for all a,b € RY. Using Young’s inequality,
« (1 + ay, )Fk 1, 112 « Iy

(1 ) (£ = pary) + L Beihar ot (1) = o))+ 2t

< —(fOF) = FET - <Vf( SR =y

5 Vs’ +2%”HU’“*M’§“H

SV = SV + S V764 - VieH]
o 5l — a1
= f(f(yk) f(yl,;Jrl) <Vf( k+1)7yk yl’$+1>)
O‘%'y ko k4l Te & ks
o [l — b - St -k

= 2V + 2V = Vi

where the terms %HV f(y’,j“)”2 are cancelled out. Since oy, = /I, the terms with
||uk — uk T || are also cancelled out and

(14 ae)(f@T) = f2) + % [t —a|” - ((f(yk) — f*) + 3 [
< —(f") = FWTY) = (VLW 0 = hTh)

= 2NV + S IV £ - vreh)
< —(F") = FWET) = (VIGE D r = ) + 5 VF @) - VY| 29)
where the last inequality due to % ||V f(y H > 0. Using Lemma B.1, we get

FOF) = FETY — (VAT F — i)

20
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k+1 1—v
29467 = v ras I / AV 7O + V6P — VG o)
1
> va(yk)_vf(ylﬁj-i_l)H 2|V (y H"‘va k+1 H

where we use that ¢ is non-decreasing and bounded the term in the denominator by the maximum
possible value with v = 1. Using triangle’s inequality,

1
202 |V M)+ VAN

FOP) = FEY = (V) 0 — o) > |V FY) = V)

Substituting to (29),

(14 ) (F(5 ) = F@) + % [ (<f<y’“> — f(a*) + % [ — & |2)
1 ! k?Jrl kN (12
- 2< U2V FR) + VA kH)H)) [V = VIO
O]

E CONVERGENCE THEOREMS

E.l1 SUBQUADRATIC AND QUADRATIC GROWTH OF £

Lemma E.1. Under Assumptions 2.1 and 2.3, let ¢ : Ry — R such that (z) = #;) is strictly
increasing, f(y) — f(x*) < 0 for some y € X, and any § € (0, 00] such that £ (8\/56 (0)) < 2¢(0),

then £ (4 |V f(y)|l) < 2¢(0).
Proof. With this choice of J, we get
CAIVE)l) <26(0)

because, due to f(y) — f(z*) < 6 and Lemma B.3,

CAVAOI) < ¢ (4070))

(0)° . (@0)" wwien=s (0710)°
< S <

< g(gz‘%;;()o)) @e(s 55(0)) < 20(0)
60

Theorem 3.2. Suppose that Assumptions 2.1 and 2.3 hold. Let 1) : Ry — Ry such that ¥ (x) =

#L) be strictly increasing. Then Algorithm 1 guarantees that
. _ 18¢(0) R?
P - fa) < T2 < SO @)
(k +1-— k)

forallk >k := max{l + %10g3/2 (8};—(‘30)) ,0} with any 6 € (0, 00| such that ¢ (8\/58 (0)) <
20(0) and any R > R := ||2° — 2| .

21
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Proof. In our proof, we define the Lyapunov function Vj, == f(y*) — f(z*) + Lt |uk — a* ||2 .
After running GD, we get ¢ (4 HV fly H) < 2¢(0) due to Lemma E.1 and the choice of d. Trivially,
Vo < Vo.Dueto f(y°) — f(2*) < §in Alg. 1 and ||y° — 2*|| < ||2° — 2*|| (GD is monotonic;
(Tyurin, 2025)[Lemma 1.2]),

T 6 T
Vo= f°) — f@) + o =" |F < 5+ S o — |
0 Ty 2 S
<4 Ta —at| <o
since I'g = % and R > Hwo —z*||. Using mathematical induction, we assume that
AV R < 2¢(0) and Vy, < (Hi:ol 1+1ai) Vo for some k > 0.

Consider Lemma D.1 and the steps (26). Then,

(14 0, ) (A - @) + L Dt s e

| =

1
<
"2<7 (2IVFEOI+ VDD

where 0 <~ < W is a free parameter. Let us take the smallest -y such that

) 19765 - v iH P,

1
LIV E@RI+ (V)

and denote is as v*. Such a choice exists because g(+y) is continuous for all y > 0 as a composition of
continuous functions (y’“rl is a continuous function of 7), g(0) = L

g(v) =7 -

~ eV reE o <0
and
1 1

S EY 2T S Trasd] P eY N T

Note that v* <

— 1 . r *
fory = zareremm: e - Forall v <97, g(7) < 0 and

o (a0 .
(14 0 () - o)) + L et er 2
L, (32)

< (f@F) - f@™) + 5 =V,

ot~ =

which ensures that

and
L9 < 2600

for all v < v* due to Lemma E.1. Therefore, by the definition of v* and using ¢ (4 HVf(yk) H) <
26(0),

. 1 1 1
Y >
T2V ||+||Vf SO max{f 4V FyR)IDs 4[|V F5EDIDY
meaning that we can take v = and (32) holds:

u+%wuwﬁh ﬂﬁ»+ﬂiﬁ%£ﬁmM@H_fﬁ

< Vi.

22
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k+1

. _ okl _ k1l _ o k+1 o _ 1
Notice that oy o = ag, y5 ™' =y 1 Tht1,y = iy, and uf = uF Tl withy = 0y Therefore,

a |12
(1+ ap ) (FyEHY) = fa*)) + Eroralliviy b1 g |* = (1 4 o) Vieyr,

CAIVFED]) < 2000),

and

k
1 1
Vi1 < Vi < Vo,
k+1*1—|—ock> k<H1—|—ai> 0

i=0
We have proved the next step of the induction. Finally, for all £ > 0,
k

FYEY) = f(@%) < Vi < <H : ) <f(1/0) —fz") + L [ :v*||2>

o Lt

k
“ro([ts ) (oo - e 1),

=0

since £(y°) = f(2*) < 3, [[y° = a7|* < [|a® - 2*

’2 < R?, and I'y1=To (Hf:o 1+10¢i) )
k41 * o 1 =92 =9
f™) = f(@") <D o Tl ) =TrnR
0

because I'y = %. It is left to use Theorem 3.1. O]

Theorem 3.3. Consider the assumptions and results of Theorem 3.2. The oracle complexity (i.e., the
number of gradient calls) required to find an c—solution is

WOR o),

NG

Sorall § > 0 such that ¢ (8\/(% (0)) < 2£(0), where k(9) := max {1 + %10g3/2 (m) , 0} +
kop(6), kap(0) is the oracle complexity of GD for finding a point T such that f(Z) — f(z*) < 6/2.

(&)

Proof. At the beginning, we run GD, which takes kgp(d) iterations (i.e., gradient evaluations). Next,
using Theorem 3.1 and the choice of v = #(0),
18¢(0)

gy < ——
T k1 k)

forall k >k := max{l + %log?)/2 (SZF(%)) ,0} . Taking

5./ R _
k> SVIOR +k,
ﬁ
we get f(y**1) — f(z*) < e due to Theorem 3.2. O

E.2 STABILITY WITH RESPECT TO INPUT PARAMETERS AND IMPROVED RATES

Theorem 4.1. Suppose that Assumptions 2.1 and 2.3 hold. Let 1) : Ry — Ry such that ¥(z) =
#:m) be strictly increasing and lim (x) = oco. Then Algorithm 2 guarantees that
Tr—r00

f(ykJrl) - f(z") < Fk+1R2

forall k > 0 with Ty > 2UE—SGE) 4ug R > R.

[0~z
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Proof. In our proof, we define the Lyapunov function Vj, := f(y*) — f(z*) + Lt |uk — a* ||2 .

Trivially, Vo < V| and

* r 1 D
Vo= f(s°) = f(e) + 5 [|s* = *[|" < ToR* < ToR? (33)
when T > 2U& @) _ 20w F2) and R > R. Moreover,

[0 —a*|? lly0—a=|?

f(°) — fz*) <ToR%.
Due to Lemma B.3,

[VF@O)| < v~ (ToR?).

Using mathematical induction, we assume that |[Vf(y*)|| < ¢~ '(IxR?) and Vi, <

(Hf 01 Tra; ) Vo for some k& > 0.

Consider Lemma D.1 and the steps (26). Then,

(1 + ak,w)(f(y,lj—i_l) f(x*)) + % ||u§+1 _ x*H?

: - (6 - 2@+ - o)

1
<
—2<7 IV + VD))

where 0 < v <

| =

) 19765 - M,

W is a free parameter. Let us take the smallest -y such that
1
9(v) =7 - =0
L2V +IV D)

and denote is as v* (exists similarly to the proof of Theorem 3.2 and v* < m). For all
7<7%9(7) <0and

1 r
(14 o) (™) - fla)) + (o Dt s 2 s

Recall that

= ].-f—O[Z FO
Therefore,
(34) T+ R?
k+1y _ * k
FOE™ =16 S T
and
_ I'.R? _ _
v k+1 < 1 _~k2Y < 1 T R2 35
Vil <o (5 ) <7 () (35)

for all v < ~* due to Lemma B.3. Therefore, by the definition of v* and using HV f (yk)H <
w_l(FkR2)>

1 1 S 1
T RIVIH + [VIEET) H = (A [V FGP)), CA VI GETDY ~ C (T (0 F2))

*

v

meaning that we can take v, = q and (32) holds:

% 1+ ag,)T , w2
(1+ Oékﬁ)(f(yf,ﬂ) Fla) + (’fw Husﬂ o < V.

2
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1
T ()
* = (14 ar)Virn,

) =0 O )

Notice that ay, o = ag, Y5 = ¢, Tp1 = Diya, and uf T = w41 with 4 =
Therefore, (1 + ak,v)(f(y’j“‘l) — fla*)) + % Huij+1 — a:*|

(35) I'.R?
k+1 -1 k
VA < v <1+Oék

and

k
1 1
Vier1 < Vi < Vo,
o< e (M ) v

We have proved the next step of the induction. Finally, for all &£ > 0,
|2

because 'y > W, T =T (Hf:o ﬁ) ,and 30 = 2. O

2) < Fk+1 on —r*

PO = 7)< Vi < Do (G (F00) = 1) + 5 = o'

Theorem 4.2. Consider the assumptions and results of Theorem 4.1. The oracle complexity (i.e., the
number of gradient calls) required to find an e—solution is

5 (0)R
\/g

T
+ max {2 + logs s (‘W%)) ,0} + Kinit (11)

does not depend on

with T'g > w, R> R, and ki being the smallest integer such that

[
' (24\/5(41#1(1“;52))6(0)1%2) < 20(0).

init

Proof. Since vy, = 1/€ (447 (TxR?)) > 0 := 1/¢ (44~ (ToR?)) for all k > 0 in Algorithm 2,
and by Theorem 3.1, we conclude that

9¢ (44~ (TyR?))

r, < {
g (k— k1)’

(36)

for all k > k; := max {1 + %logg/2 (‘WM) ,O} . As in the proof of Lemma E.1 (take
§ = I'vR? in (30)):

(4™ (TR R?)) < 20(0) < ¢ (8\/111%24 (0)) <20(0). (37)

Let kinic be the smallest integer such that

‘ 211\/“41/}_1 (o)) £(0) R2 < 20(0).

k2

init

Note that ki < 0o, because £ is non-decreasing and continuous. Thus,

‘ <8\/1“kR2€(0)) < 20(0)

for all k > kit + k1 due to (36), and Vg > A~ forall k > ki + k1 due to (37). We now repeat

22(0)
the previous arguments once again. Using Theorem 3.1 with I'o = T'.__ . & , we conclude that
r 19¢(0)
k+1 kim( ]:3 = =2
+1+ +k1 (k 41— k)2
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for all k > k := max {1 +1 logs /o (Fk‘“i‘+E1 ) ,0} . It left to choose k > k such that

84(0)
19¢(0) R?
(k+1-k)"

and use Theorem 4.1 to get the total oracle complexity

5T R 1 Tyt 1 Lo
VAT 1+ -1 — ini L4351 R ’
e +max{ + 3 083 /2 < 86(0) ;0 ¢ + Kipie + max ¢ 1 + 5 083/2 40 (4772)71 (FORQ)) 0

5/¢(0)R Ty
< — + Kinie + max {2 +logz o (4@(0) 0

because I'y, < T’y for all £ > 0 and / is non-decreasing. O

E.2.1 SPECIALIZATION FOR (Lg, L1)-SMOOTHNESS

Theorem 4.3. Consider the assumptions and results of Theorem 4.1 with £(s) = Lo 4+ L1s. The
oracle complexity (i.e., the number of gradient calls) required to find an e—solution is

2 P2 2
o(YER |1 Riog (min A T0 DRV (U Lioe (F0) 01 a3
Ve Lo € Lo

with Ty > 20@)=1@) 0 B> R,

[0 —a* |2

Proof. Since ¢(x) = Mfﬁ’ we get
Y Ht) = 4Lyt + (/16 L3t2 + 2Lot < 8Lyt + /2Lt
forall ¢ > 0, and
1 S 1
Ve = = = — =
€ (4= (TkR?)) = Lo+ 4Ly (8L1T 1 R2 + v/2LoTw R2)

1 AM;GM 1
Lo+ 32L2T,R2 +4L1\/2LoT,R2  2Lo +48L3RTy,

Let 0 < k* < oo be the smallest k£ such that L%Rsz < Ly. Forall k < k*, we get L%szk > Ly,

e > m7 and oy, > ﬁ since T, is decreasing. Then,
1
Ty
pp1 £ ————
I+ 5w
for all £ < k*. We can unroll the recursion to get
. k+1 i
_|_
Ty < | ———— I'p<exp| ——=—]T%. 38
k+1_<1+8L1R> 0 < p( 8L1R+1) 0 (38)
1

forall k < k*. For all k > k*, L2R?T'y, < Lo, 7% > ﬁ, and can we use Theorem 3.1 starting
form the index k* :

450Lg

Thopr < ————=
k+k* > (]{;—];)2

for all k > k, where
— 1 Fk* 1 FO
kZ: max{1+210g3/2 <200[/0> ,0} <max{1+210g3/2 <2OO[/0> ,0}, (39)
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where the first inequality due to 'y~ < T'g. If £* = 0, then

450L¢
ES ———
(k= k)’
forall k > k. If k* > 0, then

Lo (38) ( k*—1 )
=5 STy < exp| ———=— | To
L2R?

SLiR+1
and
_ L2 ’ZF
k* <1+ (8LiR+1)log (1R°> :
Lg
In total,
_ L2 721’\
k* gmaX{H (8L1R + 1) log (1];0> ,o}. (40)
0

There are two main regimes of I'y,. The first regime is

450L¢

hy<——m— 41)
(k = (k+ k)
for all k > k + k*, and for all
_ L2 721’\ T
k> max{l + (8L1R—|— 1) log ( 1];0 O> ,0} +max{2+310g (2000LO> ,O} ,
due to (39) and (40). The second regime is
I'y<e K r (42)
xp | ———
=P AT RY1)

for all £ < k* due to (38).
Using Theorem 4.1,

FF) = f(z*) < Ty R2
1 LR < Dol ghen f(y4+1) — f(a®) < e afier

o <\/\L72R + max{(L1R+ 1) log (L%JL%zFo) ,0} + max {log (Eg) o})

iterations due to (41). If L%f%r“ > FOTR2 and k* > (8L R+ 1)log ((TgR?)/e) , then f(y* 1) —

f(z*) < ¢ after
_ T\R?
o ((L1R+ 1) log ( Of ))
L3R?T,

iterations due to (42). If =7—= > FOTR2 and k* < (8L R+ 1)log ((ToR?)/¢) , then f(y*T1) —
f(z*) < e after

o (@R + (LiR+1)log (FOER2> + max {log (E‘;) ,0})

iterations due to (41). It left to combine all cases. ]
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E.3 SUPERQUADRATIC GROWTH OF ¢

Theorem 5.1. Suppose that Assumptions 2.1 and 2.3 hold. Let v : Ry — R, such that
Y(x) = #ﬁx) be not necessarily strictly increasing. Find the largest Ay ax € (0, 00] such that i

is strictly increasing on [0, Apax). For all 6 € [0, (Amax)), find the unique A (9) € [0, Amax)
and the smallest’ Agighi(6) € [Amax,00] such that Y(Den(5)) = & and P(Agn(0)) = 6.
Take any 6 € [0, 39(Amax)] such that {(4A(5)) < 2¢(0) and Avigne(0) > 2Mp, where®

Mg := max _ ﬁVf(x)H . Then Algorithm I guarantees that
lz—z=l|<2R

18¢(0) R?

f(yk-H) = f(z") < I‘chr1R2 < m

forallk >k := max{l + %10g3/2 (%) ,O}

Proof. In our proof, we define the Lyapunov function V}, := f(y*) — f(z*) + %’“ ||uk —x* ||2 .
(Base case:) Clearly, ||u® — 2*|| = ||y° — 2*|| < ||2° — 2*|| < 2R due the the monotonicity of GD
(Tyurin, 2025)[Lemma [.2] and R > R. Thus,
\Y max V)] < Mg.
[Vr) < max V@) < Mg
Using Lemma B 4, either HV fly H < A (6) or HV fly H > Avight (). However the latter is not
possible because Avign(§) > My and ||V f(y°)|| < Mg. Thus, £ (4||Vf(1°)]]) < £(4Aex(0)) <
2¢(0), where the last inequality due to the conditions of the theorem.
Trivially, Vo <V} and
* Po 112 ) P 2
X/(]:f(yo)—f(x)—k?Hyo— §§ 7“2!
(43)

(5 FU 0 112
St B

since I'y = % and R > ||x
C(A][VF@HI]) < 2600),

— x*H Using mathematical induction, we assume that

k—1
1
Vi < Vo, 44

||u’C —x* || < 2R, and ||yk —x* || < 2R for some k > 0 (the base case has been proved in the
previous steps).

Consider Lemma D.1 and the steps (26). Then,
* 1 + « I 2
(1+ ) (AT = f27) + % [uf - 2|

— (6 - 1@ + k= ot

)
< (7 !
2 CRIVEWR) + (| VAEETH)

| =

) 19765 - M,

where 0 < v < is a free parameter. Let us take the smallest  such that

1
L2V FHID
1

= =0
900 = GVl + VTGO

7if the set {x € [Amax, 00) : ¥(z) = &} is empty, then Ayigne(d) = oo

Bor is it sufficient to find any My such that Mz >  max ||V f(2)] .
lo—a*||<2R
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and denote is as v* (exists similarly to the proof of Theorem 3.2 and v* < W) For all
7<7"%9(y) <0and

(L+ ar ) (fWETY) = f(a) + A+ ay)hr1y [k — "E*HZ

. ) 2 (45)
* k *
< (fW") - f= ))—l—?Huk—m =: Vj,
which ensures that
(44) (43)
FOETY = f@) <V < Vo < 6. (46)
Moreover, due to (45) and (26), we have
Dioperr a2 At o) Thviy g s
D st o = (Rl s 2 <y

(44) k—1 1 r )

Alg. 1 5 1 i
< Ty (2F0+2Huo—x

. . 2 _ =
where the last inequality due to I'g = % and ||u0 —x* || < R2. Thus,

)

2) < FkR27

lub - o |* < 2R (47
for all v < v*. Now, consider y’,j“ from (26):
||yk+1 *
1 k Xy ok v k
+ ——u" — \Y —z"
1+ Ozkﬁy 1+ A 1+ Ak~ f(y )
1 k Kk * A,y k * (48)
= -V —x") + : u” —x
i (6P = 976) o) + k)
< k_ A F(oR)) — 2* _’_% uk — 2|,
< Trer [(y* =V f(y")) T+ s |
where we use Triangle’s inequality. Notice that
1
Y€ oo (49)
VM)
for all v < v* because v* < m. Thus,

| (v* = V")) - (=2, V) + 7 |V

L. Bl 2 + 2y (f(x*) _ f(yk) _ va(yk)HQ/ Mmm) + 72 ”Vf(yk)Hz

< |ly* =
2+ va( ( 1—1} )
TIVIY IR EA

In the last inequality, we use f(z*) — f(y* ) < 0. Next,

*

<yt -2

1—v

2(4<9) & .12
< v -] I ( 2||Vf enw

| (" = V")) —a*

+7HVf

all ( 2||Vf O (IIVf( )))

< [ly* — |
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because ¢ is non-decreasing. Thus,

(¥ = AVIWr) — 2| <

I3t =[] < 2R (50)
for all v < ~*, due to (48).
Thus,
IV < max V()] < Mp.

le—a||<2R

Using (46) and Lemma B .4, either ||Vf(y’j+1)|| < Ajee(0) or ||Vf(y’§+1)|| > Agigni(6). However,
the latter is not possible because Arigh[(é) > Mp and ||V f(y*¥T1)|| < Mp. Thus,

(4 yEh|)) < 0(4Ax(0)) < 26(0). (51)
Therefore, by the definition of v* and using ¢ (4 ||V f(y*)||) < 2¢(0),
x 1 1 1
T T @IVIGHT VI T max (VD 18 [V FET)
meaning that we can take v = 5 é(o) and (45) holds:
(14 o )(F ) — gy + L Qi uuk“ | <.

2
: _ K+l _ k1 _ K+l _
Notice that oy, o = oy, y,ﬁ =yt Thi1,y = iy, and u,ﬁ

* (07 ~ 41, . % 2 -
(14 ap ) (fEHY) = fla)) + Ul ||kt g =

v < 200),

k
1 1
< <
Vi1 Ta Vk_ <i1:[1+0éi>V07

Huk+1 —z* 2

+1 with y = ( 5 Therefore,
(1 + ) Viey,

and

k1,

ly

We have proved the next step of the induction. Finally, for all £ > 0,
k

st 16 2 v = ([T k) (100 s+ S
i=0 '

<T ﬁ : i+
=0\ M T+ a ) \2rg

1
i=0 T+ay,

<R.
O

Moreover, we use I'g = % and 'y =T (H . It is left to use Theorem 3.1.

Theorem 5.2. Consider the assumptions and results of Theorem 5.1. The oracle complexity (i.e., the
number of gradient calls) required to find an e—solution is

EAVALOLL é(EO)R + k(6)

forall § € Q, where k(J) := max {1 + 5 log3/2 (82(0 R?) } kGD ), kap(0) is the oracle
complexity of GD for finding a point T such that f(Z) — f(z*)

Proof. The proof of this theorem repeats the proof of Theorem 3.3, with the only change being that
the conditions on § are different. O
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E.3.1 EXAMPLE: (p, Lo, L1)-SMOOTHNESS

To explain how Theorem 5.2 and Corollary 5.3 work, let us consider (p, Lo, L1)—-smoothness
with {(z) = Lo + Liz” and p > 0. In this case, ¥(z) ~ Lo‘fizlafp’ which is strictly in-
creasing until A,y = oo if p < 2, and until Ay = (2Lo/((p — 2)L1))1/" if p > 2.
If p < 2, then Q = {3>0: ((4y~1(5)) < 2(0)} = {520 L 0(8,/50(0)) < 24(0)} -

0>20:6< Lg/p_l/(64L?/p)} and, using the result from Table 2 by Tyurin (2025) with p < 2
and Theorem 5.2,
5v/((0)R
ﬂ + min k(9)
Ve

0eqQ

_ VLR . o LoR?  LiAP/2R%*~r
= (’)( e +%1é13 max 1 log LoR? , 00 + 5 + =

_ o VTR | LiaeP Ly/?AP/I2R2r

o NG L(l)—p/2 Lg/P+P/2—2

where A := f(2°) — f(2*), and we take R = R and § = min{L2/"~" /L% LyR?}/64 to get the
last complexity (which might not be the optimal choice, but a sufficient choice to show that the first
term dominates if € is small). Similarly, for the case p = 2, the oracle complexity at least

o \/L0R+L0ﬁ2 Ly M{ R?
NG 5 5

with § = min{LY*~'/L?/? LyR?}/64 and R = R, where we take the GD rate from (Li et al.,
2024a; Tyurin, 2025).

We now consider the case p > 2. Let us define A; := 1/2(L0/L1)1/p. Notice that A . > Ajq.

For all § € [0,%(A1)), we can find A(d) = ~1(8) ~ Lod. For all z > Apax, ¥(2) is
decreasing, and ¢(z) ~ 7% Thus, Aggn(d) ~ (L16)/ = and we should minimize k() over

— LyzP
the set {J € [0, Lg/p_l/L?/p] 16 < Lo/L3,8 < (1/(2Mg))P~2/L1} C Q (up to constant factors).
It is sufficient to take

§ :=min{L2/*~'/L¥? Lo/L3, (1/(2Mp))*~2/ Ly, LoR?} (52)

+ LR 4

to get the complexity
vVLoR ) VLoR = LoR*> LiM{R?
@) k(6)) =0 — _
( VG + min () VG + 3 + 3 ;

where My := ||V f(2°)||, kop(0) is derived using (Li et al., 2024a; Tyurin, 2025), and we take
R = R. Thus, we can guarantee the VLoR/ /% rate for any p > 0 and a sufficiently small ¢.
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