
Under review as submission to TMLR

QuaRL: Quantization for Fast and Environmentally Sutainable
Reinforcement Learning

Anonymous authors
Paper under double-blind review

Abstract

Deep reinforcement learning continues to show tremendous potential in achieving task-
level autonomy, however, its computational and energy demands remain prohibitively
high. In this paper, we tackle this problem by applying quantization to reinforcement
learning. To that end, we introduce a novel Reinforcement Learning (RL) training
paradigm, ActorQ, to speed up actor-learner distributed RL training. ActorQ
leverages 8-bit quantized actors to speed up data collection without affecting learning
convergence. Our quantized distributed RL training system, ActorQ, demonstrates
end-to-end speedups of > 1.5 × - 2.5 ×, and faster convergence over full precision
training on a range of tasks (Deepmind Control Suite) and different RL algorithms
(D4PG, DQN). Furthermore, we compare the carbon emissions (Kgs of CO2) of
ActorQ versus standard reinforcement learning on various tasks. Across various
settings, we show that ActorQ enables more environmentally friendly reinforcement
learning by achieving 2.8× less carbon emission and energy compared to training
RL-agents in full-precision. Finally, we demonstrate empirically that aggressively
quantized RL-policies (up to 4/5 bits) enable significant speedups on quantization-
friendly (supports native quantization) resource-constrained edge devices, without
degrading accuracy. We believe that this is the first of many future works on enabling
computationally energy-efficient and sustainable reinforcement learning. The source
code for QuaRL is available here for the public to use: https://bit.ly/quarl-tmlr.

1 Introduction

Deep reinforcement learning has attained significant achievements in various fields (Bellemare et al.,
2012; Kempka et al., 2016; Kalashnikov et al., 2018; Silver et al., 2016; 2017; OpenAI, 2018; Chiang
et al., 2019; OpenAI et al., 2019). Despite its promise, one of its limiting factors is long training
times, and the current approach to speed up RL training involves distributed training (Espeholt
et al., 2019a; Nair et al., 2015; Babaeizadeh et al., 2016). Although distributed RL training has
demonstrated significant potential in reducing training times (Hoffman et al., 2020a; Espeholt et al.,
2018), this approach also leads to increased energy consumption and greater carbon emissions.
Unsurprisingly, recent work (Wu et al., 2021) increasingly points toward improving utilization of
hardware at scale using quantization of recommendation and large-scale language models can reduce
the carbon footprint by 20% every six months. In that same vein, we believe reinforcement learning
can also benefit from techniques such as quantization to improve hardware utilization.

In this paper, we tackle the following research question – How can we speed up RL training
without significantly increasing its carbon emissions? To systematically tackle this problem, we first
thoroughly characterize the performance of core components of distributed RL training. We find that

1

Under review as submission to TMLR

majority of the time is spent on actor policy inference, followed by the learner’s gradient calculation,
model update, and finally the communication cost between actors and learners (Figure 2). Thus, to
obtain significant speedups, we first need to lower the the overhead of performing actor inference.
To achieve this goal, we employ neural network quantization, a simple yet effective optimization
technique to lower the compute and memory costs of neural network inference. Despite significant
research on quantization for neural networks, to the best of our knowledge, there exists little prior
work on applying quantization to speed up distributed reinforcement learning.

Applying quantization to reinforcement learning is non-trivial and different from traditional neural
network quantization. In the context of policy inference, it may seem that, due to the sequential
decision-making nature of reinforcement learning, errors made at one state might propagate to
subsequent states, suggesting that policies might be more challenging to quantize than traditional
neural network applications. In the context of reinforcement learning training, quantization seems
difficult to apply due to the myriad of different learning algorithms (Lillicrap et al., 2015; Mnih et al.,
2016; Barth-Maron et al., 2018) and the complexity of these optimization procedures. On the former
point, our insight is that reinforcement learning policies are resilient to quantization error as policies
are often trained with noise (Igl et al., 2019; Plappert et al., 2017) for exploration, making them
robust. And on the latter point, we leverage the fact that reinforcement learning procedures may be
framed through the actor-learner training paradigm (Horgan et al., 2018), and rather than quantizing
learner optimization, we may achieve speedups while maintaining convergence by quantizing just the
actors’ experience generation. Through these insights, we successfully quantize deep reinforcement
learning policies to speed up training time, reduce deployment costs and minimize carbon emissions.

In summary, our fundamental contributions are as follows:

• We introduce ActorQ, to speed up distributed reinforcement learning training. ActorQ
operates by quantizing the actor’s policy, thereby speeding up experience collection. ActorQ
achieves between 1.5× and 2.5× speedup on a variety of tasks from the Deepmind control
suite (Tassa et al., 2018) compared to its full-precision counterparts.

• Using our ActorQ framework, we further explore opportunities to identify various bottlenecks
in distributed RL training. We show that quantization can also minimize communication
overheads between actors and learners and reduce reinforcement learning time.

• Finally, by quantizing the policy weights and communication between actors and learners,
we show a reduction in carbon emissions by as much as 2.8 × versus full precision policies,
thus paving way for sustainable reinforcement learning.

• To address lack of benchmarks on quantization for reinforcement learning in the literature,
we extensively benchmark quantized policies on standard tasks (Atari, Gym), algorithms
(A2C, DDPG, DQN, D4PG, PPO), and models (MLPs, CNNs). We demonstrate little to
no loss in reward, especially in the context of post training quantization.

2 Related Work

Both quantization and reinforcement learning in isolation have been the subject of much research
in recent years. However, to the best of our knowledge, they have never been applied together to
improve RL efficiency. Below we provide an overview of related works in both quantization and
reinforcement learning and discuss their contributions and significance in relation to our paper.

2

Under review as submission to TMLR

Metrics A3C CULE Ray Gorila Seed-RL ACME
Actor-Q

(Our Work)

Method Distributed Distributed Distributed Distributed Distributed Distributed Distributed/Standalone

Increase in Speed-up

Decrease in

Carbon Emission

Decrease in Energy

Decrease in

Communication Cost

Framework Agnostic

Table 1: Comparison of prior works on speeding-up RL training wrt to speed-up (lower training
times), energy, and carbon emissions. Previous works compared include Nvidia’s CULE (Dalton
et al., 2019), Ray (Moritz et al., 2017), Gorila (Nair et al., 2015), Seed-RL (Espeholt et al., 2019b)
and ACME (Hoffman et al., 2020a)

2.1 Quantization

Quantizing a neural network reduces the precision of neural network weights, reducing memory
transfer times and enabling the use of fast low-precision compute operations. Innovations in both
post-training quantization (Krishnamoorthi, 2018a; Banner et al., 2018; Zhao et al., 2019; Tambe
et al., 2019) and quantization aware training (Dong et al., 2019; Hubara et al., 2018; Choi et al.,
2018) demonstrated that neural networks may be quantized to very low precision without accuracy
loss, suggesting that quantization has immense potential for producing efficient deployable models.
In the context of speeding up training, research has also shown that quantization can yield significant
performance boosts. For example, prior work on half or mixed precision training (Sun et al., 2019;
Das et al., 2018) demonstrates that using half-precision operators may significantly reduce compute
and memory requirements while still achieving adequate convergence.

While much research has been conducted on quantization and machine learning, the primary targets
of quantization are applications in the image classification and natural language processing domains.
Quantization as applied to reinforcement learning has been relatively absent in the literature.

2.2 Reinforcement Learning & Distributed Reinforcement Learning Training

Significant work on reinforcement learning range from training algorithms (Mnih et al., 2013b;
Levine et al., 2015) to environments (Brockman et al., 2016a; Bellemare et al., 2013; Tassa et al.,
2018) to systems improvements (Petrenko et al., 2020; Hoffman et al., 2020b). From a systems
angle, reinforcement learning poses a unique opportunity (as opposed to standard machine learning
methods) as training a policy involves executing policies on environments (experience generation)
and optimization (learning). Experience generation is trivially parallelizable and various recent
research in distributed and parallel reinforcement learning training (Kapturowski et al., 2018; Moritz
et al., 2018; Nair et al., 2015) leverage this to accelerate training. One significant work is the
Deepmind Acme reinforcement learning framework (Hoffman et al., 2020b), which enables scalable
training to many processors or nodes on a single machine.

3

Under review as submission to TMLR

Actor Q(Policy)

Environment

Learner

Weights

Optimize

Quantizer load_state_dict

Weights

Quantize

Policy

Quantized
Policy

State
Action

Returns

<Quantized Policy>

<State, Action, Rewards>

<Policy>

Legend

Computation

Communication

Figure 1: ActorQ system setup. ActorQ performs full precision GPU computation on the learner
process and quantized CPU computation on the actor processes. We introduce a parameter quantizer
to facillitate quantized communication of the updated policy between the GPU learner and CPU
actors. The leaner and actors are instrumented with carbon monitoring APIs (Henderson et al.,
2020) to quantify the impact carbon emission with and without quantization.

3 ActorQ: Quantization for Reinforcement Learning

In this section, we introduce ActorQ which is a quantization method for improving the run time
efficiency of actor-learner training. We first provide a high-level overview of the ActorQ system.
Next, we characterize the effects of quantization on different reinforcement learning algorithms.
Lastly, we apply quantization to a distributed RL training framework to show speed-ups on a real
system. Our results demonstrate that apart from reducing training time, ActorQ also leads to lower
carbon emissions, thus paving the path for sustainable reinforcement learning research.

3.1 ActorQ System Architecture

ActorQ utilizes quantization in the actor-learner reinforcement learning framework to speed up
training. There are three main components in ActorQ system namely, ‘Actors’, ‘Learner’, and
‘Quantizer’ as shown in Figure 1. During training, each actor instance performs rollouts and initially
uses a randomly initialized policy for decision making. At each step, the actors broadcast the
environment state, action, and the reward for a given state to the learner. The learner uses this
information to optimize the policy. Periodically, the learner broadcasts the updated policy to the
actors, who then uses the updated policy to perform future rollouts.

There are two main performance bottlenecks in reinforcement learning training. First, each actor
uses a neural network policy to generate an action. Thus, how fast it can perform rollouts depends
on the policy’s inference latency. Second, the learner broadcasts the policy periodically to all the
actors. Broadcasting of the entire policy network to all actors can cause communication overheads
and slow down training.

4

Under review as submission to TMLR

int8 fp320.00

0.05

0.10

0.15

0.20

%
 C

ar
bo

n
(K

Gs
) Actors

Learner
Broadcast

(a) Carbon breakdown

int8 fp320.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5

Ru
nt

im
e

(s
)

Actors
Learner
Broadcast

(b) Time breakdown

Figure 2: Breakdown of carbon emissions for quantized and non-quantized training in MountainCar.

In ActorQ, we use quantization to reduce these bottlenecks and achieve end-to-end speed-up. To
systematically integrate quantization into the training algorithm, we first perform a study to
characterize the effects of applying post-training quantization and quantization aware training to
various RL algorithms and environments.

In ActorQ, all the actor uses quantized policy to perform rollouts. Additionally, the broadcasted
policy is also quantized and replaces the actor’s policy. Note that ActorQ maintains all learner
computation in full precision as to maintain learning convergence; further note that the learner is
significantly faster than the actors due to utilizing the GPU (with actor policy inference achieving
poor utilization on GPU due to operating over low batch sizes). Based on our characterization, we
observe that time spent by actors to perform rollouts is significantly greater than that of learners.
This motivates us to first apply quantization to the actors and policy broadcast communication
from learners to actors.

While simple, ActorQ distinguishes from traditional quantized neural network training as the
inference-only role of actors enables the use of low precision (≤ 8 bit) operators to speed up training.
This is unlike traditional quantized neural network training, which must utilize more complex
algorithms like loss scaling Das et al. (2018), specialized numerical representations Sun et al. (2019);
Wang et al. (2018), stochastic rounding Wang et al. (2018) to attain convergence. This adds
extra complexity and may also limit speedup and, in many cases, are still limited to half-precision
operations due to convergence issues.

3.2 Effects of Quantization on Reinforcement Learning

Before implementing ActorQ, we first perform experiments to understand the effects of quantization
on reinforcement learning. Insights gained from these experiments will help verify that quantization
can be applied to learning without significantly degrading quality.

To this end, we perform two types of quantization: post-training quantization (PTQ) and quantiza-
tion aware training (QAT). The goal is to understand two things: First, does the quantization error
at each step causes drift due to the feedback nature of RL. Second, how far can we quantize the RL
policies (i.e., number of bits) before observing significant loss in rewards?

We take an RL policy fully trained in fp32 and apply post-training quantization to do the former.
For the latter, i.e., to determine how far we can quantize the policy, we perform quantization aware
training to simulate quantization effects using a straight-through estimator. The learning from these
studies guides us in applying quantization for the ActorQ system to speed up the RL training.

5

Under review as submission to TMLR

Post-Training Quantization

The post-training quantization is performed using standard uniform affine quantization defined as
follows:

Qn(W) = round(W

δ
)

where
δ = |min(W, 0)| + |max(W, 0)|

2n

Dequantization is defined as
D(Wq, δ) = δ(Wq)

In our study, policies are trained in standard full precision. Once trained, they are evaluated while
applying the quantization (fp16 and int8) and dequantization functions to weights and activations
to simulate quantization error. For convolutional neural networks, we use per-channel quantization,
which applies Qn to each channel of convolutions individually. Also, all layers of the policy are
quantized to the same precision level.

We apply the PTQ to Atari arcade learning (Bellemare et al., 2012), OpenAI gym environ-
ments (Brockman et al., 2016b) and different RL algorithms namely A2C (Mnih et al., 2016),
DQN (Mnih et al., 2013a), PPO (Schulman et al., 2017), and DDPG (Lillicrap et al., 2015) and.
We train a three-layer convolutional neural network for all Atari games for 10 million steps, with a
quant delay of 5M (quantization aware training starts at 5M steps). For Gym environments, we
train neural networks with two hidden layers of size 64. In PTQ, unless otherwise noted, both
weights and activations are quantized to the same precision.

Table 3 shows the rewards attained by policies quantized via post-training quantization in. The
mean of 8-bit and 16-bit relative errors ranges between 2% and 5% of the full precision model, which
indicates that models may be quantized to 8/16 bit precision without much quality loss.

The overall performance difference between the 8-bit and 16-bit post-training quantization is minimal
(with the exception of the DQN algorithm). Based on our analysis (see Figure 3), we believe this is
because the policy’s weight distribution is narrow enough that 8 bits can capture the distribution of
weights without much error.

Algorithm Environment fp32 Reward Eint8

PPO Breakout 400 8.00%

A2C Breakout 379 7.65%

DQN Breakout 214 63.55%

Table 2: Rewards for DQN, PPO, and A2C.

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0

weight

Fr
eq

ue
nc

y

105

103

101

Min Weight: -2.21
Max Weight: 1.31

Min Weight: -1.02
Max Weight: 0.58

Min Weight: -0.79
Max Weight: 0.72

 DQN

 PPO

 A2C

105

103

101

105

103

101

Fr
eq

ue
nc

y
Fr

eq
ue

nc
y

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0

Figure 3: Weight distributions for the policies
trained using DQN, PPO and A2C.

Table 2 shows the percent change in reward of different reinforcement learning algorithms for the
Atari Breakout game when applying post-training quantization. At 8 bits, models trained by PPO
and A2C have relative errors of 8% and 7.65%, whereas the model trained by DQN has an error of
∼64%. To understand this phenomenon, we plot the distribution of model weights trained by each
algorithm, shown in Figure 3. The plot shows that the 8-bit quantization can sufficiently capture
the entire weight distribution policy trained by PPO and A2C. Whereas for DQN, we observe a

6

Under review as submission to TMLR

Algorithm → A2C DQN PPO DDPG

Datatype → fp32 fp16 int8 fp32 fp16 int8 fp32 fp16 int8 fp32 fp16 int8

Environment ↓ Rwd Rwd Rwd Rwd Rwd Rwd Rwd Rwd Rwd Rwd Rwd Rwd

Breakout 379 371 350 214 217 78 400 400 368

SpaceInvaders 717 667 634 586 625 509 698 662 684

BeamRider 3087 3060 2793 925 823 721 1655 1820 1697

MsPacman 1915 1915 2045 1433 1429 2024 1735 1735 1845

Qbert 5002 5002 5611 641 641 616 15010 15010 14425

Seaquest 782 756 753 1709 1885 1582 1782 1784 1795

CartPole 500 500 500 500 500 500 500 500 500

Pong 20 20 19 21 21 21 20 20 20

Walker2D 399 422 442 2274 2273 2268 1890 1929 1866

HalfCheetah 2199 2215 2208 3026 3062 3080 2553 2551 2473

BipedalWalker 230 240 226 304 280 291 98 90 83

MountainCar 94 94 94 92 92 92 92 92 92

Table 3: Post-training quantization error for DQN, DDPG, PPO, and A2C algorithm on Atari and
Gym. Quantization down to 8 bits yields similar rewards to full precision baseline.

significantly wider distribution. A wider distribution of weights indicates a higher quantization
error, which explains the large error of the 8-bit quantized DQN model. However, as our results
indicate (Section 4), using quantized policies in ActorQ, we can recover from the quantization errors
and achieve similar rewards to policies trained in full-precision (fp32).

In a few cases (e.g., MsPacman for PPO), post-training quantization yields better scores than the
full precision policy. We believe that quantization injected an amount of noise that was small enough
to maintain a good policy and large enough to regularize model behavior; this supports some of the
results seen by Louizos et al. (2018); Bishop (1995); Hirose et al. (2018).

In summary, based on this study, we observe that quantization of RL policy does not cause significant
loss in reward compared to an fp32 policy. Also, it is important to note that we use simple uniform
affine quantization to demonstrate how to apply quantization in RL policies; however, we can easily
swap the quantizer function to include other quantization techniques Krishnamoorthi (2018b).

Quantization Aware Training

To understand how aggressively (i.e., number of bits) we can quantify the RL policies, we use
quantization aware training (QAT). In QAT, the RL policy weights and activations are passed
through the quantization function Qn during inference; during backpropagation the straight-through
estimator is used as the gradient of Qn

∇W Qn(W) = I

7

Under review as submission to TMLR

R
ew

ar
d

450

500

550

Fp PTQ8-bit7-bit6-bit5-bit4-bit3-bit2-bit

Cartpole

 Fp 8* 8 7 6 5 4 3 2

550
500
450

Cartpole
Re

w
ar

d

 A2C
 PPO

bit

R
ew

ar
d

0

200

400

Fp PTQ8-bit 7-bit 6-bit 5-bit 4-bit 3-bit 2-bit

BreakOutBreakOut

Re
w

ar
d

 A2C
 PPO

bit

400

200

0
 Fp 8* 8 7 6 5 4 3 2

R
ew

ar
d

0

1000

2000

Fp PTQ8-bit7-bit6-bit5-bit4-bit3-bit2-bit

SeaQuest
2000

1000

0

SHD4XHVW

Re
w

ar
d

bit

 A2C
 PPO

 Fp 8* 8 7 6 5 4 3 2

R
ew

ar
d

−20

0

20

Fp PTQ8-bit 7-bit 6-bit 5-bit 4-bit 3-bit 2-bit

Pong

20
0

-20

Pong

Re
w

ar
d

 A2C
 PPO

bit
 Fp 8* 8 7 6 5 4 3 2

R
ew

ar
d

0

1000

2000

Fp PTQ8-bit7-bit6-bit5-bit4-bit3-bit2-bit

MsPacman

2000
1000

0

MsPacman

Re
w

ar
d

 A2C
 PPO

bit
 Fp 8* 8 7 6 5 4 3 2

R
ew

ar
d

0
5,000
10,000
15,000

Fp PTQ8-bit7-bit6-bit5-bit4-bit3-bit2-bit

QBert
15000
10000
5000

0

QBert

Re
w

ar
d A2C

 PPO

bit
 Fp 8* 8 7 6 5 4 3 2

R
ew

ar
d

0
1000
2000
3000

Fp PTQ8-bit7-bit6-bit5-bit4-bit3-bit2-bit

BeamRiderBeamRider

Re
w

ar
d

 A2C
 PPO

bit

3000
2000
1000

0 Fp 8* 8 7 6 5 4 3 2

R
ew

ar
d

500

1000

Fp PTQ8-bit7-bit6-bit5-bit4-bit3-bit2-bit

SpaceInvader

1000
500

0

SpaceInvader

Re
w

ar
d

 A2C
 PPO

bit
 Fp 8* 8 7 6 5 4 3 2

R
ew

ar
d

−100

0

100

Fp PTQ 8-bit 7-bit 6-bit 5-bit 4-bit 3-bit 2-bit

MountainCarMountainCar

 Fp 8* 8 7 6 5 4 3 2

100
0

-100R
ew

ar
d

 Fp 8* 8 7 6 5 4 3 2

100
0

-100

MountainCar

Re
w

ar
d

 DDPG

bit

R
ew

ar
d

0

1000

2000

Fp PTQ 8-bit 7-bit 6-bit 5-bit 4-bit 3-bit 2-bit

Walker2DBulletEnv-0

Re
w

ar
d

 Fp 8* 8 7 6 5 4 3 2
bit

Walker2D
2000
1000

0
 Fp 8* 8 7 6 5 4 3 2

2000
1000

0

Walker2D

Re
wa

rd

 DDPG

bit

R
e
w
a
rd

0

2000

Fp PTQ8-bit 7-bit 6-bit 5-bit 4-bit 3-bit 2-bit

HalfCheetahBulletEnv-0

 Fp 8* 8 7 6 5 4 3 2

2000
0

R
ew

ar
d

bit

HalfCheetah

 Fp 8* 8 7 6 5 4 3 2

2000

0

HalfCheetah

Re
w

ar
d

 DDPG

bit

R
ew

ar
d

−100

0

100

Fp PTQ8-bit 7-bit 6-bit 5-bit 4-bit 3-bit 2-bit

BiPedalWalker-v2BiPedalWalker

bit

100
0

-100
 Fp 8* 8 7 6 5 4 3 2

Re
w

ar
d

 Fp 8* 8 7 6 5 4 3 2

100
0

-100

BiPedalWalker

Re
wa

rd
 DDPG

bit

Figure 4: Quantization aware training of PPO, A2C, and DDPG algorithms on OpenAI gym, Atari,
and PyBullet. FP is achieved by fp32 and 8* is achieved by 8-bit post-training quantization.

Note that quantization aware training does not speed up training as all operations are still in floating
point. Quantization aware training is used primarily to train a model with quantized weights and
activations to evaluate the reward loss (if any) for a given RL task. Quantifying this allows us to
speed policy inference time with quantized execution.

We present rewards for policies quantized via quantization aware training on multiple environments
and training algorithms in Figure 4. Generally, the performance relative to the full precision baseline
is maintained until 5/6-bit quantization, after which there is a drop in reward.

Broadly, at 8-bits, we see no degradation in rewards. Hence, when applying quantization in ActorQ,
we quantize the policy to 8-bits. By quantizing the policy at 8-bits and leveraging the native
8-bit computation support in hardware, we achieve end-to-end speed-up in reinforcement learning
training.

4 Experimental Setup

We evaluate the ActorQ system for speeding up distributed quantized reinforcement learning across
various tasks in Deepmind Control Suite (Tassa et al., 2018). Overall, we show that: (1) we see
significant speedup (>1.5 ×-2.5 ×) in training reinforcement learning policies using ActorQ; (2)

8

Under review as submission to TMLR

Task Algorithm Difficulty Steps Trained Model Pull Freq (steps)
Cartpole Balance D4PG Trivial 40000 1000

Walker Stand D4PG Trivial 40000 1000
Hopper Stand D4PG Easy 100000 1000
Reacher Hard D4PG Easy 70000 1000
Cheetah Run D4PG Medium 200000 1000
Finger Spin D4PG Medium 200000 1000

Humanoid Stand D4PG Hard 500000 100
Humanoid Walk D4PG Hard 700000 100

Cartpole DQN N/A 60000 1000
Acrobot DQN N/A 100000 1000

MountainCar DQN N/A 200000 1000

Table 4: Tasks evaluated using ActorQ range from easy to difficult, along with the steps trained for
corresponding tasks, with how frequently the model is pulled on the actor side.

convergence is maintained even when actors perform down to 8-bit quantized inference; (3) Using
ActorQ, we lower the carbon emissions from 48% to 73% compared to training without quantization.

4.1 ActorQ Experimental Setup

We evaluate ActorQ on a range of environments from the Deepmind Control Suite (Tassa et al.,
2018). We choose the environments to cover a wide range of difficulties to determine the effects of
quantization on both easy and difficult tasks. The difficulty of the Deepmind Control Suite tasks
is determined by (Hoffman et al., 2020b). Table 4 lists the environments we tested on with their
corresponding difficulty and number of steps trained. Each episode has a maximum length of 1000
steps, so the maximum reward for each task is 1000 (though this may not always be attainable).

Policy architectures are fully connected networks with three hidden layers of size 2048. We apply
a gaussian noise layer to the output of the policy network on the actor to encourage exploration;
sigma is uniformly assigned between 0 and 0.2 according to the actor being executed. On the learner
side, the critic network is a three-layer hidden network with a hidden size of 512. We train policies
using D4PG (Barth-Maron et al., 2018) on continuous control environments and DQN (Mnih et al.,
2013b) on discrete control environments. We chose D4PG as it was the best learning algorithm in
(Tassa et al., 2018; Hoffman et al., 2020b), and DQN is a widely used and standard reinforcement
learning algorithm. An example submitted by an actor is sampled 16 times before being removed
from the replay buffer (spi=16) (lower spi is typically better as it minimizes model staleness (Fedus
et al., 2020)).

All the experiments are run in a distributed fashion to leverage multiple CPU cores and a GPU.
A V100 GPU is used on the learner, while the actors are mapped to the CPU (1 core for each
actor). We run each experiment and average over at least three runs to compute the running mean
(window=10) of the aggregated runs.

9

Under review as submission to TMLR

Task
Reward

Achieved

Time to Reward (s) Speedup Carbon (kg)
Carbon

Reduction

fp32 int8 int8 fp32 int8 int8

Cartpole Balance 941.22 870.91 279.00 3.12× 0.359 0.15 58.28%

Walker Stand 947.74 871.32 534.37 1.63× 0.67 0.178 73.41%

Hopper Stand 836.41 2660.41 1699.17 1.57× 0.34 0.17 50.00%

Reacher Hard 948.12 1597.00 875.34 1.82× 0.35 0.18 48.57%

Cheetah Run 732.31 2517.30 891.84 2.82× 0.263 0.12 54.37%

Finger Spin 810.32 3256.56 1065.52 3.06× 0.361 0.19 47.37%

Humanoid Stand 884.89 13964.92 9302.82 1.51× 0.55 0.27 50.91%

Humanoid Walk 649.91 17990.66 6223.35 2.89× 0.56 0.278 50.36%

Cartpole (Gym) 198.22 963.67 260.10 3.70× 0.188 0.089 52.50%

Mountain Car (Gym) -120.62 2861.80 1284.32 2.22× 0.21 0.098 53.27%

Acrobot (Gym) -107.45 912.24 168.44 5.41× 0.198 0.097 50.97%

Table 5: ActorQ time and speedups to 95% reward on select tasks from Deepmind Control Suite
and Gym. 8 bit inference yields > 1.5 × −2.5× speedup over full precision training. We use D4PG
on DeepMind Control Suite environments (non-gym), DQN on gym environments.

4.2 Measuring Carbon Emissions

For measuring the carbon emission for the run, we use the experiment-impact-tracker proposed
in prior JMLR work (Henderson et al., 2020).1 We instrument the ActorQ system with carbon
monitor APIs to measure the energy and carbon emissions for each training experiment in ActorQ.

5 Results

5.1 Speedup, Convergence, and Carbon Emissions

We focus our results on three main areas: end-to-end speed-ups for training, model convergence
during training and environmental sustainability from a carbon emissions perspective.

End to End Speedups. We show end to end training speedups with ActorQ in Figure(s) 5 and
7. Across nearly all tasks, we see significant speedups with both 8-bit inference. Additionally, to
improve readability, we estimate the 95% percentile of the maximum attained score by fp32 and
measure time to this reward level for fp32, int8, and compute corresponding speedups. This is
shown in Table 5. Note that Table 5 does not take into account cases where fp16 or int8 achieve a
higher score than fp32.

Convergence. We show the episode reward versus total actor steps convergence plots using ActorQ
in Figure(s) 6 and 7. Data shows that broadly, convergence is maintained even with 8-bit actors
across both easy and difficult tasks. On Cheetah, Run and Reacher, Hard, 8-bit ActorQ achieve

1https://github.com/Breakend/experiment-impact-tracker

10

Under review as submission to TMLR

0.2 0.4 0.6 0.8 1.0
Time (s) 1e6

500
600
700
800
900

1000
Re

tu
rn

q=32
q=8

(a) Cartpole Balance

0 1 2 3 4
Time (s) 1e6

200

400

600

800

Re
tu

rn

q=32
q=8

(b) Cheetah Run

0.2 0.4 0.6 0.8 1.0 1.2
Time (s) 1e6

200

400

600

800

1000

Re
tu

rn

q=32
q=8

(c) Walker Stand

0.5 1.0 1.5 2.0 2.5 3.0
Time (s) 1e6

0

200

400

600

800

Re
tu

rn

q=32
q=8

(d) Hopper Stand

0.250.500.751.001.251.501.75

Time (s) 1e6

0
200
400
600
800

1000

Re
tu

rn

q=32
q=8

(e) Reacher Hard

0 1 2 3 4 5
Time (s) 1e6

100
200
300
400
500
600
700
800
900

Re
tu

rn

q=32
q=8

(f) Finger Spin

0.000.250.500.751.001.251.501.752.00

Time (s) 1e7

0
200
400
600
800

Re
tu

rn

q=32
q=8

(g) Humanoid Stand

0.0 0.5 1.0 1.5 2.0 2.5
Time (s) 1e7

0
100
200
300
400
500
600
700

Re
tu

rn

q=32
q=8

(h) Humanoid Walk

Figure 5: End to end speedups of ActorQ across various Deepmind Control Suite tasks using 8 bit
and 32 bit inference. 8 bit training yields significant end to end training speedups over the full
precision baseline. The x-axis denotes the wall-clock time and y-axis denotes the reward. Training
uses the D4PG algorithm.

0 2 4 6 8
Steps 1e6

400
500
600
700
800
900

1000

Re
tu

rn

q=32
q=8

(a) Cartpole Balance

0 1 2 3 4
Steps 1e7

200

400

600

800

Re
tu

rn

q=32
q=8

(b) Cheetah Run

0 2 4 6 8
Steps 1e6

200

400

600

800

1000

Re
tu

rn

q=32
q=8

(c) Walker Stand

0.0 0.5 1.0 1.5 2.0
Steps 1e7

0

200

400

600

800

Re
tu

rn

q=32
q=8

(d) Hopper Stand

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Steps 1e7

0
200
400
600
800

1000

Re
tu

rn

q=32
q=8

(e) Reacher Hard

0 1 2 3 4
Steps 1e7

100
200
300
400
500
600
700
800
900

Re
tu

rn

q=32
q=8

(f) Finger Spin

0.0 0.2 0.4 0.6 0.8 1.0
Steps 1e8

0

200

400

600

800

Re
tu

rn

q=32
q=8

(g) Humanoid Stand

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
Steps 1e8

0
100
200
300
400
500
600
700

Re
tu

rn

q=32
q=8

(h) Humanoid Walk

Figure 6: Convergence of ActorQ across various Deepmind Control Suite tasks using 8 bit and 32
bit inference. 8 bit quantized training attains the same or better convergence than full precision
training. Training uses the D4PG algorithm.

even slightly faster convergence, and we believe this may have happened as quantization introduces
noise which could be seen as exploration.

Carbon Emissions. Table 5 also shows the carbon emissions for various task in openAI gym and
Deepmind Control Suite. We compare the carbon emissions of a policy running in fp32 and int8.
We observe that quantization of policies reduces the carbon emissions anywhere from 48% to 73.41%
depending upon the task. As RL systems are scaled to run on 1000’s distributed CPU cores and
accelerators (GPU/TPU), the carbon reduction can be significant.

11

Under review as submission to TMLR

0.0 0.5 1.0 1.5 2.0 2.5
Steps 1e6

80
100
120
140
160
180
200

Re
tu

rn
q=32
q=8

(a) Cartpole(Conv)

0 1 2 3 4 5 6 7
Steps 1e6

220
200
180
160
140
120
100

Re
tu

rn

q=32
q=8

(b) MntnCar(Conv)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Steps 1e6

500

400

300

200

100

Re
tu

rn

q=32
q=8

(c) Acrobot(Conv)

0.250.500.751.001.251.501.752.00

Time (s) 1e6

80
100
120
140
160
180
200

Re
tu

rn

q=32
q=8

(d) Cartpole(Spd)

0 1 2 3 4 5 6 7
Time (s) 1e6

200
180
160
140
120
100

Re
tu

rn
q=32
q=8

(e) MntnCar(Spd)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
Time (s) 1e6

400
350
300
250
200
150
100

Re
tu

rn

q=32
q=8

(f) Acrobot(Spd)

Figure 7: Convergence (Conv.) and end to end speedups (Spd) of ActorQ across various Gym tasks
using 8 bit and 32 bit inference. 8 bit training yields significant end to end training speedups over
the full precision baseline. For the speed-up plots (d-f), the x-axis denotes wall-clock time. Training
uses the DQN algorithm.

0
100000

200000
300000

400000

Steps

0

200

400

600

800

Re
tu

rn update freq=100
update freq=1000

Figure 8: Humanoid stand: training with more frequent actor pulls learns faster than with less
frequent actor pulls and demonstrates model pull frequency affects staleness of actor policies and
may have an effect on training.

5.2 Communication vs Computation

The frequency of model pulls on actors is a hyperparameter and may have impacts on convergence
as it affects the staleness of policies being used to populate the replay buffer; this has been witnessed
in both prior research (Fedus et al., 2020) and our experiment with the hyperparameter. Figure 8
shows that a higher update frequency of 100 can help in faster convergence compared to an update
frequency of 1000 for the Humanoid stand task. This hyperparameter has system-level implications
since a higher update frequency can increase the communication cost (policy broadcast from learner
to actors). In contrast, a lower update frequency can increase the computation cost since it will
take more steps to converge, increasing the computation cost. Thus, to understand the tradeoff of
quantization concerning this hyperparameter, we explore the effects of quantization of communication
versus computation in both communication and computation-heavy setups.

12

Under review as submission to TMLR

0 250 500 750
1000

1250
1500

1750
2000

Time (s)

200
300
400
500
600
700
800
900

1000

Re
tu

rn

q=32,q_c=32
q=32,q_c=8
q=8

(a) Communication Heavy (Update Freq=30)

200 400 600 800
1000

1200

Time (s)

200
300
400
500
600
700
800
900

1000

Re
tu

rn

q=32,q_c=32
q=32,q_c=8
q=8

(b) Computation Heavy (Update Freq=300)

Figure 9: Effects of quantizing communication versus computation in compute heavy and communi-
cation heavy training scenarios. q is the precision of inference; q_c is the precision of communication.
Note q=8 implicitly quantizes communication to 8 bits. Experiment run on the walker stand task,
using the D4PG algorithm.
To quantize communication, we quantize policy weights to 8 bits and compress them by packing
them into a matrix, thus, reducing the memory of model broadcasts by 4×. Naturally, quantizing
communication would be more beneficial in the communication heavy scenario, and quantizing
compute would yield relatively more gains in the computation-heavy scenario.

Figure 9 shows an ablation plot of the gains of quantization on both communication and compu-
tation in a communication heavy scenario (frequency=30) versus a computation-heavy scenario
(frequency=300).

The figures show that in a communication heavy scenario (Figure 9a), quantizing communication
may yield up to 30% speedup; conversely, in a computation-heavy scenario (Figure 9b) quantizing
communication has little impact as the overhead is dominated by computation. Therefore, we
believe that communication would incur higher costs on a networked cluster as actors scale.

5.3 Rationale for Why Quantization of Actors Speed-Up RL Training

We further break down the various components contributing to runtime on a single actor to
understand how quantization of actor’s policy inference speeds up training. Runtime components are
broken down into: step time, pull time, deserialize time, and load_state_dict time. Step time is the
time spent performing neural network policy inference. Pull time is the time between querying the
Reverb queue (DeepMind, 2020) for a model and receiving the serialized models’ weights; deserialize
time is the time spent to deserialize the serialized model dictionary; load_state_dict time is the
time to call PyTorch load_state_dict (used for loading and storing the policy).

Figure 10a shows the relative breakdown of the component runtimes with 32, 16, and 8-bit quantized
inference in the computation heavy scenario. As shown, step time is the main bottleneck, and
quantization of the actor’s policy significantly speed-up each roll-out, speeding up the overall training.
Figure 10b shows the cost breakdown in the communication heavy scenario. While speeding up
computation, pull time and deserialize time are also significantly sped up by quantization due to
reduction in memory.

In 8-bit and 16-bit quantized training, the cost of PyTorch load_state_dict is significantly higher.
An investigation shows that the cost of loading a quantized PyTorch model is spent repacking the
weights from Python object into C data. 8-bit weight repacking is noticeably faster than 16-bit
weight repacking due to fewer memory accesses. The cost of model loading suggests that additional

13

Under review as submission to TMLR

q=32 q=16 q=80
2
4
6
8

10

Ti
m

e
(s

)

Step Time
Pull Time
Deserialize Time
load_state_dict time

(a) Communication Heavy (Update Freq=30)

q=32 q=16 q=80
2
4
6
8

10

Ti
m

e
(s

)

Step Time
Pull Time
Deserialize Time
load_state_dict time

(b) Computation Heavy (Update Freq=300)

Figure 10: Breakdown of components for quantized and non-quantized training over 1000 steps.

speed gains can be achieved by serializing the packed C data structure and reducing the cost of
weight packing.

6 Discussion & Future Work

To the best of our knowledge, this is the first time anyone has experimentally and quantitatively
demonstrated that quantization may be effectively applied to many facets of reinforcement learning,
from obtaining high quality and efficient quantized policies, to reducing training times and eliminating
carbon emissions. More specifically, we have shown that reinforcement learning policies may be
quantized down to 4-5 bits without significantly affecting their performance; based on this result,
we have developed a simple but effective method for speeding up reinforcement learning training,
ActorQ, which achieves over 1.5 × −2× speedup over non quantized training, with a 2.8× reduction
in carbon emissions. In the future, alternative and more competitive methods are likely to emerge.

The computational requirements for RL training are growing (Espeholt et al., 2019a) (Espeholt
et al., 2018). Training OpenAI Five to play Dota 2 required a scaled-up version of Proximal Policy
Optimization running on 512 GPUs and 51200 CPU cores (Berner et al., 2019). As we scale RL
training to more thousands of cores and GPUs, even a 50% improvement as we have experimentally
demonstrated (Table 5) will result in enormous savings in dollar cost, energy, and carbon emissions.
We believe that quantization, which is already a standard technique applied to non-reinforcement
learning neural network models, will likewise be a critical technique in optimizing the performance
of reinforcement learning policies. Our paper demonstrates that, like for standard neural networks,
quantization likewise yields significant benefits for reinforcement learning while maintaining accuracy.
With that said, we believe that this is just the beginning.

Several design decisions in our system warrant further discussion and research. In our design
of the quantizer in ActorQ, we relied on simple uniform quantization, however, we believe other
forms of aggressive quantization / compression (Park et al., 2016; Polino et al., 2018; Tambe et al.,
2020; Lam et al., 2021) can also be applied (e.g., distillation, sparsification, etc). Applying more
aggressive quantization / compression methods may yield additional benefits to the performance
/ accuracy tradeoff obtained by the trained policies. Additionally, in order to achieve tangible
speedups from quantization, the underlying hardware system must support quantized operations
at the machine level. However, with increased hardware support for neural network execution,
we believe that devices in the future will exhibit an increasing amount of hardware support for
quantized operations (Jouppi et al., 2017). Finally, in ActorQ, we primarily focused on quantizing
actor neural network execution and the communication between actors and learners (as these were

14

Under review as submission to TMLR

the biggest computational bottlenecks), however, we believe that the learner’s policy can similarly
be quantized to achieve further performance benefits.

7 Conclusion

To the best of our knowledge, we are the first to evaluate quantization to speed up reinforcement
learning training and inference. We experimentally demonstrate that standard quantization methods
can quantize policies down to ≤ 8 bits with little quality loss. We present ActorQ to attain significant
speedups over full precision training. Our results demonstrate that quantization has considerable
potential in speeding up both reinforcement learning inference and training. Future work includes
extending the results to networked clusters to evaluate further the impacts of communication and
applying quantization to reinforcement learning to different application scenarios such as the edge.

References
Mohammad Babaeizadeh, Iuri Frosio, Stephen Tyree, Jason Clemons, and Jan Kautz. Reinforcement

learning through asynchronous advantage actor-critic on a gpu. arXiv preprint arXiv:1611.06256,
2016.

Ron Banner, Yury Nahshan, Elad Hoffer, and Daniel Soudry. Post-training 4-bit quantization of
convolution networks for rapid-deployment, 2018.

Gabriel Barth-Maron, Matthew W. Hoffman, David Budden, Will Dabney, Dan Horgan, Dhruva TB,
Alistair Muldal, Nicolas Heess, and Timothy Lillicrap. Distributed distributional deterministic
policy gradients. 2018.

M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. The arcade learning environment: An
evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:253–279,
jun 2013.

Marc G. Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning
environment: An evaluation platform for general agents. CoRR, abs/1207.4708, 2012. URL
http://arxiv.org/abs/1207.4708.

Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemyslaw Debiak, Christy
Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Christopher Hesse, Rafal Józefowicz,
Scott Gray, Catherine Olsson, Jakub Pachocki, Michael Petrov, Henrique Pondé de Oliveira Pinto,
Jonathan Raiman, Tim Salimans, Jeremy Schlatter, Jonas Schneider, Szymon Sidor, Ilya Sutskever,
Jie Tang, Filip Wolski, and Susan Zhang. Dota 2 with large scale deep reinforcement learning.
CoRR, abs/1912.06680, 2019. URL http://arxiv.org/abs/1912.06680.

C. M. Bishop. Training with noise is equivalent to tikhonov regularization. Neural Computation, 7
(1):108–116, Jan 1995. doi: 10.1162/neco.1995.7.1.108.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie
Tang, and Wojciech Zaremba. Openai gym. CoRR, abs/1606.01540, 2016a. URL
http://arxiv.org/abs/1606.01540.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie
Tang, and Wojciech Zaremba. Openai gym. CoRR, abs/1606.01540, 2016b. URL
http://arxiv.org/abs/1606.01540.

15

Under review as submission to TMLR

Hao-Tien Lewis Chiang, Aleksandra Faust, Marek Fiser, and Anthony Francis. Learning navigation
behaviors end-to-end with autorl. IEEE Robotics and Automation Letters, 4(2):2007–2014, April
2019. ISSN 2377-3766. doi: 10.1109/LRA.2019.2899918.

Jungwook Choi, Zhuo Wang, Swagath Venkataramani, Pierce I-Jen Chuang, Vijayalakshmi Srini-
vasan, and Kailash Gopalakrishnan. Pact: Parameterized clipping activation for quantized neural
networks. 2018.

Steven Dalton, Iuri Frosio, and Michael Garland. Gpu-accelerated atari emulation for reinforcement
learning, 2019.

Dipankar Das, Naveen Mellempudi, Dheevatsa Mudigere, Dhiraj Kalamkar, Sasikanth Avancha,
Kunal Banerjee, Srinivas Sridharan, Karthik Vaidyanathan, Bharat Kaul, Evangelos Georganas,
Alexander Heinecke, Pradeep Dubey, Jesus Corbal, Nikita Shustrov, Roma Dubtsov, Evarist
Fomenko, and Vadim Pirogov. Mixed precision training of convolutional neural networks using
integer operations. International Conference on Learning Representations (ICLR), 2018.

DeepMind. Reverb. https://github.com/deepmind/reverb, 2020.

Zhen Dong, Zhewei Yao, Amir Gholami, Michael W Mahoney, and Kurt Keutzer. Hawq: Hes-
sian aware quantization of neural networks with mixed-precision. In Proceedings of the IEEE
International Conference on Computer Vision, pp. 293–302, 2019.

Lasse Espeholt, Hubert Soyer, Rémi Munos, Karen Simonyan, Volodymyr Mnih, Tom Ward, Yotam
Doron, Vlad Firoiu, Tim Harley, Iain Dunning, et al. Impala: Scalable distributed deep-rl
with importance weighted actor-learner architectures. In International Conference on Machine
Learning (ICML), 2018.

Lasse Espeholt, Raphaël Marinier, Piotr Stanczyk, Ke Wang, and Marcin Michalski. Seed rl:
Scalable and efficient deep-rl with accelerated central inference. 2019a.

Lasse Espeholt, Raphaël Marinier, Piotr Stanczyk, Ke Wang, and Marcin Michalski. Seed rl:
Scalable and efficient deep-rl with accelerated central inference. arXiv preprint arXiv:1910.06591,
2019b.

William Fedus, Prajit Ramachandran, Rishabh Agarwal, Yoshua Bengio, Hugo Larochelle, Mark
Rowland, and Will Dabney. Revisiting fundamentals of experience replay. In International
Conference on Machine Learning (ICML), 2020.

Peter Henderson, Jieru Hu, Joshua Romoff, Emma Brunskill, Dan Jurafsky, and Joelle
Pineau. Towards the systematic reporting of the energy and carbon footprints of ma-
chine learning. Journal of Machine Learning Research, 21(248):1–43, 2020. URL
http://jmlr.org/papers/v21/20-312.html.

Kazutoshi Hirose, Ryota Uematsu, Kota Ando, Kodai Ueyoshi, Masayuki Ikebe, Tetsuya Asai,
Masato Motomura, and Shinya Takamaeda-Yamazaki. Quantization error-based regularization
for hardware-aware neural network training. Nonlinear Theory and Its Applications, IEICE, 9(4):
453–465, 2018. doi: 10.1587/nolta.9.453.

Matt Hoffman, Bobak Shahriari, John Aslanides, Gabriel Barth-Maron, Feryal Behbahani, Tamara
Norman, Abbas Abdolmaleki, Albin Cassirer, Fan Yang, Kate Baumli, Sarah Henderson, Alex
Novikov, Sergio Gómez Colmenarejo, Serkan Cabi, Caglar Gulcehre, Tom Le Paine, Andrew

16

Under review as submission to TMLR

Cowie, Ziyu Wang, Bilal Piot, and Nando de Freitas. Acme: A research framework for distributed
reinforcement learning. arXiv preprint arXiv:2006.00979, 2020a.

Matt Hoffman, Bobak Shahriari, John Aslanides, Gabriel Barth-Maron, Feryal Behbahani, Tamara
Norman, Abbas Abdolmaleki, Albin Cassirer, Fan Yang, Kate Baumli, et al. Acme: A research
framework for distributed reinforcement learning. arXiv preprint arXiv:2006.00979, 2020b.

Dan Horgan, John Quan, David Budden, Gabriel Barth-Maron, Matteo Hessel, Hado van Hasselt,
and David Silver. Distributed prioritized experience replay. In International Conference on
Learning Representations (ICLR), 2018.

Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Ben-
gio. Quantized neural networks: Training neural networks with low precision weights
and activations. Journal of Machine Learning Research, 18(187):1–30, 2018. URL
http://jmlr.org/papers/v18/16-456.html.

Maximilian Igl, Kamil Ciosek, Yingzhen Li, Sebastian Tschiatschek, Cheng Zhang, Sam Devlin,
and Katja Hofmann. Generalization in reinforcement learning with selective noise injection and
information bottleneck. In Advances in Neural Information Processing Systems, pp. 13978–13990,
2019.

Norman Jouppi, Al Borchers, Rick Boyle, Pierre-luc Cantin, Clifford Chao, Chris Clark, Jeremy
Coriell, Mike Daley, Matt Dau, Jeffrey Dean, Ben Gelb, Cliff Young, Tara Ghaemmaghami,
Rajendra Gottipati, William Gulland, Robert Hagmann, C. Ho, Doug Hogberg, John Hu, and
Nan Boden. In-datacenter performance analysis of a tensor processing unit. pp. 1–12, 06 2017.
doi: 10.1145/3079856.3080246.

Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian Ibarz, Alexander Herzog, Eric Jang, Deirdre
Quillen, Ethan Holly, Mrinal Kalakrishnan, Vincent Vanhoucke, and Sergey Levine. Qt-opt:
Scalable deep reinforcement learning for vision-based robotic manipulation. CoRR, abs/1806.10293,
2018. URL http://arxiv.org/abs/1806.10293.

Steven Kapturowski, Georg Ostrovski, John Quan, Remi Munos, and Will Dabney. Recurrent
experience replay in distributed reinforcement learning. In International Conference on Learning
Representations (ICLR), 2018.

Michał Kempka, Marek Wydmuch, Grzegorz Runc, Jakub Toczek, and Wojciech Jaśkowski. Vizdoom:
A doom-based ai research platform for visual reinforcement learning. In 2016 IEEE Conference
on Computational Intelligence and Games (CIG), pp. 1–8. IEEE, 2016.

Raghuraman Krishnamoorthi. Quantizing deep convolutional networks for efficient inference: A
whitepaper. arXiv preprint arXiv:1806.08342, 2018a.

Raghuraman Krishnamoorthi. Quantizing deep convolutional networks for efficient inference: A
whitepaper. CoRR, abs/1806.08342, 2018b.

Maximilian Lam, Zachary Yedidia, Colby R Banbury, and Vijay Janapa Reddi. Precision batching:
Bitserial decomposition for efficient neural network inference on gpus. In 2021 30th International
Conference on Parallel Architectures and Compilation Techniques (PACT), pp. 129–141, 2021.
doi: 10.1109/PACT52795.2021.00017.

Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end training of deep
visuomotor policies, 2015.

17

Under review as submission to TMLR

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

Christos Louizos, Matthias Reisser, Tijmen Blankevoort, Efstratios Gavves, and Max Welling.
Relaxed quantization for discretized neural networks. International Conference on Learning
Representations (ICLR), 2018.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013a.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning, 2013b.

Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves, Timothy P. Lillicrap,
Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. CoRR, abs/1602.01783, 2016. URL http://arxiv.org/abs/1602.01783.

Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov, Richard Liaw, Eric Liang,
Melih Elibol, Zongheng Yang, William Paul, Michael I. Jordan, and Ion Stoica. Ray: A distributed
framework for emerging ai applications. arXiv preprint arXiv:1712.05889, 2017.

Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov, Richard Liaw, Eric Liang,
Melih Elibol, Zongheng Yang, William Paul, Michael I Jordan, et al. Ray: A distributed framework
for emerging {AI} applications. In 13th {USENIX} Symposium on Operating Systems Design
and Implementation ({OSDI} 18), pp. 561–577, 2018.

Arun Nair, Praveen Srinivasan, Sam Blackwell, Cagdas Alcicek, Rory Fearon, Alessandro De Maria,
Vedavyas Panneershelvam, Mustafa Suleyman, Charles Beattie, Stig Petersen, et al. Massively
parallel methods for deep reinforcement learning. arXiv preprint arXiv:1507.04296, 2015.

OpenAI. Openai five. https://blog.openai.com/openai-five/, 2018.

OpenAI, Ilge Akkaya, Marcin Andrychowicz, Maciek Chociej, Mateusz Litwin, Bob McGrew, Arthur
Petron, Alex Paino, Matthias Plappert, Glenn Powell, Raphael Ribas, Jonas Schneider, Nikolas
Tezak, Jerry Tworek, Peter Welinder, Lilian Weng, Qiming Yuan, Wojciech Zaremba, and Lei
Zhang. Solving rubik’s cube with a robot hand, 2019.

Jongsoo Park, Sheng R. Li, Wei Wen, Hai Li, Yiran Chen, and Pradeep Dubey. Holistic spar-
secnn: Forging the trident of accuracy, speed, and size. International Conference on Learning
Representations (ICLR), 2016.

Aleksei Petrenko, Zhehui Huang, Tushar Kumar, Gaurav Sukhatme, and Vladlen Koltun. Sample
factory: Egocentric 3d control from pixels at 100000 fps with asynchronous reinforcement learning.
In International Conference on Machine Learning (ICML), 2020.

Matthias Plappert, Rein Houthooft, Prafulla Dhariwal, Szymon Sidor, Richard Y. Chen, Xi Chen,
Tamim Asfour, Pieter Abbeel, and Marcin Andrychowicz. Parameter space noise for exploration.
CoRR, abs/1706.01905, 2017. URL http://arxiv.org/abs/1706.01905.

Antonio Polino, Razvan Pascanu, and Dan Alistarh. Model compression via distillation and
quantization. International Conference on Learning Representations (ICLR), 2018.

18

Under review as submission to TMLR

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

David Silver, Aja Huang, Christopher J. Maddison, Arthur Guez, Laurent Sifre, George van den
Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, Sander
Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap,
Madeleine Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the
game of go with deep neural networks and tree search. Nature, 529:484–503, 2016. URL
http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go
without human knowledge. Nature, 550(7676):354, 2017.

Xiao Sun, Jungwook Choi, Chia-Yu Chen, Naigang Wang, Swagath Venkataramani, Vijayalak-
shmi (Viji) Srinivasan, Xiaodong Cui, Wei Zhang, and Kailash Gopalakrishnan. Hybrid 8-bit
floating point (hfp8) training and inference for deep neural networks. In Advances in Neural
Information Processing Systems 32. 2019.

Thierry Tambe, En-Yu Yang, Zishen Wan, Yuntian Deng, Vijay Janapa Reddi, Alexander Rush,
David Brooks, and Gu-Yeon Wei. Adaptivfloat: A floating-point based data type for resilient
deep learning inference. arXiv preprint arXiv:1909.13271, 2019.

Thierry Tambe, En-Yu Yang, Zishen Wan, Yuntian Deng, Vijay Janapa Reddi, Alexander Rush,
David Brooks, and Gu-Yeon Wei. Algorithm-hardware co-design of adaptive floating-point
encodings for resilient deep learning inference. In 2020 57th ACM/IEEE Design Automation
Conference (DAC), pp. 1–6. IEEE, 2020.

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David
Budden, Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq, et al. Deepmind control suite. arXiv
preprint arXiv:1801.00690, 2018.

Naigang Wang, Jungwook Choi, Daniel Brand, Chia-Yu Chen, and Kailash Gopalakrishnan. Training
deep neural networks with 8-bit floating point numbers. In Advances in Neural Information
Processing Systems, 2018.

Carole-Jean Wu, Ramya Raghavendra, Udit Gupta, Bilge Acun, Newsha Ardalani, Kiwan Maeng,
Gloria Chang, Fiona Aga Behram, James Huang, Charles Bai, et al. Sustainable ai: Environmental
implications, challenges and opportunities. arXiv preprint arXiv:2111.00364, 2021.

Ritchie Zhao, Yuwei Hu, Jordan Dotzel, Chris De Sa, and Zhiru Zhang. Improving Neural Network
Quantization without Retraining using Outlier Channel Splitting. International Conference on
Machine Learning (ICML), pp. 7543–7552, June 2019.

19

