

000 001 ABDCTBENCH: LEARNING CLINICAL BIOMARKER 002 REPRESENTATIONS FROM ABDOMINAL SURFACE GE- 003 OMETRY 004 005

006 **Anonymous authors**
007 Paper under double-blind review
008
009
010
011
012

ABSTRACT

013 Body composition analysis through CT and MRI imaging provides critical in-
014 sights for cardiometabolic health assessment but remains limited by accessibility
015 barriers including radiation exposure, high costs, and infrastructure require-
016 ments. We present AbdCTBench, a large-scale dataset containing 23,506 CT-
017 derived abdominal surface meshes from 18,719 patients, paired with 87 comor-
018 bidity labels, 31 specific diagnosis codes, and 16 CT-derived biomarkers. Our key
019 insight is that external surface geometry is predictive of internal tissue composi-
020 tion, enabling accessible health screening through consumer devices. We establish
021 comprehensive benchmarks across [seven](#) computer vision architectures (ResNet-
022 18/34/50, DenseNet-121, EfficientNet-B0, ViT-Small, [Swin Transformer-Base](#)),
023 demonstrating that models can learn robust surface-to-biomarker representations
024 directly from 2D mesh projections. Our best-performing models achieve clinically
025 relevant accuracy: age prediction with MAE 6.22 years ($R^2=0.757$), mortality
026 prediction with AUROC 0.839, and diabetes (with chronic complications) detec-
027 tion with AUROC [0.801](#). Notably, smaller architectures consistently matched or
028 surpassed larger models, while medical-domain pretraining (RadImageNet) and
029 self-supervised pretraining (DINOv2) showed competitive but not superior per-
030 formance. AbdCTBench represents the largest publicly available dataset bridging
031 external body geometry with internal clinical measurements, enabling future re-
032 search in accessible medical AI. We plan to release the dataset, evaluation pro-
033 tocols, and baseline models to accelerate research in representation learning for
034 medical applications, immediately following the review period.

1 INTRODUCTION

035 Body composition analysis has emerged as a critical avenue for advancing preventive and diagno-
036 stic medicine, offering valuable insights into cardiometabolic health (Amato et al., 2013; Rosenquist
037 et al., 2013). While traditional metrics such as body mass index (BMI) and waist circumference are
038 widely used, they fail to differentiate between metabolically active visceral adipose tissue (VAT),
039 intramuscular fat infiltration, and organ-specific pathologies all critical for cardiometabolic risk strat-
040 ification (Lee et al., 2018; Sweatt et al., 2024; Therkelsen et al., 2013). This limitation has led to
041 the adoption of advanced imaging biomarkers derived from computed tomography (CT) and mag-
042 netic resonance imaging (MRI), which provide quantitative assessments of tissue composition with
043 unprecedented precision (Thomas et al., 2025).
044

045 However, the clinical utility of these modalities remains limited by accessibility barriers. CT ex-
046 poses patients to ionizing radiation, precluding repeated use, while MRI is costly and has limited
047 availability. Both modalities require specialized infrastructure and trained radiologists, creating
048 bottlenecks in resource-constrained settings and perpetuating health disparities. These limitations
049 underscore the need for alternative approaches that provide access to clinically useful biomarkers
050 while overcoming accessibility barriers.

051 To address this challenge, we present AbdCTBench, the first-of-its-kind dataset of 2D surface
052 meshes derived from formerly conducted abdominal CT scans. AbdCTBench is carefully curated
053 to enable development of computer vision techniques for learning representations from surface ge-

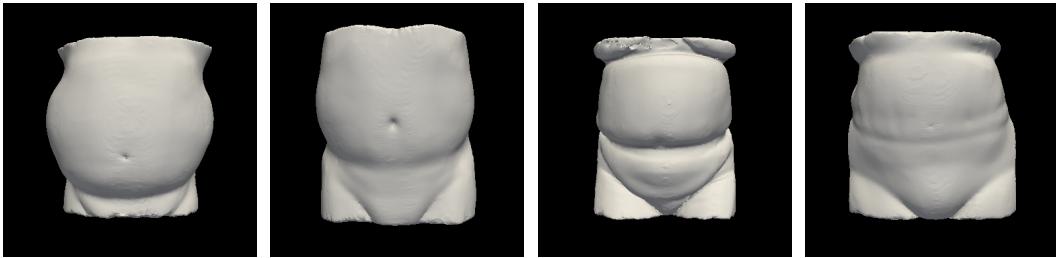


Figure 1: Sample 2D abdominal surface meshes from AbdCTBench dataset. These CT-derived surface geometries demonstrate the range of external anatomical features used to predict internal body composition biomarkers without radiation exposure. [Complete biomarker details for these images are provided in the Appendix A.1](#)

ometry to predict a variety of clinically useful biomarkers. We fine-tune an array of state-of-the-art models and benchmark their performance on the task of predicting the associated biomarkers. Our models are trained on detailed internal body composition data from CT scans and reflect the feasibility of effectively capturing the predictive signal by using only external body measurements and surface geometry at inference. Model predictions can be obtained simply by providing 2D surface mesh images as input, aimed at bridging the gap between high-precision clinical imaging and widely accessible consumer technology.

By validating against the gold standard of CT-derived biomarkers, AbdCTBench can facilitate the development of reliable models that ultimately eliminate the need for CT scans in routine screening and monitoring through surface mesh imagery. Recent breakthroughs in consumer-grade depth sensing, such as LiDAR-enabled devices like the iPhone, offer viable alternatives for body composition assessment (Oberhofer et al., 2024; Zamotsin et al., 2022; Boczar et al., 2024; Vasic et al., 2024) and provide accessible methods for generating the surface meshes required by these models. While early implementations struggle with complex torso geometries (Galaaoui et al., 2025), iterative scanning protocols and machine learning-based mesh reconstruction algorithms are rapidly closing the fidelity gap with clinical CT. Meanwhile, imaging foundation models trained on extensive radiographic data demonstrate the feasibility of extracting biomarkers from various imaging modalities. When applied to 2D surface scans, such models could learn associations between external surface geometry and internal composition patterns.

Our research represents a transitional step in this evolution with two main contributions:

1. We curate AbdCTBench, a dataset of 23,506 CT-derived abdominal surface mesh images from 18,719 unique patients. To our knowledge, AbdCTBench is the first and largest publicly available dataset of its kind. [Our Dataset Release Statement is provided in Appendix A.2](#).
2. We benchmark a variety of computer vision architectures on predicting CT-derived ground truth biomarkers available in AbdCTBench, requiring models to learn the relationship between external abdominal geometry and internal CT-derived biomarkers.

Once validated, these models could operate solely on surface-derived 2D meshes without requiring CT imaging. This approach could transform biomarker accessibility by providing individuals, clinicians, and researchers with actionable physiological insights through non-invasive, radiation-free surface scans, potentially enabling broad, low-cost, and scalable health screening tools for early disease risk detection.

2 RELATED WORK

2.1 MEDICAL IMAGE ANALYSIS BENCHMARKS

Medical imaging benchmarks have played an important role in advancing computer vision methods for healthcare. Large-scale datasets such as ImageNet inspired challenges (e.g. CheXpert (Irvin et al., 2019), MIMIC-CXR (Johnson et al., 2019)) have provided valuable testbeds for algorithm development and reproducibility. These resources are typically derived from high-fidelity imaging modalities and clinician-verified ground truth labels such as radiologist reports or disease codes. While these benchmarks have accelerated progress in medicine, they remain tied to modalities like

108 CT, MRI, or X-ray that require specialized infrastructure and are often inaccessible for population-
 109 scale screening.
 110

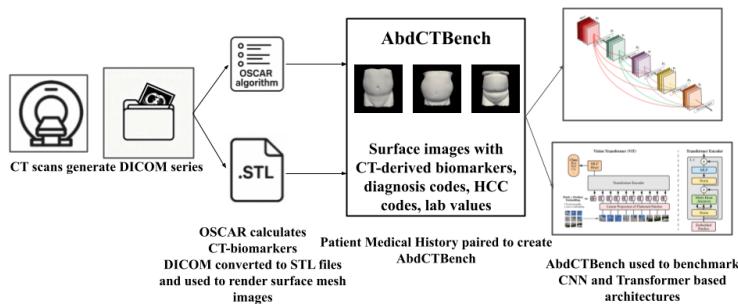
111 In contrast, external body shape analysis has primarily been explored in non-clinical domains such
 112 as human pose estimation (Cao et al., 2019) or anthropometric studies. To date, no benchmark has
 113 systematically linked external abdominal surface geometry with internal, CT-derived biomarkers at
 114 scale. AbdCTBench fills this gap by bridging the rigor of medical imaging benchmarks with the
 115 accessibility of surface-based imaging, enabling a new class of methods for non-invasive biomarker
 116 assessment.
 117

2.2 ARCHITECTURE EVALUATION IN MEDICAL IMAGING

119 Benchmarking diverse neural architectures has been central to medical image analysis research.
 120 Early convolutional neural networks (CNNs) demonstrated success on tasks such as tumor segmen-
 121 tation (Ronneberger et al., 2015), while later work has shown the advantages of transformers (Doso-
 122 vitskiy et al., 2021a; Chen et al., 2021a) and hybrid CNN-transformer architectures for capturing
 123 global context in medical images. More recently, foundation models pretrained on massive radiol-
 124 ogy corpora (e.g., RadImageNet (Mei et al., 2022a)) have highlighted the benefits of transfer learning
 125 for downstream tasks.
 126

127 Existing architectural studies, however, primarily benchmark models on imaging modalities that
 128 capture internal anatomy directly (CT, MRI, X-ray). By contrast, AbdCTBench evaluates the abil-
 129 ity of architectures to infer internal body composition from external abdominal surface meshes.
 130 This task differs fundamentally from conventional medical imaging because the predictive signal
 131 is indirect, requiring models to learn associations between geometry and physiology. As such,
 132 AbdCTBench provides a new arena to assess whether architectural advances – spanning CNNs,
 133 transformers, and emerging vision models – generalize to this novel, indirect inference problem.
 134

3 ABDCTBENCH DATASET



146 Figure 2: AbdCTBench dataset overview showing the pipeline from CT scans to surface mesh
 147 extraction and biomarker prediction.
 148

3.1 DATASET COLLECTION AND CURATION

152 AbdCTBench is a comprehensive dataset derived from 23,506 abdominal CTs of 18,719 patients (\approx
 153 1.26 scans per patient), representing one of the largest CT-derived biomarker datasets for abdominal
 154 composition analysis. The data was collected from all available CT scans conducted at facilities of a
 155 privately-owned healthcare company. This included CT scans conducted from August 11, 2003, to
 156 September 9, 2021, under IRB approval from the University of Wisconsin (Protocol: “Opportunistic
 157 CT Screening”). The utilization of all available CT scans allowed the creation of the largest possible
 158 dataset available, but may introduce implicit biases in the data which we discuss further in section
 159 7. Following collection, processing proceeded in two parallel phases: surface mesh rendering and
 160 CT-derived biomarker calculation.
 161

For surface mesh rendering, DICOM image series were converted to stereo-lithography (STL) files, then to 2D PNG images of size 384 x 384 (Figure 1) via PyVista (Sullivan & Kaszynski, 2019). The

162 conversion pipeline consists of three sequential stages: volume processing applies optional shrinking
 163 and anisotropic smoothing to prepare the data; surface extraction generates 3D triangular meshes us-
 164 ing VTK’s contour filter, which are refined through mesh cleaning and smoothing operations before
 165 being exported as binary STL files; and finally, the STL to 2D image conversion renders each mesh
 166 into **standardized PNG images with fixed camera positioning and mesh smoothing**. Further tech-
 167 nical details about the DICOM to STL and STL to PNG conversions are provided in the Appendix
 168 A.3. For biomarker calculation, DICOM series were processed by OSCAR (Pickhardt et al., 2020),
 169 which creates segmentation masks to calculate metrics at vertebral levels (L1-L5, T10-T12) and
 170 organ-specific regions (liver, spleen, kidneys, aorta). Key measurements include bone mineral den-
 171 sity, adipose tissue distribution, muscle composition, organ volumes, and calcium scoring metrics,
 172 yielding 16 biomarkers measuring body composition at various anatomical levels.
 173

174 The CT-derived biomarkers were then paired with 31 diagnosis (ICD-10) codes, 87 hierarchical
 175 condition category (HCC) comorbidity labels (groupings of ICD-10 codes (Amerigroup, 2019))
 176 and 2 longitudinal lab values (HbA1c and C-reactive protein) from patient medical history. The
 177 dataset was then processed for HIPAA Safe Harbor (U.S. Department of Health and Human Services,
 178 Office for Civil Rights, 2012) compliance, removing PII for safe public release, and we performed
 179 a 70/20/10 split at the patient ID level for train, validation, and test sets to prevent data leakage.
 180 All hyperparameter tuning and model selection procedures used only the train and validation sets,
 181 and the test set was held out only to perform the final evaluation for the reported results. The
 182 resulting dataset integrates quantitative CT biomarkers with clinical outcomes, comorbidity codes,
 183 and demographic information for comprehensive cardiometabolic health analysis and architecture
 184 benchmarking.
 185

186 3.2 DATASET STATISTICS AND ANALYSIS

187 AbdCTBench represents a diverse patient population with mean age 55.3 years (SD: 16.51). For
 188 HIPAA compliance, ages 90 were categorized as (90+), with 298 such cases excluded from age
 189 statistics. The dataset shows balanced sex distribution (56.8% female, 43.2% male) and significant
 190 clinical diversity, with high prevalence of: essential hypertension (53.7%), Type 2 Diabetes (44.6%),
 191 impaired glucose tolerance (38.0%), tobacco use (26.8%), and MI (23.1%).
 192

193 HCC comorbidity burden analysis reveals substantial heterogeneity, with patients carrying an aver-
 194 age of 1.8 HCC conditions (max: 24 per patient). Most prevalent HCC codes include: HCC 108
 195 (Vascular Disease; 22.6%), HCC 19 (Diabetes without complications; 13.0%), and HCC 12 (Breast,
 196 Prostate, and other Cancers; 10.9%). Overall mortality rate is 11.4%.
 197

198 Primary CT-derived biomarkers include: Calcium Scoring Abdominal Agatston score (mean:
 199 1200.9 ± 3126.5), kidney median Hounsfield units (mean: $90.0 \pm 58.8\text{HU}$), spleen median
 200 Hounsfield units (mean: $82.1 \pm 37.2\text{HU}$), spleen volume (mean: $223.9 \pm 127.2\text{cm}^3$), and com-
 201 prehensive adipose tissue analysis at vertebral levels (L1-L5, T10-T12). Comprehensive dataset
 202 statistics are provided in the Appendix A.4.
 203

204 4 ABDCTBENCH BENCHMARK

205 From AbdCTBench, we curate 10 biomarker prediction tasks from 2D surface mesh images. We
 206 design a single-target learning framework to benchmark selected architectures on biomarker predic-
 207 tion. The goal is twofold: (i) design a standardized evaluation framework for comparing computer
 208 vision architectures across diverse biomarker prediction tasks, and (ii) benchmark foundation mod-
 209 els for CT-derived biomarker prediction using surface geometry representations from 2D images.
 210 The biomarker prediction tasks are as follows:
 211

- 212 • Mortality prediction (11.4%): binary classification for patient death during follow-up.
- 213 • HCC-108 (Vascular Disease; 22.6%): binary classification for HCC 108 code at scan time.
- 214 • HCC-12 (Breast, Prostate, and other Cancers; 10.9%): binary classification for HCC 12 code at
 215 scan time.
- 216 • HCC-96 (Cardiac Arrhythmias; 9.0%): binary classification for HCC 96 code at scan time.
- 217 • HCC-18 (Diabetes with Chronic Complications; 8.3%): binary classification for HCC 18 code at
 218 scan time.
- 219 • HCC-111 (COPD; 7.1%): binary classification for HCC 111 code at scan time.

- Calcium Scoring Abdominal Agatston Score: binary classification for score > 1000 (Janjua et al., 2021) (21.2%).
- Myocardial Infarction (MI; 23.1%): binary classification for previous myocardial infarction.
- Type 2 Diabetes (44.6%): binary classification for diabetes at scan time.
- Age (mean 55.3): regression for patient age at scan time.

222 4.1 ARCHITECTURE SELECTION

224 We selected 6 representative architectures spanning different families to ensure comprehensive cov-
 225 erage of modern computer vision approaches for medical image representation learning. **CNN Ar-**
 226 **chitectures:** Four CNN-based models representing different design philosophies:

- **ResNet-18/34** (He et al., 2016): Residual networks with skip connections, for strong baseline performance with efficient parameter usage (4-6GB and 6-8GB GPU memory)
- **DenseNet-121** (Huang et al., 2017): Densely connected networks maximizing feature reuse through concatenation-based connections (8-10GB GPU memory)
- **EfficientNet-B0** (Tan & Le, 2019): Compound scaling approach balancing depth, width, and resolution for optimal efficiency (6-8GB GPU memory)

234 **Vision Transformers:** **ViT-Small (DINOv2)** (Oquab et al., 2024) (8-10GB GPU memory) evaluates self-supervised pre-training effectiveness with vision transformers on medical imaging tasks. DINOv2’s self-supervised pre-training has shown superior performance compared to supervised ImageNet pre-training on various downstream tasks. **On the other hand, Swin Transformer-Base** (Liu et al., 2021) (12-16GB GPU memory) represents hierarchical vision transformers with shifted window attention, providing an alternative and modern transformer architecture for comparison.

240 **Medical-Specific Architecture:** **ResNet-50 (RadImageNet)** (Mei et al., 2022b) (6-8GB GPU
 241 memory) represents domain-specific pre-training, utilizing RadImageNet weights trained on medical
 242 images to assess medical domain knowledge benefits.

243 4.2 STANDARDIZED TRAINING PROTOCOL

245 For fair and reproducible comparison across architectures, we establish a standardized training pro-
 246 tocol for all models, designed based on best practices from the medical imaging literature.

247 **Optimization Configuration:** All models use the AdamW optimizer (Loshchilov & Hutter, 2019)
 248 with weight decay 1×10^{-4} and cosine annealing learning rate scheduling. AdamW is the optimizer
 249 of choice for various medical imaging tasks (Chang, 2024), (Mortazi et al., 2023). We evaluate three
 250 learning rates: 1×10^{-5} , 1×10^{-4} , and 1×10^{-3} to capture different optimization regimes and
 251 ensure robust performance across architectures.

253 **Training Hyperparameters:** Batch size of 16 balances memory efficiency with gradient stability.
 254 All models train for 100 epochs with early stopping based on validation performance (patience: 10
 255 epochs). Dropout of 0.2 prevents overfitting, as established in medical imaging literature (Wang &
 256 Huang (2024), Maruyama et al. (2025), Adebayo & et al. (2025)).

257 **Loss Function:** We standardized across all models to use binary cross-entropy loss with logits for
 258 binary classification tasks, and mean squared error loss for regression tasks.

259 **Fine-tuning Strategy:** All models use full fine-tuning to maximize performance. Pre-trained
 260 weights are loaded from ImageNet (CNN models), DINOv2 (ViT), or RadImageNet (medical-
 261 specific ResNet-50), with final classification layers replaced with task-specific heads.

262 **Data Augmentation:** A standardized augmentation pipeline is applied to all models using pre-
 263 training weights with slight modifications for medical imaging tasks. For ImageNet/DINOv2 pre-
 264 trained models: random horizontal flips ($p=0.3$), geometric augmentations including random rota-
 265 tions (± 7.5) and less aggressive crops (0.9-1.0 original size) with aspect ratio 0.8-1.2 ($p=0.6$). For
 266 grayscale images, reduced intensity color augmentations (halved brightness/contrast shift, $p=0.4$) are
 267 applied. Images are then converted to 3-channel by repeating tensors along channel dimension. For
 268 normalization, ImageNet models use ImageNet mean (0.485, 0.456, 0.406) and std (0.229, 0.224,
 269 0.225); DINOv2 models use CT-derived means (0.55001191, 0.55001191, 0.55001191) and stds
 (0.18854326, 0.18854326, 0.18854326) (Pyrros et al., 2023). For RadImageNet (medical imaging

270 specific), augmentations are more conservative: random horizontal flips ($p=0.2$, reduced from 0.3),
 271 random rotations (± 5 , reduced from ± 7.5), less aggressive crops (0.95-1.0 original size, reduced
 272 from 0.9-1.0), narrower aspect ratio (0.9-1.1, reduced from 0.8-1.2), applied with $p=0.4$ (instead of
 273 0.6). Color augmentations: color jitter for brightness/contrast with reduced intensity 0.3 (instead
 274 of 0.5), applied with $p=0.3$ (instead of 0.4). Images are then similarly converted to 3-channel and
 275 normalized using ImageNet mean/std as recommended by Mei et al. (2022b).

276

277 4.3 SINGLE-TARGET LEARNING FRAMEWORK AND CLASS IMBALANCE HANDLING

278

279 Our benchmark focuses on single-target learning to establish clear performance baselines for
 280 biomarker prediction tasks, allowing direct comparison of architectures without multi-task learning
 281 dynamics.

282

283 **Architecture Adaptation:** CNN models use direct classification heads; Vision Transformers em-
 284 ploy CLS token classification. For each, the final layer is replaced with a task-specific head out-
 285 putting the appropriate number of classes or continuous values.

286

287 **Evaluation Strategy:** Each architecture is evaluated independently on each biomarker task, allow-
 288 ing comprehensive analysis of architectural strengths across different prediction types. This ap-
 289 proach provides clear insights into which architectures excel at specific biomarker prediction types.

290

291 Further, as described in section 3, the dataset exhibits severe class imbalance, significantly impacting
 292 model performance and evaluation. We implement all the strategies described below to address this
 293 challenge as a standard training protocol across all models and architectures:

294

295 **Inverse Frequency Weighting:** Applied to the loss function, where class weight is calculated as
 296 the inverse of class frequency in the dataset.

297

298 **Balanced Batch Sampling:** During training, balanced batch sampling ensures each batch con-
 299 tains approximately equal representation from all classes, preventing model domination by majority
 300 classes.

301

302 **Threshold Optimization:** For binary classification tasks, classification thresholds are optimized
 303 using F1-score on the validation set, searching the range [0.1, 0.9] with 9 discrete steps. This ensures
 304 optimal performance for imbalanced datasets where default 0.5 thresholding may be suboptimal.

305

306 5 EXPERIMENTAL SETUP

307

308 All experiments were implemented in PyTorch with CUDA 12.4 support. We utilized the timm
 309 library for Vision Transformer implementations and torchvision for CNN architectures. Experi-
 310 ments are conducted on NVIDIA GeForce RTX 2080 Ti GPUs (11GB memory each) with 10 GPUs
 311 available for parallel execution. Each model is allocated sufficient memory based on expected re-
 312 quirements (4-10GB range), ensuring no memory-related performance degradation.

313

314 5.1 EVALUATION METRICS

315

316 Our evaluation framework employs task-specific metrics for comprehensive assessment of model
 317 performance across different biomarker types:

318

319 **Binary Classification Metrics:** AUROC (area under the receiver operating characteristic curve,
 320 providing threshold-independent performance assessment), F1-Score, Precision/Recall, and Speci-
 321 ficity. Given clinical relevance, the best model is identified based on highest AUROC. Since F1-
 322 Score, Precision, Recall, and Specificity are threshold dependent, the F1-score optimizing threshold
 323 is selected from the validation set, then used to calculate performance metrics on the test set.

324

325 **Regression Metrics:** Mean Absolute Error (MAE) and Mean Squared Error (MSE). Since age
 326 prediction is our only regression task, the best model is selected based on lowest MAE, allowing
 327 interpretation of prediction quality in terms of absolute difference in years from true patient age.

328

329 **Statistical Significance:** Results are reported with bootstrapped 95% confidence intervals to assess
 330 reliability of performance differences. The bootstrapping was performed with 1000 samples each of
 331 size equal to the test set, using simple random sampling with replacement. Samples may be excluded

324 in case of low label diversity (e.g. both classes not present for the binary classification tasks).
 325 The 95% confidence intervals were calculated using the percentile method from the distribution of
 326 bootstrap statistics for each metric of interest.

328 6 RESULTS AND ANALYSIS

330 We evaluated single-biomarker predictors across the six architectures, using the best checkpoints
 331 selected on validation and report test set performance. For the regression task (age), EfficientNet-
 332 B0 achieved the best error (MAE 6.22), with ResNet-50 (RadImageNet, MAE 6.34) and ViT-Small
 333 (MAE 6.47) close behind. All models substantially outperformed a naive baseline ($R^2 > 0.719$,
 334 reported in Appendix A.5), indicating strong representation learning from abdominal surface geom-
 335 etry for age estimation. For non-HCC binary targets, AUROC varied by biomarker and architecture:
 336

- 337 • Calcium Scoring Abdominal Agatston: ResNet-34 achieved the best AUROC of 0.848, with
 338 DenseNet-121 at 0.847
- 339 • Myocardial infarction (MI): **Swin Transformer-Base achieved the best AUROC of 0.742**, with
 340 EfficientNet-B0 at 0.732 (reported in table 1) trailing closely
- 341 • Mortality Prediction: ResNet-18 with an AUROC of 0.839 was the best performing. EfficientNet-
 342 B0 at 0.830, **Swin transformer-Base at 0.828 close behind**
- 343 • Type 2 Diabetes (T2D): ResNet-34 achieved the best AUROC of 0.742, with EfficientNet-B0 **and**
 344 **Swin Transformer-Base** at 0.740

345 Table 1: Results for non-HCC biomarkers by architecture on the test set. AUROC is reported for the
 346 binary classification tasks and MAE is reported for Age prediction (regression task). Bootstrapped
 347 95% CIs are reported in **parentheses**.

Architecture	Age (MAE)	Calcium Score	MI	Mortality	T2D
Naive Baseline	13.16 (12.79–13.57)	0.500 —	0.500 —	0.500 —	0.500 —
DenseNet-121	6.769 (6.551–6.994)	0.847 (0.829–0.863)	0.730 (0.703–0.752)	0.823 (0.800–0.845)	0.728 (0.709–0.750)
EfficientNet-B0	6.223 (6.016–6.422)	0.847 (0.829–0.864)	0.732 (0.708–0.754)	0.830 (0.805–0.852)	0.740 (0.720–0.761)
ResNet-18	6.472 (6.264–6.678)	0.843 (0.825–0.859)	0.729 (0.705–0.752)	0.839 (0.816–0.861)	0.735 (0.714–0.756)
ResNet-34	6.486 (6.284–6.692)	0.848 (0.831–0.864)	0.731 (0.706–0.753)	0.825 (0.799–0.848)	0.742 (0.722–0.762)
ResNet-50 (RadImageNet)	6.341 (6.154–6.532)	0.833 (0.815–0.849)	0.716 (0.693–0.739)	0.810 (0.784–0.834)	0.733 (0.714–0.753)
ViT-Small (DINOv2)	6.465 (6.260–6.684)	0.829 (0.809–0.846)	0.732 (0.707–0.754)	0.811 (0.785–0.836)	0.735 (0.714–0.755)
Swin Transformer-Base	6.540 (6.338–6.758)	0.845 (0.828–0.862)	0.742 (0.718–0.763)	0.828 (0.803–0.851)	0.740 (0.720–0.759)

- 364 • HCC-108 (Vascular Disease): best AUROC of **0.768** as achieved by **Swin Transformer-Base**,
 365 with ResNet-18 at 0.763, and EfficientNet-B0 at 0.753
- 366 • HCC-111 (Chronic Obstructive Pulmonary Disease): best AUROC of 0.769 again achieved by
 367 ResNet-18, with **Swin Transformer-Base** trailing at **0.765**
- 368 • HCC-12 (Breast, Prostate, and other Cancers): ResNet-34 achieved the best AUROC of 0.591.
 369 Most performance numbers clustered near chance-level (0.571–0.591) across architectures. **We**
 370 believe this reflects both limited biological plausibility and label design: HCC-12 aggregates
 371 multiple, heterogeneous cancer types with differing and often weak relationships to obesity and
 372 abdominal body composition. Further, the timing of the HCC code relative to the CT scan can
 373 span pre-diagnosis, active treatment, and long-term survivorship. Taken together, these factors
 374 likely attenuate any subtle signal from the surface geometry, consistent with our interpretation
 375 that external abdominal surface geometry is primarily predictive of cardio-metabolic and muscu-
 376 loskeletal biomarkers rather than oncologic comorbidities
- 377 • HCC-18 (Diabetes with Chronic Complications): best AUROC of 0.801 was achieved by **Swin**
 378 **Transformer-Base**. It is noteworthy that this AUROC is higher than the highest AUROC of 0.742

378
 379 Table 2: Results for HCC code biomarkers by architecture on the test set. All biomarkers report
 380 AUROC. Bootstrapped 95% CIs are reported in [parentheses](#).

Architecture	HCC-108	HCC-111	HCC-12	HCC-18	HCC-96
Naive Baseline	0.500	0.500	0.500	0.500	0.500
—	—	—	—	—	—
DenseNet-121	0.740 (0.720–0.760)	0.716 (0.681–0.749)	0.587 (0.551–0.622)	0.766 (0.735–0.797)	0.757 (0.723–0.787)
EfficientNet-B0	0.753 (0.732–0.775)	0.747 (0.708–0.782)	0.586 (0.550–0.623)	0.789 (0.760–0.816)	0.763 (0.732–0.790)
ResNet-18	0.763 (0.742–0.784)	0.769 (0.734–0.802)	0.580 (0.544–0.614)	0.799 (0.770–0.828)	0.760 (0.727–0.791)
ResNet-34	0.749 (0.729–0.769)	0.766 (0.730–0.799)	0.591 (0.557–0.624)	0.775 (0.746–0.805)	0.728 (0.694–0.761)
ResNet-50	0.718 (0.698–0.739)	0.739 (0.704–0.774)	0.571 (0.536–0.607)	0.782 (0.754–0.812)	0.738 (0.705–0.769)
ViT-Small (DINOv2)	0.743 (0.723–0.764)	0.760 (0.727–0.793)	0.576 (0.542–0.610)	0.785 (0.755–0.817)	0.757 (0.721–0.788)
Swin	0.768	0.765	0.580	0.801	0.770
Transformer-Base	(0.749–0.788)	(0.732–0.796)	(0.545–0.616)	(0.776–0.828)	(0.739–0.798)

397 for Type 2 Diabetes prediction as achieved by ResNet-34. This difference may be reflective of
 398 the greater predictive capacity of representations from surface geometry for diabetes with chronic
 399 complications more so than simply the presence of Type 2 Diabetes

- 400 • HCC-96 (Cardiac Arrhythmias): [best AUROC of 0.770 was achieved by Swin Transformer-Base](#)
 401 with EfficientNet-B0 at 0.763, ResNet-18 at 0.760, and ViT-Small at 0.757

402 Across biomarkers, smaller-to-midsized CNNs (ResNet-18/34, EfficientNet-B0) consistently
 403 matched or surpassed larger ResNet-50 models. ViT-Small with DINOv2 pretraining showed com-
 404 petitive performance, often ranking in the top 2-3 architectures but not achieving the best results
 405 on any biomarkers. [On the other hand, Swin Transformer-Base achieved the best performance on](#)
 406 [several biomarkers \(MI, HCC-108, HCC-18, HCC-96\).](#)

407 Classification accuracies tracked AUROC and generally fell in the 0.59–0.83 range depending on
 408 task difficulty, while F1-scores were modest due to class imbalance and conservative thresholds used
 409 during testing. Detailed results with all metrics are provided in Appendix A.5.

410 Taken together, Tables 1 and 2 highlight that diverse architectures, including the newly added Swin
 411 Transformer-Base, can learn discriminative representations from abdominal surface geometry to
 412 predict clinically meaningful biomarkers, and we expect that scaling to larger or more specialized
 413 backbones will further improve performance.

415 6.1 ARCHITECTURAL FAMILY ANALYSIS

417 Within architectural families, we observed that ResNet-18 often led on biomarkers (HCC-108, HCC-
 418 111, HCC-18, and Mortality), whereas ResNet-34 performed the best on Calcium Score and Type
 419 2 Diabetes. ResNet-50 (RadImageNet) underperformed ResNet-18/34 on most biomarkers despite
 420 greater capacity and domain specific pre-training. EfficientNet-B0 was best on Age (regression) and
 421 multiple other binary tasks (HCC-96, MI), showing strong accuracy/efficiency trade-offs. DenseNet-
 422 121 was consistently strong but rarely the best, as the model ranked near the top on Calcium Score
 423 and Mortality. ViT-Small with DINOv2 pre-training showed competitive performance across all
 424 tasks, but never achieving the top result. This transformer architecture demonstrated robustness, but
 425 its self-attention mechanism could not surpass CNN baselines on this medical imaging benchmark,
 426 which may potentially be caused by the specific pre-training. [On the other hand, Swin Transformer-
 427 Base achieved the best AUROC on several biomarkers \(MI, HCC-108, HCC-18, HCC-96\)](#)

428 We believe that the task of predicting internal biomarkers from external abdominal surface geometry
 429 fundamentally differs from conventional medical imaging. As noted in Section 2.2, AbdCTBench
 430 requires learning "associations between geometry and physiology" from an indirect predictive sig-
 431 nal. CNNs' inductive bias for local feature extraction through convolutional operations appears par-
 432 ticularly well-suited for this task, as surface geometry patterns that correlate with internal biomarkers

432 likely manifest as local spatial features (e.g., subtle curvature variations, adipose tissue distribution
 433 patterns) rather than global dependencies.

434
 435 This aligns with established findings that CNNs excel at capturing local spatial patterns through their
 436 translation-equivariant convolutional operations (Dosovitskiy et al., 2021b), whereas vision trans-
 437 formers, while powerful for global context, may require more data or architectural modifications to
 438 effectively capture fine-grained local features. Since Swin Transformer-Base (which incorporates
 439 hierarchical local attention through shifted windows) achieved best performance on several supports
 440 this interpretation, as Swin’s architecture explicitly balances local and global feature extraction.

441 6.2 DOMAIN SPECIALIZATION IMPACT

442
 443 ResNet-50 models initialized from RadImageNet did not outperform lighter architectures trained
 444 with standard initializations. For example, on Mortality prediction, the RadImageNet pre-trained
 445 ResNet-50 reached an AUROC of 0.810, lagging ResNet-18 (0.839) and EfficientNet-B0 (0.830).
 446 Similarly, on HCC tasks, ResNet-50 results (e.g., 0.718 on HCC-108, 0.738 on HCC-96) trailed the
 447 best smaller models. While RadImageNet pre-training is domain-specific, the difference between
 448 AbdCTBench and typical CT-scans, MRIs, or X-rays may be crucial: AbdCTBench captures the
 449 abdominal surface geometry derived from CT-scans rather than the raw CT imagery. Consequently,
 450 models with standard initializations consistently outperform the RadImageNet initialized ResNet-
 451 50.

452 ViT-Small with DINoV2 pretraining, while competitive, also did not outperform the best CNN ar-
 453 chitectures. This indicates that both medical-domain pretraining in larger backbones and general
 454 vision transformer pretraining are not sufficient by themselves to overcome optimization and gener-
 455 alization benefits offered by smaller, more regularized networks in this specific setting.

457 6.3 THRESHOLD-DEPENDENT METRICS

458
 459 We report threshold-derived metrics at fixed operating points used during testing (often 0.8–0.9) in
 460 Appendix A.5. Under these settings, several biomarkers exhibit high recall but low precision (e.g.,
 461 HCC-18 with ResNet-18: recall 0.93 vs. precision 0.15), or conversely high specificity with mod-
 462 erate recall (e.g., Calcium Score with ResNet-34: specificity 0.758, recall 0.773). This underscores
 463 the importance of task-specific threshold selection: the same classifier can trade precision and recall
 464 substantially without changing AUROC. We reiterate that for each task and architecture, we select
 465 the F1-optimal threshold from the validation set, and use the same threshold to report metrics from
 466 the test set. Complete threshold-dependent metrics with 95% CIs are reported in Appendix A.5.

467 6.4 SUBGROUP ANALYSIS

468
 469 To understand how model performance varies across patient demographics, we conducted subgroup
 470 analyses stratified by gender. For each biomarker, we performed the subgroup analysis by using the
 471 best-performing model (prior to the addition of Swin Transformer-Base experiments) on the test set.
 472 These analyses reveal important heterogeneity in predictive performance that may inform clinical
 473 deployment strategies. For age prediction, models achieved substantially better performance in male
 474 patients (MAE 5.76, $R^2 = 0.81$) compared to female patients (MAE 6.63, $R^2 = 0.70$), suggesting
 475 that abdominal surface geometry may be more predictive of age in males. This difference may
 476 reflect biological variations in body composition changes with age between genders. For binary
 477 classification tasks, gender differences varied by biomarker. Males showed superior performance
 478 on several cardiovascular and respiratory conditions: Calcium Score (AUROC 0.858 vs. 0.838),
 479 MI (AUROC 0.724 vs. 0.699), and HCC-111 (AUROC 0.802 vs. 0.740). In contrast, females
 480 demonstrated better performance on HCC-18 (AUROC 0.824 vs. 0.773) and Mortality prediction
 481 (AUROC 0.844 vs. 0.831).

482 These gender-stratified differences likely reflect genuine biological variation in how body compo-
 483 sition relates to health outcomes. Sex differences in fat distribution (gynoid vs android adiposity)
 484 and age-related changes (menopause effects) are well-documented (Lee et al., 2013; Lovejoy et al.,
 485 2008). The improved age prediction in males may reflect more consistent age-related changes in
 male body composition, while the better diabetes complication detection in females aligns with

486 known sex differences in diabetes presentation and complications (Wells, 2007; Regitz-Zagrosek,
 487 2012). Importantly, performance remains clinically meaningful across both groups, with no sub-
 488 group showing near-chance performance. These findings suggest that while sex-specific model
 489 training may yield marginal improvements, a unified model provides robust predictions across de-
 490 mographics.

491
 492 Table 3: Gender-stratified performance metrics on the test set. Bootstrapped 95% CIs are shown in
 493 parentheses.

Biomarker	Best Model	Overall	Male (47.8 %)	Female (52.2%)	Difference (Female - Male)
Age (MAE)	EfficientNet-B0	6.223	5.76 (5.51–6.05)	6.63 (6.34–6.93)	+0.87
Calcium Score	ResNet-34	0.848	0.858 (0.835–0.879)	0.838 (0.812–0.861)	-0.020
MI	EfficientNet-B0	0.732	0.724 (0.691–0.756)	0.699 (0.661–0.736)	-0.025
Mortality	ResNet-18	0.839	0.831 (0.801–0.860)	0.844 (0.809–0.877)	+0.013
T2D	ResNet-34	0.742	0.740 (0.710–0.769)	0.743 (0.715–0.771)	+0.003
HCC-108	ResNet-18	0.763	0.763 (0.730–0.794)	0.766 (0.735–0.795)	+0.003
HCC-111	ResNet-18	0.769	0.802 (0.749–0.847)	0.740 (0.691–0.788)	-0.062
HCC-12	ResNet-34	0.591	0.623 (0.575–0.670)	0.552 (0.503–0.603)	-0.071
HCC-18	ResNet-18	0.799	0.773 (0.728–0.814)	0.824 (0.789–0.859)	+0.051
HCC-96	EfficientNet-B0	0.763	0.756 (0.714–0.794)	0.774 (0.731–0.815)	+0.018

501 Because chronological age is one of our main prediction targets in AbdCTBench, stratifying per-
 502 formance by age would conflate subgroup effects with task-defined signal. We therefore avoid
 503 age-based subgroup reporting and instead use gender, which is independent of the benchmark’s
 504 prediction targets and has sufficient sample size for reliable analysis.

505
 511 We performed additional follow-up experiments with Multi-Task Learning as detailed in Appendix
 512 A.6. Further, to demonstrate the effectiveness of learning representations from abdominal surface
 513 geometry, we present additional analysis by using Gradient-weighted Class Activation Mappings
 514 (Grad-CAM) (Selvaraju et al., 2017) in Appendix A.7.

515 7 LIMITATIONS AND FUTURE DIRECTIONS

517 Our benchmarking focuses on single-biomarker predictors to isolate signal detectability and ar-
 518 chitectural effects. Extending to multi-target learning (shared encoders, task-specific heads) is a
 519 promising direction to leverage inter-target correlations (we present preliminary experiment results
 520 in Appendix A.6); given the strength of smaller CNNs here, we hypothesize shared lightweight
 521 backbones with calibrated thresholds could improve macro-level performance without sacrificing ef-
 522 ficiency. Further, due to computational constraints, we limited our benchmarking to include smaller
 523 convolutional neural networks and transformer architectures. While ViT-Small showed competi-
 524 tive performance and Swin Transformer-Base performed the best on a few biomarkers, future work
 525 should explore larger vision transformers, different pretraining strategies (e.g., medical-specific self-
 526 supervised learning), specialized architectures such as U-Net variants (Zhou et al., 2018; Chen et al.,
 527 2021b; Lu et al., 2022; Vasa et al., 2024), and architectural modifications tailored to medical imag-
 528 ing. Additionally, incorporating calibration methods (temperature scaling, focal loss tuning) and
 529 uncertainty estimation may yield better decision thresholds.

530 From the perspective of real-world deployment of these models for low-cost, non-invasive car-
 531 diometabolic risk assessment, cross-site validation is a key next step, as AbdCTBench was collected
 532 from a single site. While we have standardized the dataset curation and benchmarking procedure,
 533 protocols to conduct CT-scans may vary slightly across sites, and thus may meaningfully change
 534 the surface geometry visible in the corresponding abdominal surface images. With the goal of
 535 capturing the most expansive dataset possible from the collection site, the absence of specific in-
 536 clusion/exclusion criteria (e.g. related to age, sex, race, pre-existing conditions, etc.) may have
 537 introduced implicit demographic biases in the dataset. Thus, multi-site evaluation is crucial for
 538 generalizability assessment.

539 Finally, validation of the models using surface geometry captured from consumer-grade devices
 would take us closer to the goal of widely accessible cardiometabolic risk assessment.

540 REFERENCES
541

542 Fatima Adebayo and et al. Lightweight brain tumor segmentation on low-resource
543 systems. *protocols.io*, 2025. URL <https://www.protocols.io/view/lightweight-brain-tumor-segmentation-on-low-resour-gz4sbx8wf>.
544

545 M. C. Amato, V. Guarnotta, and C. Giordano. Body composition assessment for the definition of
546 cardiometabolic risk. *Journal of Endocrinological Investigation*, 36(7):537–543, 2013. ISSN
547 1720-8386. doi: 10.3275/8943.

548 Amerigroup. Icd-10-cm to cms-hcc crosswalk - amerigroup providers. https://provider.amerigroup.com/dam/public/documents/ALL_CARE_CMSHCCRAModel_mrdcoding_tips.pdf, 2019. [Accessed September 23, 2025].

549 Dawid Boczar, Magdalena Kitala, Klaudia Nowak, Bartłomiej Nowak, and Rafal Slojewski. 3d
550 breast scanning in plastic surgery utilizing free iphone lidar applications and standard con-
551 sumer devices: A comparative analysis. *Aesthetic Surgery Journal*, 2024. doi: 10.1093/asj/sjae251.
552 URL <https://academic.oup.com/asj/advance-article-abstract/doi/10.1093/asj/sjae251/7941969>.

553 Zhe Cao, Gines Hidalgo, Tomas Simon, Shih-En Wei, and Yaser Sheikh. Openpose: Realtime
554 multi-person 2d pose estimation using part affinity fields. In *IEEE TPAMI*, 2019.

555 Chia-Yu et al. Chang. Overcoming data scarcity in biomedical imaging with a foundational multi-
556 task model. *Nature Computational Science*, 4:582–594, 2024. doi: 10.1038/s43588-024-00662-z.

557 Jieneng Chen, Yongyi Lu, Qihang Yu, Xiangde Luo, Ehsan Adeli, Yan Wang, Le Lu, Alan L. Yuille,
558 and Yuyin Zhou. Transunet: Transformers make strong encoders for medical image segmentation.
559 In *MICCAI*, pp. 485–495. Springer, 2021a.

560 Jieneng Chen, Yongyi Lu, Qihang Yu, Xiaoyang Wang, Jin Ye, Yuxin Zhou, Shuyang Li, Chen-
561 grui Wang, Tianyu Zha, Yuyin Zhou, Jing Zhang, Lequan Yu, and Ling Shao. Transunet:
562 Transformers make strong encoders for medical image segmentation. *Medical Image Analysis*,
563 2021b. doi: 10.1016/j.media.2024.102965. URL <https://www.sciencedirect.com/science/article/pii/S1361841524002056>.

564 Zhao Chen, Vijay Badrinarayanan, Chen-Yu Lee, and Andrew Rabinovich. Gradnorm: Gradient
565 normalization for adaptive loss balancing in deep multitask networks. In *Proceedings of the 35th
566 International Conference on Machine Learning*, volume 80 of *Proceedings of Machine Learning
567 Research*, pp. 794–803. PMLR, 2018. URL <https://proceedings.mlr.press/v80/chen18a.html>.

568 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
569 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
570 and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at
571 scale. In *ICLR*, 2021a.

572 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
573 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
574 and Neil Houlsby. An Image is Worth 16x16 Words: Transformers for Image Recognition at
575 Scale, June 2021b. URL <http://arxiv.org/abs/2010.11929>. arXiv:2010.11929 [cs].

576 Salma Galaaoui, Eduardo Valle, David Picard, and Nermin Samet. 3d human pose and shape esti-
577 mation from lidar point clouds: A review. *arXiv preprint*, arXiv:2509.12197v1, 2025.

578 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for Image
579 Recognition. In *2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*,
580 pp. 770–778, Las Vegas, NV, USA, June 2016. IEEE. ISBN 978-1-4673-8851-1. doi: 10.1109/
581 CVPR.2016.90. URL <http://ieeexplore.ieee.org/document/7780459/>.

594 Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q. Weinberger. Densely Con-
 595 nected Convolutional Networks. In *2017 IEEE Conference on Computer Vision and Pattern*
 596 *Recognition (CVPR)*, pp. 2261–2269, Honolulu, HI, July 2017. IEEE. ISBN 978-1-5386-0457-
 597 1. doi: 10.1109/CVPR.2017.243. URL <https://ieeexplore.ieee.org/document/8099726/>.

598

599 Jeremy Irvin, Pranav Rajpurkar, Michael Ko, Yifan Yu, Silviana Ciurea-Ilcus, Chris Chute, Hen-
 600 rik Marklund, Behzad Haghgoo, Robyn Ball, Katie Shpanskaya, Jacob Seekins, Daniel Mong,
 601 Safwan Halabi, John Sandberg, Ross Jones, David Larson, Curtis Langlotz, Bhavik Patel,
 602 Matthew Lungren, and Andrew Ng. Chexpert: A large chest radiograph dataset with uncertainty
 603 labels and expert comparison. *AAAI*, 2019.

604

605 Sumbal A. Janjua, Joseph M. Massaro, Michael L. Chuang, Agostino Ralph B. D, Udo Hoffmann,
 606 and Donnell Christopher J. O. Thresholds for Abdominal Aortic Calcium That Predict Cardio-
 607 vascular Disease Events in the Framingham Heart Study. *JACC: Cardiovascular Imaging*, 14(3):
 608 695–697, March 2021. doi: 10.1016/j.jcmg.2020.09.019. URL <https://www.jacc.org/doi/10.1016/j.jcmg.2020.09.019>. Publisher: American College of Cardiology Foun-
 609 dation.

610

611 Alistair E. W. Johnson, Tom J. Pollard, Seth J. Berkowitz, Nathan R. Greenbaum, Matthew P.
 612 Lungren, Chih-ying Deng, Yifan Peng, Zhenglong Lu, Roger G. Mark, and Steven Horng.
 613 Mimic-cxr: A large publicly available database of labeled chest radiographs. *arXiv preprint*
 614 *arXiv:1901.07042*, 2019.

615

616 Pieter-Jan Kindermans, Sara Hooker, Julius Adebayo, Maximilian Alber, Kristof T. Schüttl,
 617 Sven Dähne, Dumitru Erhan, and Been Kim. The (un)reliability of saliency methods. In Wojciech Samek, Grégoire Montavon, Andrea Vedaldi, Lars Kai Hansen, and Klaus-Robert
 618 Müller (eds.), *Explainable AI: Interpreting, Explaining and Visualizing Deep Learning*, vol-
 619 ume 11700 of *Lecture Notes in Computer Science*, pp. 267–280. Springer, Cham, 2019. doi:
 620 10.1007/978-3-030-28954-6_14.

621

622 Jane J. Lee, Alison Pedley, Udo Hoffmann, Joseph M. Massaro, Daniel Levy, and Michelle T.
 623 Long. Visceral and intrahepatic fat are associated with cardiometabolic risk factors above other
 624 ectopic fat depots: The Framingham Heart Study. *The American journal of medicine*, 131
 625 (6):684–692.e12, June 2018. ISSN 0002-9343. doi: 10.1016/j.amjmed.2018.02.002. URL
 626 <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5964004/>.

627

628 Mi-Jeong Lee, Yuanyuan Wu, and Susan K. Fried. Adipose tissue heterogeneity: Implication of
 629 depot differences in adipose tissue for obesity complications. *Molecular Aspects of Medicine*, 34
 (1):1–11, 2013. doi: 10.1016/j.mam.2012.10.001.

630

631 Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
 632 Swin transformer: Hierarchical vision transformer using shifted windows. In *Proceedings of the*
 633 *IEEE/CVF International Conference on Computer Vision (ICCV)*, 2021.

634

635 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In *International Confer-
 636 ence on Learning Representations (ICLR)*, 2019. URL <https://arxiv.org/abs/1711.05101>.

637

638 J. C. Lovejoy, C. M. Champagne, L. de Jonge, H. Xie, and S. R. Smith. Increased visceral fat and
 639 decreased energy expenditure during the menopausal transition. *International Journal of Obesity*,
 32(6):949–958, June 2008. doi: 10.1038/ijo.2008.25.

640

641 Haoran Lu, Yifei She, Jun Tie, and Shengzhou Xu. Half-unet: A simplified u-net architec-
 642 ture for medical image segmentation. *Frontiers in Neuroinformatics*, 16:911679, 2022. doi:
 643 10.3389/fninf.2022.911679. URL <https://www.frontiersin.org/articles/10.3389/fninf.2022.911679/full>.

644

645 Tomoko Maruyama, Norio Hayashi, Yusuke Sato, Toshihiro Ogura, Masumi Uehara, Haruyuki
 646 Watanabe, and Yoshihiro Kitoh. Artifact estimation network for mr images: effectiveness
 647 of batch normalization and dropout layers. *BMC Medical Imaging*, 25:144, 2025. doi:
 10.1186/s12880-025-01663-8.

648 Xuefeng Mei, Zhongyi Liu, Paul M. Robson, Benjamin Marinelli, Michael Huang, Ankit Doshi,
 649 Adam Jacobi, Chang Cao, Daniel Link, Tao Yang, Zahi A. Fayad, and Yiyu Yang. Radimagenet:
 650 An open radiologic deep learning research dataset for effective transfer learning. *Radiology: Artificial Intelligence*, 4(5):e210315, 2022a.

652 Xueyan Mei, Zelong Liu, Philip M. Robson, Brett Marinelli, Mingqian Huang, Amish Doshi, Adam
 653 Jacobi, Chendi Cao, Katherine E. Link, Thomas Yang, Ying Wang, Hayit Greenspan, Timothy
 654 Deyer, Zahi A. Fayad, and Yang Yang. Radimagenet: An open radiologic deep learning research
 655 dataset for effective transfer learning. *Radiology: Artificial Intelligence*, 0(ja):e210315, 2022b.
 656 doi: 10.1148/ryai.210315. URL <https://doi.org/10.1148/ryai.210315>.

657 Aliasghar Mortazi, Vedat Cicek, Elif Keles, and Ulas Bagci. Selecting the best optimizers for deep
 658 learningbased medical image segmentation. *Frontiers in Radiology*, 3:1175473, 2023. doi: 10.
 659 3389/fradi.2023.1175473.

660 Katja Oberhofer, Cline Knopfli, Basil Achermann, and Silvio R Lorenzetti. Feasibility of using laser
 661 imaging detection and ranging technology for contactless 3d body scanning and anthropometric
 662 assessment of athletes. *Sports*, 12(4):92, 2024. doi: 10.3390/sports12040092. URL <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11054930/>.

663 Maxime Oquab, Timothe Darcet, Tho Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov, Pierre
 664 Fernandez, Daniel Haziza, Francisco Massa, Alaeldin El-Nouby, Mahmoud Assran, Nicolas Bal-
 665 las, Wojciech Galuba, Russell Howes, Po-Yao Huang, Shang-Wen Li, Ishan Misra, Michael Rab-
 666 bat, Vasu Sharma, Gabriel Synnaeve, Hu Xu, Herv Jegou, Julien Mairal, Patrick Labatut, Armand
 667 Joulin, and Piotr Bojanowski. DINOv2: Learning Robust Visual Features without Supervision,
 668 February 2024. URL <http://arxiv.org/abs/2304.07193>. arXiv:2304.07193 [cs].

669 Perry J. Pickhardt, Ronald M. Summers, John W. Garrett, and et al. Automated ct-based body com-
 670 position analysis: Opportunistic prediction of future major osteoporotic fractures in asymptomatic
 671 adults. *Radiology*, 297(1):64–74, 2020. doi: 10.1148/radiol.2020191465.

672 Ayis Pyrros, Stephen M. Borstelmann, Ramana Mantravadi, Zachary Zaiman, Kaesha Thomas,
 673 Brandon Price, Eugene Greenstein, Nasir Siddiqui, Melinda Willis, Ihar Shulhan, John Hines-
 674 Shah, Jeanne M. Horowitz, Paul Nikolaidis, Matthew P. Lungren, Jorge Mario Rodriguez-
 675 Fernandez, Judy Wawira Gichoya, Sanmi Koyejo, Adam E. Flanders, Nishith Khandwala,
 676 Amit Gupta, John W. Garrett, Joseph Paul Cohen, Brian T. Layden, Perry J. Pickhardt,
 677 and William Galanter. Opportunistic detection of type 2 diabetes using deep learning from
 678 frontal chest radiographs. *Nature Communications*, 14(1):4039, July 2023. ISSN 2041-
 679 1723. doi: 10.1038/s41467-023-39631-x. URL <https://www.nature.com/articles/s41467-023-39631-x>.

680 Vera Regitz-Zagrosek. *Sex and Gender Differences in Pharmacology*, volume 214. Springer, Berlin,
 681 Heidelberg, 2012. ISBN 978-3-642-30726-3. doi: 10.1007/978-3-642-30726-3.

682 Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomed-
 683 ical image segmentation. In *MICCAI*, pp. 234–241. Springer, 2015.

684 Klara J. Rosenquist, Alison Pedley, Joseph M. Massaro, Kate E. Therkelsen, Joanne M. Murabito,
 685 Udo Hoffmann, and Caroline S. Fox. Visceral and Subcutaneous Fat Quality and Cardiometabolic
 686 Risk. *JACC: Cardiovascular Imaging*, 6(7):762–771, July 2013. doi: 10.1016/j.jcmg.2012.
 687 11.021. URL <https://www.jacc.org/doi/10.1016/j.jcmg.2012.11.021>. Pub-
 688 lisher: American College of Cardiology Foundation.

689 Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam, Devi Parikh,
 690 and Dhruv Batra. Grad-cam: Visual explanations from deep networks via gradient-based lo-
 691 calization. *Proceedings of the IEEE international conference on computer vision*, pp. 618–626,
 692 2017.

693 Bane Sullivan and Alexander Kaszynski. PyVista: 3D plotting and mesh analysis through a stream-
 694 lined interface for the Visualization Toolkit (VTK). *Journal of Open Source Software*, 4(37):1450,
 695 May 2019. doi: 10.21105/joss.01450. URL <https://doi.org/10.21105/joss.01450>.

702 Katherine Sweatt, W. Timothy Garvey, and Catia Martins. Strengths and Limitations of BMI in
 703 the Diagnosis of Obesity: What is the Path Forward? *Current Obesity Reports*, 13(3):584–595,
 704 2024. ISSN 2162-4968. doi: 10.1007/s13679-024-00580-1. URL <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11306271/>.

705

706 Mingxing Tan and Quoc Le. EfficientNet: Rethinking model scaling for convolutional neural networks. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), *Proceedings of the 36th International Conference on Machine Learning*, volume 97 of *Proceedings of Machine Learning Research*, pp. 6105–6114. PMLR, 09–15 Jun 2019. URL <https://proceedings.mlr.press/v97/tan19a.html>.

707

708 Kate E. Therkelsen, Alison Pedley, Elizabeth K. Speliotes, Joseph M. Massaro, Joanne Mura-
 709 bito, Udo Hoffmann, and Caroline S. Fox. Intramuscular Fat and Associations With Metabolic
 710 Risk Factors in the Framingham Heart Study. *Arteriosclerosis, Thrombosis, and Vascular Biology*,
 711 33(4):863–870, April 2013. doi: 10.1161/ATVBAHA.112.301009. URL <https://www.ahajournals.org/doi/10.1161/atvbaha.112.301009>. Publisher: American Heart Association.

712

713 Diana M. Thomas, Ira Crofford, John Scudder, Brittany Oletti, Ashok Deb, and Steven B. Heyms-
 714 field. Updates on methods for body composition analysis: Implications for clinical practice.
 715 *Current Obesity Reports*, 14(1):8, 2025. doi: 10.1007/s13679-024-00593-w.

716

717 U.S. Department of Health and Human Services, Office for Civil Rights. Methods
 718 for de-identification of protected health information under the hipaa privacy rule.
 719 <https://www.hhs.gov/hipaa/for-professionals/special-topics/de-identification/index.html>, 2012. [Accessed September 23, 2025].

720

721 Vamsi Krishna Vasa, Wenhui Zhu, Xiwen Chen, Peijie Qiu, Xuanzhao Dong, and Yalin Wang.
 722 Sta-unet: Rethink the semantic redundant for medical imaging segmentation. *arXiv preprint arXiv:2410.11578*, 2024. URL <https://arxiv.org/abs/2410.11578>.

723

724 Zoran Vasic et al. Lidar-based scaling of opensim musculoskeletal human models is accurate
 725 and efficienta validation study using 3d body scanning. *Journal of Biomechanics*, 2024. doi:
 726 10.1016/j.jbiomech.2024.111891. URL <https://www.sciencedirect.com/science/article/pii/S0021929024005189>.

727

728 Fan Wang and Jian Huang. Vm-unet: Vision mamba unet for medical image segmentation. *arXiv preprint arXiv:2402.02491*, 2024.

729

730 Jonathan C. K. Wells. Sexual dimorphism of body composition. *Best Practice & Research Clinical Endocrinology & Metabolism*, 21(3):415–430, 2007. doi: 10.1016/j.beem.2007.04.007.

731

732 Mikalai Zamotsin, Andrey Dyagilev, Hawas S. Hawaz, Ttiana olovenko, and Oleksandr Shovkomud.
 733 Human body measurement with the iphone 12 pro lidar scanner. In *American Institute of Physics Conference Series*, volume 2430, pp. 090009, 2022. doi: 10.1063/5.0078310. URL <http://ui.adsabs.harvard.edu/abs/2022AIPC.2430i0009M/abstract>.

734

735 Zongwei Zhou, Md Mahfuzur Rahman Siddiquee, Nima Tajbakhsh, and Jianming Liang. Unet++:
 736 A nested u-net architecture for medical image segmentation. In *Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support (MICCAI)*, pp. 3–11, 2018. doi:
 737 10.1007/978-3-030-00889-5_1. URL <https://pmc.ncbi.nlm.nih.gov/articles/PMC7329239/>.

738

739 A APPENDIX

740 A.1 BIOMARKER DETAILS FOR FIGURE 1

741
 742 This section provides complete biomarker details for the sample images shown in Figure 1.

756

757

Table 4: Complete biomarker details for the sample images shown in Figure 1.

758

759

760

761

762

763

764

Image				
Gender	Male	Male	Female	Female
Age (years)	66	75	72	73
Calcium Score	Present	Absent	Present	Absent
MI	Absent	Absent	Present	Absent
Mortality	Absent	Absent	Present	Absent
T2D	Present	Absent	Present	Absent
HCC-108	Absent	Absent	Present	Present
HCC-111	Absent	Absent	Absent	Absent
HCC-12	Absent	Absent	Absent	Absent
HCC-18	Absent	Absent	Absent	Absent
HCC-96	Absent	Absent	Absent	Absent

774

A.2 DATASET RELEASE STATEMENT

775

The AbdCTBench dataset will be released at <https://abdctbenchrepo.github.io/AbdCTBench/> (an anonymized url compliant with the double-blind submission policy) under Creative Commons BY 4.0 license immediately upon paper acceptance. The release will include:

776

- 23,506 2D depth map projections (PNG format, \approx 50KB each)
- 23,506 3D STL surface meshes (\approx 1-2MB each)
- Complete DICOM-to-STL-to-PNG processing pipeline (Python code)
- OSCAR biomarker extraction pipeline
- Pre-trained model checkpoints for all 8 architectures (including Swin and multi-task models)
- Train/val/test splits and evaluation protocols
- HIPAA-compliant de-identified labels: 87 comorbidities, 31 diagnoses, 16 biomarkers

777

While multi-site CT datasets exist (e.g., Stanford Merlin), they lack the HCC and ICD-10 diagnosis codes required for our benchmark tasks. Integrating imaging with structured clinical outcomes at scale remains challenging. With the release of AbdCTBench and all associated elements, any institution with CT DICOM series and corresponding HCC/ICD-10 codes can reproduce the benchmark and validate results locally. Given current data availability, this is the most practical and scalable path forward for multi-site validation.

778

Further, no publicly available datasets currently contain paired consumer depth sensor captures and CT scans of abdominal regions, in order to quantify the fidelity gap. With the release of AbdCTBench, researchers with consumer depth devices can apply our pipeline and quantify geometric fidelity gaps. Modern smartphone LiDAR (\approx 5mm depth resolution) should capture coarse body contour features that our models learn. We view AbdCTBench as establishing proof-of-concept that surface geometry contains predictive biomarker information, with the open-source pipeline enabling community-driven real-world validation.

801

802

A.3 TECHNICAL DETAILS OF DICOM TO STL TO PNG CONVERSION

804

Once the DICOM image series are provided as input and loaded, the volume processing step applies optional shrinking to reduce volumes to a maximum of 256^3 voxels using shrink factors calculated per dimension (optionally applied when the shrink factor exceeds 3). Anisotropic smoothing uses sitk.CurvatureAnisotropicDiffusion with a time step of 0.03 to convert the data to sitkFloat32 format for further processing. Then, the surface extraction step generates 3D triangular meshes using VTK’s contour filter, and the subsequent mesh processing applies refinement such as mesh cleaning, small

object removal, and mesh smoothing. The processed mesh is then exported as a binary STL file. The STL to 2D image conversion step uses a square 384 x 384 pixel window, automatically centers the mesh at the origin, positions the camera using a distance factor of 3.0, applies an 80% zoom factor, and includes a fixed 10° rotation around the Z-axis. Following the application of 5000 mesh smoothing iterations, the output is a PNG image of size 384 x 384 pixels.

A.4 COMPLETE DATASET STATISTICS

Below we present a variety of dataset statistics, feature distributions, variable correlations, and patient clustering visualizations.

Table 5: Complete CT-derived biomarker statistics for AbdCTBench dataset.

Biomarker	Count	Mean	Std Dev	Min	Max
BMD L1 High Sensitivity (HU)	22,083	148.4	44.3	-46.2	603.2
BMD L1 Standard (HU)	22,119	179.1	54.4	-41.1	1,180.1
Calcium Scoring Abdominal Agatston	23,506	1,200.9	3,126.5	0.0	37,152.0
Kidney Median HU	23,279	90.0	58.8	5.0	298.9
Kidney Volume (cm^3)	23,401	349.0	94.8	50.0	750.0
L3 SAT Area (cm^2)	23,467	218.4	111.2	5.9	838.2
L3 TAT Area (cm^2)	23,467	365.2	177.0	8.5	1,136.5
L3 VAT Area (cm^2)	23,467	146.9	104.6	0.0	647.7
L3 VAT/Median (HU)	23,418	-89.0	10.5	-118.5	-30.0
L3 VAT/SAT Ratio	23,466	0.73	0.56	0.0	4.46
Liver Median HU	23,501	82.3	30.3	-24.7	233.2
Liver Volume (cm^3)	23,498	1,578.4	432.8	269.0	4,973.0
L3 Muscle Area (cm^2)	23,469	147.5	37.4	29.2	315.3
L3 Muscle Mean HU	23,468	36.2	16.4	-47.5	89.8
Spleen Median HU	23,473	82.1	37.2	10.3	488.1
Spleen Volume (cm^3)	23,242	223.9	127.1	50.0	4,323.0

Diagnosis	Prevalence (%)	HCC Code	Condition	Prevalence (%)
Essential Hypertension	53.7	HCC 108	Vascular Disease	22.6
Type 2 Diabetes	44.6	HCC 19	Diabetes without Complications	13.0
Impaired Glucose Tolerance	38.0	HCC 12	Breast, Prostate, Other Cancers	10.9
Tobacco Use	26.8	HCC 85	Congestive Heart Failure	9.9
Myocardial Infarction	23.1	HCC 48	Coagulation defects	9.8
Osteoporosis	14.7	HCC 18	Diabetes with Chronic Complications	8.3
Heart Failure	11.4			
CVD	15.5	HCC 11	COPD	5.6
Hypertensive CKD	10.0	HCC 40	Rheumatologic arthritis	6.1
Chronic Liver Disease	7.8	HCC 23	Other Significant Endocrine Disorders	5.0
		HCC 22	Morbid obesity	4.7

Table 6: Clinical diagnosis prevalence (left) and HCC comorbidity codes (right) in AbdCTBench.

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891

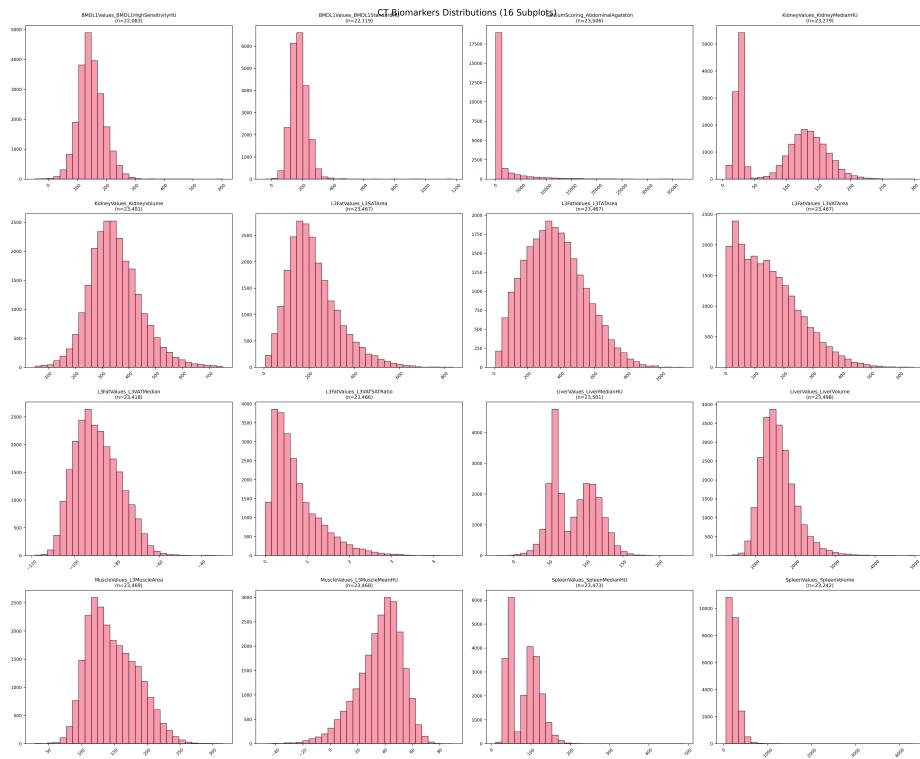


Figure 3: CT-derived biomarker distributions across the AbdCTBench dataset.

893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

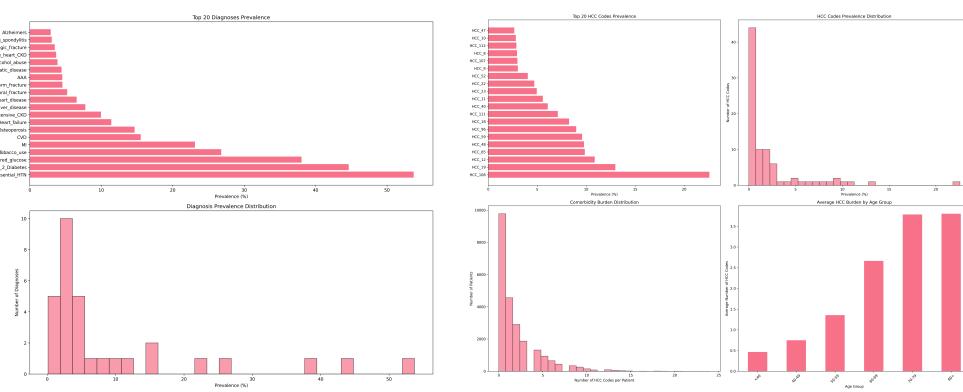


Figure 4: Prevalence of (a) diagnosis (ICD-10) codes, and (b) Hierarchical Condition Categories (HCC) codes.

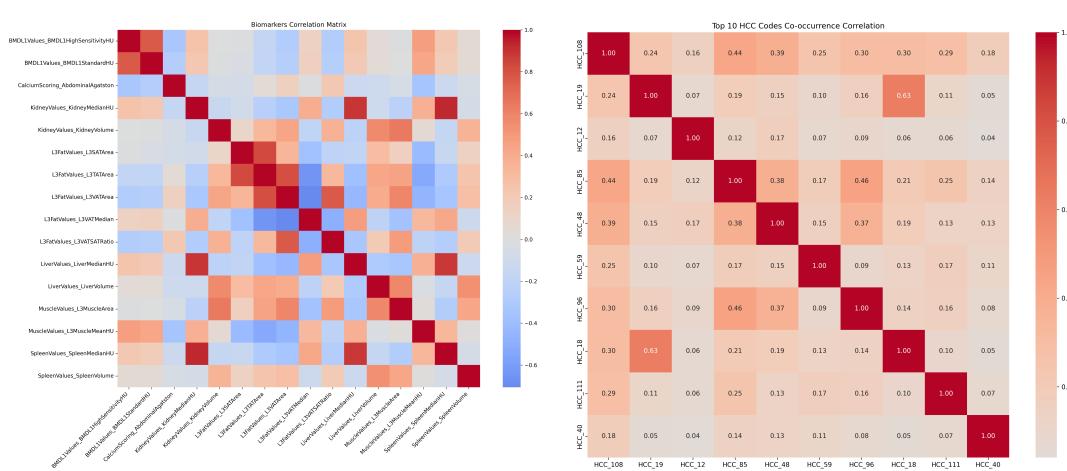


Figure 5: Correlations between (a) CT-derived biomarkers, and (b) HCC codes.

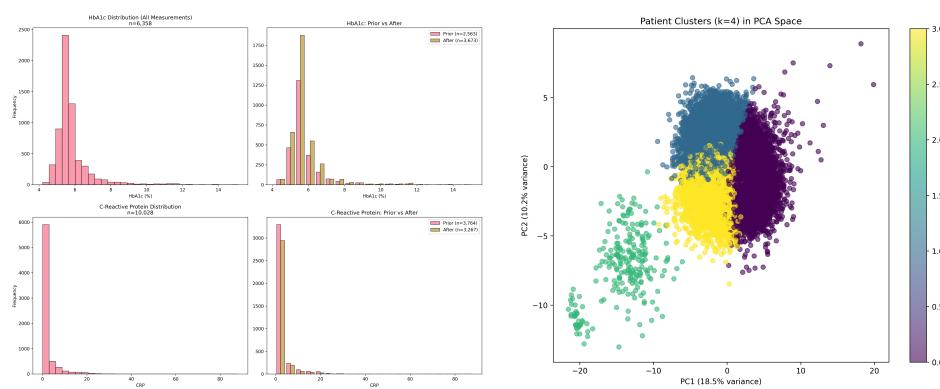


Figure 6: (a) Longitudinal laboratory value distributions, and (b) patient clustering patterns. The clusters were obtained via k-means clustering (with $k = 4$) by using the first 22 Principal Components (which explained 80% of the variance in the data from all the numeric features).

972 A.5 DETAILED RESULTS BY BIOMARKER
973974 This section provides comprehensive results for each biomarker across all architectures, including
975 all metrics with 95% confidence intervals computed via patient-level bootstrapping.
976977 978 **Table 7: Complete results for Age prediction across all architectures.**

Architecture	MAE	MSE	R^2
Naive Baseline	13.16 (12.79, 13.57)	265.11 (252.99, 278.70)	-0.0001 (-0.0030, 0.0000)
DenseNet-121	6.769 (6.551, 6.994)	74.391 (69.636, 79.591)	0.719 (0.696, 0.741)
EfficientNet-B0	6.223 (6.016, 6.422)	64.447 (60.141, 69.166)	0.757 (0.735, 0.776)
ResNet-18	6.472 (6.264, 6.678)	67.985 (63.650, 73.052)	0.744 (0.722, 0.763)
ResNet-34	6.486 (6.284, 6.692)	68.853 (64.397, 73.698)	0.740 (0.718, 0.761)
ResNet-50	6.341 (6.154, 6.532)	65.604 (61.517, 70.203)	0.753 (0.733, 0.770)
ViT-Small (DINOv2)	6.465 (6.260, 6.684)	70.542 (65.913, 75.829)	0.734 (0.710, 0.755)
Swin	6.540	70.80	0.733
Transformer-Base	(6.338, 6.758)	(66.43, 75.85)	(0.710, 0.754)

995 **Table 8: Complete results for Calcium Score prediction across all architectures.**

Architecture	AUROC	Precision	Recall	Specificity	F1	Accuracy	Threshold
Naive Baseline	0.5 —	0.0 —	0.0 —	1.0 —	0.0 —	0.786 (0.770, 0.803)	—
DenseNet-121	0.847 (0.829, 0.863)	0.497 (0.460, 0.531)	0.746 (0.707, 0.782)	0.795 (0.776, 0.813)	0.597 (0.563, 0.626)	0.784 (0.767, 0.800)	0.8
EfficientNet-B0	0.847 (0.829, 0.864)	0.481 (0.446, 0.515)	0.765 (0.728, 0.803)	0.775 (0.757, 0.794)	0.591 (0.557, 0.621)	0.773 (0.757, 0.790)	0.8
ResNet-18	0.843 (0.825, 0.859)	0.442 (0.407, 0.472)	0.817 (0.782, 0.849)	0.719 (0.698, 0.738)	0.573 (0.540, 0.601)	0.740 (0.721, 0.756)	0.7
ResNet-34	0.848 (0.831, 0.864)	0.465 (0.433, 0.498)	0.773 (0.737, 0.807)	0.758 (0.738, 0.778)	0.581 (0.549, 0.609)	0.761 (0.744, 0.779)	0.8
ResNet-50	0.833 (0.815, 0.849)	0.411 (0.379, 0.439)	0.837 (0.801, 0.868)	0.673 (0.651, 0.695)	0.551 (0.518, 0.579)	0.708 (0.688, 0.727)	0.5
ViT-Small (DINOv2)	0.829 (0.809, 0.846)	0.426 (0.394, 0.455)	0.819 (0.784, 0.852)	0.700 (0.678, 0.719)	0.561 (0.529, 0.589)	0.725 (0.706, 0.742)	0.8
Swin	0.845	0.474	0.769	0.767	0.586	0.768	0.9
Transformer-Base	(0.828, 0.862)	(0.438, 0.505)	(0.729, 0.805)	(0.748, 0.786)	(0.554, 0.615)	(0.750, 0.784)	

1026

1027

1028

Table 9: Complete results for HCC-108 prediction across all architectures.

Architecture	AUROC	Precision	Recall	Specificity	F1	Accuracy	Threshold
Naive Baseline	0.5	0.0	0.0	1.0	0.0	0.763	—
DenseNet-121	0.740 (0.720, 0.760)	0.384 (0.354, 0.414)	0.709 (0.673, 0.747)	0.647 (0.626, 0.669)	0.498 (0.468, 0.526)	0.662 (0.643, 0.681)	0.8
EfficientNet-B0	0.753 (0.732, 0.775)	0.376 (0.349, 0.405)	0.775 (0.741, 0.807)	0.601 (0.579, 0.624)	0.507 (0.477, 0.536)	0.643 (0.623, 0.663)	0.8
ResNet-18	0.763 (0.742, 0.784)	0.375 (0.347, 0.404)	0.791 (0.759, 0.822)	0.590 (0.567, 0.612)	0.508 (0.480, 0.539)	0.638 (0.620, 0.657)	0.7
ResNet-34	0.749 (0.729, 0.769)	0.362 (0.336, 0.390)	0.804 (0.770, 0.834)	0.561 (0.539, 0.584)	0.499 (0.470, 0.528)	0.619 (0.599, 0.638)	0.8
ResNet-50	0.718 (0.698, 0.739)	0.368 (0.340, 0.396)	0.737 (0.700, 0.772)	0.607 (0.584, 0.629)	0.491 (0.462, 0.519)	0.638 (0.620, 0.655)	0.2
ViT-Small (DINOv2)	0.743 (0.723, 0.764)	0.375 (0.348, 0.403)	0.730 (0.696, 0.766)	0.623 (0.603, 0.645)	0.496 (0.467, 0.524)	0.649 (0.631, 0.667)	0.8
Swin	0.768	0.378	0.800	0.592	0.514	0.641	0.8
Transformer-Base	0.749, 0.788	(0.352, 0.407)	(0.766, 0.830)	(0.569, 0.614)	(0.486, 0.543)	(0.623, 0.661)	

1043

1044

1045

Architecture	AUROC	Precision	Recall	Specificity	F1	Accuracy	Threshold
Naive Baseline	0.5	0.0	0.0	1.0	0.0	0.929	—
DenseNet-121	0.716 (0.681, 0.749)	0.122 (0.103, 0.142)	0.790 (0.731, 0.844)	0.570 (0.550, 0.591)	0.212 (0.181, 0.242)	0.585 (0.567, 0.605)	0.9
EfficientNet-B0	0.747 (0.708, 0.782)	0.131 (0.111, 0.152)	0.717 (0.643, 0.784)	0.638 (0.617, 0.658)	0.221 (0.190, 0.254)	0.643 (0.621, 0.662)	0.9
ResNet-18	0.769 (0.734, 0.802)	0.121 (0.103, 0.140)	0.843 (0.788, 0.895)	0.533 (0.513, 0.554)	0.211 (0.182, 0.240)	0.555 (0.535, 0.575)	0.9
ResNet-34	0.766 (0.730, 0.799)	0.114 (0.097, 0.133)	0.886 (0.829, 0.933)	0.479 (0.459, 0.500)	0.203 (0.175, 0.231)	0.508 (0.488, 0.528)	0.9
ResNet-50	0.739 (0.704, 0.774)	0.154 (0.123, 0.187)	0.416 (0.343, 0.497)	0.826 (0.811, 0.841)	0.224 (0.182, 0.269)	0.797 (0.780, 0.813)	0.2
ViT-Small (DINOv2)	0.760 (0.727, 0.793)	0.117 (0.100, 0.134)	0.898 (0.853, 0.939)	0.483 (0.463, 0.504)	0.206 (0.179, 0.233)	0.512 (0.492, 0.532)	0.9
Swin	0.765	0.150	0.753	0.676	0.251	0.682	0.9
Transformer-Base	0.732, 0.796	(0.128, 0.175)	(0.687, 0.817)	(0.656, 0.696)	(0.217, 0.284)	(0.663, 0.700)	

1062

1063

1064

Table 11: Complete results for HCC-12 prediction across all architectures.

Architecture	AUROC	Precision	Recall	Specificity	F1	Accuracy	Threshold
Naive Baseline	0.5	0.0	0.0	1.0	0.0	0.884	—
DenseNet-121	0.587 (0.551, 0.622)	0.136 (0.117, 0.154)	0.585 (0.526, 0.642)	0.513 (0.493, 0.534)	0.220 (0.192, 0.247)	0.521 (0.502, 0.540)	0.7
EfficientNet-B0	0.586 (0.550, 0.623)	0.162 (0.136, 0.189)	0.456 (0.394, 0.512)	0.691 (0.670, 0.711)	0.239 (0.205, 0.273)	0.663 (0.643, 0.683)	0.3
ResNet-18	0.580 (0.544, 0.614)	0.134 (0.118, 0.153)	0.713 (0.659, 0.766)	0.397 (0.377, 0.418)	0.226 (0.201, 0.253)	0.434 (0.415, 0.455)	0.9
ResNet-34	0.591 (0.557, 0.624)	0.148 (0.129, 0.170)	0.621 (0.566, 0.674)	0.533 (0.511, 0.554)	0.240 (0.211, 0.269)	0.543 (0.524, 0.563)	0.9
ResNet-50	0.571 (0.536, 0.607)	0.150 (0.128, 0.176)	0.434 (0.380, 0.495)	0.678 (0.658, 0.697)	0.223 (0.192, 0.257)	0.650 (0.630, 0.669)	0.9
ViT-Small (DINOv2)	0.576 (0.542, 0.610)	0.140 (0.119, 0.163)	0.449 (0.390, 0.508)	0.640 (0.620, 0.661)	0.214 (0.184, 0.245)	0.618 (0.599, 0.636)	0.9
Swin	0.580	0.133	0.728	0.378	0.225	0.418	0.8
Transformer-Base	0.545, 0.616	(0.116, 0.150)	(0.674, 0.777)	(0.358, 0.399)	(0.200, 0.250)	(0.398, 0.440)	

1079

1080

1081

Table 12: Complete results for HCC-18 prediction across all architectures.

Architecture	AUROC	Precision	Recall	Specificity	F1	Accuracy	Threshold
Naive Baseline	0.5	0.0	0.0	1.0	0.0	0.908	—
DenseNet-121	0.766 (0.735, 0.797)	0.236 (0.197, 0.281)	0.454 (0.388, 0.528)	0.852 (0.836, 0.866)	0.311 (0.266, 0.362)	0.815 (0.800, 0.831)	0.8
EfficientNet-B0	0.789 (0.760, 0.816)	0.203 (0.177, 0.232)	0.764 (0.706, 0.819)	0.697 (0.677, 0.716)	0.321 (0.285, 0.359)	0.703 (0.685, 0.721)	0.9
ResNet-18	0.799 (0.770, 0.828)	0.145 (0.127, 0.164)	0.926 (0.886, 0.960)	0.446 (0.426, 0.467)	0.250 (0.222, 0.279)	0.490 (0.472, 0.510)	0.9
ResNet-34	0.775 (0.746, 0.805)	0.167 (0.146, 0.190)	0.857 (0.808, 0.904)	0.569 (0.547, 0.589)	0.280 (0.249, 0.311)	0.595 (0.575, 0.613)	0.9
ResNet-50	0.782 (0.754, 0.812)	0.218 (0.188, 0.250)	0.648 (0.584, 0.715)	0.765 (0.748, 0.782)	0.326 (0.286, 0.369)	0.754 (0.737, 0.771)	0.9
ViT-Small (DINOv2)	0.785 (0.755, 0.817)	0.181 (0.157, 0.208)	0.792 (0.738, 0.849)	0.637 (0.617, 0.658)	0.295 (0.261, 0.331)	0.652 (0.633, 0.671)	0.9
Swin	0.801	0.184	0.829	0.627	0.301	0.646	0.9
Transformer-Base	(0.776, 0.828)	(0.161, 0.210)	(0.779, 0.878)	(0.608, 0.646)	(0.268, 0.335)	(0.627, 0.663)	

1097

1099

Table 13: Complete results for HCC-96 prediction across all architectures.

Architecture	AUROC	Precision	Recall	Specificity	F1	Accuracy	Threshold
Naive Baseline	0.5	0.0	0.0	1.0	0.0	0.914	—
DenseNet-121	0.757 (0.723, 0.787)	0.156 (0.134, 0.178)	0.818 (0.763, 0.866)	0.581 (0.560, 0.602)	0.262 (0.229, 0.294)	0.601 (0.582, 0.621)	0.9
EfficientNet-B0	0.763 (0.732, 0.790)	0.152 (0.131, 0.174)	0.818 (0.764, 0.866)	0.569 (0.548, 0.590)	0.257 (0.226, 0.288)	0.591 (0.571, 0.611)	0.9
ResNet-18	0.760 (0.727, 0.791)	0.162 (0.138, 0.186)	0.773 (0.715, 0.829)	0.621 (0.600, 0.641)	0.268 (0.233, 0.301)	0.634 (0.615, 0.653)	0.9
ResNet-34	0.728 (0.694, 0.761)	0.177 (0.144, 0.211)	0.453 (0.386, 0.519)	0.801 (0.785, 0.817)	0.255 (0.212, 0.297)	0.771 (0.755, 0.787)	0.8
ResNet-50	0.738 (0.705, 0.769)	0.198 (0.165, 0.232)	0.522 (0.448, 0.589)	0.800 (0.784, 0.817)	0.287 (0.244, 0.329)	0.776 (0.760, 0.792)	0.8
ViT-Small (DINOv2)	0.757 (0.721, 0.788)	0.162 (0.139, 0.186)	0.773 (0.711, 0.828)	0.621 (0.601, 0.643)	0.268 (0.234, 0.302)	0.635 (0.615, 0.654)	0.9
Swin	0.770	0.178	0.699	0.695	0.284	0.695	0.9
Transformer-Base	(0.739, 0.798)	(0.152, 0.206)	(0.632, 0.761)	(0.676, 0.714)	(0.246, 0.321)	(0.677, 0.713)	

1116

1117

Table 14: Complete results for Myocardial Infarction (MI) prediction across all architectures.

Architecture	AUROC	Precision	Recall	Specificity	F1	Accuracy	Threshold
Naive Baseline	0.5	0.0	0.0	1.0	0.0	0.765	—
DenseNet-121	0.730 (0.703, 0.752)	0.377 (0.346, 0.408)	0.674 (0.633, 0.713)	0.657 (0.636, 0.680)	0.483 (0.451, 0.514)	0.661 (0.642, 0.681)	0.8
EfficientNet-B0	0.732 (0.708, 0.754)	0.399 (0.367, 0.432)	0.687 (0.647, 0.722)	0.683 (0.663, 0.704)	0.505 (0.472, 0.536)	0.684 (0.665, 0.702)	0.9
ResNet-18	0.729 (0.705, 0.752)	0.374 (0.344, 0.405)	0.669 (0.631, 0.707)	0.656 (0.634, 0.678)	0.480 (0.449, 0.510)	0.659 (0.640, 0.678)	0.8
ResNet-34	0.731 (0.706, 0.753)	0.375 (0.346, 0.405)	0.681 (0.640, 0.719)	0.651 (0.630, 0.673)	0.483 (0.452, 0.513)	0.658 (0.639, 0.678)	0.8
ResNet-50	0.716 (0.693, 0.739)	0.346 (0.316, 0.373)	0.717 (0.679, 0.755)	0.583 (0.561, 0.606)	0.467 (0.435, 0.496)	0.615 (0.595, 0.634)	0.8
ViT-Small (DINOv2)	0.732 (0.707, 0.754)	0.347 (0.320, 0.374)	0.823 (0.790, 0.852)	0.525 (0.501, 0.547)	0.488 (0.457, 0.515)	0.595 (0.574, 0.615)	0.7
Swin	0.742	0.368	0.748	0.606	0.493	0.639	0.8
Transformer-Base	(0.718, 0.763)	(0.338, 0.394)	(0.710, 0.784)	(0.583, 0.628)	(0.461, 0.521)	(0.620, 0.658)	

1133

1134
1135
1136
1137
1138
1139

1140 Table 15: Complete results for Mortality prediction across all architectures.

Architecture	AUROC	Precision	Recall	Specificity	F1	Accuracy	Threshold
Naive Baseline	0.5	0.0	0.0	1.0	0.0	0.886	—
DenseNet-121	0.823 (0.800, 0.845)	0.281 (0.247, 0.311)	0.727 (0.675, 0.779)	0.761 (0.744, 0.779)	0.405 (0.364, 0.442)	0.757 (0.741, 0.774)	0.9
EfficientNet-B0	0.830 (0.805, 0.852)	0.318 (0.277, 0.355)	0.633 (0.574, 0.687)	0.826 (0.810, 0.841)	0.423 (0.377, 0.463)	0.804 (0.787, 0.819)	0.9
ResNet-18	0.839 (0.816, 0.861)	0.289 (0.256, 0.321)	0.749 (0.694, 0.800)	0.764 (0.748, 0.782)	0.418 (0.379, 0.455)	0.763 (0.746, 0.779)	0.9
ResNet-34	0.825 (0.799, 0.848)	0.359 (0.310, 0.405)	0.581 (0.516, 0.637)	0.867 (0.853, 0.881)	0.444 (0.391, 0.489)	0.835 (0.820, 0.849)	0.8
ResNet-50	0.810 (0.784, 0.834)	0.220 (0.194, 0.242)	0.850 (0.809, 0.891)	0.613 (0.593, 0.632)	0.349 (0.315, 0.378)	0.640 (0.620, 0.658)	0.9
ViT-Small (DINOv2)	0.811 (0.785, 0.836)	0.255 (0.223, 0.285)	0.745 (0.690, 0.796)	0.720 (0.701, 0.739)	0.379 (0.338, 0.417)	0.723 (0.705, 0.742)	0.9
Swin	0.828	0.280	0.749	0.753	0.407	0.752	0.9
Transformer-Base	0.803, 0.851	(0.245, 0.312)	0.696, 0.799	(0.735, 0.772)	(0.367, 0.445)	(0.736, 0.770)	

1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166

1167 Table 16: Complete results for Type-2 Diabetes prediction across all architectures.

Architecture	AUROC	Precision	Recall	Specificity	F1	Accuracy	Threshold
Naive Baseline	0.5	0.0	0.0	1.0	0.0	0.551	—
DenseNet-121	0.728 (0.709, 0.750)	0.533 (0.509, 0.555)	0.909 (0.892, 0.926)	0.351 (0.323, 0.376)	0.672 (0.650, 0.690)	0.601 (0.580, 0.621)	0.4
EfficientNet-B0	0.740 (0.720, 0.761)	0.532 (0.508, 0.553)	0.915 (0.897, 0.931)	0.344 (0.318, 0.368)	0.673 (0.652, 0.691)	0.600 (0.580, 0.619)	0.3
ResNet-18	0.735 (0.714, 0.756)	0.551 (0.526, 0.573)	0.888 (0.869, 0.906)	0.409 (0.381, 0.434)	0.680 (0.659, 0.699)	0.624 (0.603, 0.643)	0.4
ResNet-34	0.742 (0.722, 0.762)	0.538 (0.514, 0.560)	0.913 (0.894, 0.929)	0.361 (0.335, 0.387)	0.677 (0.656, 0.695)	0.609 (0.589, 0.628)	0.4
ResNet-50	0.733 (0.714, 0.753)	0.550 (0.526, 0.574)	0.881 (0.862, 0.899)	0.412 (0.386, 0.440)	0.677 (0.656, 0.696)	0.623 (0.603, 0.641)	0.4
ViT-Small (DINOv2)	0.735 (0.714, 0.755)	0.540 (0.517, 0.562)	0.895 (0.875, 0.913)	0.379 (0.354, 0.405)	0.674 (0.652, 0.692)	0.611 (0.591, 0.630)	0.4
Swin	0.740	0.533	0.917	0.347	0.674	0.603	0.2
Transformer-Base	0.720, 0.759	(0.510, 0.556)	0.900, 0.933	(0.321, 0.373)	(0.654, 0.692)	(0.583, 0.622)	

1183
1184
1185
1186
1187

1188
1189

A.6 MULTI-TASK LEARNING

1190

In a follow-up experiment, we implemented a multi-task learning framework covering all 10 benchmarked biomarkers, by training multi-task ResNet-18, ResNet-34, and ResNet-50 (RadImageNet) models. Each of these had a shared backbone, followed by task-specific heads. Further, we kept the standardized single-target training protocol (learning rates, optimizers, augmentations, schedulers) wherever applicable, so the comparison isolates the multi-task objective rather than tuning differences. Each mini-batch optimized the sum of per-task losses, cross-entropy for the classification biomarkers and MSE for age regression. We incorporated GradNorm (Chen et al., 2018) to balance gradient magnitudes so that easier tasks cannot dominate optimization. Model selection used the median AUROC across the binary biomarkers on the validation split, ensuring that gains arise from broad improvements instead of a single outlier task.

1191
1192
1193
1194
1195
1196
1197
1198
1199

This multi-task extension shows that AbdCTBench’s standardized setup supports joint training. However, the results we obtained indicate that multi-task learning did not substantially improve, rather degraded performance, relative to single-task modeling:

1200

1204 Table 17: Multi-task learning results for non-HCC biomarkers by architecture on the test set. AU-
1205 ROC is reported for the binary classification tasks. MAE is reported for Age prediction (regression
1206 task). Bootstrapped 95% CIs are shown in parentheses.

Architecture	Age (MAE)	Calcium Score	MI	Mortality	T2D
ResNet-18	14.529 (14.082–15.013)	0.625 (0.597–0.652)	0.592 (0.568–0.619)	0.615 (0.578–0.649)	0.584 (0.561–0.608)
ResNet-34	21.834 (21.275–22.446)	0.522 (0.492–0.552)	0.546 (0.519–0.574)	0.474 (0.435–0.514)	0.592 (0.569–0.614)
ResNet-50 (RadImageNet)	72.645 (21.880–133.051)	0.612 (0.583–0.640)	0.546 (0.517–0.574)	0.632 (0.596–0.665)	0.524 (0.501–0.547)

1214

1215 Table 18: Multi-task learning results for HCC code biomarkers by architecture on the test set. All
1216 biomarkers report AUROC. Bootstrapped 95% CIs are shown in parentheses.

Architecture	HCC108	HCC111	HCC12	HCC18	HCC96
ResNet-18	0.603 (0.577–0.631)	0.508 (0.464–0.551)	0.527 (0.494–0.564)	0.590 (0.551–0.629)	0.611 (0.567–0.653)
ResNet-34	0.537 (0.510–0.566)	0.507 (0.463–0.550)	0.508 (0.472–0.544)	0.655 (0.614–0.692)	0.530 (0.486–0.576)
ResNet-50 (RadImageNet)	0.552 (0.525–0.577)	0.628 (0.583–0.673)	0.492 (0.456–0.532)	0.570 (0.527–0.614)	0.574 (0.528–0.614)

1225

The results above indicate that there may be negative transfer between the full set of 10 biomarkers. Further, the standardized training protocol for single-target modeling may not be amenable to the multi-task training problem, and will need to be investigated further. Multi-task learning with a smaller subset of biomarkers and hyper-parameters tuned specifically for that set of biomarkers may yield substantially better results, and AbdCTBench is training-ready for extensive multi-task learning modeling to be undertaken as future work.

1226

1227

1228

1229

1230

1231

1232

1233

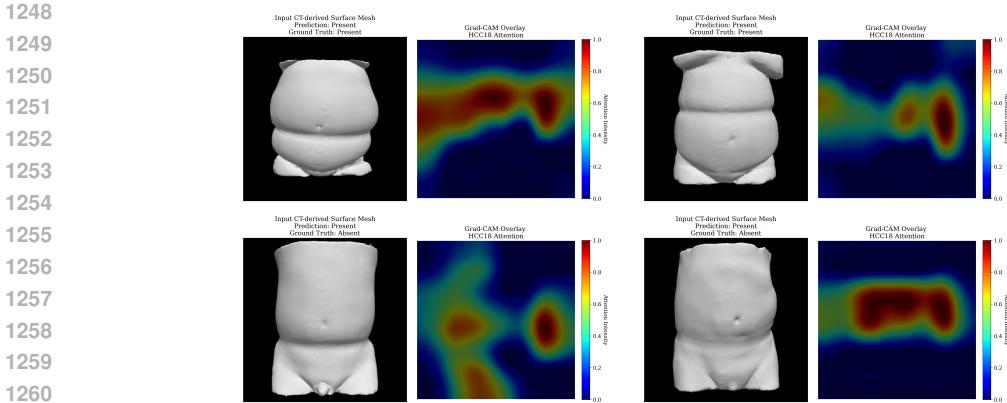
A.7 EFFECTIVE LEARNING OF REPRESENTATIONS FROM ABDOMINAL SURFACE GEOMETRY

1234

1235

From the performance metrics reported above, we do not see drastic differences between the architectures considered. This demonstrates the viability of effective representation learning from abdominal surface geometry for clinically relevant biomarker prediction. The effectiveness is observed across all architectures and biomarkers, except HCC-12 (Breast, Prostate, and other Cancers), whereby external surface geometry may not be predictive of the comorbidity from a clinical perspective either. To demonstrate this further, we apply Gradient-Weighted Class Activation Mapping (Grad-CAM) (Selvaraju et al., 2017) to the input images to visualize the representations.

1242 In specific, we load ResNet-18 (the best-performing model on HCC-18 - Diabetes with Chronic
 1243 Complications), and apply Grad-CAM on the last convolution layer to visualize the features learned
 1244 from the surface geometry images. We collect a small random sample of size 100 from the test set,
 1245 and select compelling examples to demonstrate the effectiveness of the learned representations as
 1246 hypothesized. The heatmaps identify high attention regions from the surface geometry for the model
 1247 to make predictions. The F1-optimal threshold of 0.9 was applied for the binary classification.



1248
 1249
 1250
 1251
 1252
 1253
 1254
 1255
 1256
 1257
 1258
 1259
 1260
 1261
 1262 Figure 7: Grad-CAM visualizations showing learned representations from abdominal surface geom-
 1263 etry. The heatmaps highlight regions of interest that the ResNet-18 model focuses on for HCC-18
 1264 (Diabetes with Chronic Complications) prediction.

1265 While Grad-CAM is a popular interpretability method, it has been shown to be unreliable (Kinder-
 1266 mans et al., 2019). We provide these visualizations as hypothesis-generating and these are not used
 1267 to support any core claims. All of our main conclusions rely on quantitative performance metrics;
 1268 the paper does not draw any causal or mechanistic inferences from Grad-CAM.

1269
 1270
 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280
 1281
 1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290
 1291
 1292
 1293
 1294
 1295

1296 A.8 LLM USAGE DECLARATION
12971298 We declare that we used LLMs for the following tasks:
12991300

- 1301 • Literature review, finding relevant works, and understanding the state-of-the-art. All re-
trieved information was manually verified and validated.
- 1302 • Improving the writing of the manuscript. All writing changes were manually verified and
validated.
- 1303 • Code generation and debugging. All code changes were manually reviewed, tested, and
validated.

13041305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349