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ABSTRACT

Body composition analysis through CT and MRI imaging provides critical in-
sights for cardiometabolic health assessment but remains limited by accessibil-
ity barriers including radiation exposure, high costs, and infrastructure require-
ments. We present AbdCTBench, a large-scale dataset containing 23,506 CT-
derived abdominal surface meshes from 18,719 patients, paired with 87 comor-
bidity labels, 31 specific diagnosis codes, and 16 CT-derived biomarkers. Our key
insight is that external surface geometry is predictive of internal tissue composi-
tion, enabling accessible health screening through consumer devices. We establish
comprehensive benchmarks across seven computer vision architectures (ResNet-
18/34/50, DenseNet-121, EfficientNet-B0O, ViT-Small, Swin Transformer-Base),
demonstrating that models can learn robust surface-to-biomarker representations
directly from 2D mesh projections. Our best-performing models achieve clinically
relevant accuracy: age prediction with MAE 6.22 years (R2=0.757), mortality
prediction with AUROC 0.839, and diabetes (with chronic complications) detec-
tion with AUROC 0.801. Notably, smaller architectures consistently matched or
surpassed larger models, while medical-domain pretraining (RadImageNet) and
self-supervised pretraining (DINOv2) showed competitive but not superior per-
formance. AbdCTBench represents the largest publicly available dataset bridging
external body geometry with internal clinical measurements, enabling future re-
search in accessible medical AI. We plan to release the dataset, evaluation pro-
tocols, and baseline models to accelerate research in representation learning for
medical applications, immediately following the review period.

1 INTRODUCTION

Body composition analysis has emerged as a critical avenue for advancing preventive and diagnos-
tic medicine, offering valuable insights into cardiometabolic health (Amato et al., 2013 |Rosenquist
et al.,[2013). While traditional metrics such as body mass index (BMI) and waist circumference are
widely used, they fail to differentiate between metabolically active visceral adipose tissue (VAT),
intramuscular fat infiltration, and organ-specific pathologiesall critical for cardiometabolic risk strat-
ification (Lee et al., 2018} [Sweatt et al., 2024 [Therkelsen et al., [2013). This limitation has led to
the adoption of advanced imaging biomarkers derived from computed tomography (CT) and mag-
netic resonance imaging (MRI), which provide quantitative assessments of tissue composition with
unprecedented precision (Thomas et al.l 2025).

However, the clinical utility of these modalities remains limited by accessibility barriers. CT ex-
poses patients to ionizing radiation, precluding repeated use, while MRI is costly and has limited
availability. Both modalities require specialized infrastructure and trained radiologists, creating
bottlenecks in resource-constrained settings and perpetuating health disparities. These limitations
underscore the need for alternative approaches that provide access to clinically useful biomarkers
while overcoming accessibility barriers.

To address this challenge, we present AbdCTBench, the first-of-its-kind dataset of 2D surface
meshes derived from formerly conducted abdominal CT scans. AbdCTBench is carefully curated
to enable development of computer vision techniques for learning representations from surface ge-
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Figure 1: Sample 2D abdominal surface meshes from AbdCTBench dataset. These CT-derived
surface geometries demonstrate the range of external anatomical features used to predict internal
body composition biomarkers without radiation exposure. Complete biomarker details for these
images are provided in the Appendix

ometry to predict a variety of clinically useful biomarkers. We fine-tune an array of state-of-the-art
models and benchmark their performance on the task of predicting the associated biomarkers. Our
models are trained on detailed internal body composition data from CT scans and reflect the feasi-
bility of effectively capturing the predictive signal by using only external body measurements and
surface geometry at inference. Model predictions can be obtained simply by providing 2D surface
mesh images as input, aimed at bridging the gap between high-precision clinical imaging and widely
accessible consumer technology.

By validating against the gold standard of CT-derived biomarkers, AbdCTBench can facilitate the
development of reliable models that ultimately eliminate the need for CT scans in routine screening
and monitoring through surface mesh imagery. Recent breakthroughs in consumer-grade depth sens-
ing, such as LiDAR-enabled devices like the iPhone, offer viable alternatives for body composition
assessment (Oberhofer et al.,[2024; |[Zamotsin et al., [2022;|Boczar et al.,|2024; | Vasic et al., [2024)) and
provide accessible methods for generating the surface meshes required by these models. While early
implementations struggle with complex torso geometries (Galaaoui et al.l 2025)), iterative scanning
protocols and machine learning-based mesh reconstruction algorithms are rapidly closing the fidelity
gap with clinical CT. Meanwhile, imaging foundation models trained on extensive radiographic data
demonstrate the feasibility of extracting biomarkers from various imaging modalities. When applied
to 2D surface scans, such models could learn associations between external surface geometry and
internal composition patterns.

Our research represents a transitional step in this evolution with two main contributions:

1. We curate AbdCTBench, a dataset of 23,506 CT-derived abdominal surface mesh images from
18,719 unique patients. To our knowledge, AbdCTBench is the first and largest publicly available
dataset of its kind. Our Dataset Release Statement is provided in Appendix [A.2}

2. We benchmark a variety of computer vision architectures on predicting CT-derived ground truth
biomarkers available in AbdCTBench, requiring models to learn the relationship between exter-
nal abdominal geometry and internal CT-derived biomarkers.

Once validated, these models could operate solely on surface-derived 2D meshes without requiring
CT imaging. This approach could transform biomarker accessibility by providing individuals, clin-
icians, and researchers with actionable physiological insights through non-invasive, radiation-free
surface scans, potentially enabling broad, low-cost, and scalable health screening tools for early
disease risk detection.

2 RELATED WORK

2.1 MEDICAL IMAGE ANALYSIS BENCHMARKS

Medical imaging benchmarks have played an important role in advancing computer vision methods
for healthcare. Large-scale datasets such as ImageNet inspired challenges (e.g. CheXpert (Irvin
et al., [2019), MIMIC-CXR (Johnson et al., 2019)) have provided valuable testbeds for algorithm
development and reproducibility. These resources are typically derived from high-fidelity imaging
modalities and clinician-verified ground truth labels such as radiologist reports or disease codes.
While these benchmarks have accelerated progress in medicine, they remain tied to modalities like
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CT, MRI, or X-ray that require specialized infrastructure and are often inaccessible for population-
scale screening.

In contrast, external body shape analysis has primarily been explored in non-clinical domains such
as human pose estimation (Cao et al.,[2019) or anthropometric studies. To date, no benchmark has
systematically linked external abdominal surface geometry with internal, CT-derived biomarkers at
scale. AbdCTBench fills this gap by bridging the rigor of medical imaging benchmarks with the
accessibility of surface-based imaging, enabling a new class of methods for non-invasive biomarker
assessment.

2.2 ARCHITECTURE EVALUATION IN MEDICAL IMAGING

Benchmarking diverse neural architectures has been central to medical image analysis research.
Early convolutional neural networks (CNNs) demonstrated success on tasks such as tumor segmen-
tation (Ronneberger et al.,|2015), while later work has shown the advantages of transformers (Doso-
vitskiy et al.| 2021a; |Chen et al., [2021a) and hybrid CNN-transformer architectures for capturing
global context in medical images. More recently, foundation models pretrained on massive radiol-
ogy corpora (e.g., RadlmageNet (Mei et al.,[2022a)) have highlighted the benefits of transfer learning
for downstream tasks.

Existing architectural studies, however, primarily benchmark models on imaging modalities that
capture internal anatomy directly (CT, MRI, X-ray). By contrast, AbdCTBench evaluates the abil-
ity of architectures to infer internal body composition from external abdominal surface meshes.
This task differs fundamentally from conventional medical imaging because the predictive signal
is indirect, requiring models to learn associations between geometry and physiology. As such,
AbdCTBench provides a new arena to assess whether architectural advances — spanning CNNgs,
transformers, and emerging vision models — generalize to this novel, indirect inference problem.

3 ABDCTBENCH DATASET
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Figure 2: AbdCTBench dataset overview showing the pipeline from CT scans to surface mesh
extraction and biomarker prediction.

3.1 DATASET COLLECTION AND CURATION

AbdCTBench is a comprehensive dataset derived from 23,506 abdominal CTs of 18,719 patients (=~
1.26 scans per patient), representing one of the largest CT-derived biomarker datasets for abdominal
composition analysis. The data was collected from all available CT scans conducted at facilities of a
privately-owned healthcare company. This included CT scans conducted from August 11, 2003, to
September 9, 2021, under IRB approval from the University of Wisconsin (Protocol: “Opportunistic
CT Screening”). The utilization of all available CT scans allowed the creation of the largest possible
dataset available, but may introduce implicit biases in the data which we discuss further in section
Following collection, processing proceeded in two parallel phases: surface mesh rendering and
CT-derived biomarker calculation.

For surface mesh rendering, DICOM image series were converted to stereo-lithography (STL) files,
then to 2D PNG images of size 384 x 384 (Figure via PyVista (Sullivan & Kaszynski, [2019). The



Under review as a conference paper at ICLR 2026

conversion pipeline consists of three sequential stages: volume processing applies optional shrinking
and anisotropic smoothing to prepare the data; surface extraction generates 3D triangular meshes us-
ing VTK’s contour filter, which are refined through mesh cleaning and smoothing operations before
being exported as binary STL files; and finally, the STL to 2D image conversion renders each mesh
into standardized PNG images with fixed camera positioning and mesh smoothing. Further techni-
cal details about the DICOM to STL and STL to PNG conversions are provided in the Appendix
@ For biomarker calculation, DICOM series were processed by OSCAR (Pickhardt et al., [2020),
which creates segmentation masks to calculate metrics at vertebral levels (L.1-L5, T10-T12) and
organ-specific regions (liver, spleen, kidneys, aorta). Key measurements include bone mineral den-
sity, adipose tissue distribution, muscle composition, organ volumes, and calcium scoring metrics,
yielding 16 biomarkers measuring body composition at various anatomical levels.

The CT-derived biomarkers were then paired with 31 diagnosis (ICD-10) codes, 87 hierarchical
condition category (HCC) comorbidity labels (groupings of ICD-10 codes (Amerigroup, 2019))
and 2 longitudinal lab values (HbAlc and C-reactive protein) from patient medical history. The
dataset was then processed for HIPAA Safe Harbor (U.S. Department of Health and Human Services,
Office for Civil Rights| |2012) compliance, removing PII for safe public release, and we performed
a 70/20/10 split at the patient ID level for train, validation, and test sets to prevent data leakage.
All hyperparameter tuning and model selection procedures used only the train and validation sets,
and the test set was held out only to perform the final evaluation for the reported results. The
resulting dataset integrates quantitative CT biomarkers with clinical outcomes, comorbidity codes,
and demographic information for comprehensive cardiometabolic health analysis and architecture
benchmarking.

3.2 DATASET STATISTICS AND ANALYSIS

AbdCTBench represents a diverse patient population with mean age 55.3 years (SD: 16.51). For
HIPAA compliance, ages 90 were categorized as (90+), with 298 such cases excluded from age
statistics. The dataset shows balanced sex distribution (56.8% female, 43.2% male) and significant
clinical diversity, with high prevalence of: essential hypertension (53.7%), Type 2 Diabetes (44.6%),
impaired glucose tolerance (38.0%), tobacco use (26.8%), and MI (23.1%).

HCC comorbidity burden analysis reveals substantial heterogeneity, with patients carrying an aver-
age of 1.8 HCC conditions (max: 24 per patient). Most prevalent HCC codes include: HCC 108
(Vascular Disease; 22.6%), HCC 19 (Diabetes without complications; 13.0%), and HCC 12 (Breast,
Prostate, and other Cancers; 10.9%). Overall mortality rate is 11.4%.

Primary CT-derived biomarkers include: Calcium Scoring Abdominal Agatston score (mean:
1200.9 £+ 3126.5), kidney median Hounsfield units (mean: 90.0 + 58.8HU), spleen median
Hounsfield units (mean: 82.1 4 37.2HU), spleen volume (mean: 223.9 4 127.2cm?), and com-
prehensive adipose tissue analysis at vertebral levels (L1-L5, T10-T12). Comprehensive dataset
statistics are provided in the Appendix

4 ABDCTBENCH BENCHMARK

From AbdCTBench, we curate 10 biomarker prediction tasks from 2D surface mesh images. We
design a single-target learning framework to benchmark selected architectures on biomarker predic-
tion. The goal is twofold: (i) design a standardized evaluation framework for comparing computer
vision architectures across diverse biomarker prediction tasks, and (i) benchmark foundation mod-
els for CT-derived biomarker prediction using surface geometry representations from 2D images.
The biomarker prediction tasks are as follows:

e Mortality prediction (11.4%): binary classification for patient death during follow-up.

e HCC-108 (Vascular Disease; 22.6%): binary classification for HCC 108 code at scan time.

e HCC-12 (Breast, Prostate, and other Cancers; 10.9%): binary classification for HCC 12 code at
scan time.

e HCC-96 (Cardiac Arrhythmias; 9.0%): binary classification for HCC 96 code at scan time.

e HCC-18 (Diabetes with Chronic Complications; 8.3%): binary classification for HCC 18 code at
scan time.

e HCC-111 (COPD; 7.1%): binary classification for HCC 111 code at scan time.
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Calcium Scoring Abdominal Agatston Score: binary classification for score > 1000 (Janjua et al.,
2021) (21.2%).

Myocardial Infarction (MI; 23.1%): binary classification for previous myocardial infarction.
Type 2 Diabetes (44.6%): binary classification for diabetes at scan time.

Age (mean 55.3): regression for patient age at scan time.

4.1 ARCHITECTURE SELECTION

We selected 6 representative architectures spanning different families to ensure comprehensive cov-
erage of modern computer vision approaches for medical image representation learning. CNN Ar-
chitectures: Four CNN-based models representing different design philosophies:

e ResNet-18/34 (He et all) 2016)): Residual networks with skip connections, for strong baseline
performance with efficient parameter usage (4-6GB and 6-8GB GPU memory)

e DenseNet-121 (Huang et al., [2017): Densely connected networks maximizing feature reuse
through concatenation-based connections (8-10GB GPU memory)

o EfficientNet-B0 (Tan & Le| 2019): Compound scaling approach balancing depth, width, and
resolution for optimal efficiency (6-8GB GPU memory)

Vision Transformers: ViT-Small (DINOv2) (Oquab et al.,[2024) (8-10GB GPU memory) evalu-
ates self-supervised pre-training effectiveness with vision transformers on medical imaging tasks.
DINOV2’s self-supervised pre-training has shown superior performance compared to supervised
ImageNet pre-training on various downstream tasks. On the other hand, Swin Transformer-Base
(Liu et al., [2021) (12-16GB GPU memory) represents hierarchical vision transformers with shifted
window attention, providing an alternative and modern transformer architecture for comparison.

Medical-Specific Architecture: ResNet-50 (RadImageNet) (Mei et al 2022b) (6-8GB GPU
memory) represents domain-specific pre-training, utilizing RadIlmageNet weights trained on medi-
cal images to assess medical domain knowledge benefits.

4.2 STANDARDIZED TRAINING PROTOCOL

For fair and reproducible comparison across architectures, we establish a standardized training pro-
tocol for all models, designed based on best practices from the medical imaging literature.

Optimization Configuration: All models use the AdamW optimizer (Loshchilov & Hutter, [2019)
with weight decay 1 x 10~* and cosine annealing learning rate scheduling. AdamW is the optimizer
of choice for various medical imaging tasks (Chang, 2024), (Mortazi et al.,|2023)). We evaluate three
learning rates: 1 x 1075, 1 x 1074, and 1 x 10~ to capture different optimization regimes and
ensure robust performance across architectures.

Training Hyperparameters: Batch size of 16 balances memory efficiency with gradient stability.
All models train for 100 epochs with early stopping based on validation performance (patience: 10
epochs). Dropout of 0.2 prevents overfitting, as established in medical imaging literature (Wang &
Huang| (2024)), [ Maruyama et al.| (2025)), |Adebayo & et al.|(2025)).

Loss Function: We standardized across all models to use binary cross-entropy loss with logits for
binary classification tasks, and mean squared error loss for regression tasks.

Fine-tuning Strategy: All models use full fine-tuning to maximize performance. Pre-trained
weights are loaded from ImageNet (CNN models), DINOv2 (ViT), or RadlmageNet (medical-
specific ResNet-50), with final classification layers replaced with task-specific heads.

Data Augmentation: A standardized augmentation pipeline is applied to all models using pre-
training weights with slight modifications for medical imaging tasks. For ImageNet/DINOv2 pre-
trained models: random horizontal flips (p=0.3), geometric augmentations including random rota-
tions (£7.5) and less aggressive crops (0.9-1.0 original size) with aspect ratio 0.8-1.2 (p=0.6). For
grayscale images, reduced intensity color augmentations (halved brightness/contrast shift, p=0.4) are
applied. Images are then converted to 3-channel by repeating tensors along channel dimension. For
normalization, ImageNet models use ImageNet mean (0.485, 0.456, 0.406) and std (0.229, 0.224,
0.225); DINOvV2 models use CT-derived means (0.55001191, 0.55001191, 0.55001191) and stds
(0.18854326, 0.18854326, 0.18854326) (Pyrros et al., [2023). For RadlmageNet (medical imaging



Under review as a conference paper at ICLR 2026

specific), augmentations are more conservative: random horizontal flips (p=0.2, reduced from 0.3),
random rotations (%5, reduced from £7.5), less aggressive crops (0.95-1.0 original size, reduced
from 0.9-1.0), narrower aspect ratio (0.9-1.1, reduced from 0.8-1.2), applied with p=0.4 (instead of
0.6). Color augmentations: color jitter for brightness/contrast with reduced intensity 0.3 (instead
of 0.5), applied with p=0.3 (instead of 0.4). Images are then similarly converted to 3-channel and
normalized using ImageNet mean/std as recommended by |[Mei et al.| (2022b).

4.3 SINGLE-TARGET LEARNING FRAMEWORK AND CLASS IMBALANCE HANDLING

Our benchmark focuses on single-target learning to establish clear performance baselines for
biomarker prediction tasks, allowing direct comparison of architectures without multi-task learn-
ing dynamics.

Architecture Adaptation: CNN models use direct classification heads; Vision Transformers em-
ploy CLS token classification. For each, the final layer is replaced with a task-specific head out-
putting the appropriate number of classes or continuous values.

Evaluation Strategy: Each architecture is evaluated independently on each biomarker task, allow-
ing comprehensive analysis of architectural strengths across different prediction types. This ap-
proach provides clear insights into which architectures excel at specific biomarker prediction types.

Further, as described in section[3] the dataset exhibits severe class imbalance, significantly impacting
model performance and evaluation. We implement all the strategies described below to address this
challenge as a standard training protocol across all models and architectures:

Inverse Frequency Weighting: Applied to the loss function, where class weight is calculated as
the inverse of class frequency in the dataset.

Balanced Batch Sampling: During training, balanced batch sampling ensures each batch con-
tains approximately equal representation from all classes, preventing model domination by majority
classes.

Threshold Optimization: For binary classification tasks, classification thresholds are optimized
using F1-score on the validation set, searching the range [0.1, 0.9] with 9 discrete steps. This ensures
optimal performance for imbalanced datasets where default 0.5 thresholding may be suboptimal.

5 EXPERIMENTAL SETUP

All experiments were implemented in PyTorch with CUDA 12.4 support. We utilized the timm
library for Vision Transformer implementations and torchvision for CNN architectures. Experi-
ments are conducted on NVIDIA GeForce RTX 2080 Ti GPUs (11GB memory each) with 10 GPUs
available for parallel execution. Each model is allocated sufficient memory based on expected re-
quirements (4-10GB range), ensuring no memory-related performance degradation.

5.1 EVALUATION METRICS

Our evaluation framework employs task-specific metrics for comprehensive assessment of model
performance across different biomarker types:

Binary Classification Metrics: AUROC (area under the receiver operating characteristic curve,
providing threshold-independent performance assessment), F1-Score, Precision/Recall, and Speci-
ficity. Given clinical relevance, the best model is identified based on highest AUROC. Since F1-
Score, Precision, Recall, and Specificity are threshold dependent, the F1-score optimizing threshold
is selected from the validation set, then used to calculate performance metrics on the test set.

Regression Metrics: Mean Absolute Error (MAE) and Mean Squared Error (MSE). Since age
prediction is our only regression task, the best model is selected based on lowest MAE, allowing
interpretation of prediction quality in terms of absolute difference in years from true patient age.

Statistical Significance: Results are reported with bootstrapped 95% confidence intervals to assess
reliability of performance differences. The bootstrapping was performed with 1000 samples each of
size equal to the test set, using simple random sampling with replacement. Samples may be excluded
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in case of low label diversity (e.g. both classes not present for the binary classification tasks).
The 95% confidence intervals were calculated using the percentile method from the distribution of
bootstrap statistics for each metric of interest.

6 RESULTS AND ANALYSIS

We evaluated single-biomarker predictors across the six architectures, using the best checkpoints
selected on validation and report test set performance. For the regression task (age), EfficientNet-
BO achieved the best error (MAE 6.22), with ResNet-50 (RadImageNet, MAE 6.34) and ViT-Small
(MAE 6.47) close behind. All models substantially outperformed a naive baseline (R? > 0.719,
reported in Appendix [A.3)), indicating strong representation learning from abdominal surface geom-
etry for age estimation. For non-HCC binary targets, AUROC varied by biomarker and architecture:

e Calcium Scoring Abdominal Agatston: ResNet-34 achieved the best AUROC of 0.848, with
DenseNet-121 at 0.847

e Myocardial infarction (MI): Swin Transformer-Base achieved the best AUROC of 0.742, with
EfficientNet-BO at 0.732 (reported in table[I) trailing closely

e Mortality Prediction: ResNet-18 with an AUROC of 0.839 was the best performing. EfficientNet-
BO at 0.830, Swin transformer-Base at 0.828 close behind

e Type 2 Diabetes (T2D): ResNet-34 achieved the best AUROC of 0.742, with EfficientNet-BO and
Swin Transformer-Base at 0.740

Table 1: Results for non-HCC biomarkers by architecture on the test set. AUROC is reported for the
binary classification tasks and MAE is reported for Age prediction (regression task). Bootstrapped
95% Cls are reported in parentheses.

Architecture Age (MAE) Calcium Score MI Mortality T2D
Naive Baseline 13.16 0.500 0.500 0.500 0.500
(12.79-13.57) — — — —
DenseNet-121 6.769 0.847 0.730 0.823 0.728
(6.551-6.994)  (0.829-0.863) (0.703-0.752)  (0.800-0.845) (0.709-0.750)
EfficientNet-BO 6.223 0.847 0.732 0.830 0.740
(6.016-6.422)  (0.829-0.864) (0.708-0.754)  (0.805-0.852) (0.720-0.761)
ResNet-18 6.472 0.843 0.729 0.839 0.735
(6.264-6.678)  (0.825-0.859)  (0.705-0.752) (0.816-0.861) (0.714-0.756)
ResNet-34 6.486 0.848 0.731 0.825 0.742
(6.284-6.692)  (0.831-0.864)  (0.706-0.753)  (0.799-0.848) (0.722-0.762)
ResNet-50 6.341 0.833 0.716 0.810 0.733
(RadImageNet) (6.154-6.532)  (0.815-0.849)  (0.693-0.739) (0.784-0.834) (0.714-0.753)
ViT-Small 6.465 0.829 0.732 0.811 0.735
(DINOV2) (6.260-6.684)  (0.809-0.846) (0.707-0.754)  (0.785-0.836) (0.714-0.755)
Swin 6.540 0.845 0.742 0.828 0.740
Transformer-Base  (6.338-6.758)  (0.828-0.862)  (0.718-0.763)  (0.803-0.851)  (0.720-0.759)

e HCC-108 (Vascular Disease): best AUROC of 0.768 as achieved by Swin Transformer-Base,
with ResNet-18 at 0.763, and EfficientNet-BO at 0.753

e HCC-111 (Chronic Obstructive Pulmonary Disease): best AUROC of 0.769 again achieved by
ResNet-18, with Swin Transformer-Base trailing at 0.765

e HCC-12 (Breast, Prostate, and other Cancers): ResNet-34 achieved the best AUROC of 0.591.
Most performance numbers clustered near chance-level (0.571-0.591) across architectures. We
believe this reflects both limited biological plausibility and label design: HCC-12 aggregates
multiple, heterogeneous cancer types with differing and often weak relationships to obesity and
abdominal body composition. Further, the timing of the HCC code relative to the CT scan can
span pre-diagnosis, active treatment, and long-term survivorship. Taken together, these factors
likely attenuate any subtle signal from the surface geometry, consistent with our interpretation
that external abdominal surface geometry is primarily predictive of cardio-metabolic and muscu-
loskeletal biomarkers rather than oncologic comorbidities

e HCC-18 (Diabetes with Chronic Complications): best AUROC of 0.801 was achieved by Swin
Transformer-Base. It is noteworthy that this AUROC is higher than the highest AUROC of 0.742
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Table 2: Results for HCC code biomarkers by architecture on the test set. All biomarkers report
AUROC. Bootstrapped 95% Cls are reported in parentheses.

Architecture HCC-108 HCC-111 HCC-12 HCC-18 HCC-96
Naive Baseline 0.500 0.500 0.500 0.500 0.500
DenseNet-121 0.740 0.716 0.587 0.766 0.757
(0.720-0.760)  (0.681-0.749)  (0.551-0.622)  (0.735-0.797) (0.723-0.787)
EfficientNet-B0O 0.753 0.747 0.586 0.789 0.763
(0.732-0.775)  (0.708-0.782)  (0.550-0.623)  (0.760-0.816)  (0.732-0.790)
ResNet-18 0.763 0.769 0.580 0.799 0.760
(0.742-0.784)  (0.734-0.802) (0.544-0.614) (0.770-0.828) (0.727-0.791)
ResNet-34 0.749 0.766 0.591 0.775 0.728
(0.729-0.769)  (0.730-0.799) (0.557-0.624)  (0.746-0.805) (0.694-0.761)
ResNet-50 0.718 0.739 0.571 0.782 0.738
(RadImageNet) (0.698-0.739)  (0.704-0.774)  (0.536-0.607)  (0.754-0.812) (0.705-0.769)
ViT-Small 0.743 0.760 0.576 0.785 0.757
(DINOV2) (0.723-0.764)  (0.727-0.793)  (0.542-0.610)  (0.755-0.817) (0.721-0.788)
Swin 0.768 0.765 0.580 0.801 0.770

Transformer-Base  (0.749-0.788)  (0.732-0.796)  (0.545-0.616) (0.776-0.828) (0.739-0.798)

for Type 2 Diabetes prediction as achieved by ResNet-34. This difference may be reflective of
the greater predictive capacity of representations from surface geometry for diabetes with chronic
complications more so than simply the presence of Type 2 Diabetes

e HCC-96 (Cardiac Arrhythmias): best AUROC of 0.770 was achieved by Swin Transformer-Base
with EfficientNet-BO at 0.763, ResNet-18 at 0.760, and ViT-Small at 0.757

Across biomarkers, smaller-to-midsized CNNs (ResNet-18/34, EfficientNet-B0) consistently
matched or surpassed larger ResNet-50 models. ViT-Small with DINOv2 pretraining showed com-
petitive performance, often ranking in the top 2-3 architectures but not achieving the best results
on any biomarkers. On the other hand, Swin Transformer-Base achieved the best performance on
several biomarkers (MI, HCC-108, HCC-18, HCC-96).

Classification accuracies tracked AUROC and generally fell in the 0.59-0.83 range depending on
task difficulty, while F1-scores were modest due to class imbalance and conservative thresholds used
during testing. Detailed results with all metrics are provided in Appendix [A.3]

Taken together, Tables [[|and [2] highlight that diverse architectures, including the newly added Swin
Transformer-Base, can learn discriminative representations from abdominal surface geometry to
predict clinically meaningful biomarkers, and we expect that scaling to larger or more specialized
backbones will further improve performance.

6.1 ARCHITECTURAL FAMILY ANALYSIS

Within architectural families, we observed that ResNet-18 often led on biomarkers (HCC-108, HCC-
111, HCC-18, and Mortality), whereas ResNet-34 performed the best on Calcium Score and Type
2 Diabetes. ResNet-50 (RadlmageNet) underperformed ResNet-18/34 on most biomarkers despite
greater capacity and domain specific pre-training. EfficientNet-BO was best on Age (regression) and
multiple other binary tasks (HCC-96, MI), showing strong accuracy/efficiency trade-offs. DenseNet-
121 was consistently strong but rarely the best, as the model ranked near the top on Calcium Score
and Mortality. ViT-Small with DINOv2 pre-training showed competitive performance across all
tasks, but never achieving the top result. This transformer architecture demonstrated robustness, but
its self-attention mechanism could not surpass CNN baselines on this medical imaging benchmark,
which may potentially be caused by the specific pre-training. On the other hand, Swin Transformer-
Base achieved the best AUROC on several biomarkers (MI, HCC-108, HCC-18, HCC-96)

We believe that the task of predicting internal biomarkers from external abdominal surface geometry
fundamentally differs from conventional medical imaging. As noted in Section 2.2, AbdCTBench
requires learning ’associations between geometry and physiology” from an indirect predictive sig-
nal. CNNs’ inductive bias for local feature extraction through convolutional operations appears par-
ticularly well-suited for this task, as surface geometry patterns that correlate with internal biomarkers
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likely manifest as local spatial features (e.g., subtle curvature variations, adipose tissue distribution
patterns) rather than global dependencies.

This aligns with established findings that CNNs excel at capturing local spatial patterns through their
translation-equivariant convolutional operations (Dosovitskiy et al., 2021b), whereas vision trans-
formers, while powerful for global context, may require more data or architectural modifications to
effectively capture fine-grained local features. Since Swin Transformer-Base (which incorporates
hierarchical local attention through shifted windows) achieved best performance on several supports
this interpretation, as Swin’s architecture explicitly balances local and global feature extraction.

6.2 DOMAIN SPECIALIZATION IMPACT

ResNet-50 models initialized from RadImageNet did not outperform lighter architectures trained
with standard initializations. For example, on Mortality prediction, the RadImageNet pre-trained
ResNet-50 reached an AUROC of 0.810, lagging ResNet-18 (0.839) and EfficientNet-B0O (0.830).
Similarly, on HCC tasks, ResNet-50 results (e.g., 0.718 on HCC-108, 0.738 on HCC-96) trailed the
best smaller models. While RadlmageNet pre-training is domain-specific, the difference between
AbdCTBench and typical CT-scans, MRIs, or X-rays may be crucial: AbdCTBench captures the
abdominal surface geometry derived from CT-scans rather than the raw CT imagery. Consequently,
models with standard initializations consistently outperform the RadIlmageNet initialized ResNet-
50.

ViT-Small with DINOv2 pretraining, while competitive, also did not outperform the best CNN ar-
chitectures. This indicates that both medical-domain pretraining in larger backbones and general
vision transformer pretraining are not sufficient by themselves to overcome optimization and gener-
alization benefits offered by smaller, more regularized networks in this specific setting.

6.3 THRESHOLD-DEPENDENT METRICS

We report threshold-derived metrics at fixed operating points used during testing (often 0.8-0.9) in
Appendix [A33] Under these settings, several biomarkers exhibit high recall but low precision (e.g.,
HCC-18 with ResNet-18: recall 0.93 vs. precision 0.15), or conversely high specificity with mod-
erate recall (e.g., Calcium Score with ResNet-34: specificity 0.758, recall 0.773). This underscores
the importance of task-specific threshold selection: the same classifier can trade precision and recall
substantially without changing AUROC. We reiterate that for each task and architecture, we select
the F1-optimal threshold from the validation set, and use the same threshold to report metrics from
the test set. Complete threshold-dependent metrics with 95% Cls are reported in Appendix [A23]

6.4 SUBGROUP ANALYSIS

To understand how model performance varies across patient demographics, we conducted subgroup
analyses stratified by gender. For each biomarker, we performed the subgroup analysis by using the
best-performing model (prior to the addition of Swin Transformer-Base experiments) on the test set.
These analyses reveal important heterogeneity in predictive performance that may inform clinical
deployment strategies. For age prediction, models achieved substantially better performance in male
patients (MAE 5.76, R? = 0.81) compared to female patients (MAE 6.63, R? = 0.70), suggesting
that abdominal surface geometry may be more predictive of age in males. This difference may
reflect biological variations in body composition changes with age between genders. For binary
classification tasks, gender differences varied by biomarker. Males showed superior performance
on several cardiovascular and respiratory conditions: Calcium Score (AUROC 0.858 vs. 0.838),
MI (AUROC 0.724 vs. 0.699), and HCC-111 (AUROC 0.802 vs. 0.740). In contrast, females
demonstrated better performance on HCC-18 (AUROC 0.824 vs. 0.773) and Mortality prediction
(AUROC 0.844 vs. 0.831).

These gender-stratified differences likely reflect genuine biological variation in how body compo-
sition relates to health outcomes. Sex differences in fat distribution (gynoid vs android adiposity)
and age-related changes (menopause effects) are well-documented (Lee et al., [2013; [Lovejoy et al.,
2008). The improved age prediction in males may reflect more consistent age-related changes in
male body composition, while the better diabetes complication detection in females aligns with
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known sex differences in diabetes presentation and complications (Wells| 2007} Regitz-Zagrosekl,
2012). Importantly, performance remains clinically meaningful across both groups, with no sub-
group showing near-chance performance. These findings suggest that while sex-specific model
training may yield marginal improvements, a unified model provides robust predictions across de-
mographics.

Table 3: Gender-stratified performance metrics on the test set. Bootstrapped 95% ClIs are shown in
parentheses.

Biomarker Best Model Overall Male Female Difference
47.8 %) (52.2%) (Female - Male)
Age (MAE) EfficientNet-BO 6.223 5.76 (5.51-6.05) 6.63 (6.34-6.93) +0.87
Calcium Score ResNet-34 0.848 0.858 (0.835-0.879)  0.838 (0.812-0.861) -0.020
MI EfficientNet-BO 0.732 0.724 (0.691-0.756)  0.699 (0.661-0.736) -0.025
Mortality ResNet-18 0.839 0.831 (0.801-0.860)  0.844 (0.809-0.877) +0.013
2D ResNet-34 0.742 0.740 (0.710-0.769)  0.743 (0.715-0.771) +0.003
HCC-108 ResNet-18 0.763 0.763 (0.730-0.794)  0.766 (0.735-0.795) +0.003
HCC-111 ResNet-18 0.769 0.802 (0.749-0.847)  0.740 (0.691-0.788) -0.062
HCC-12 ResNet-34 0.591 0.623 (0.575-0.670)  0.552 (0.503-0.603) -0.071
HCC-18 ResNet-18 0.799 0.773 (0.728-0.814)  0.824 (0.789-0.859) +0.051
HCC-96 EfficientNet-BO 0.763 0.756 (0.714-0.794)  0.774 (0.731-0.815) +0.018

Because chronological age is one of our main prediction targets in AbdCTBench, stratifying per-
formance by age would conflate subgroup effects with task-defined signal. We therefore avoid
age-based subgroup reporting and instead use gender, which is independent of the benchmark’s
prediction targets and has sufficient sample size for reliable analysis.

We performed additional follow-up experiments with Multi-Task Learning as detailed in Appendix
[A%6 Further, to demonstrate the effectiveness of learning representations from abdominal surface
geometry, we present additional analysis by using Gradient-weighted Class Activation Mappings
(Grad-CAM) (Selvaraju et al} 2017) in Appendix [A.7]

7 LIMITATIONS AND FUTURE DIRECTIONS

Our benchmarking focuses on single-biomarker predictors to isolate signal detectability and ar-
chitectural effects. Extending to multi-target learning (shared encoders, task-specific heads) is a
promising direction to leverage inter-target correlations (we present preliminary experiment results
in Appendix [A-6); given the strength of smaller CNNs here, we hypothesize shared lightweight
backbones with calibrated thresholds could improve macro-level performance without sacrificing ef-
ficiency. Further, due to computational constraints, we limited our benchmarking to include smaller
convolutional neural networks and transformer architectures. While ViT-Small showed competi-
tive performance and Swin Transformer-Base performed the best on a few biomarkers, future work
should explore larger vision transformers, different pretraining strategies (e.g., medical-specific self-
supervised learning), specialized architectures such as U-Net variants (Zhou et al., 2018;|Chen et al.}
2021b; |[Lu et al.l 2022} [Vasa et al., [2024)), and architectural modifications tailored to medical imag-
ing. Additionally, incorporating calibration methods (temperature scaling, focal loss tuning) and
uncertainty estimation may yield better decision thresholds.

From the perspective of real-world deployment of these models for low-cost, non-invasive car-
diometablic risk assessment, cross-site validation is a key next step, as AbdCTBench was collected
from a single site. While we have standardized the dataset curation and benchmarking procedure,
protocols to conduct CT-scans may vary slightly across sites, and thus may meaningfully change
the surface geometry visible in the corresponding abdominal surface images. With the goal of
capturing the most expansive dataset possible from the collection site, the absence of specific in-
clusion/exclusion criteria (e.g. related to age, sex, race, pre-existing conditions, etc.) may have
introduced implicit demographic biases in the dataset. Thus, multi-site evaluation is crucial for
generalizability assessment.

Finally, validation of the models using surface geometry captured from consumer-grade devices
would take us closer to the goal of widely accessible cardiometablic risk assessment.
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A APPENDIX
A.1 BIOMARKER DETAILS FOR FIGURE

This section provides complete biomarker details for the sample images shown in Figure
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Table 4: Complete biomarker details for the sample images shown in Figure/[T]

Image

Gender

Age (years)

Calcium Score Present Absent Present Absent
MI Absent Absent Present Absent
Mortality Absent Absent Present Absent
T2D Present Absent Present Absent
HCC-108 Absent Absent Present Present
HCC-111 Absent Absent Absent Absent
HCC-12 Absent Absent Absent Absent
HCC-18 Absent Absent Absent Absent
HCC-96 Absent Absent Absent Absent

A.2 DATASET RELEASE STATEMENT

The AbdCTBench dataset will be released at https://abdctbenchrepo.github.io/
AbdCTBench/|(an anonymized url compliant with the double-blind submission policy) under Cre-
ative Commons BY 4.0 license immediately upon paper acceptance. The release will include:

23,506 2D depth map projections (PNG format, ~50KB each)

23,506 3D STL surface meshes (=~1-2MB each)

Complete DICOM-to-STL-to-PNG processing pipeline (Python code)

OSCAR biomarker extraction pipeline

Pre-trained model checkpoints for all 8 architectures (including Swin and multi-task mod-
els)

e Train/val/test splits and evaluation protocols

o HIPAA-compliant de-identified labels: 87 comorbidities, 31 diagnoses, 16 biomarkers

While multi-site CT datasets exist (e.g., Stanford Merlin), they lack the HCC and ICD-10 diagnosis
codes required for our benchmark tasks. Integrating imaging with structured clinical outcomes at
scale remains challenging. With the release of AbdCTBench and all associated elements, any insti-
tution with CT DICOM series and corresponding HCC/ICD-10 codes can reproduce the benchmark
and validate results locally. Given current data availability, this is the most practical and scalable
path forward for multi-site validation.

Further, no publicly available datasets currently contain paired consumer depth sensor captures and
CT scans of abdominal regions, in order to quantify the fidelity gap. With the release of Abd-
CTBench, researchers with consumer depth devices can apply our pipeline and quantify geometric
fidelity gaps. Modern smartphone LiDAR (/=5mm depth resolution) should capture coarse body
contour features that our models learn. We view AbdCTBench as establishing proof-of-concept that
surface geometry contains predictive biomarker information, with the open-source pipeline enabling
community-driven real-world validation.

A.3 TECHNICAL DETAILS OF DICOM TO STL TO PNG CONVERSION

Once the DICOM image series are provided as input and loaded, the volume processing step applies
optional shrinking to reduce volumes to a maximum of 2562 voxels using shrink factors calculated
per dimension (optionally applied when the shrink factor exceeds 3). Anisotropic smoothing uses
sitk.Curvature AnisotropicDiffusion with a time step of 0.03 to convert the data to sitkFloat32 format
for further processing. Then, the surface extraction step generates 3D triangular meshes using VTK’s
contour filter, and the subsequent mesh processing applies refinement such as mesh cleaning, small
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object removal, and mesh smoothing. The processed mesh is then exported as a binary STL file.
The STL to 2D image conversion step uses a square 384 x 384 pixel window, automatically centers
the mesh at the origin, positions the camera using a distance factor of 3.0, applies an 80% zoom
factor, and includes a fixed 10° rotation around the Z-axis. Following the application of 5000 mesh
smoothing iterations, the output is a PNG image of size 384 x 384 pixels.

A.4 COMPLETE DATASET STATISTICS

Below we present a variety of dataset statistics, feature distributions, variable correlations, and pa-
tient clustering visualizations.

Table 5: Complete CT-derived biomarker statistics for AbdCTBench dataset.

Biomarker Count Mean Std Dev Min Max
BMD L1 High Sensitivity (HU) 22,083 148.4 443 -46.2 603.2
BMD L1 Standard (HU) 22,119 179.1 54.4 -41.1 1,180.1
Calcium Scoring Abdominal Agatston 23,506  1,200.9  3,126.5 0.0 37,152.0
Kidney Median HU 23,279 90.0 58.8 5.0 298.9
Kidney Volume (cm?’) 23,401 349.0 94.8 50.0 750.0
L3 SAT Area (cm2) 23,467 218.4 111.2 5.9 838.2
L3 TAT Area (ch) 23,467 365.2 177.0 8.5 1,136.5
L3 VAT Area (cm2) 23,467 146.9 104.6 0.0 647.7
L3 VAT Median (HU) 23,418 -89.0 10.5 -118.5 -30.0
L3 VAT/SAT Ratio 23,466 0.73 0.56 0.0 4.46
Liver Median HU 23,501 82.3 30.3 -24.7 233.2
Liver Volume (cmS) 23,498 1,578.4 432.8 269.0 4,973.0
L3 Muscle Area (cm2) 23,469 147.5 374 29.2 315.3
L3 Muscle Mean HU 23,468 36.2 16.4 -47.5 89.8
Spleen Median HU 23,473 82.1 37.2 10.3 488.1
Spleen Volume (cm3) 23,242 2239 127.1 50.0 4,323.0
HCC Code Condition Prevalence (%)
HCC 108 Vascular Disease 22.6
HCC 19 Diabetes without 13.0
Diagnosis Prevalence (%) Complications
Essential Hypertension 53.7 HCC 12 Breast, Prostate, 10.9
Type 2 Diabetes 44.6 Other ancers
I ired Gl Tol 380 HCC 85 Congestive Heart 9.9
mpaire ucose Tolerance . .
Tobacco Use 26.8 Failure .
Myocardial Infarction 231 HCC 48 Coagulation defects 9.8
. : HCC 18 Diabetes with 8.3
Osteoporosis 14.7 Chronic  Complica-
Heart Failure 114 tons P
CVvD 15.5 HCC11  COPD 5.6
Hypertensive CKD 10.0 HCC 40 Rh logi 61
Chronic Liver Disease 7.8 eu_n_lato ogic )
arthritis
HCC 23 Other Significant En- 5.0
docrine Disorders
HCC 22 Morbid obesity 4.7

Table 6: Clinical diagnosis prevalence (left) and HCC comorbidity codes (right) in AbdCTBench.
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Figure 6: (a) Longitudinal laboratory value distributions, and (b) patient clustering patterns. The
clusters were obtained via k-means clustering (with k = 4) by using the first 22 Principal Components

(which explained 80% of the variance in the data from all the numeric features).
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A.5 DETAILED RESULTS BY BIOMARKER

This section provides comprehensive results for each biomarker across all architectures, including
all metrics with 95% confidence intervals computed via patient-level bootstrapping.

Table 7: Complete results for Age prediction across all architectures.

Architecture MAE MSE R?
Naive Baseline 13.16 265.11 -0.0001
(12.79, 13.57) (252.99,278.70) (-0.0030, 0.0000)
DenseNet-121 6.769 74.391 0.719
(6.551, 6.994) (69.636,79.591)  (0.696, 0.741)
EfficientNet-B0O 6.223 64.447 0.757
(6.016, 6.422) (60.141, 69.166)  (0.735, 0.776)
ResNet-18 6.472 67.985 0.744
(6.264, 6.678) (63.650,73.052)  (0.722, 0.763)
ResNet-34 6.486 68.853 0.740
(6.284, 6.692) (64.397,73.698) (0.718,0.761)
ResNet-50 6.341 65.604 0.753
(6.154,6.532) (61.517,70.203)  (0.733, 0.770)
ViT-Small 6.465 70.542 0.734
(DINOV2) (6.260, 6.684) (65.913,75.829)  (0.710, 0.755)
Swin 6.540 70.80 0.733

Transformer-Base (6.338, 6.758)

(66.43, 75.85)

(0.710, 0.754)

Table 8: Complete results for Calcium Score prediction across all architectures.

Architecture AUROC Precision Recall Specificity F1 Accuracy Threshold
Naive Baseline 0.5 0.0 0.0 1.0 0.0 0.786 —
— — — — — (0.770, 0.803)
DenseNet-121 0.847 0.497 0.746 0.795 0.597 0.784 0.8
(0.829, 0.863) (0.460, 0.531) (0.707,0.782) (0.776,0.813) (0.563, 0.626) (0.767, 0.800)
EfficientNet-BO 0.847 0.481 0.765 0.775 0.591 0.773 0.8
(0.829,0.864) (0.446, 0.515) (0.728,0.803) (0.757,0.794) (0.557,0.621) (0.757, 0.790)
ResNet-18 0.843 0.442 0.817 0.719 0.573 0.740 0.7
(0.825,0.859) (0.407,0.472) (0.782,0.849) (0.698,0.738) (0.540, 0.601) (0.721, 0.756)
ResNet-34 0.848 0.465 0.773 0.758 0.581 0.761 0.8
(0.831,0.864) (0.433,0.498) (0.737,0.807) (0.738,0.778) (0.549, 0.609) (0.744,0.779)
ResNet-50 0.833 0.411 0.837 0.673 0.551 0.708 0.5
(0.815,0.849) (0.379, 0.439) (0.801, 0.868) (0.651,0.695) (0.518,0.579) (0.688,0.727)
ViT-Small 0.829 0.426 0.819 0.700 0.561 0.725 0.8
(DINOV2) (0.809, 0.846) (0.394, 0.455) (0.784,0.852) (0.678,0.719) (0.529, 0.589) (0.706, 0.742)
Swin 0.845 0.474 0.769 0.767 0.586 0.768 0.9

Transformer-Base (0.828, 0.862)

(0.438, 0.505)

(0.729, 0.805)

(0.748, 0.786)

(0.554, 0.615)

(0.750, 0.784)
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Table 9: Complete results for HCC-108 prediction across all architectures.

Architecture AUROC Precision Recall Specificity F1 Accuracy Threshold
Naive Baseline 0.5 0.0 0.0 1.0 0.0 0.763 —
— — — — — (0.745, 0.780)
DenseNet-121 0.740 0.384 0.709 0.647 0.498 0.662 0.8
(0.720, 0.760) (0.354,0.414) (0.673,0.747) (0.626,0.669) (0.468, 0.526) (0.643, 0.681)
EfficientNet-BO 0.753 0.376 0.775 0.601 0.507 0.643 0.8
(0.732,0.775) (0.349, 0.405) (0.741,0.807) (0.579,0.624) (0.477,0.536) (0.623, 0.663)
ResNet-18 0.763 0.375 0.791 0.590 0.508 0.638 0.7
(0.742,0.784) (0.347,0.404) (0.759,0.822) (0.567,0.612) (0.480, 0.539) (0.620, 0.657)
ResNet-34 0.749 0.362 0.804 0.561 0.499 0.619 0.8
(0.729, 0.769) (0.336, 0.390) (0.770, 0.834) (0.539,0.584) (0.470,0.528) (0.599, 0.638)
ResNet-50 0.718 0.368 0.737 0.607 0.491 0.638 0.2
(0.698, 0.739) (0.340, 0.396) (0.700, 0.772) (0.584,0.629) (0.462,0.519) (0.620, 0.655)
ViT-Small 0.743 0.375 0.730 0.623 0.496 0.649 0.8
(DINOV2) (0.723,0.764) (0.348, 0.403) (0.696, 0.766) (0.603, 0.645) (0.467,0.524) (0.631, 0.667)
Swin 0.768 0.378 0.800 0.592 0.514 0.641 0.8
Transformer-Base (0.749, 0.788) (0.352, 0.407) (0.766, 0.830) (0.569, 0.614) (0.486, 0.543) (0.623, 0.661)
Table 10: Complete results for HCC-111 prediction across all architectures.
Architecture AUROC Precision Recall Specificity F1 Accuracy Threshold
Naive Baseline 0.5 0.0 0.0 1.0 0.0 0.929 —
— — — — — (0.919, 0.939)
DenseNet-121 0.716 0.122 0.790 0.570 0.212 0.585 0.9
(0.681, 0.749) (0.103,0.142) (0.731, 0.844) (0.550,0.591) (0.181,0.242) (0.567, 0.605)
EfficientNet-B0 0.747 0.131 0.717 0.638 0.221 0.643 0.9
(0.708, 0.782) (0.111,0.152) (0.643,0.784) (0.617,0.658) (0.190,0.254) (0.621, 0.662)
ResNet-18 0.769 0.121 0.843 0.533 0.211 0.555 0.9
(0.734,0.802) (0.103,0.140) (0.788,0.895) (0.513,0.554) (0.182,0.240) (0.535, 0.575)
ResNet-34 0.766 0.114 0.886 0.479 0.203 0.508 0.9
(0.730, 0.799) (0.097,0.133) (0.829,0.933) (0.459,0.500) (0.175,0.231) (0.488, 0.528)
ResNet-50 0.739 0.154 0.416 0.826 0.224 0.797 0.2
(0.704,0.774) (0.123,0.187) (0.343,0.497) (0.811,0.841) (0.182,0.269) (0.780, 0.813)
ViT-Small 0.760 0.117 0.898 0.483 0.206 0.512 0.9
(DINOV2) (0.727,0.793) (0.100, 0.134) (0.853,0.939) (0.463,0.504) (0.179,0.233) (0.492, 0.532)
Swin 0.765 0.150 0.753 0.676 0.251 0.682 0.9
Transformer-Base (0.732, 0.796) (0.128,0.175) (0.687,0.817) (0.656,0.696) (0.217,0.284) (0.663, 0.700)
Table 11: Complete results for HCC-12 prediction across all architectures.
Architecture AUROC Precision Recall Specificity F1 Accuracy Threshold
Naive Baseline 0.5 0.0 0.0 1.0 0.0 0.884 —
— — — — — (0.871, 0.897)
DenseNet-121 0.587 0.136 0.585 0.513 0.220 0.521 0.7
(0.551,0.622) (0.117,0.154) (0.526,0.642) (0.493,0.534) (0.192,0.247) (0.502, 0.540)
EfficientNet-B0 0.586 0.162 0.456 0.691 0.239 0.663 0.3
(0.550, 0.623) (0.136,0.189) (0.394,0.512) (0.670,0.711) (0.205, 0.273) (0.643, 0.683)
ResNet-18 0.580 0.134 0.713 0.397 0.226 0.434 0.9
(0.544,0.614) (0.118,0.153) (0.659,0.766) (0.377,0.418) (0.201, 0.253) (0.415, 0.455)
ResNet-34 0.591 0.148 0.621 0.533 0.240 0.543 0.9
(0.557,0.624) (0.129,0.170) (0.566,0.674) (0.511,0.554) (0.211,0.269) (0.524, 0.563)
ResNet-50 0.571 0.150 0.434 0.678 0.223 0.650 0.9
(0.536, 0.607) (0.128,0.176) (0.380, 0.495) (0.658,0.697) (0.192,0.257) (0.630, 0.669)
ViT-Small 0.576 0.140 0.449 0.640 0.214 0.618 0.9
(DINOV2) (0.542,0.610) (0.119,0.163) (0.390, 0.508) (0.620,0.661) (0.184,0.245) (0.599, 0.636)
Swin 0.580 0.133 0.728 0.378 0.225 0.418 0.8

Transformer-Base (0.545, 0.616)

(0.116, 0.150)

(0.674, 0.777)

(0.358, 0.399)

(0.200, 0.250)

(0.398, 0.440)
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Table 12: Complete results for HCC-18 prediction across all architectures.

Architecture AUROC Precision Recall Specificity F1 Accuracy Threshold
Naive Baseline 0.5 0.0 0.0 1.0 0.0 0.908 —
— — — — — (0.896, 0.920)
DenseNet-121 0.766 0.236 0.454 0.852 0.311 0.815 0.8
(0.735,0.797) (0.197,0.281) (0.388,0.528) (0.836,0.866) (0.266, 0.362) (0.800, 0.831)
EfficientNet-BO 0.789 0.203 0.764 0.697 0.321 0.703 0.9
(0.760, 0.816) (0.177,0.232) (0.706,0.819) (0.677,0.716) (0.285,0.359) (0.685, 0.721)
ResNet-18 0.799 0.145 0.926 0.446 0.250 0.490 0.9
(0.770, 0.828) (0.127,0.164) (0.886,0.960) (0.426,0.467) (0.222,0.279) (0.472,0.510)
ResNet-34 0.775 0.167 0.857 0.569 0.280 0.595 0.9
(0.746, 0.805) (0.146, 0.190) (0.808,0.904) (0.547,0.589) (0.249,0.311) (0.575, 0.613)
ResNet-50 0.782 0.218 0.648 0.765 0.326 0.754 0.9
(0.754,0.812) (0.188,0.250) (0.584,0.715) (0.748,0.782) (0.286, 0.369) (0.737,0.771)
ViT-Small 0.785 0.181 0.792 0.637 0.295 0.652 0.9
(DINOV2) (0.755,0.817) (0.157,0.208) (0.738,0.849) (0.617,0.658) (0.261,0.331) (0.633, 0.671)
Swin 0.801 0.184 0.829 0.627 0.301 0.646 0.9
Transformer-Base (0.776, 0.828) (0.161, 0.210) (0.779, 0.878) (0.608, 0.646) (0.268, 0.335) (0.627, 0.663)
Table 13: Complete results for HCC-96 prediction across all architectures.
Architecture AUROC Precision Recall Specificity F1 Accuracy Threshold
Naive Baseline 0.5 0.0 0.0 1.0 0.0 0.914 —
— — — — — (0.901, 0.925)
DenseNet-121 0.757 0.156 0.818 0.581 0.262 0.601 0.9
(0.723,0.787) (0.134,0.178) (0.763, 0.866) (0.560,0.602) (0.229,0.294) (0.582, 0.621)
EfficientNet-BO 0.763 0.152 0.818 0.569 0.257 0.591 0.9
(0.732,0.790) (0.131,0.174) (0.764, 0.866) (0.548,0.590) (0.226, 0.288) (0.571, 0.611)
ResNet-18 0.760 0.162 0.773 0.621 0.268 0.634 0.9
(0.727,0.791) (0.138,0.186) (0.715,0.829) (0.600,0.641) (0.233,0.301) (0.615, 0.653)
ResNet-34 0.728 0.177 0.453 0.801 0.255 0.771 0.8
(0.694,0.761) (0.144,0.211) (0.386,0.519) (0.785,0.817) (0.212,0.297) (0.755, 0.787)
ResNet-50 0.738 0.198 0.522 0.800 0.287 0.776 0.8
(0.705, 0.769) (0.165,0.232) (0.448,0.589) (0.784,0.817) (0.244,0.329) (0.760, 0.792)
ViT-Small 0.757 0.162 0.773 0.621 0.268 0.635 0.9
(DINOV2) (0.721, 0.788) (0.139,0.186) (0.711,0.828) (0.601,0.643) (0.234,0.302) (0.615, 0.654)
Swin 0.770 0.178 0.699 0.695 0.284 0.695 0.9
Transformer-Base (0.739, 0.798) (0.152,0.206) (0.632,0.761) (0.676,0.714) (0.246,0.321) (0.677,0.713)
Table 14: Complete results for Myocardial Infarction (MI) prediction across all architectures.
Architecture AUROC Precision Recall Specificity F1 Accuracy Threshold
Naive Baseline 0.5 0.0 0.0 1.0 0.0 0.765 —
— — — — — (0.748, 0.783)
DenseNet-121 0.730 0.377 0.674 0.657 0.483 0.661 0.8
(0.703, 0.752) (0.346, 0.408) (0.633,0.713) (0.636,0.680) (0.451,0.514) (0.642, 0.681)
EfficientNet-B0 0.732 0.399 0.687 0.683 0.505 0.684 0.9
(0.708, 0.754) (0.367,0.432) (0.647,0.722) (0.663,0.704) (0.472,0.536) (0.665, 0.702)
ResNet-18 0.729 0.374 0.669 0.656 0.480 0.659 0.8
(0.705, 0.752) (0.344, 0.405) (0.631,0.707) (0.634,0.678) (0.449,0.510) (0.640, 0.678)
ResNet-34 0.731 0.375 0.681 0.651 0.483 0.658 0.8
(0.706, 0.753)  (0.346, 0.405) (0.640,0.719) (0.630,0.673) (0.452,0.513) (0.639, 0.678)
ResNet-50 0.716 0.346 0.717 0.583 0.467 0.615 0.8
(0.693, 0.739) (0.316,0.373) (0.679,0.755) (0.561,0.606) (0.435,0.496) (0.595, 0.634)
ViT-Small 0.732 0.347 0.823 0.525 0.488 0.595 0.7
(DINOV2) (0.707, 0.754) (0.320, 0.374) (0.790, 0.852) (0.501,0.547) (0.457,0.515) (0.574, 0.615)
Swin 0.742 0.368 0.748 0.606 0.493 0.639 0.8

Transformer-Base

(0.718, 0.763)

(0.338, 0.394)

(0.710, 0.784)

(0.583, 0.628)

(0.461, 0.521)

(0.620, 0.658)
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Table 15: Complete results for Mortality prediction across all architectures.

Architecture AUROC Precision Recall Specificity F1 Accuracy Threshold
Naive Baseline 0.5 0.0 0.0 1.0 0.0 0.886 —
— — — — — (0.874, 0.900)
DenseNet-121 0.823 0.281 0.727 0.761 0.405 0.757 0.9
(0.800, 0.845) (0.247,0.311) (0.675,0.779) (0.744,0.779) (0.364,0.442) (0.741, 0.774)
EfficientNet-BO 0.830 0.318 0.633 0.826 0.423 0.804 0.9
(0.805, 0.852) (0.277,0.355) (0.574,0.687) (0.810,0.841) (0.377,0.463) (0.787,0.819)
ResNet-18 0.839 0.289 0.749 0.764 0.418 0.763 0.9
(0.816,0.861) (0.256,0.321) (0.694, 0.800) (0.748,0.782) (0.379, 0.455) (0.746, 0.779)
ResNet-34 0.825 0.359 0.581 0.867 0.444 0.835 0.8
(0.799, 0.848) (0.310, 0.405) (0.516, 0.637) (0.853,0.881) (0.391,0.489) (0.820, 0.849)
ResNet-50 0.810 0.220 0.850 0.613 0.349 0.640 0.9
(0.784,0.834) (0.194,0.242) (0.809, 0.891) (0.593,0.632) (0.315,0.378) (0.620, 0.658)
ViT-Small 0.811 0.255 0.745 0.720 0.379 0.723 0.9
(DINOV2) (0.785,0.836) (0.223,0.285) (0.690, 0.796) (0.701,0.739) (0.338,0.417) (0.705, 0.742)
Swin 0.828 0.280 0.749 0.753 0.407 0.752 0.9
Transformer-Base (0.803, 0.851) (0.245,0.312) (0.696, 0.799) (0.735,0.772) (0.367,0.445) (0.736, 0.770)
Table 16: Complete results for Type-2 Diabetes prediction across all architectures.
Architecture AUROC Precision Recall Specificity F1 Accuracy Threshold
Naive Baseline 0.5 0.0 0.0 1.0 0.0 0.551 —
— — — — — (0.531,0.571)
DenseNet-121 0.728 0.533 0.909 0.351 0.672 0.601 0.4
(0.709, 0.750)  (0.509, 0.555) (0.892, 0.926) (0.323,0.376) (0.650, 0.690) (0.580, 0.621)
EfficientNet-BO 0.740 0.532 0.915 0.344 0.673 0.600 0.3
(0.720,0.761) (0.508, 0.553) (0.897,0.931) (0.318,0.368) (0.652,0.691) (0.580,0.619)
ResNet-18 0.735 0.551 0.888 0.409 0.680 0.624 0.4
(0.714,0.756) (0.526,0.573) (0.869, 0.906) (0.381,0.434) (0.659,0.699) (0.603, 0.643)
ResNet-34 0.742 0.538 0.913 0.361 0.677 0.609 0.4
(0.722,0.762) (0.514,0.560) (0.894,0.929) (0.335,0.387) (0.656,0.695) (0.589, 0.628)
ResNet-50 0.733 0.550 0.881 0.412 0.677 0.623 0.4
(0.714,0.753)  (0.526,0.574) (0.862,0.899) (0.386,0.440) (0.656,0.696) (0.603, 0.641)
ViT-Small 0.735 0.540 0.895 0.379 0.674 0.611 0.4
(DINOV2) (0.714,0.755) (0.517,0.562) (0.875,0.913) (0.354,0.405) (0.652,0.692) (0.591,0.630)
Swin 0.740 0.533 0.917 0.347 0.674 0.603 0.2

Transformer-Base

(0.720, 0.759)

(0.510, 0.556)

(0.900, 0.933)

(0.321,0.373)

(0.654, 0.692)

(0.583, 0.622)
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A.6 MULTI-TASK LEARNING

In a follow-up experiment, we implemented a multi-task learning framework covering all 10 bench-
marked biomarkers, by training multi-task ResNet-18, ResNet-34, and ResNet-50 (RadlmageNet)
models. Each of these had a shared backbone, followed by task-specific heads. Further, we kept the
standardized single-target training protocol (learning rates, optimizers, augmentations, schedulers)
wherever applicable, so the comparison isolates the multi-task objective rather than tuning differ-
ences. Each mini-batch optimized the sum of per-task losses, cross-entropy for the classification
biomarkers and MSE for age regression. We incorporated GradNorm (Chen et al.| 2018]) to balance
gradient magnitudes so that easier tasks cannot dominate optimization. Model selection used the
median AUROC across the binary biomarkers on the validation split, ensuring that gains arise from
broad improvements instead of a single outlier task.

This multi-task extension shows that AbdCTBench’s standardized setup supports joint training.
However, the results we obtained indicate that multi-task learning did not substantially improve,
rather degraded performance, relative to single-task modeling:

Table 17: Multi-task learning results for non-HCC biomarkers by architecture on the test set. AU-
ROC is reported for the binary classification tasks. MAE is reported for Age prediction (regression
task). Bootstrapped 95% Cls are shown in parentheses.

Architecture Age (MAE) Calcium Score MI Mortality T2D
ResNet-18 14.529 0.625 0.592 0.615 0.584
(14.082-15.013)  (0.597-0.652)  (0.568-0.619) (0.578-0.649) (0.561-0.608)
ResNet-34 21.834 0.522 0.546 0.474 0.592
(21.275-22.446)  (0.492-0.552)  (0.519-0.574) (0.435-0.514) (0.569-0.614)
ResNet-50 72.645 0.612 0.546 0.632 0.524
(RadImageNet) (21.880-133.051)  (0.583-0.640) (0.517-0.574)  (0.596-0.665) (0.501-0.547)

Table 18: Multi-task learning results for HCC code biomarkers by architecture on the test set. All

biomarkers report AUROC. Bootstrapped 95% ClIs are shown in parentheses.

Architecture HCC108 HCC111 HCC12 HCC18 HCC96
ResNet-18 0.603 0.508 0.527 0.590 0.611
(0.577-0.631)  (0.464-0.551)  (0.494-0.564) (0.551-0.629) (0.567-0.653)
ResNet-34 0.537 0.507 0.508 0.655 0.530
(0.510-0.566)  (0.463-0.550) (0.472-0.544) (0.614-0.692) (0.486-0.576)
ResNet-50 0.552 0.628 0.492 0.570 0.574
(RadImageNet)  (0.525-0.577)  (0.583-0.673) (0.456-0.532) (0.527-0.614) (0.528-0.614)

(0.525-0.577)

(0.583-0.673)

(0.456-0.532)

(0.527-0.614)

(0.528-0.614)

The results above indicate that there may be negative transfer between the full set of 10 biomarkers.
Further, the standardized training protocol for single-target modeling may not be amenable to the
multi-task training problem, and will need to be investigated further. Multi-task learning with a
smaller subset of biomarkers and hyper-parameters tuned specifically for that set of biomarkers
may yield substantially better results, and AbdCTBench is training-ready for extensive multi-task
learning modeling to be undertaken as future work.

A.7 EFFECTIVE LEARNING OF REPRESENTATIONS FROM ABDOMINAL SURFACE GEOMETRY

From the performance metrics reported above, we do not see drastic differences between the ar-
chitectures considered. This demonstrates the viability of effective representation learning from
abdominal surface geometry for clinically relevant biomarker prediction. The effectiveness is ob-
served across all architectures and biomarkers, except HCC-12 (Breast, Prostate, and other Cancers),
whereby external surface geometry may not be predictive of the comorbidity from a clinical per-
spective either. To demonstrate this further, we apply Gradient-Weighted Class Activation Mapping
(Grad-CAM) (Selvaraju et al.,|2017) to the input images to visualize the representations.
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In specific, we load ResNet-18 (the best-performing model on HCC-18 - Diabetes with Chronic
Complications), and apply Grad-CAM on the last convolution layer to visualize the features learned
from the surface geometry images. We collect a small random sample of size 100 from the test set,
and select compelling examples to demonstrate the effectiveness of the learned representations as
hypothesized. The heatmaps identify high attention regions from the surface geometry for the model
to make predictions. The F1-optimal threshold of 0.9 was applied for the binary classification.

Figure 7: Grad-CAM visualizations showing learned representations from abdominal surface geom-
etry. The heatmaps highlight regions of interest that the ResNet-18 model focuses on for HCC-18
(Diabetes with Chronic Complications) prediction.

While Grad-CAM is a popular interpretability method, it has been shown to be unreliable (Kinder-
mans et al.,|2019). We provide these visualizations as hypothesis-generating and these are not used
to support any core claims. All of our main conclusions rely on quantitative performance metrics;
the paper does not draw any causal or mechanistic inferences from Grad-CAM.
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A.8 LLM USAGE DECLARATION

We declare that we used LLMs for the following tasks:

e Literature review, finding relevant works, and understanding the state-of-the-art. All re-
trieved information was manually verified and validated.

e Improving the writing of the manuscript. All writing changes were manually verified and
validated.

e Code generation and debugging. All code changes were manually reviewed, tested, and
validated.
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