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Barbara Hammer 1

Abstract
The rapid proliferation of smart devices coupled
with the advent of 6G networks has profoundly
reshaped the domain of collaborative machine
learning. Alongside growing privacy-security con-
cerns in sensitive fields, these developments have
positioned federated learning (FL) as a pivotal
technology for decentralized AI training. How-
ever, FL faces significant hurdles, including high
communication overheads, computational limi-
tations, and the complexities arising from non-
IID data distributions. We propose AutoFLIP, a
novel approach designed to enhance the scalabil-
ity and efficiency of FL. AutoFLIP introduces
a federated loss exploration phase that adaptively
prunes non-essential model parameters. This pro-
cess leverages gradient behavior insights across
diverse client losses to optimize resource usage
and computational load, crucial for training neural
networks effectively at scale. Extensive experi-
ments across various datasets and task demon-
strate that AutoFLIP not only accelerates con-
vergence but also significantly reduces computa-
tional and communication costs—by 48.8% and
35.5%, respectively—while achieving robust per-
formance. These advances make AutoFLIP a
possible solution for deploying efficient and scal-
able FL in various real-world applications, such
as healthcare to smart cities.

1. Introduction
The proliferation of smart devices at the network edge, cou-
pled with advancements in 6G networks, has created a decen-
tralized setting. Multiple participants store their data locally,
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which offers an opportunity for collaborative model train-
ing, enhancing robustness and generalization. Distributing
the computational load across these devices results in faster
training times and lower energy consumption compared
to centralized approaches. However, distributed Machine
Learning (ML) faces significant challenges. Efficient com-
munication and coordination among participants are crucial,
as each device holds only a subset of the data. This requires
designing algorithms that minimize data exchange while
ensuring high-quality model convergence. Device hetero-
geneity, including differences in computational power, stor-
age, and bandwidth, further complicates distributed training.
Algorithms must adapt to such environments to scale up
distributed learning. Privacy and security concerns, along
with regulations like the European GDPR (htt, 2016), add
another layer of complexity (Hoffpauir et al., 2023). With
sensitive data distributed across various devices, ensuring
the privacy of individual data points becomes essential. For
example, medical data stored in hospitals and personal de-
vices is valuable for training diagnostic models but is also
subject to strict privacy and security regulations.

In this context, Federated Learning (FL) (Zhu et al., 2021)
emerges as an effective strategy for training always more
complex DL models while preserving the privacy of the data.
FL facilitates collaborative model training across multiple
devices without exposing local data. A central server, i.e., a
global model, coordinates this process by aggregating the
updates from locally trained models, which ensures a secure
learning environment. Current FL research focuses on en-
hancing privacy and adapting ML workflows for specific
uses, often with predetermined ML model configurations.
Tasks related to computer vision may involve well-known
neural network (NN) architectures like VGG-16 (Simonyan
& Zisserman, 2015) (138 million parameters) or ResNet-
50 (He et al., 2015) (25.6 million parameters). However,
these complex networks risk overfitting, especially with
small training data sizes. FL systems typically expect clients
to have high-speed processors and sufficient computational
power for local calculations and parameter updates. Yet,
many edge devices, such as smartphones, wearables, and
sensors, have limited computing and memory capacities,
posing a challenge to DL model training systems (Hoffpauir
et al., 2023). Additionally, communicating DL models with
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millions of parameters presents significant obstacles for FL
transmission (Shlezinger et al., 2020; Asad et al., 2023).
Therefore, using FL effectively with edge devices that have
limited computational capabilities, while maintaining effi-
cient communication, remains an active research question.
FL’s effectiveness is further hindered by the prevalence
of non-IID data in real-world scenarios (Zhu et al., 2021;
Karimireddy et al., 2020). Non-IID data refers to the unique
statistical properties of each client’s dataset, reflecting their
varied environments. This creates conflicting training goals
for local and global models, leading to convergence towards
different local optima. As a result, client model updates
become biased, impeding global convergence (Zhu et al.,
2021; Karimireddy et al., 2020). These challenges under-
score the need for personalized and innovative approaches
in FL, particularly in optimizing and compressing models
to improve inference time, communication cost, energy effi-
ciency, and complexity, all while maintaining satisfactory
accuracy.

Our contribution. We introduce a novel automated feder-
ated learning approach via informed pruning (AutoFLIP),
which uses a novel loss exploration mechanism to automat-
ically prune and compress DL models. In our assumed
single-server architecture, each client operates on the same
initial deep NN structure that automatically prunes itself at
each round, based on the extraction of shared knowledge for
an informed model compression. Specifically, by analyzing
the variability of weights during a local exploration phase,
which provides insights into gradient behaviors on the loss
landscapes across clients, and subsequent information ag-
gregation, the Deep Learning (DL) models involved in a FL
round are pruned automatically. This strategy allows for
dynamically reducing the complexity of the models in FL
environments, thereby optimizing performance with limited
computational resources at the client level. With our exper-
iments over various datasets, tasks, and realistic non-IID
scenarios, we provide strong evidence of the effectiveness
of AutoFLIP.

Reproducibility. Our code for reproducing the experiments
is available on GitHub.1

2. Background and Related Work
Pruning in Deep Learning. Following the assumption that
a DL model can contain a sub-network that represents the
performance of the entire model after being trained, model
pruning is a good strategy to reduce computational require-
ments of resource-constrained devices (Mozer & Smolen-
sky, 1988a; LeCun et al., 1989; Janowsky, 1989). Most
pruning approaches balance accuracy and sparsity during

1 https://github.com/ChristianInterno/
AutoFLIP

the inference stage by calculating the importance scores of
parameters in a well-trained NN and removing those with
lower scores. These scores can be derived from weight
magnitudes (Janowsky, 1989; Han et al., 2015), first-order
Taylor expansion of the loss function (Mozer & Smolensky,
1988b; Molchanov et al., 2017), second-order Taylor expan-
sion (LeCun et al., 1989; Hassibi & Stork, 1992; Molchanov
et al., 2019), and other variants (Louizos et al., 2018; Singh
& Alistarh, 2020).

Another recent research direction in NN pruning focuses
on improving training efficiency, divided into two cate-
gories: pruning at initialization and dynamic sparse train-
ing. Pruning at initialization involves pruning the original
full-size model before training based on connection sensi-
tivity (Lee et al., 2019), Hessian-gradient product (Wang
et al., 2020), and synaptic flow (Tanaka et al., 2020). How-
ever, since this method does not involve training data, the
pruned model may be biased and not specialized for the
task. Dynamic sparse training iteratively adjusts the pruned
model structure during training while maintaining the de-
sired sparsity (Dettmers & Zettlemoyer, 2019; Evci et al.,
2020). This approach requires memory-intensive operations
due to the large search space, making it impractical for
resource-constrained devices.

Initial attempts to use pruning for deploying deep neural net-
works on resource-limited devices have utilized pre-trained
CNNs in a centralized setting (You et al., 2019; Lin et al.,
2020). However, this approach can lead to reduced data
privacy, higher costs, poor adaptation to local conditions,
suboptimal performance on diverse data, and latency in
real-time applications.

Pruning in Federated Learning. The widely accepted FL
standard is known as FedAvg (McMahan et al., 2023). It
distributes a global model to clients for local training and ag-
gregates it by averaging their parameters. Empirical studies
have shown the robustness of this approach, even when han-
dling non-convex optimization problems (Das et al., 2022).
As a result, it is commonly used as a standard for eval-
uating newly developed FL protocols. In this study, we
will compare the performance of the proposed AutoFLIP
method to FedAvg, with different State-of-the-Art (SotA)
FL pruning approachs, as tested in (Wu et al., 2023). In fact,
since data remains locally stored and cannot be shared, tra-
ditional centralized pruning approaches that rely on access
to training data are not feasible in FL.

In the context of FL, there has been work focused on dy-
namic active pruning to increase communication efficiency
during training. Liu et al. (2022); Zhou et al. (2021) intro-
duced a method where pruning decisions are made dynami-
cally based on the model’s real-time performance evaluation,
which significantly reduces the data exchanged during train-
ing but adds computational complexity to client devices.
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Jiang et al. (2023) introduced PruneFL, a FL method that
incorporates adaptive and distributed parameter pruning.
Their approach utilizes an unstructured method that does
not take advantage of the collective insights of participating
clients to develop a cooperative structured pruning strategy.
This is in contrast to the objectives of AutoFLIP, which
seeks to harness client-specific knowledge to facilitate a
structured approach to pruning. Lin et al. (2022) introduced
a novel approach for adaptive per-layer sparsity, however
without incorporating any parameter aggregation scheme
to reduce the error caused by pruning. This challenge was
addressed by Tingting et al. (2023) by moving the pruning
process to the global model that works on a computationally
more powerful server. The pruned model is distributed to
each client, where it undergoes training. Subsequently, each
client sends back to the server only the updated parame-
ters, restoring the full structure of the model at the server.
Although this study includes various parameter selection cri-
teria from the literature, its pruning method does not incor-
porate the information gathered during model training. This
contrasts with our strategy, AutoFLIP, which leverages
such information to enhance the pruning process. Yu et al.
(2023a) proposed Resource-aware Federated Foundation
Models, focusing on integrating large transformer-based
models into FL, with the limitation of not exploring other
architectures. Our method, AutoFLIP, diverges by intro-
ducing a pruning strategy that avoids the need for continuous
evaluation of parameter significance and is applicable across
various FL aggregation algorithms and model architectures.

3. Preliminaries
We start by defining the notation we use and presenting the
standard formulation of FL, and then introduce the problem
definition and objective.

Notation: We consider a total number of C clients. At each
FL round, K clients are chosen and trained on different
batches of size B for E epochs. The total number of rounds
is R, which represents our termination criterion. For the
exploration phase, we denote with Cexp the number of clients
selected, which, in this study, we take as the totality C of
available clients. The exploration lasts for Eexp epochs.

3.1. Federated Learning

In the conventional FL setting, each client i (1 ≤ i ≤
K) possesses its own data distribution pi(x, y), where
x ∈ Rd represents the d-dimensional input vector and
y ∈ {1, . . . ,M} is the corresponding label from M classes.
Each client has a dataset Di with Ni data points: Di =

{(x(1)
i , y

(1)
i ), . . . , (x

(Ni)
i , y

(Ni)
i )}. It is assumed that in a

non-IID scenario the data distribution pi(x, y) varies across
clients. These data distributions pi(x, y) are sampled from
a family E of distributions. The objective is for the clients

to collaboratively train a global model with parameters
Wglobal, which will perform predictions on new data. The
global loss function for a data point (x, y) is denoted by
L(Wglobal, x, y), where the global objective function to be
minimized is defined as:

L(Wglobal) :=
1

C

C∑
i=1

E(xi,yi)∼pi
[L(Wglobal, xi, yi)], (1)

with E(xi,yi)∼pi
representing the expected loss over the data

distribution pi for each client i with parameters W .

The optimization process involves several key steps:
1. Client Selection: A subset of K clients is selected from
the total C clients.
2. Local Training: Each selected client i performs local
training for E epochs using its local dataset Di. The local
training aims to minimize the local objective function L(Wi)
using stochastic gradient descent (SGD): let W r

i be the local
model parameters of client i at round r, the update rule
is given by: W r+1

i = W r
i − η∇L(W r

i ), where η is the
learning rate.
3. Parameter Aggregation: After local training, each client
sends its updated parameters W r+1

i to the central server.
The server aggregates these parameters to form the new
global model W r+1

global using a weighted average: W r+1
global =

1
K

∑K
i=1 W

r+1
i . This iterative process is repeated for R

rounds the termination criterion is met.

3.2. Problem Definition and Objective

The non-IID nature of the data introduces challenges in
ensuring the global model effectively generalizes across
diverse client data distributions. The variance σ2

∆W of the
weight updates received by the global model, as discussed by
Zhu et al. (2021), can introduce noise and bias trajectories
that potentially slow convergence and affect global model
accuracy. Our objective with AutoFLIP is:

i) Minimize σ2
∆W through an informed adaptive pruning

strategy across clients to mitigate noise and biases into the
client trajectory, which could slow the global model conver-
gence. This approach aims to reduce the impact of divergent
client learning paths caused by non-IID data.

ii) Enhance training and communication efficiency. Pruning
reduces the number of parameters that need to be commu-
nicated between clients and the server, thus lowering the
communication overhead and expediting the overall training
process.

4. Methodology
AutoFLIP is an automatized FL approach that utilizes in-
formed pruning through a federated client loss exploration
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process. Inspired by the idea of utilizing agents with sim-
ilar tasks as scouts which explore the conformation of dif-
ferent loss function landscapes from Nikolić et al. (2023),
AutoFLIP introduces a preliminary step to the FL rounds,
which we term federated loss exploration phase. Here, a
Cexp portion of clients (or the totality C), which inherit their
model structure from the global model, explore for a num-
ber of Eexp exploration epochs their loss landscape using
its local dataset Di. Based on this, for each client cexpi , we
compute a local guidance matrix Glocali , which records how
important a certain parameter Wi (weight or bias) is in terms
of parameter deviation, i.e., change in parameter value after
the exploration from its Xavier normal initialization (Ku-
mar, 2017) value, which reflects loss variability. Afterward,
we aggregate the information collected locally in a global
pruning guidance matrix PGglobal on the server, which will
generate an informed pruning mask to guide the pruning of
the client models. The pruning workflow of AutoFLIP is
illustrated in Figure 1. Please note that the initial federated
loss exploration, computation of parameter deviations, and
definition of local guidance matrices occur only once at the
beginning of the FL optimization process as a preliminary
procedure. In contrast, the global guidance matrix and sub-
sequent pruning strategy are automatically redefined in each
FL round, considering the clients participating in that round.

To summarize, the iterative procedure consists of (1) pruning
local models using the updated pruning guidance matrix, (2)
training the pruned local models, (3) aggregating the locally
trained model parameters and (4) evaluating performance
and updating the pruning guidance matrix in each FL round.

4.1. Federated Loss Exploration

In AutoFLIP, the model initialization phase is augmented
by a crucial federated loss exploration phase, allowing
clients to explore their loss function landscapes. We en-
vision each client as an explorer delving into different re-
gions of their loss landscape. Through this exploration, they
can identify crucial dimensions and those that can be dis-
regarded based on their experience by quantifying gradient
variability during the exploration. Subsequently, they trans-
mit this knowledge to the server, which updates a pruning
guidance mask PGglobal. This mask is then shared among
participating clients in each FL round to guide the evolu-
tion of client model structures within an informed pruning
session.

To construct the mask PGglobal, we begin with an initial ex-
ploration phase conducted on Cexp clients. In this study, we
consider Cexp = C. In our study we let explore the clients
for Eexp = 150 epochs, and for each model parameter we
evaluate its evolution in the search space during the loss
exploration. This evaluation is conducted by calculating the
deviation Di,m for the mth parameter of a client model i as

the squared difference between the initial (W Initial
i,m ) and final

(W Final
i,m ) parameter values after Eexp epochs of exploration:

Di,m = (W Initial
i,m −W Final

i,m )2. (2)

Using stochastic gradient descent for exploration, the de-
viation Di,m in Eq. (2) serves as a measure of gradi-
ent variability on the loss landscape for parameter m dur-
ing the preliminary exploration phase before the actual
FL procedure. The greater the variation in the parame-
ter space, the faster the improvements in loss: the up-
date rule for a parameter in stochastic gradient descent
is W

(eexp+1)
i,m = W

(eexp)
i,m − η∇Li

(
W

(eexp)
i,m ;Di

)
), where

W
(eexp)
i,m and W

(eexp+1)
i,m are the values of the parameter m

at the exploration epochs eexp and eexp + 1, η is the learn-

ing rate, and ∇Li

(
W

(eexp)
i,m

)
is the gradient of the loss

function of client i with respect to the parameter m at
epoch eexp using its local dataset Di. Given the gradi-
ent update rule, the deviation in Wi,m from the initial to
the final exploration epoch Eexp can be approximated to

W Final
i,m −W Initial

i,m ≈ −η
∑Eexp

t=1 ∇Li

(
W

(t)
i,m;Di

)
. To ensure

non-negativity and highlight larger deviations more severely,
we take the square of this value. This squared deviation mea-
sure Di,m approximates the square of the sum of gradients
affecting the parameter evolution, indicating the significance
of parameter updates on loss variability during the explo-
ration phase. By squaring the sum of the gradients, we
ensure that the deviation measure is always non-negative
and that larger deviations are highlighted more severely than
smaller ones.

The Cexp clients compile these deviations into a local matrix
Glocal, whose entries are the deviations for the model param-
eters. At each FL round, where only K clients are involved,
the server aggregates the Glocal matrices associated to those
client to formulate Gglobal through a normalization process:

Gglobal =
1

K

K∑
k=1

Glocalk −min(Glocal)

max(Glocal) −min(Glocal)
(3)

Here, the minimum and maximum values are taken over all
Glocalk matrices for k = 1, . . . ,K. Each element of Gglobal
thus represents the mean normalized deviation for each
parameter, scaled between 0 and 1. This process ensures that
no single client’s Glocal disproportionately influences Gglobal
due the possible presence of outliers in terms of deviations
Di,m. A value closer to 0 indicates minimal deviation,
suggesting gradient stability during the exploration, hence
scarce relevance of the parameter itself. Conversely, values
near 1 highlight significant parameter deviations, pointing
to more dynamic and potentially insightful areas of the loss
landscape. Then, a binarization process is applied to Gglobal
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Figure 1. Illustration of the AutoFLIP pruning procedure. The local guidance matrices are computed a priori through the federated
exploration phase. The global guidance matrix is computed by the server by aggregating the elements of the local guidance matrices
corresponding to the clients participating in each FL round. The pruning mask is downloaded by the participant clients. All steps
preliminary to the FL procedure are denoted in gray, while the steps intrinsic to the FL procedure with pruning are denoted in red.

where elements below Tp are set to 0 and those above are
set to 1:

PGglobal,m =

{
0 if Gglobal,m < Tp

1 otherwise
(4)

The threshold Tp directly determines the compression ra-
tio of the model by setting the proportion of parameters to
be pruned. Given their smaller influence, parameters corre-
sponding to 0 are flagged for pruning, whereas those marked
with 1 are retained, indicating important search directions
within the model parameter space. During each FL round,
the K participating clients update PGglobal by incorporating
their Glocal deviation values derived from the initial loss
exploration phase.

To select an appropriate Tp, consider the desired compres-
sion ratio for the model. This ratio reflects the extent to
which the model needs to be compressed while maintaining
acceptable performance. By carefully selecting Tp based on
the desired compression ratio and empirical validation, we
can achieve a well-balanced model that is both efficient and
accurate, tailored to the specific needs of the FL task.

The Proposed AutoFLIP Framework. Here our aim is
to argument how the parameter pruning mechanism based
on loss exploration enters a general FL edge training frame-
work. Algorithm 1 provides an overview of the entire frame-
work of the proposed AutoFLIP algorithm for FL. It is
composed by the following steps.

Server initialization (Line 1). The server is initialized
with a global model that it is sent to all the clients. At this
stage, the total number of clients undergoing exploration,
the number of exploration epochs, and the pruning threshold
are also decided.
Exploration phase (Lines 2–3).
The preliminary exploration phase aimed at understanding
the relevance of each parameter (weight or bias) in view of
loss improvement starts. For each client participating (in
this study we select all the available clients), a local guid-
ance matrix storing parameter deviations is computed.
Mask update (Lines 5–7). A FL round starts. The server
selects K clients that participate in the round. Only the
local guidance matrices of those clients are considered to
compute a global guidance matrix, which is then used to
generate a binary mask for pruning. The mask contains ones
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Algorithm 1 AutoFLIP Algorithm

1: Server Initialization: Initial matrix W
(0)
global, number of

clients for exploration Cexp, exploration epochs Eexp,
pruning threshold Tp, FL rounds R, training epochs E,
number of selected clients per round K

2: Server selects Cexp clients for exploration
3: Glocali = (W Initial

i −W Final
i )2,∀i ∈ [1, Cexp]

4: for round r = 1 to R do
5: Server selects K clients
6: Compute G

(r)
global using Eq. (3)

7: Compute mask PG
(r)
global using Eq. (4)

8: for client k = 1 to K do
9: W

(r)
k,pruned = W

(r)
k ⊙ PG

(r)
global

10: for each local epoch e = 0 to E − 1 do
11: W

(e+1)
k,pruned = W

(e)
k,pruned − η∇Lk

(
W

(e)
k,pruned

)
12: end for
13: end for
14: W

(r)
global =

1
K

∑K
k=1 W

(E)
k,pruned

15: end for=0

only for the parameters with normalized deviations higher
than a prescribed threshold Tp.
Pruning (Lines 8–9). During each round, clients use
the pruning mask to compress their models. This happens
through element-wise multiplication between their weight
matrix and PGglobal at that FL round. Parameters aligned
with a 0 in PGglobal are pruned; those corresponding to a 1
are kept.
FL round with reduced client models (Lines 10–14). The
standard algorithm FedAvg (McMahan et al., 2023) is used
on the reduced framework. The pruned clients are trained.
The server receives the local model updates and, upon ag-
gregation, proceeds to update the global model with the FL
aggregation strategy. Once updated, the global model is
either ready for the next communication round or deemed
ready for deployment if the convergence criteria are satis-
fied.

4.2. Robustness and Efficiency of AutoFLIP

Referring to (Fraboni et al., 2022; Fallah et al., 2020; Wang
et al., 2023; Yin et al., 2024), we base our convergence
guarantees on a federated stochastic aggregation scheme.
The authors’ assumptions on Lipschitz smoothness, con-
vexity of local loss functions, unbiased gradient estimators,
finite client answering times, and specific client aggrega-
tion weights form the theoretical backbone of AutoFLIP.
These conditions ensure that the learning process remains
stable and converges efficiently even in the presence of non-
IID data distributions. With AutoFLIP each client experi-
ences the same pruning strategy with PGglobal, resulting in
a substantial decrease in the variance ( σ2

∆W ) previously de-

fined in Section 3.2, of weight updates for the global model.
This uniform pruning strategy minimizes discrepancies in
weight adjustments across clients by focusing updates on
critical weights identified during the federated loss explo-
ration phase. The reduction in variance helps to alleviate the
bias caused by the non-IID setting, as shown in the work of
(Zhu et al., 2021), thus promoting better global convergence.

Furthermore, (Yang et al., 2023; Redman et al., 2022; Tukan
et al., 2022; Isik et al., 2022) provide a theoretical foun-
dation for which pruned NNs can effectively learn signals.
They demonstrate that pruning preserves the signal’s magni-
tude in features and reduces noise, leading to improved gen-
eralization. These studies highlight that pruning, when done
correctly, does not degrade the model’s capacity to learn
but rather focuses the learning on more relevant features.
By focusing on parameters with significant contributions
to the loss function, AutoFLIP ensures that the essential
features are retained, thus maintaining or even enhancing
model accuracy. As illustrated in Figure 2 for different NN
topologies, the parameters in Gglobal with minimal variabil-
ity during the federated loss exploration phase are pruned,
while those exhibiting high deviations, indicative of high
gradients and significant contributions to the loss function
variability, are retained. Note that higher frequencies are
recorded for smaller deviation values, indicating that many
parameters, according to our pruning strategy, are non im-
portant.

AutoFLIP enhances communication efficiency in FL by
reducing model sizes transmitted between clients and the
server, thus lowering bandwidth requirements for FL rounds.
Its selective updating mechanism ensures only essential pa-
rameters, those significantly affecting model performance,
are communicated. Integrating AutoFLIP into FL sys-
tems enhances faster training and inference times, lower
energy consumption, and improved model scalability. The
appendices D, E and F provide a detailed analysis of
how AutoFLIP accelerates inference and improves train-
ing efficiency, demonstrating its significant role in lowering
computational costs and boosting FL’s overall efficiency.

5. Experiments
Inspired by (Hahn et al., 2022), we benchmark AutoFLIP
across established datasets to evaluate its robustness in vari-
ous non-IID environments. We explore three distinct parti-
tioning approaches for creating strongly non-IID conditions:
a Pathological non-IID scenario, which involves clients us-
ing data from two distinct classes, employing MNIST with
a six-layer CNN (7,628,484 parameters) and CIFAR10 with
EfficientNet-B3 (10,838,784 parameters), a Dirichlet-based
non-IID scenario, which utilizes the Dirichlet distribution
to distribute data among clients, with varying class counts
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Figure 2. Distribution of parameter deviations in Gglobal after exploration. Absolute frequency in log-scale is shown for each normalized
deviation. Higher frequencies are recorded for smaller deviation values, indicating that many parameters are irrelevant for loss improve-
ment.

per client, using CIFAR100 with ResNet (23,755,900 pa-
rameters), and a LEAF non-IID scenario, which adopts the
LEAF benchmark (Caldas et al., 2019) with FEMNIST and
Shakespeare datasets. For FEMNIST, a CNN architecture
with 13,180,734 parameters is used. For Shakespeare, we
consider a two-layer LSTM model with 5,040,000 param-
eters. Further details on these scenarios are provided in
Appendix B.

5.1. Experimental Setup and Results

We evaluate AutoFLIP against both FedAvg without any
model compression and with SotA FL pruning strategies,
incorporating various parameter selection criteria: Random,
L1, L2, Similarity, and BN mask, as described in (Wu et al.,
2023). The experimental setup involves C = 20 (for LEAF
non-IID scenario we employ C = 730 for Shakespeare and
C = 660 for FEMNIST) clients, a batch size B = 350,
and a learning rate η = 0.0003 over 200 total rounds R
with K = 5 (for LEAF non-IID scenario K = 20) clients
selected per round. We incorporate a server momentum
of 0.9 and use an SGD optimizer with weight decay. The
exploration phase consists of up to Eexp = 150 epochs, and
the pruning threshold is set to Tp = 0.3. Data is divided into
80% for training and 20% for testing, with global model
performance assessed by the average prediction accuracy
on the test sets. To ensure statistical validity, each exper-
iment is repeated 10 times. We measure the compression
rate to evaluate model size reduction and its impact. Experi-
ments were conducted with an Intel Xeon X5680, 128 GB
of DDR4 RAM, and an NVIDIA TITAN X GPU.

Pathological non-IID) Here, AutoFLIP achieves an av-
erage client compression rate of x1.74. At each round, we
remove on average 3244298 parameters of the six-layer
CNN for each participant client. For the EfficientNet-B3,
we obtain an average compression rate of x2.1 with 5677458
deleted parameters. For a fair comparison with the baselines,
we ensure that the number of parameters pruned matches

the compression ratio of AutoFLIP, quantified as 42% for
the six-layer CNN and 52.38% for EfficientNet-B3.

The first two subplots in Figure 3 show the evolution of
global model accuracy during the FL rounds for the four-
layer CNN with the MNIST dataset and for EfficientNet-B3
with the CIFAR10 dataset. Refer to Appendix C for the
evolution of the loss metric. In the case of the MNIST, the
early rounds of FL show that AutoFLIP achieves slightly
higher accuracy compared to both FedAvg and the other FL
pruning strategies, among which RandomPruning emerges
as the top performer. This indicates a faster convergence
rate for our proposed method. However, the performance
of the three baselines soon becomes comparable, with no
clear superiority as the FL procedure progresses. We at-
tribute this to the simplicity of the prediction tasks on the
MNIST dataset compared to the excessive complexity of
the four-layer CNN, which already possesses extremely
good prediction capabilities that cannot be further enhanced
by pruning. For the CIFAR10 dataset, we do not observe
any advantage in using AutoFLIP over the other baselines.
Surprisingly, all methods exhibit severe fluctuations in the
accuracy convergence profiles up to FL round 100, after
which they stabilize and become comparable.

Dirichlet-based non-IID) For ResNet, AutoFLIP achieves
an average compression rate for the clients of x1.58, with
8,720,520 parameters pruned on average out of 23,755,900
total parameters. Hence, we adjust the percentage of param-
eters to be pruned to 36.71% for the different baselines.

The third subplot in Figure 3 illustrates the evolution of the
global model accuracy during the FL rounds for ResNet
on CIFAR100. Here, AutoFLIP exhibits a performance
enhancement throughout the considered training rounds.
At round 200, it achieves an accuracy of 0.987, compared
to 0.918 for FedAvg and 0.925 for RandomPruning. This
enhancement signifies the robustness of AutoFLIP, show-
casing its ability to maintain elevated performance levels
when integrated with larger-complex neural networks and
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Figure 3. Average accuracy convergence profiles for the global model within the FL framework.

larger datasets.

LEAF non-IID) In this scenario, AutoFLIP achieves an
average compression rate of x1.8 for 5858104 client param-
eters pruned out of 13180734. Hence, we adjust the number
of parameters to be pruned for the different baselines to 44%.
As observed in the last two subplots of Figure 3 for the FEM-
NIST and Shakespeare datasets, AutoFLIP consistently
outperforms the other pruning strategies by a significant
margin.

What stands out is the initial acceleration in convergence
speed observed for AutoFLIP, firmly establishing it as
a superior choice overFedAvg, RandomPruning and the
other FL baselines. Furthermore, this superiority persists
throughout the entire FL training procedure. The final av-
erage accuracy values are 0.985 for AutoFLIP, 0.905 for
FedAvg, and 0.935 for RandomPruning on the FEMNIST
dataset. For the Shakespeare dataset, the values are 0.815,
0.783, and 0.738, respectively. Here, even L1 proves to
be competitive, reaching a final accuracy equal to 0.802.
However, it demonstrates inferior initial convergence.

6. Conclusion and Limitations
We introduced AutoFLIP, an innovative automated feder-
ated learning (FL) approach that employs informed prun-
ing to optimize deep learning (DL) models on clients with
limited computational resources. Through extensive ex-
periments across various non-IID scenarios, AutoFLIP
has demonstrated its capacity to achieve high model accu-
racy and significantly reduce computational and communi-
cation overheads. It enhances convergence rates in federated
settings and shows remarkable adaptability and scalability
across diverse DL network architectures and multi-class
datasets, particularly as the complexity of tasks increases.

Limitations. AutoFLIP shows promise but has limita-
tions. It is primarily tested in the popular efficient single-
server setting, not accounting for multi-server or hierarchi-
cal environments with diverse client capabilities and model
structure. Our tests also assume standard conditions without
data label noise.

Future Research Directions. AutoFLIP underscores its
potential for future research avenues, such as leveraging
loss exploration for guiding complex Neural Architecture
Search (NAS) tasks. Enhancements will focus on refining
AutoFLIP’s dynamic and adaptive pruning to better client
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personalization. We aim to perform comparison analysis
with other strategies from other domain such us like NAS
or Client Dropout. Further, the impact on data privacy and
defense against adversarial clients during the federated loss
exploration phase has to assessed. Research will also ex-
plore the extension of AutoFLIP to more complex DL
architectures and its integration into real-world applications
across various domains such as healthcare and mobile com-
puting.

Broader Impact. AutoFLIP enhances sustainability and
efficiency in FL, reducing the energy footprint of training
deep learning models. Its utility in sensitive sectors like
healthcare and finance emphasizes its societal importance.
However, deploying AutoFLIP requires careful consider-
ation of ethical issues, including data privacy and biases.
Proactive management and regulation are crucial to ensure
its positive societal impact and responsible integration into
critical fields.
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A. Ablation Study on Tp

We perform an ablation study to assess the sensitivitiy of our method to the pruning threshold parameter Tp. In particular,
we check how the average accuracy and loss for the global model predictions vary for Tp ∈ {0.1, 0.2, 0.3, 0.4, 0.5}. We do
this on two datasets: MINST in Figure 4 and CIFAR10 in Figure 5 from the Pathological non-IID scenario. In both cases,
Tp = 0.3 seems the most convenient choice.
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Figure 4. Ablation on Tp for MINST/non-IID based on average accuracy (top) and loss (bottom).
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Figure 5. Ablation on Tp for CIFAR10/non-IID based on average accuracy (top) and loss (bottom).
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B. Partitioning approaches
PATHOLOGICAL NON-IID

This experimental configuration is delineated by each client possessing data exclusively from two distinct classes within a
broader multi-class dataset. Figure 6 illustrates this ”pathological” data partitioning scenario within the CIFAR10 dataset
across 20 clients. For our experiments, we select the MNIST dataset (Deng, 2012) with a six-layer CNN (7628484 parameters)
and the CIFAR10 dataset (Krizhevsky, 2012) with EfficientNet-B3 architecture (10838784 parameters), following the
guidelines in (McMahan et al., 2023) and (Tingting et al., 2023).
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Figure 6. Illustration of pathological data partitioning on CIFAR10 for 20 clients, where each color represents a different class.

DIRICHLET-BASED NON-IID

This advanced experimental setup, as introduced by (Hsu et al., 2019), utilizes the Dirichlet distribution, modulated by a
concentration parameter α. Let p = (p1, p2, ..., pN ) be the class distribution for a given client, where N is the number
of classes. The Dirichlet distribution is defined as p ∼ Dir(α · 1N ), where “Dir” denotes the Dirichlet distribution, α is
the concentration parameter, and 1N is a N-dimensional vector of ones. In this context, a low value of α, or α → 0, leads
to distributions where most of the probability mass is concentrated on a single class, thereby indicating that each client’s
data is restricted to a single class. Conversely, as α → ∞, p approaches a uniform distribution, ensuring that the samples
are evenly split across all clients. Figure 7 illustrates this “Dirichlet-based non-IID” data partitioning scenario within the
CIFAR100 dataset across 20 clients, with individual colors denoting separate classes.

To address the complexities of larger datasets, we have extended our evaluation to include CIFAR100 (Krizhevsky, 2012)
with a α = 100, employing ResNet (23755900 parameters) (He et al., 2015) in alignment with the methodology proposed in
(Hahn et al., 2022).

LEAF NON-IID

Utilizing the popular LEAF benchmark for FL (Caldas et al., 2019), we selected the FEMNIST and Shakespeare datasets to
simulate closer real-world FL scenarios, with each dataset designed for specific tasks. The FEMNIST dataset is defined
for a multi-class classification challenge involving 62 distinct classes. Conversely, the Shakespeare dataset is tailored for
a next-character prediction task, requiring models to predict the subsequent character from a sequence of 80 characters,
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Figure 7. Illustration of Dirichlet-based non-IID data partitioning on CIFAR100 for 20 clients, where each color represents a different
class.

thereby testing the model capabilities in sequential data processing and language modeling. The incorporation of the
next-character prediction task allows for a comprehensive assessment of AutoFLIP adaptability and performance across
diverse task types and deep neural network architectures, such as Long Short-Term Memory (LSTM) networks.

In our experimental setup, we employed the FEMNIST-CNN architecture, as delineated in (Caldas et al., 2019), for the
FEMNIST dataset. For the Shakespeare dataset, we utilized a two-layer (LSTM) (5040000 parameters) model, in accordance
with the specifications provided in (McMahan et al., 2023).
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C. Loss plots
We present in Figure 8 the loss convergence profiles for the global model participating in the FL procedure.for the global
model. Here, we compare AutoFLIP to the different federated pruning strategies evaluated on both image recognition and
text prediction tasks using five distinct datasets: MNIST, CIFAR10, CIFAR100, FEMNIST, and Shakespeare. Due to the
varying complexities of each task, we use different model structures for different datasets.

Figure 8. Average loss convergence profiles for the global model within the FL framework.
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D. Inference acceleration
In this section, we discuss the inference acceleration of AutoFLIP. When performing inference on the client’s side with the
pruned sub-model, we accelerate the inference time and reduce the computational consumption. Figure 9 shows the inference
acceleration comparison after applying AutoFLIP. Notably, the FLOPs (floating point operations per second) in all the
evaluated models are reduced. Table 1 shows that the Six-layer CNN deployed for the pathological non-IID experiment with
MNIST, experienced a substantial decrease in computational load, equal to a 41.62% reduction in FLOPs. EfficientNet-
B3, used for CIFAR10 in the pathological non-IID experiment, saw further improvements, reaching a FLOPs reduction
of 46.44%. The deeper ResNet model, designed for CIFAR100 in the Dirichlet-based non-IID experiment, achieved a
significant reduction in FLOPs, over 50%, highlighting the potential of AutoFLIP to streamline deep networks for more
efficient inference. The FEMNIST-CNN and LSTM models, employed for the LEAF non-IID experiment, showcased a
FLOPs reduction equal to 56.49% and 44.44%, respectively.
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Figure 9. Original FLOPs and reduced FLOPs

Table 1. FLOPs comparison

Model Compression Rate Original FLOPs Reduced FLOPs FLOPs % Reduced

Six-layer CNN 1.74 13.25 G 5.43 G 41.62% ↓
EfficientNet-B3 2.1 15.67 G 7.20 G 46.44% ↓
ResNet 1.58 7.83 G 4.07 G 52.75% ↓
FEMNIST-CNN 1.8 19.36 G 10.08 G 56.49% ↓
LSTM 1.8 10.08 G 4.43 G 44.44% ↓
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E. Training efficiency
To ascertain AutoFLIP’s impact on enhancing training efficiency within FL frameworks, we delve into an examination of
the associated communication costs. For a practical perspective, the deployed models are trained to achieve a 90% accuracy
threshold. As presented in (Yu et al., 2023b), the cost function employed for this evaluation is defined as:

Cost = # Parameters ×# Rounds to Reach Target Accuracy ×# Clients × Sample Rate.

In Table 2, we observe the effectiveness of AutoFLIP in reducing communication costs across various non-IID scenarios
with different models and datasets. Notably, the Six-layer CNN model, used in the MNIST dataset for the Pathological non-
IID experiment, demonstrated a significant reduction in communication costs by 41.61%, which underscores AutoFLIP’s
effectiveness in simpler architectures. This efficiency extends to more complex architectures, like EfficientNet-B3 and
ResNet, employed for the CIFAR10 and CIFAR100 datasets respectively for the Dirichlet-based non-IID experiment, which
also saw notable cost reductions of 30.93% and 29.88%. Similarly, the FEMNIST-CNN and LSTM models, used in the
LEAF non-IID experiment, exhibited reductions in communication costs by 19.54% and 19.29%, respectively. These
results highlight AutoFLIP’s broad applicability and substantial impact on training efficiency across a range of model
complexities and dataset types.

Table 2. Comparison of the total communication costs

Model Rounds AutoFLIP Rounds NoAutoFLIP Cost AutoFLIP Cost NoAutoFLIP % Cost Reduced

Six-layer CNN 3 58 189.45 GB 324.43 GB 41.61% ↓
EfficientNet-B3 27 39 290.26 GB 420.27 GB 30.93% ↓
ResNet 7 49 712.70 GB 1016.40 GB 29.88% ↓
FEMNIST-CNN 280 348 369.06 GB 458.69 GB 19.54% ↓
LSTM 243 301 122.47 GB 151.74 GB 19.29% ↓
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F. Computation Cost
To evaluate AutoFLIP’s role in reducing computational effort, we investigate the number of parameters processed for a
single client. Distinguishing between computational efforts on the global model and the clients is essential, with a particular
focus on the client side. For AutoFLIP, each client handles a substantial number of parameters over an additional 150
exploration epochs (Eexp). From a practical standpoint, we compare AutoFLIP and FedAvg with RandomPruning with
the same compression rate. The models are trained to meet a 90% of global accuracy. We define the computation cost
function as:

Computation cost for single client = Total Parameters Processed ×# Epochs × Sample Rate

In Table 3, the pathological non-IID experiment with MNIST using the Six-layer CNN model shows a significant reduction
in computational cost by 62.51%. This efficiency extends to more complex architectures like EfficientNet-B3 and ResNet,
used for the CIFAR10 and CIFAR100 datasets respectively, with cost reductions of 46.41% and 58.22%. Similarly, the
FEMNIST-CNN and LSTM models, employed in the LEAF non-IID experiment, demonstrated reductions in computational
costs by 45.99% and 29.60% respectively. These results underline AutoFLIP’s broad applicability and substantial impact
on reducing computational efforts across diverse model architectures and dataset types.

Table 3. Comparison of the total computation costs
Model Processed parameters AutoFLIP Processed parameters NoAutoFLIP % Cost Reduced
Six-layer CNN 535,309,170 1,428,653,880 62.51% ↓
EfficientNet-B3 2,005,175,040 3,740,891,680 46.41% ↓
ResNet 3,919,723,500 9,378,097,500 58.22% ↓
FEMNIST-CNN 15,303,653,440 28,338,578,100 45.99% ↓
LSTM 5,871,600,000 8,335,200,000 29.60% ↓
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