
DGCBench: A Deep Graph Clustering Benchmark

Benyu Wu1,2,∗, Yue Liu3,∗, Qiaoyu Tan4, Xinwang Liu3

Wei Du1, Jun Wang1, Guoxian Yu1,†
1School of Software, Shandong University, Jinan, China

2School of Computer Science and Technology
China University of Mining and Technology, Xuzhou, China

3School of Computer Science and Technology
National University of Defense Technology, Changsha, China

4Department of Computer Science, New York University Shanghai, Shanghai, China
bywu@mail.sdu.edu.cn yueliu@nudt.edu.cn

qiaoyu.tan@nyu.edu xinwangliu@nudt.edu.cn
{duwei, kingjun, gxyu}@sdu.edu.cn

Abstract

Deep graph clustering (DGC) aims to partition graph nodes into distinct clusters in
an unsupervised manner. Despite rapid advancements in this field, DGC remains
inherently challenging due to the absence of ground-truth, which complicates
the design of effective algorithms and impedes the establishment of standardized
benchmarks. The lack of unified datasets, evaluation protocols, and metrics further
exacerbates these challenges, making it difficult to systematically assess and com-
pare DGC methods. To address these limitations, we introduce DGCBench, the first
comprehensive and unified benchmark for DGC methods. It evaluates 12 state-of-
the-art DGC methods across 12 datasets from diverse domains and scales, spanning
6 critical dimensions: discriminability, effectiveness, scalability, efficiency, sta-
bility, and robustness. Additionally, we develop PyDGC, an open-source Python
library that standardizes the DGC training and evaluation paradigm. Through
systematic experiments, we reveal persistent limitations in existing methods, specif-
ically regarding the homophily bottleneck, training instability, vulnerability to
perturbations, efficiency plateau, scalability challenges, and poor discriminability,
thereby offering actionable insights for future research. We hope that DGCBench,
PyDGC, and our analyses will collectively accelerate the progress in the DGC com-
munity. The code is available at https://github.com/Marigoldwu/PyDGC.

1 Introduction

Clustering is a fundamental unsupervised learning technique that leverages the intrinsic similarity of
samples to partition data into coherent groups, thereby exposing underlying structural patterns [45,
64]. Deep graph clustering (DGC) is an emerging unsupervised task that seeks to partition graph
nodes into meaningful clusters, leveraging both structural and attribute information [28]. DGC has
demonstrated significant potential across diverse domains, such as social network analysis [42, 56],
bioinformatics [24, 50, 44], and recommendation systems [31, 32]. Harnessing the representation
power of deep neural networks, DGC surpasses traditional graph clustering methods that rely solely
on structure or attribute.

∗Equal Contribution
†Corresponding author

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Track on Datasets and Benchmarks.

https://github.com/Marigoldwu/PyDGC


2019 2020 2021 2022 2023 2024 2025DGC

Reconstructive Contrastive Predictive

⋆GAE [21]

⋆DAEGC [54]

⋆SDCN [3]
GRACE [59]

⋆DFCN [53]
AdaGAE [25]
CaEGCN [19]

GDCL [68]

⋆DCRN [27]
⋆AGC-DRR [12]

S3GC [7]
CGC [42]

MTEL [67]

R-GAE [40]
GC-VGE [14]
FT-VGAE [39]

⋆HSAN [30]
⋆CCGC [61]
SCGC [29]

CONGREGATE [49]
RGC [26]

CONVERT [62]

SGCC [35]
MLGAL [65]

BELBO-VGAE [38]
R2FGC [63]
HoLe [13]

GC-SEE [9]
DGCN [41]

⋆NS4GC [34]
⋆MAGI [33]
CLAGC [69]

GMIM [1]

⋆DGClu [2]
DICN [4]

DyFSS [71]
UDGC [20]
FastDGC [8]

PFGC [58]
MHGC [46]

THESAURUS [6]
HomoCAGC [5]

Figure 1: Evolution of DGC research: key paradigms, methods driven by graph neural networks and
contrastive learning. The representative methods marked with "⋆" are benchmark methods.

However, the unsupervised nature of DGC presents intrinsic challenges. In the absence of ground-
truth labels, learning discriminative and clustering-friendly node representations becomes non-
trivial. Driven by the rapid progress in graph neural networks (GNNs) [22] and graph contrastive
learning [68], a wide range of DGC methods have emerged [25, 38], broadly categorized into three
dominant paradigms, as illustrated in Figure 1. Reconstructive paradigm: These methods aim to learn
low-dimensional node embeddings by minimizing reconstruction loss, thus preserving the original
graph structure or feature content. This paradigm emphasizes faithful representation learning, with
representative methods including GAE [21], DAEGC [54], SDCN [3], DFCN [53], AdaGAE [25],
CaEGCN [19], R-GAE [40], GC-VGE [14], FT-VGAE [39], BELBO-VGAE [38], R2FGC [63],
HoLe [13], GC-SEE [9], DGCN [41], DyFSS [71], UDGC [20], and FastDGC [8]. Predictive
paradigm: Instead of reconstructing input data, predictive approaches learn embeddings by forecasting
inherent graph properties, such as node proximity or community affiliations. These embeddings serve
as a foundation for future inference tasks. Examples include MTEL [67], SGCC [35], MLGAL [65],
DGCluster [2], and DICN [4]. Contrastive Paradigm: Contrastive methods explicitly model semantic
similarity by maximizing agreement between positive pairs and minimizing it between negatives. It
focuses on learning robust and discriminative embeddings leveraging structural and semantic contrasts.
Notable methods include GDCL [68], AGC-DRR [12], DCRN [27], S3GC [7], CGC [42], HSAN [30],
CCGC [61], SCGC [29], CONGREGATE [49], RGC [26], CONVERT [62], MAGI [33], NS4GC [34],
CLAGC [69], GMIM [1], PFGC [58], MHGC [46], THESAURUS [6], and HomoCAGC [5].

Despite this progress, the field lacks a standardized benchmark to systematically evaluate and compare
DGC methods, which significantly hampers community progress. Specifically, i) Fragmented datasets
and inconsistent metrics. Existing studies use datasets with varying distributions, scales, and types,
and adopt inconsistent evaluation criteria. This makes results incomparable and hinders the assessment
of algorithmic strengths and weaknesses. ii) Insufficient and narrow evaluation. Current evaluations
overly focus on clustering accuracy while neglecting critical aspects such as robustness, scalability,
stability, and discriminability. Moreover, experimental setups often lack standardized protocols,
impeding reproducibility and validation.

To address these gaps and foster systematic progress in DGC, we introduce DGCBench, a comprehen-
sive and unified benchmark for deep graph clustering, along with the supporting open-source toolkit
PyDGC. Our key contributions are summarized below:

i) Unified Benchmarking. We present the first systematic DGC benchmark (DGCBench), which
encompasses 12 diverse datasets with different characteristics and 12 state-of-the-art methods from
all major paradigms. By integrating them into a standardized pipeline, we ensure fair, reproducible,
and comprehensive evaluations across multiple dimensions.

ii) Holistic and Multi-faceted Analysis. Beyond conventional effectiveness and efficiency metrics,
our benchmark rigorously evaluates DGC methods in terms of robustness, stability, scalability,
and discriminability, revealing key weaknesses and highlighting future directions: the homophily
bottleneck, training instability, vulnerability to perturbations, efficiency plateau, scalability challenges
and discriminability limitations.

iii) Open-source Toolkit. We release PyDGC, a flexible and extensible Python library compatible
with frameworks such as PyG [10] and OGB [18]. It supports the easy integration of new models and
datasets, facilitating the rapid development, reproduction, and fair comparison of DGC methods.

2



Figure 2: Our proposed standardized pipeline for DGC, includes initialization, data loading, feature
learning, and evaluation, systematically covering every crucial step in the process.

2 Preliminary

Notations. Given an attributed graph G(A, X), where A ∈ Rn×n denotes the adjacency matrix of
graph G, which characterizes the links among nodes, and X ∈ Rn×d represents the attribute matrix
of G, recording the d-dimensional attribute information of each node. In particular, for non-graph-
structured data, the adjacency matrix A is constructed by connecting each node with its top-k nearest
neighbors (kNN). The graph G contains n nodes and m edges. The homophily of a graph can be
quantified by the homophily ratio [70], defined as the proportion of edges connecting nodes within
the same class relative to the total number of edges in the graph.

Problem definition and unified framework. The core objective of graph clustering is to partition
the n nodes in G into clusters based on node similarity, such that nodes within the same cluster exhibit
higher mutual similarity than those in different clusters. The final label set constitutes the clustering
result vector ŷ = [ŷ1, · · · , ŷn]⊤. Despite the diverse paradigms in DGC, the overall process can be
uniformly formalized as:

ŷ = C(Z), Z = Mθ(G), θ̂ = argmin
θ

L(θ), (1)

where C denotes the clustering model, typically implemented as k-means [17] or joint clustering
algorithms [57]. Mθ is the feature learning module parameterized by θ, responsible for extracting
high-order structural and attribute dependencies from G to generate discriminative embeddings Z.
Distinct parameter optimization approaches give rise to different paradigms: Reconstructive Paradigm:
Mθ first learns Z from G, then attempts to reconstruct the original graph data. Reconstruction can
focus on node attributes [3, 55], graph topology [54, 13], or both [19, 63]. The loss function L
combines mean-squared error for feature reconstruction and binary cross-entropy for adjacency
matrix recovery. Predictive Paradigm: Mθ predicts intrinsic properties of the graph data, including
node pseudo-labels [35, 65], minimum hop counts [67], etc. By training the model to forecast these
properties accurately, it learns features that reflect the underlying patterns of the graph, thereby
enhancing its clustering performance. The loss function L incorporates a cross-entropy loss between
predicted information and inherent graph properties. Contrastive Paradigm: It leverages contrastive
learning by creating positive and negative sample pairs through graph data augmentation on G [7, 71].
Mθ maps these samples into the feature space, where a contrastive loss function is applied, such as
InfoNCE [15, 49] and Barlow Twins [66, 29], to drive positive samples close and negative samples
far apart, enabling the model to learn discriminative features that benefit clustering.

Standardized pipeline. Building upon the unified framework described above, we establish a
standardized pipeline to address the lack of standardized experimental protocols in DGC methods,
as illustrated in Figure 2. This pipeline is critical for facilitating the verification of DGC methods,
improving research efficiency, and elevating the overall quality of DGC studies. It provides a
systematic solution that spans the entire process from initialization to final evaluation. i) Initialization.
At the onset of the pipeline, a series of initialization operations is performed to ensure a unified
starting state and a reliable recording mechanism for the entire process. Specifically, "Load Config"
reads preset parameters and configurations. Subsequently, "Create Logger" is executed to record
critical information (e.g., variations in loss values, evaluation metrics) throughout the process, which
facilitates subsequent debugging and analysis. ii) Data Loading. First, "Load Dataset" imports the

3



Table 1: Statistics of benchmark datasets.
Type Dataset # Nodes # Edges # Features # Classes Homophily

Homogeneous

Wiki 2,405 17,981 4,973 17 0.71
Cora 2,708 5,429 1,433 7 0.81
ACM 3,025 13,128 1,870 3 0.82

Citeseer 3,327 9,104 3,703 6 0.74
DBLP 4,057 3,528 334 4 0.80

PubMed 19,717 88,648 500 3 0.80
ARXIV 169,343 2,315,598 128 40 0.65

Heterogeneous
Blog 5,196 343,486 8,189 6 0.40
Flickr 7,575 479,476 12,047 9 0.24
Roman 22,662 65,854 300 18 0.05

kNN-Graph
(k=3)

USPS 9,298 27,894 256 10 0.98
HHAR 10,299 30,897 561 6 0.95

corresponding data into the system. Subsequently, graph data augmentation ("Augment Graph") is
performed as needed. For non-graph data, a kNN graph will be constructed. iii) Feature Learning.
This constitutes one of the core stages of the pipeline, primarily tasked with learning effective
representations from the graph. First, "Build Model" constructs the corresponding feature learning
model according to the model type and parameters specified in the configurations. Then, various
modules of the model are pretrained as required ("Pretrain Modules"). Finally, formal model
training (the "Train Model") is conducted to obtain clustering results. iv) Evaluation. It conducts
a comprehensive and objective evaluation of the clustering performance, including calculating
clustering metrics and visualizing learned features via dimensionality reduction techniques like
t-SNE [36] or UMAP [37], thereby enabling intuitive observation of feature distributions. Through
this standardized pipeline, all aspects of DGC research can be standardized and unified, enhancing
the reproducibility and comparability of studies.

3 DGC Benchmark

3.1 Benchmark Algorithms

We select 12 state-of-the-art methods as the core benchmark algorithms, covering all three paradigms.
The reconstructive methods include GAE & GAE_S [21], DAEGC [54], SDCN [3], DFCN [53],
the predictive method includes DGCluster [2] (abbreviated as DGClu), and the contrastive methods
include AGC-DRR [12], DCRN [27], HSAN [30], CCGC [61], MAGI [33], and NS4GC [34]. For
more details about benchmark algorithms, please refer to Appendix A.1. Based on the standardized
pipeline, we have systematically refactored the open-source codes of these algorithms using our
proposed toolkit PyDGC. We have strictly adhered to the original designs and code logic to ensure
the reproducibility and comparability of the experimental results, thus providing a solid and reliable
evaluation standard for DGC research.

3.2 Benchmark Datasets

To comprehensively evaluate the performance of algorithms, we collect 12 datasets widely used in
DGC and graph self-supervised learning to construct benchmark testbeds. Our benchmark datasets
have three characteristics: i) comprehensive scale coverage, encompassing small (e.g., Wiki [60],
Cora, Citeseer [47], ACM [51], and DBLP [11]), medium (e.g., USPS [23] and HHAR [48]), and large
(e.g., PubMed [47], Roman [43], and ARXIV [18]) graph scales to accommodate algorithm testing
across multi-scale scenarios. ii) diverse feature spaces, covering low-dimensional (e.g., ARXIV
and DBLP) and high-dimensional (e.g., Blog and Flickr [52]) feature spaces to enable performance
validation under varying feature complexities. iii) rich data type diversity, including heterogeneous
graphs (e.g., Blog, Flickr, and Roman), homogeneous graphs (e.g., Cora, ACM, and PubMed), and
non-graph structured data types (e.g., USPS and HHAR), catering to diverse application scenarios in
DGC. Table 1 lists the statistics of these datasets. For more details, please refer to Appendix A.2.

4



3.3 Benchmark Evaluations

We construct a holistic and systematic evaluation framework to rigorously assess benchmark algo-
rithms across six critical dimensions:

i) Effectiveness is a canonical evaluation dimension in DGC, usually assessed by clustering metrics
including accuracy (ACC) and normalized mutual information (NMI), which is insufficient to fully
characterize algorithmic effectiveness. To address this, we expand the assessment scope. On one
hand, we add assessments of the algorithm’s generalization capability across graph structures with
different properties (e.g., adaptability to heterogeneous graphs, high-dimensional feature graphs, and
noisy graphs). On the other hand, considering the unsupervised nature of DGC, where ground-truth is
often unavailable in real-world scenarios, we particularly focus on the degree to which the clustering
results at algorithm termination approximate the optimal solution during the training process. Details
of metrics can be found in Appendix A.3.

ii) Robustness mainly assesses how DGC algorithms perform under interferences like noise and
missing values, which is an issue usually ignored by existing DGC studies. A robust algorithm can
keep a high clustering accuracy even in a noisy setting, and its clustering outcomes will not vary
greatly because of perturbations.

iii) Stability is evaluated through both the consistency of clustering outcomes across different random
seed configurations (quantified by the standard deviation of metrics from multiple trials) and the
convergence behavior of the training process (assessed via loss and NMI trajectories).

iv) Scalability assesses how DGC algorithms perform with large-scale graph data, focusing on
their time and space complexity. A scalable algorithm can operate efficiently on extensive datasets,
avoiding significant performance drops or memory overflow issues.

v) Efficiency evaluates the speed and resource consumption of DGC algorithms. An efficient algo-
rithm achieves high clustering accuracy rapidly while minimizing computing resource consumption.

vi) Discriminability evaluates whether the feature space learned by DGC algorithms can effectively
distinguish different clusters. For algorithms with high discriminability, nodes within the same cluster
are more closely grouped in the feature space, and clear boundaries exist between different clusters.

3.4 Research Questions

RQ1: Can the DGC algorithms effectively cluster graphs with diverse structures? Real-world
graph data exhibits significant structural diversity (e.g., heterogeneous graphs, high-dimensional
features). Most current DGC algorithms rely on GNNs with homophily assumptions, limiting their
generalization to non-homophilic structures. Moreover, existing studies lack validation on diverse
graphs, making direct method comparisons impossible. We performed clustering experiments across
12 benchmark datasets, recording the mean and standard deviation of ACC and NMI from multiple
repeated trials for both final results (algorithm-terminated outputs) and best intermediate results
(optimal solutions identified during training).

RQ2: Can the DGC algorithms obtain stable optimal clustering results? In unsupervised
scenarios, the ability of the DGC algorithm to achieve stable and optimal clustering results is critical
for its practical reliability. This question directly assesses whether the algorithm can deliver consistent,
high-quality partitions without ground-truth guidance, ensuring its utility in real-world applications
with unknown data structures. Following the evaluation approach for stability, we recorded the
training losses and NMI of 12 methods on the Cora dataset, compared the convergence of losses and
NMI, and analyzed the standard deviations across different methods.

RQ3: Are the DGC algorithms still effective when dealing with noisy data? Real-world graph
data is often disrupted by noise such as measurement errors and data missing. If an algorithm lacks
noise-resistance, the reliability of its clustering results will be significantly reduced. However, most
current DGC algorithms have not undergone relevant validation. Investigating the performance of
DGC algorithms in noisy settings is crucial for enhancing their usability and stability in real-world
scenarios. To simulate light, moderate, and severe perturbations on Cora and Blog, we introduced
structural and feature-level disturbances as follows: i) Random edge drop/addition and feature drop
were performed with probabilities of 0.2 (light), 0.5 (moderate), and 0.8 (severe); ii) Gaussian noise
with standard deviations of 0.1 (light), 1 (moderate), and 10 (severe) was added to node features.

5



Then, we compared the clustering performance and the degree of result fluctuation of these algorithms
on the original and the noisy data.

RQ4: How is the comprehensive efficiency of the DGC algorithm? The comprehensive efficiency
of the DGC algorithm, including time/space complexity and resource utilization, is crucial for
determining its practical application value. By comprehensively analyzing the algorithm’s efficiency
metrics, we can assess its suitability for real-world scenarios such as real-time analysis and high-
dimensional data processing. We recorded the training time, total epochs, memory consumption,
and parameter counts of 12 algorithms on datasets with different scales. Then, we analyzed the
comprehensive performance to assess the efficiency.

RQ5: Can the DGC algorithms cluster large-scale data? As graph data scales exponentially,
algorithms that cannot handle large volumes will impede technological deployment. Currently, most
DGC algorithms lack evaluation on medium and large-scale data. However, evaluating the scalability
of DGC algorithms in large-scale scenarios is a core requirement for promoting their application in
industrial-level settings. We selected three medium-to-large-scale datasets (PubMed, Roman, and
ARXIV) to compare the clustering metrics of different algorithms.

RQ6: How discriminative is the embedding space learned by the DGC algorithms? The
discriminability of the embedding space directly impacts the quality and interpretability of clustering
results. If an algorithm fails to distinguish the features of different clusters effectively, the clustering
results will become meaningless. Evaluating the separability of the embedding space helps us
understand the feature-learning ability of an algorithm and guides the optimization of model design.
We applied t-SNE [36] and UMAP [37] to visualize the embeddings learned by benchmark algorithms
on the Cora and ACM datasets, which helps us gain an intuitive understanding of the data distribution.
t-SNE focuses more on preserving local structures, making it suitable for revealing fine-grained
intra-cluster relationships. UMAP, while retaining local structures, also considers global topology,
which is more conducive to presenting the overall distribution pattern between clusters. Moreover,
we calculated discriminative indicators such as homogeneity (HOM), completeness (COM), and
silhouette coefficient (SC) to quantitatively evaluate the clustering performance.

4 Experiments and Analyses

Experimental Settings. All experiments were conducted on a server equipped with a 28-core AMD
CPU (116GB RAM) and an NVIDIA A10 GPU (24GB VRAM). The code was implemented using
Python 3.8 and PyTorch 2.1.0. To mitigate the impact of randomness, each experiment was repeated
ten times with a distinct random seed set for each run (using the current experiment iteration number
as the seed value if not specified). Particularly, we only performed three repeats when the time to
complete one clustering exceeded 30 minutes. As specified in [33], the maximum runtime was limited
to one hour for clustering on ARXIV. Consequently, device performance can influence the quality of
results. We evaluated the clustering performance of MAGI on ARXIV using a server equipped with
an NVIDIA GTX 3090 (24GB VRAM) GPU and an Intel(R) Xeon(R) Gold 5318Y CPU @ 2.10GHz.
For hyperparameters, if the original paper provides specific values or selection methods, they were
adopted as described in the original study; otherwise, default values from the open-source code (if
available) were used. Specific settings are detailed in Appendix D.

4.1 Effectiveness Analysis (RQ1)

The benchmark algorithms generally suffer from a homophily bottleneck, and the training
termination strategy based on fixed epochs tends to suboptimal clustering performance. As
shown in Table 2 and Table 3, different algorithms exhibit divergent performances across hetero-
geneous graphs, homogeneous graphs, and sparse graphs constructed by kNN for non-graph data:
i) Contrastive DGC significantly outperforms other methods on heterogeneous graphs due to its
strong feature discriminability, while reconstructive paradigm-based methods demonstrate greater
advantages in sparse graph scenarios of non-graph data by implicitly modeling feature distributions.
ii) Analysis of homogeneous graphs shows that, except for the ACC metric on the ACM dataset, the
optimal clustering values of all methods do not significantly exceed the inherent homophily ratio
of the datasets. It demonstrates that the performance of DGC algorithms closely approximates the
inherent homophily ratios of datasets on most high-homophily datasets. Moreover, no significant
performance improvements are observed on some datasets (e.g., DBLP, Cora, and Citeseer). This

6



Table 2: Clustering results on Wiki, Cora, ACM, Citeseer, DBLP, and PubMed. The "♯best" row
denotes the optimal value, while other rows denote the final values at algorithm termination. The
first, second, and third best performances are highlighted. "-" indicates GPU memory overflow. The
darker the shade intensity of cell backgrounds, the larger the standard deviations (SD) are.

Method Wiki Cora ACM Citeseer DBLP PubMed
ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI

GAE 0.4444 0.4485 0.6556 0.5148 0.8796 0.6205 0.5821 0.3210 0.4700 0.1907 0.6446 0.2312
♯best 0.5301 0.4751 0.7166 0.5375 0.8803 0.6226 0.5891 0.3193 0.5101 0.1924 0.6480 0.2380
GAE_S 0.3913 0.3476 0.7014 0.5339 0.8507 0.6066 0.5644 0.3070 0.5165 0.2170 0.6636 0.2469
♯best 0.4321 0.4088 0.7078 0.5431 0.8574 0.6119 0.5717 0.3091 0.5276 0.2231 0.6685 0.2597
DAEGC 0.3925 0.3337 0.6681 0.4854 0.8436 0.5181 0.6019 0.3345 0.6140 0.2364 0.6533 0.2432
♯best 0.4069 0.3360 0.6860 0.5142 0.8968 0.6555 0.6143 0.3502 0.6553 0.2887 0.6533 0.2432
SDCN 0.1866 0.0303 0.5082 0.3175 0.8815 0.6373 0.5346 0.3019 0.6193 0.3176 0.5559 0.1960
♯best 0.1934 0.0338 0.5598 0.3689 0.9004 0.6743 0.5364 0.3010 0.6349 0.3368 0.6131 0.2311
DFCN 0.4372 0.4299 0.4885 0.4058 0.8996 0.6720 0.5550 0.3630 0.7148 0.3870 0.4765 0.0734
♯best 0.5249 0.4585 0.7020 0.5274 0.8996 0.6720 0.6836 0.4250 0.7524 0.4355 0.6742 0.3086
DGClu 0.5517 0.4574 0.5841 0.4827 0.7737 0.5217 0.4704 0.2418 0.3590 0.0586 0.5938 0.2079
♯best 0.5843 0.4839 0.7254 0.5593 0.9042 0.6872 0.5907 0.3027 0.5450 0.2117 0.7551 0.3430
AGC-DRR 0.4519 0.4040 0.6681 0.5211 0.9071 0.7086 0.6579 0.4152 0.7976 0.4887 0.6232 0.2523
♯best 0.4519 0.4040 0.6780 0.5153 0.9191 0.6835 0.6737 0.4048 0.8008 0.4942 0.6400 0.2372
DCRN 0.3472 0.2700 0.6471 0.5249 0.9183 0.7166 0.6831 0.4411 0.7053 0.4078 – –
♯best 0.4072 0.3261 0.7193 0.5494 0.9185 0.7162 0.7042 0.4537 0.7372 0.4339 – –
HSAN 0.4555 0.4534 0.6390 0.5243 0.5346 0.2338 0.5347 0.3483 0.6674 0.3885 – –
♯best 0.5206 0.4782 0.7748 0.5912 0.8070 0.5014 0.6659 0.4150 0.7147 0.4230 – –
CCGC 0.4682 0.4554 0.6170 0.4765 0.7062 0.4850 0.6011 0.3605 0.3382 0.0505 0.4592 0.0923
♯best 0.5354 0.4824 0.7396 0.5640 0.8910 0.6484 0.6918 0.4332 0.5495 0.2373 0.6545 0.3167
MAGI 0.2970 0.2726 0.7324 0.5575 0.8327 0.5345 0.6819 0.4334 0.6751 0.3770 0.6181 0.1912
♯best 0.5651 0.5046 0.7374 0.5619 0.9106 0.6972 0.6931 0.4437 0.7103 0.4075 0.6902 0.3024
NS4GC 0.4454 0.4263 0.7048 0.5683 0.7917 0.4871 0.6721 0.4332 0.7740 0.4544 0.6892 0.3128
♯best 0.5237 0.4980 0.7579 0.5977 0.8882 0.6367 0.6842 0.4351 0.7919 0.4823 0.7056 0.3284

SD 0.000 <0.004 <0.008 <0.012 <0.016 <0.020 <0.030 <0.050 <0.100 >=0.100

Table 3: Clustering results on Non-graph data, heterogeneous graphs, and ARXIV.
Method USPSk=3 HHARk=3 Blog Flickr Roman ARXIV

ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI

GAE 0.5808 0.5251 0.4464 0.4396 0.4658 0.3016 0.2728 0.1596 0.1612 0.0966 – –
♯best 0.6145 0.5246 0.5995 0.6010 0.5068 0.3308 0.3008 0.1753 0.1714 0.1009 – –
GAE_S 0.6620 0.5908 0.4255 0.5017 0.4560 0.2825 0.2263 0.1256 0.1588 0.0867 – –
♯best 0.6620 0.5907 0.4620 0.5185 0.4702 0.3039 0.2536 0.1309 0.1696 0.0901 – –
DAEGC 0.6796 0.6618 0.5800 0.5748 0.4074 0.2363 0.2643 0.1243 – – – –
♯best 0.6803 0.6597 0.5815 0.5790 0.4491 0.2737 0.2677 0.1262 – – – –
SDCN 0.7320 0.7486 0.6921 0.7048 0.2404 0.0757 0.1730 0.0649 0.1461 0.0144 – –
♯best 0.7366 0.7441 0.6998 0.7010 0.3260 0.1329 0.2281 0.1143 0.1507 0.0128 – –
DFCN 0.7295 0.7506 0.6718 0.7301 0.3785 0.2679 0.3113 0.1858 0.1202 0.0624 – –
♯best 0.7993 0.7662 0.7854 0.7731 0.6133 0.3921 0.3348 0.1904 0.2091 0.1324 – –
DGClu 0.7128 0.6908 0.6915 0.7270 0.4506 0.2724 0.2317 0.1130 0.1154 0.0374 – –
♯best 0.7313 0.6786 0.7044 0.7308 0.4706 0.2868 0.2642 0.1338 0.1638 0.0579 – –
AGC-DRR 0.6733 0.6791 0.6520 0.6068 0.7568 0.6548 0.3139 0.2893 – – – –
♯best 0.6900 0.6748 0.6600 0.6057 0.8369 0.5937 0.3649 0.2760 – – – –
DCRN 0.2686 0.2229 0.3663 0.4696 0.5668 0.4248 0.1836 0.0894 – – – –
♯best 0.3094 0.2748 0.3888 0.4689 0.8363 0.6683 0.2887 0.2055 – – – –
HSAN – – – – 0.4540 0.3098 – – – – – –
♯best – – – – 0.4900 0.3202 – – – – – –
CCGC 0.3882 0.3620 0.3938 0.4193 0.2942 0.1095 0.1825 0.0753 0.1626 0.0932 – –
♯best 0.5556 0.4852 0.5389 0.5470 0.3551 0.1516 0.1972 0.0051 0.1874 0.1135 – –
MAGI 0.5703 0.5398 0.4504 0.4593 0.4172 0.2444 0.3121 0.1606 0.1790 0.0694 0.3903 0.4684
♯best 0.6650 0.5864 0.6927 0.6556 0.5129 0.3039 0.3446 0.1889 0.1966 0.1220 – –
NS4GC 0.6957 0.6688 0.6056 0.5588 0.3636 0.2077 0.3151 0.0184 0.1442 0.0808 – –
♯best 0.7346 0.6719 0.6367 0.5780 0.4398 0.2612 0.3729 0.2198 0.1724 0.1152 – –
SD 0.000 <0.004 <0.008 <0.012 <0.016 <0.020 <0.030 <0.050 <0.100 >=0.100

phenomenon suggests that intrinsic homophily may constitute a potential upper bound for clustering
performance, where clustering results can hardly surpass the level determined by the homophilic
structure of data. iii) The widespread discrepancies between the final clustering results and best
training results of each algorithm indicate that the fixed-epoch termination strategy fails to ensure
the model converges to a stable optimal solution, highlighting the necessity of introducing adaptive
termination mechanisms to improve clustering stability. iv) Figure 3 illustrates the loss trajectories of
12 methods during training, revealing a counterintuitive phenomenon: SDCN, DFCN, and HSAN
exhibit rising loss values throughout training, yet still achieve competitive clustering performance.
This observation contradicts the fundamental assumption that minimizing the loss aligns with im-
proving clustering quality, suggesting potential flaws in the traditional loss-clustering performance
correlation, or unrecognized mechanisms enabling effective feature learning despite increasing loss.
For all clustering results, please refer to Appendix B.1.

7



(a) GAE (b) GAE_S (c) DAEGC (d) SDCN (e) DFCN (f) DGClu

(g) AGC-DRR (h) DCRN (i) HSAN (j) CCGC (k) MAGI (l) NS4GC

Figure 3: Loss and NMI curves of 12 benchmark algorithms on the Cora.

(a) GAE (b) GAE_S (c) DAEGC (d) SDCN (e) DFCN (f) DGClu

(g) AGC-DRR (h) DCRN (i) HSAN (j) CCGC (k) MAGI (l) NS4GC

Figure 4: NMI of 12 methods on Cora with light (L), moderate (M), and severe (S) perturbations.

4.2 Stability Analysis (RQ2)

Existing algorithms generally face stability challenges characterized by "attainable upper
bounds but uncontrollable convergence paths". Visual inspection of standard deviations via the
cell backgrounds in Table 2 and Table 3 reveals that the standard deviations of optimal clustering
metrics (♯best) for most methods are significantly smaller than those of their final convergence results.
This phenomenon indicates that while these algorithms can reach relatively stable performance
ceilings during training (i.e., optimal values exhibit high stability), their convergence processes lack
robustness, making it difficult to repeatedly achieve theoretical optimal solutions through fixed-epoch
training strategies. Further analysis of loss and NMI curves in Figure 3 shows that most methods
demonstrate stable training trends with monotonic or oscillatory convergence. However, clustering
accuracy does not converge stably in tandem with loss minimization, which suggests a potential
misalignment between clustering objectives and feature learning goals.

4.3 Robustness Analysis (RQ3)

While all DGC algorithms degrade under moderate-to-severe noise, some unexpectedly demon-
strate resilience or marginal performance improvements under light perturbations. Figure
4 illustrates the trends of the clustering metric NMI for 12 methods on the CORA dataset as the
perturbation intensity increases. Notably, all methods exhibit significant performance degradation
with rising noise levels, though the sensitivity varies by noise type: i) Adding Gaussian noise induces
drastic declines in NMI when transitioning from light to moderate perturbation levels. ii) Dropping
feature leads to sharp drops in performance during the moderate-to-severe noise regime. A surprising
observation is that under light perturbations, some methods show no obvious degradation and even
slight improvements. For example, i) DAEGC demonstrates marginal performance gains when
randomly dropping features. ii) DFCN exhibits slight NMI increases under little Gaussian noise.
iii) DGClu shows improved clustering results under light edge-dropping perturbations. Additional
robustness analysis on a heterogeneous graph Blog can be found in Appendix B.2.

8



Table 4: Efficiency metrics on Cora, Citeseer, and PubMed. ↑ indicates that larger values are
preferable, while ↓ indicates the opposite.

GAE GAE_S DAEGC SDCN DFCN DGClu AGC-DRR DCRN HSAN CCGC MAGI NS4GC

NMI
↑

Cora 0.51 0.53 0.49 0.32 0.41 0.48 0.52 0.52 0.52 0.48 0.56 0.57
Citeseer 0.32 0.31 0.33 0.30 0.36 0.24 0.40 0.44 0.35 0.36 0.43 0.43
PubMed 0.23 0.25 0.24 0.20 - 0.21 - - - 0.09 0.19 0.31

Speed
(its/s) ↑

Cora 56.44 36.52 43.87 32.60 19.73 89.30 2.60 19.73 12.29 33.55 80.12 64.81
Citeseer 34.46 24.93 28.89 23.08 15.96 77.47 1.77 15.96 8.63 28.13 44.31 56.00
PubMed 1.55 1.07 1.00 4.88 - 17.98 0.11 - - 14.22 2.75 4.21

Time
(s) ↓

Cora 0.53 0.55 2.28 1.53 20.27 3.36 76.91 20.27 32.55 11.92 4.99 3.09
Citeseer 0.87 0.80 3.46 2.17 25.06 3.87 113.31 25.06 46.33 14.22 9.03 0.89
PubMed 19.37 18.76 100.29 10.26 - 16.68 1802.37 - - 62.10 145.47 47.46

GPU
(MB) ↓

Cora 169.10 172.39 339.25 735.32 297.11 157.62 494.30 962.31 3526.05 2976.50 257.21 255.71
Citeseer 248.16 250.32 529.43 817.16 422.78 179.94 669.59 1364.12 13226.41 2976.50 372.74 450.04
PubMed 6023.24 6027.89 15702.99 6398.37 - 3058.03 17462.94 - - 10140.18 8038.78 9591.20

Param
(M) ↓

Cora 0.37 0.37 0.37 5.97 0.48 0.41 1.60 0.48 9.63 1.43 0.73 0.38
Citeseer 0.95 0.95 0.95 9.38 0.48 0.99 1.60 0.48 11.49 3.70 2.16 0.95
PubMed 0.13 0.13 0.13 4.57 0.48 0.17 1.60 0.48 20.22 0.50 0.19 0.19

Avg. ↓ 3.53 3.93 5.80 7.40 7.73 4.13 9.20 7.73 10.33 7.87 5.27 3.67

Table 5: Discriminability metrics of 12 benchmark algorithms on the Cora.
GAE GAE_S DAEGC SDCN DFCN DGClu AGC-DRR DCRN HSAN CCGC MAGI NS4GC

HOM ↑ 0.542 0.547 0.521 0.358 0.533 0.551 0.530 0.547 0.593 0.563 0.567 0.575
COM ↑ 0.533 0.539 0.507 0.382 0.523 0.568 0.513 0.578 0.590 0.565 0.557 0.562

SC ↑ 0.281 0.347 0.330 0.213 0.199 0.424 0.526 0.152 0.110 0.089 0.189 0.276

Avg. ↓ 7.0 5.7 8.7 10.3 9.0 3.0 7.0 6.7 4.3 6.3 6.0 4.0

4.4 Efficiency Analysis (RQ4)

The comprehensive efficiency of most DGC algorithms is even lower than that of the vanilla
GAE. Multidimensional comparisons in Table 4 demonstrate that the classical method GAE achieves
average optimal efficiency with lightweight model parameters, fast runtime, and stable clustering
performance. This reveals that contemporary DGC algorithms overlook efficiency optimization when
pursuing clustering accuracy. Balancing clustering precision with computational efficiency and
designing lightweight models for large-scale graphs remain critical challenges for future research.

4.5 Scalability Analysis (RQ5)

Current graph clustering methods widely face scalability limitations. As shown in Table 2 and
Table 3, algorithms marked with "-" experienced GPU memory overflow on a 24GB GPU, particularly
evident for the medium-to-large challenging datasets, Roman and ARXIV, and the HSAN algorithm.
Specifically, HSAN’s requirement for O(n2) storage due to feature learning on adjacency matrices
leads to drastic GPU memory consumption increases. While MAGI handles large-scale data through
sampling strategies [16], such approaches suffer from insufficient global graph structure learning,
failing to meet the accuracy demands of reconstructive methods for structural modeling.

4.6 Discriminability Analysis (RQ6)

DGC algorithms demonstrate excellent cohesion within clusters in embeddings but exhibit
notably insufficient inter-cluster separability, particularly in distinguishing samples at the
cluster boundaries. As shown in Figure 5, the embeddings learned by 12 methods on the Cora
reveal that while most intra-cluster samples form compact clusters, fuzzy inter-cluster boundaries
and numerous cross-cluster mixing points are evident. Moreover, quantitative metrics in Table 5
further confirm that despite structural variations across methods, the embeddings generally exhibit
strong cohesion but weak separability. This discrepancy highlights the fundamental limitations of
DGC models in capturing complex structures with clear inter-cluster decision boundaries. Additional
visualization on the ACM dataset can be found in Appendix B.3.

5 Conclusions and Future Directions

We introduce DGCBench, a comprehensive and unified benchmarking framework for deep graph
clustering, which holistically evaluates 12 state-of-the-art methods across three paradigms from six
dimensions on 12 datasets with diverse characteristics. We provide a standardized experimental

9



(a) GAE (b) GAE_S (c) DAEGC (d) SDCN (e) DFCN (f) DGClu

(g) AGC-DRR (h) DCRN (i) HSAN (j) CCGC (k) MAGI (l) NS4GC

(m) GAE (n) GAE_S (o) DAEGC (p) SDCN (q) DFCN (r) DGClu

(s) AGC-DRR (t) DCRN (u) HSAN (v) CCGC (w) MAGI (x) NS4GC

Figure 5: t-SNE (first and second rows) and UMAP (third and fourth rows) 2D visualization of
embeddings learned by 12 benchmark algorithms on Cora.

pipeline and an open-source tool, PyDGC. Extensive experimental results and analyses uncover critical
research directions for DGC:

i) Homophily Bottleneck: Although the homophily assumption enabled early GNN-based clustering
methods to achieve better results than those that did not consider such relationships, this assumption
now limits the upper bound of clustering performance. Therefore, there is an urgent need to explore
methods that weaken the reliance on the homophily assumption.

ii) Stability Deficiency: It is manifested in sensitivity to initial parameters and unstable convergence
during the training process, which reduces the reliability of the algorithm and restricts its practical
application. It is urgent to explore convergence methods with strict theoretical support.

iii) Robustness Gap: The message passing mechanism of GNNs can accelerate the diffusion of noise,
making the model sensitive to severe noise. Future research should be conducted in directions such
as noise source suppression, the design of anti-noise aggregation methods, and result calibration.

iv) Efficiency Plateau: Despite years of research, DGC methods have not achieved substantial
progress in comprehensive efficiency. In the future, DGC algorithms that balance accuracy and effi-
ciency should be studied to ensure that the research outcomes can be applied to practical applications.

v) Scalability Challenges: DGC faces challenges in scaling on large-scale datasets, with high
computational and storage costs, hindering its deployment in resource-constrained environments.
Although sampling enables large-scale graph learning, balancing global structures in sampling and
implementing clustering still needs to be explored.

vi) Discriminability Limitations: Although the learned embeddings exhibit strong intra-cluster
cohesion, their inter-cluster discriminability is significantly poor. This indicates that future efforts
should focus on the feature learning of clustering boundaries and hard samples.

These insights aim to inspire the DGC research community and foster technological advancements
in the field. Moving forward, we plan to expand DGCBench and PyDGC by incorporating real-world
datasets (e.g., single-cell sequencing, hyperspectral images) and updating them with the latest models.
We also sincerely welcome suggestions from researchers to collectively advance DGC methodologies.

10



Acknowledgments

This work was supported by the National Key Research and Development Program of China (No.
2024YFF1206604), NSFC (62432006 and 62272276), Shandong Provincial Natural Science Foun-
dation (No. ZR2024JQ001), Taishan Scholars Program (No. tsqn202306007 and tsqn202408317),
Postdoctoral Innovation Program of Shandong Province (No. SDCX-ZG-202501019), China Post-
doctoral Science Foundation (No. 2025M771502).

References
[1] M. Ahmadi, M. Safayani, and A. Mirzaei. “Deep Graph Clustering via Mutual Information

Maximization and Mixture Model”. In: KIS 66.8 (2024), pp. 4549–4572.
[2] A. Bhowmick, M. Kosan, Z. Huang, A. Singh, and S. Medya. “DGCLUSTER: A Neural

Framework for Attributed Graph Clustering via Modularity Maximization”. In: AAAI. 2024,
pp. 11069–11077.

[3] D. Bo, X. Wang, C. Shi, M. Zhu, E. Lu, and P. Cui. “Structural Deep Clustering Network”. In:
Web Conf. 2020, pp. 1400–1410.

[4] B. Chai, Z. Li, and X. Zhao. “Deep Graph Clustering by Integrating Community Structure
with Neighborhood Information”. In: Info. Sci. 678 (2024), p. 120951.

[5] M.-S. Chen, P.-Y. Lai, D.-Z. Liao, C.-D. Wang, and J.-H. Lai. “Homophily Induced Contrastive
Attributed Graph Clustering”. In: TCSVT (2025).

[6] B. Deng, T. Wang, L. Fu, S. Huang, C. Chen, and T. Zhang. “THESAURUS: Contrastive
Graph Clustering by Swapping Fused Gromov-Wasserstein Couplings”. In: AAAI. 2025.

[7] F. Devvrit, A. Sinha, I. Dhillon, and P. Jain. “S3GC: Scalable Self-Supervised Graph Cluster-
ing”. In: NeurIPS. 2022, pp. 3248–3261.

[8] S. Ding, B. Wu, L. Ding, X. Xu, L. Guo, H. Liao, and X. Wu. “Towards Faster Deep Graph
Clustering via Efficient Graph Auto-Encoder”. In: TKDD 18.8 (2024), pp. 1–23.

[9] S. Ding, B. Wu, X. Xu, L. Guo, and L. Ding. “Graph Clustering Network with Structure
Embedding Enhanced”. In: Pattern Recognit. 144 (2023), p. 109833.

[10] M. Fey and J. E. Lenssen. “Fast Graph Representation Learning with PyTorch Geometric”. In:
ICLR Workshop. 2019.

[11] X. Fu, J. Zhang, Z. Meng, and I. King. “MAGNN: Metapath Aggregated Graph Neural
Network for Heterogeneous Graph Embedding”. In: Web Conf. 2020, pp. 2331–2341.

[12] L. Gong, S. Zhou, W. Tu, and X. Liu. “Attributed Graph Clustering with Dual Redundancy
Reduction”. In: IJCAI. 2022, pp. 3015–3021.

[13] M. Gu, G. Yang, S. Zhou, N. Ma, J. Chen, Q. Tan, M. Liu, and J. Bu. “Homophily-Enhanced
Structure Learning for Graph Clustering”. In: CIKM. 2023, pp. 577–586.

[14] L. Guo and Q. Dai. “Graph Clustering via Variational Graph Embedding”. In: Pattern Recognit.
122 (2022), p. 108334.

[15] M. Gutmann and A. Hyvärinen. “Noise-Contrastive Estimation: A New Estimation Principle
for Unnormalized Statistical Models”. In: AISTATS. 2010, pp. 297–304.

[16] W. Hamilton, Z. Ying, and J. Leskovec. “Inductive Representation Learning on Large Graphs”.
In: NeurIPS 30 (2017).

[17] J. A. Hartigan and M. A. Wong. “Algorithm AS 136: A K-Means Clustering Algorithm”. In: J
R Stat Soc C-Appl 28.1 (1979), pp. 100–108.

[18] W. Hu, M. Fey, M. Zitnik, Y. Dong, H. Ren, B. Liu, M. Catasta, and J. Leskovec. “Open Graph
Benchmark: Datasets for Machine Learning on Graphs”. In: NeurIPS. 2020, pp. 22118–22133.

[19] G. Huo, Y. Zhang, J. Gao, B. Wang, Y. Hu, and B. Yin. “CaEGCN: Cross-Attention Fu-
sion Based Enhanced Graph Convolutional Network for Clustering”. In: TKDE 35.4 (2021),
pp. 3471–3483.

[20] Z. Jiao and X. Li. “An End-to-End Deep Graph Clustering via Online Mutual Learning”. In:
TNNLS 36.2 (2025), pp. 3847–3854.

[21] T. N. Kipf and M. Welling. Variational Graph Auto-Encoders. 2016.
[22] T. N. Kipf and M. Welling. “Semi-Supervised Classification with Graph Convolutional Net-

works”. In: ICLR. 2017.

11



[23] Y. Le Cun, O. Matan, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard,
L. Jacket, and H. S. Baird. “Handwritten Zip Code Recognition with Multilayer Networks”.
In: ICPR. 1990, pp. 35–40.

[24] J. Lee, S. Kim, D. Hyun, N. Lee, Y. Kim, and C. Park. “Deep Single-Cell RNA-seq Data
Clustering with Graph Prototypical Contrastive Learning”. In: Bioinfo. 39.6 (2023), btad342.

[25] X. Li, H. Zhang, and R. Zhang. “Adaptive Graph Auto-Encoder for General Data Clustering”.
In: TPAMI 44.12 (2021), pp. 9725–9732.

[26] Y. Liu, K. Liang, J. Xia, X. Yang, S. Zhou, M. Liu, X. Liu, and S. Z. Li. “Reinforcement Graph
Clustering with Unknown Cluster Number”. In: ACM MM. 2023, pp. 3528–3537.

[27] Y. Liu, W. Tu, S. Zhou, X. Liu, L. Song, X. Yang, and E. Zhu. “Deep Graph Clustering via
Dual Correlation Reduction”. In: AAAI. 2022, pp. 7603–7611.

[28] Y. Liu, J. Xia, S. Zhou, X. Yang, K. Liang, C. Fan, Y. Zhuang, S. Z. Li, X. Liu, and K. He. “A
Survey of Deep Graph Clustering: Taxonomy, Challenge, Application, and Open Resource”.
In: arXiv preprint arXiv:2211.12875 (2022).

[29] Y. Liu, X. Yang, S. Zhou, X. Liu, S. Wang, K. Liang, W. Tu, and L. Li. “Simple Contrastive
Graph Clustering”. In: TNNLS 35.10 (2024), pp. 13789–13800.

[30] Y. Liu, X. Yang, S. Zhou, X. Liu, Z. Wang, K. Liang, W. Tu, L. Li, J. Duan, and C. Chen. “Hard
Sample Aware Network for Contrastive Deep Graph Clustering”. In: AAAI. 2023, pp. 8914–
8922.

[31] Y. Liu, S. Zhu, J. Xia, Y. Ma, J. Ma, X. Liu, S. Yu, K. Zhang, and W. Zhong. “End-to-End
Learnable Clustering for Intent Learning in Recommendation”. In: NeurIPS. 2024, pp. 5913–
5949.

[32] Y. Liu, S. Zhu, T. Yang, J. Ma, and W. Zhong. “Identify Then Recommend: Towards Unsuper-
vised Group Recommendation”. In: NeurIPS. 2024.

[33] Y. Liu, J. Li, Y. Chen, R. Wu, E. Wang, J. Zhou, S. Tian, S. Shen, X. Fu, C. Meng, et al. “Re-
visiting Modularity Maximization for Graph Clustering: A Contrastive Learning Perspective”.
In: KDD. 2024, pp. 1968–1979.

[34] Y. Liu, X. Gao, T. He, T. Zheng, J. Zhao, and H. Yin. “Reliable Node Similarity Matrix Guided
Contrastive Graph Clustering”. In: TKDE 36.12 (2024), pp. 9123–9135.

[35] L. T. Lopes and D. C. G. Pedronette. “Self-Supervised Clustering Based on Manifold Learning
and Graph Convolutional Networks”. In: WACV. 2023, pp. 5634–5643.

[36] L. v. d. Maaten and G. Hinton. “Visualizing Data Using t-SNE”. In: JMLR 9.Nov (2008),
pp. 2579–2605.

[37] L. McInnes, J. Healy, and J. Melville. UMAP: Uniform Manifold Approximation and Projection
for Dimension Reduction. 2018.

[38] N. Mrabah, M. Bouguessa, and R. Ksantini. “Beyond the Evidence Lower Bound: Dual
Variational Graph Auto-Encoders for Node Clustering”. In: SDM. 2023, pp. 100–108.

[39] N. Mrabah, M. Bouguessa, and R. Ksantini. “Escaping Feature Twist: A Variational Graph
Auto-Encoder for Node Clustering”. In: IJCAI. 2022, pp. 3351–3357.

[40] N. Mrabah, M. Bouguessa, M. F. Touati, and R. Ksantini. “Rethinking Graph Auto-Encoder
Models for Attributed Graph Clustering”. In: TKDE 35.9 (2022), pp. 9037–9053.

[41] E. Pan and Z. Kang. “Beyond Homophily: Reconstructing Structure for Graph-Agnostic
Clustering”. In: ICML. 2023, pp. 26868–26877.

[42] N. Park, R. Rossi, E. Koh, I. A. Burhanuddin, S. Kim, F. Du, N. Ahmed, and C. Faloutsos.
“CGC: Contrastive Graph Clustering for Community Detection and Tracking”. In: Web Conf.
2022, pp. 1115–1126.

[43] O. Platonov, D. Kuznedelev, M. Diskin, A. Babenko, and L. Prokhorenkova. “A Critical Look
at Evaluation of GNNs under Heterophily: Are We Really Making Progress?” In: ICLR. 2023.

[44] L. Ren, J. Wang, W. Li, M. Guo, and G. Yu. “Single-cell RNA-seq Data Clustering by Deep
Information Fusion”. In: Brief. Funct. Genom. 23.2 (2024), pp. 128–137.

[45] L. Ren, G. Yu, J. Wang, L. Liu, C. Domeniconi, and X. Zhang. “A Diversified Attention Model
for Interpretable Multiple Clusterings”. In: TKDE 35.9 (2022), pp. 8852–8864.

[46] T. Ren, H. Zhang, Y. Wang, W. Ju, C. Liu, F. Meng, S. Yi, and X. Luo. “MHGC: Multi-Scale
Hard Sample Mining for Contrastive Deep Graph Clustering”. In: Inform. Process. Manag.
(2025).

12



[47] P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Galligher, and T. Eliassi-Rad. “Collective Classifi-
cation in Network Data”. In: AI Mag. 29.3 (2008), pp. 93–93.

[48] A. Stisen, H. Blunck, S. Bhattacharya, T. S. Prentow, M. B. Kjærgaard, A. Dey, T. Sonne,
and M. M. Jensen. “Smart Devices are Different: Assessing and Mitigating Mobile Sensing
Heterogeneities for Activity Recognition”. In: SenSys. 2015, pp. 127–140.

[49] L. Sun, F. Wang, J. Ye, H. Peng, and S. Y. Philip. “CONGREGATE: Contrastive Graph
Clustering in Curvature Spaces”. In: IJCAI. 2023, pp. 2296–2305.

[50] H. Tan, M. Guo, J. Chen, J. Wang, and G. Yu. “HetFCM: Functional Co-module Discovery by
Heterogeneous Network Co-clustering”. In: NAR 52.3 (2024), e16–e16.

[51] J. Tang, J. Zhang, L. Yao, J. Li, L. Zhang, and Z. Su. “ArnetMiner: extraction and mining of
academic social networks”. In: KDD. 2008, pp. 990–998.

[52] L. Tang and H. Liu. “Relational Learning via Latent Social Dimensions”. In: KDD. 2009,
pp. 817–826.

[53] W. Tu, S. Zhou, X. Liu, X. Guo, Z. Cai, E. Zhu, and J. Cheng. “Deep Fusion Clustering
Network”. In: AAAI. 2021, pp. 9978–9987.

[54] C. Wang, S. Pan, R. Hu, G. Long, J. Jiang, and C. Zhang. “Attributed Graph Clustering: A
Deep Attentional Embedding Approach”. In: IJCAI. 2019, pp. 3670–3676.

[55] C. Wang, S. Pan, G. Long, X. Zhu, and J. Jiang. “MGAE: Marginalized Graph Autoencoder
for Graph Clustering”. In: CIKM. 2017, pp. 889–898.

[56] X. Wang, K. Wang, K. Chen, Z. Wang, and K. Zheng. “Unsupervised Twitter Social Bot
Detection Using Deep Contrastive Graph Clustering”. In: KBS 293 (2024), p. 111690.

[57] J. Xie, R. Girshick, and A. Farhadi. “Unsupervised Deep Embedding for Clustering Analysis”.
In: ICML. 2016, pp. 478–487.

[58] X. Xie, B. Li, E. Pan, Z. Guo, Z. Kang, and W. Chen. “One Node One Model: Featuring the
Missing-Half for Graph Clustering”. In: AAAI. 2025.

[59] C. Yang, L. Liu, M. Liu, Z. Wang, C. Zhang, and J. Han. “Graph Clustering with Embedding
Propagation”. In: Big Data. 2020, pp. 858–867.

[60] C. Yang, Z. Liu, D. Zhao, M. Sun, and E. Y. Chang. “Network Representation Learning with
Rich Text Information”. In: IJCAI. 2015, pp. 2111–2117.

[61] X. Yang, Y. Liu, S. Zhou, S. Wang, W. Tu, Q. Zheng, X. Liu, L. Fang, and E. Zhu. “Cluster-
Guided Contrastive Graph Clustering Network”. In: AAAI. 2023, pp. 10834–10842.

[62] X. Yang, C. Tan, Y. Liu, K. Liang, S. Wang, S. Zhou, J. Xia, S. Z. Li, X. Liu, and E. Zhu.
“CONVERT: Contrastive Graph Clustering with Reliable Augmentation”. In: ACM MM. 2023,
pp. 319–327.

[63] S. Yi, W. Ju, Y. Qin, X. Luo, L. Liu, Y. Zhou, and M. Zhang. “Redundancy-Free Self-Supervised
Relational Learning for Graph Clustering”. In: TNNLS 35.12 (2024), pp. 18313–18327.

[64] G. Yu, L. Ren, J. Wang, C. Domeniconi, and X. Zhang. “Multiple Clusterings: Recent Advances
and Perspectives”. In: Computer Science Review 52 (2024), p. 100621.

[65] J. Yu and A. L. Jia. “MLGAL: Multi-level Label Graph Adaptive Learning for Node Clustering
in the Attributed Graph”. In: KBS 278 (2023), p. 110876.

[66] J. Zbontar, L. Jing, I. Misra, Y. LeCun, and S. Deny. “Barlow Twins: Self-Supervised Learning
via Redundancy Reduction”. In: ICML. 2021, pp. 12310–12320.

[67] X. Zhang, H. Liu, X. Zhang, and X. Liu. “Attributed Graph Clustering with Multi-Task
Embedding Learning”. In: NN 152 (2022), pp. 224–233.

[68] H. Zhao, X. Yang, Z. Wang, E. Yang, and C. Deng. “Graph Debiased Contrastive Learning
with Joint Representation Clustering”. In: IJCAI. 2021, pp. 3434–3440.

[69] Y. Zheng, C. Jia, and J. Yu. “Attributed Graph Clustering under the Contrastive Mechanism
with Cluster-Preserving Augmentation”. In: Info. Sci. 681 (2024), p. 121225.

[70] J. Zhu, Y. Yan, L. Zhao, M. Heimann, L. Akoglu, and D. Koutra. “Beyond Homophily in
Graph Neural Networks: Current Limitations and Effective Designs”. In: NeurIPS. 2020,
pp. 7793–7804.

[71] P. Zhu, Q. Wang, Y. Wang, J. Li, and Q. Hu. “Every Node is Different: Dynamically Fusing
Self-Supervised Tasks for Attributed Graph Clustering”. In: AAAI. 2024, pp. 17184–17192.

13



NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?

Answer: [Yes]

Justification: The main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope. Section 3 supports for details of the unified benchmark, Section 4 supports
holistic and multi-faceted analysis.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims made in the
paper.

• The abstract and/or introduction should clearly state the claims made, including the contributions
made in the paper and important assumptions and limitations. A No or NA answer to this
question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how much the
results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals are not
attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The limitations of the work are discussed in Section 5, and the future directions are also
provided.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that the paper
has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to violations of

these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,
asymptotic approximations only holding locally). The authors should reflect on how these
assumptions might be violated in practice and what the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only tested
on a few datasets or with a few runs. In general, empirical results often depend on implicit
assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide
closed captions for online lectures because it fails to handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address problems
of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by reviewers
as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms that
preserve the integrity of the community. Reviewers will be specifically instructed to not penalize
honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and a complete
(and correct) proof?

Answer: [NA]

Justification: The paper contains no theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.

14



• All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if they appear in

the supplemental material, the authors are encouraged to provide a short proof sketch to provide
intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main experimental
results of the paper to the extent that it affects the main claims and/or conclusions of the paper
(regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The details about experiments are provided in Section 4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well by the

reviewers: Making the paper reproducible is important, regardless of whether the code and data
are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken to make
their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might suffice,
or if the contribution is a specific model and empirical evaluation, it may be necessary to either
make it possible for others to replicate the model with the same dataset, or provide access to
the model. In general. releasing code and data is often one good way to accomplish this, but
reproducibility can also be provided via detailed instructions for how to replicate the results,
access to a hosted model (e.g., in the case of a large language model), releasing of a model
checkpoint, or other means that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of the
contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe the

architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should either be

a way to access this model for reproducing the results or a way to reproduce the model (e.g.,
with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: The code and its documents of this research have been released at https://github.
com/Marigoldwu/PyDGC.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless
this is central to the contribution (e.g., for a new open-source benchmark).

15

https://github.com/Marigoldwu/PyDGC
https://github.com/Marigoldwu/PyDGC
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The instructions should contain the exact command and environment needed to run to reproduce
the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized versions (if
applicable).

• Providing as much information as possible in supplemental material (appended to the paper) is
recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: The paper specifies all the training details in Section 4 .

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail that is

necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate informa-
tion about the statistical significance of the experiments?

Answer: [Yes]

Justification: The main experimental results contain standard deviations.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the main claims
of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of the

mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report

a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is
not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how they were
calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: The experimental environment is presented in Section 4.

Guidelines:

• The answer NA means that the paper does not include experiments.

16

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud
provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual experimental
runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute than the
experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it into
the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code
of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed the NeurIPS Code of Ethics and confirm that our paper complies fully
with all its guidelines.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a deviation

from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consideration due

to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative societal impacts
of the work performed?

Answer: [Yes]

Justification: The paper discussed the impacts of DGC in Section 1, and the future directions about
DGC in Section 5.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact or

why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses (e.g.,

disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied to particular
applications, let alone deployments. However, if there is a direct path to any negative applications,
the authors should point it out. For example, it is legitimate to point out that an improvement in
the quality of generative models could be used to generate deepfakes for disinformation. On the
other hand, it is not needed to point out that a generic algorithm for optimizing neural networks
could enable people to train models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation strategies
(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitor-
ing misuse, mechanisms to monitor how a system learns from feedback over time, improving the
efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or
scraped datasets)?

Answer: [NA]

Justification: The paper does not involve any datasets or models that could potentially be misused or
present significant ethical risks.

Guidelines:

• The answer NA means that the paper poses no such risks.

17

https://neurips.cc/public/EthicsGuidelines


• Released models that have a high risk for misuse or dual-use should be released with necessary
safeguards to allow for controlled use of the model, for example by requiring that users adhere to
usage guidelines or restrictions to access the model or implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,
properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: All third-party assets used in the paper, including code, datasets, and pretrained models,
are properly credited by citing the original sources.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service of

that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package should

be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for
some datasets. Their licensing guide can help determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation provided
alongside the assets?

Answer: [Yes]

Justification: The new assets introduced in the paper are well documented, and the documentation is
provided.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their sub-

missions via structured templates. This includes details about training, license, limitations,
etc.

• The paper should discuss whether and how consent was obtained from people whose asset is
used.

• At submission time, remember to anonymize your assets (if applicable). You can either create an
anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper include
the full text of instructions given to participants and screenshots, if applicable, as well as details about
compensation (if any)?

Answer: [NA]

Justification: This paper does not involve any crowdsourcing experiments or research with human
subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

• Including this information in the supplemental material is fine, but if the main contribution of the
paper involves human subjects, then as much detail as possible should be included in the main
paper.

18

paperswithcode.com/datasets


• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an
equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: This study does not involve human participants or subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent) may be
required for any human subjects research. If you obtained IRB approval, you should clearly state
this in the paper.

• We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for
their institution.

• For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard
component of the core methods in this research? Note that if the LLM is used only for writing,
editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or
originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any important,
original, or non-standard components.

Guidelines:

• The answer NA means that the core method development in this research does not involve LLMs
as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what
should or should not be described.

19

https://neurips.cc/Conferences/2025/LLM


A Details of DGC Benchmark

A.1 Details of Benchmark Algorithms

GAE & GAE-SSC (abbreviated as GAE_S) [21]: GAE belongs to the reconstructive paradigm. It encodes
the structural information of graph data by stacking graph convolutional networks (GCN) as layers, and learns
the features of the graph by reconstructing the adjacency relationships between nodes. The model is trained by
minimizing the discrepancy between the reconstructed graph and the input graph. Finally, k-means is used to
cluster the embeddings. GAE_S is a variant of GAE, which treats clustering as one of the optimization objectives
and incorporates self-supervised clustering loss [57], thereby infusing clustering guidance into feature learning.

DAEGC [54]: DEAGC is categorized within the reconstructive paradigm and shares the overall architecture
with GAE-SSC. Where it differs is in its adoption of graph attention networks as the backbone network, thereby
placing greater emphasis on node attribute information.

SDCN [3]: SDCN falls under the reconstructive paradigm. Unlike the aforementioned methods, it encodes
attribute information by introducing an autoencoder. The model leverages GCN to fuse attribute and structural
information, thereby enhancing the expressive power of embedding representations. Additionally, SDCN
incorporates a self-supervised clustering loss for joint optimization.

DFCN [53]: DFCN falls within the reconstructive paradigm. Building upon SDCN, the model introduces a
dynamic fusion mechanism to adaptively fuse attribute and structural information. Specifically, DFCN leverages
a dynamic cross-modal fusion mechanism and a triple self-supervised strategy to efficiently utilize graph
structural information and node attribute information.

DGCLUSTER (abbreviated as DGClu) [2]: DGClu adheres to the predictive paradigm for graph clustering.
First, the model employs GNNs to extract node embeddings. Second, it leverages node attributes or additional
information to evaluate the similarity between embedding vectors, thereby guiding the feature learning process.
Finally, the clustering result is obtained by conducting Birch clustering on the embeddings.

DCRN [27]: DCRN is categorized within the contrastive paradigm, specifically addressing the representation
collapse issue that arises during the node encoding process in existing methods. Specifically, the model
employs a siamese network architecture to encode samples from different views, and performs identity matrix
approximation on both the cross-view sample correlation matrix and the cross-view feature correlation matrix.
This approach reduces information redundancy from both sample and feature dimensions, thereby significantly
enhancing the discriminative power of features. Additionally, DCRN introduces a propagation regularization
term, enabling shallow networks to capture long-range dependency information.

AGC-DRR [12]: AGC-DRR falls under the contrastive paradigm. It adaptively learns a redundant edge dropout
matrix by introducing a contrastive learning mechanism, ensuring the diversity of compared samples to reduce
redundancy in the input space. Meanwhile, it enforces the correlation matrix of cross-augmented sample
embeddings to approximate an identity matrix, thereby minimizing redundant information in the latent space.

HSAN [30]: HSAN falls under the contrastive paradigm. It calculates the similarity between samples based on
attribute embeddings and structural embeddings, respectively, assisting in computing the hardness degree of
samples, and leverages high-confidence clustering information to guide the design of weight functions. After
identifying positive and negative samples, the model dynamically increases the weights of hard samples and
reduces the weights of easy samples, thereby effectively enhancing its discriminability for samples.

CCGC [61]: CCGC falls under the contrastive paradigm. To address the issue of negative sample selection
lacking clustering information guidance, it selects positive samples from the same high-confidence cluster across
two views and uses the centers of different high-confidence clusters as negative samples, thereby enhancing the
discriminability and reliability of the constructed sample pairs.

MAGI [33]: MAGI is categorized within the contrastive paradigm, leveraging modularity maximization as a
contrastive pretext task to effectively uncover the latent information of communities while mitigating semantic
drift. Furthermore, MAGI adopts mini-batch training, enabling remarkable scalability.

NS4GC [34]: NS4GC falls under the contrastive paradigm. It performs view augmentation by randomly dropping
edges and masking features, and leverages a shared-parameter GNN encoder to extract node representations. The
model constructs a latent node similarity matrix via cross-view cosine similarity, ensures the accuracy of node
similarity through node neighbor alignment, and achieves effective sparsity using semantic-aware sparsification,
thus making node similarity both accurate and effectively sparse.

A.2 Details of Benchmark Datasets

Wiki[60]: The Wiki is a Web hyperlink network, and its topological structure can effectively simulate the
complex associations between web pages. It contains 2,405 documents and 17,981 links, encompassing 17
categories. Features are constructed from the TF-IDF of documents, comprising 4,973 features.

20



Cora [47]: The Cora dataset contains 2,708 scientific publications classified into seven classes, with a citation
network of 5,429 links. Each publication is represented by a 1,433-dimensional binary word vector indicating
the presence or absence of 1,433 unique dictionary words.

ACM [51]: The ACM dataset contains a paper network comprising 3,025 papers and 13,128 edges, where edges
represent co-authorship. Paper features are 1,870-dimensional bag-of-words vectors of keywords. Based on
research areas, papers are divided into three classes: database, wireless communication, and data mining.

Citeseer [47]: The Citeseer dataset contains 3,327 scientific publications classified into six classes, with a
citation network of 9,104 links. Each publication is represented by a 3,703-dimensional binary word vector
indicating the presence or absence of 3,703 unique dictionary words.

DBLP [11]: The DBLP dataset contains an author network of 4,057 authors with 3,528 edges, where edges
represent co-authorship and two authors are connected if they have collaborated. Authors are classified into four
research areas, including database, data mining, machine learning, and information retrieval, with labels assigned
based on their published conferences. Author features are represented as 334-dimensional bag-of-words vectors
constructed from keywords.

PubMed [47]: The PubMed dataset contains 19,717 scientific publications on diabetes from the PubMed
database, classified into three classes, with a citation network of 88,648 links. Each publication is represented by
500-dimensional TF/IDF weighted word vectors, where each vector indicates term presence weighted by inverse
document frequency across a 500-word dictionary.

Ogbn-arxiv [18]: The ogbn-arxiv dataset is a directed graph representing the citation network of 169,343
Computer Science arXiv papers indexed by MAG, with 2,315,598 directed edges indicating citation relationships.
Each paper is characterized by a 128-dimensional feature vector derived from averaging word embeddings of its
title and abstract, where embeddings are trained via the skip-gram model on the MAG corpus. The prediction
task involves classifying papers into 40 manually labeled arXiv CS subject areas (e.g., cs.AI, cs.LG), formulated
as a 40-class classification problem to automate scientific publication topic categorization.

BlogCatalog (abbreviated as Blog) [52]: The Blog contains 5,196 nodes, 343,486 edges, and covers 6 interest
categories, which are collected from BlogCatalog. The features matrix has 8,189 columns.

Flickr [52]: Collected from its namesake online community platform, the Flickr dataset includes 9 interest
groups as label categories. The relationship network of 7,575 subscribed users contains 479,476 edges, with user
features represented as 12,047 dimensions.

Roman-empire (abbreviated as Roman) [43]: The Roman dataset is constructed from the English Wikipedia
article "Roman Empire" (one of the longest Wikipedia articles), featuring 22,662 nodes, 65,854 edges, 300-
dimensional fastText word embeddings as node features, and 18 labeled syntactic roles. It is designed to test
GNNs in scenarios with low homophily and sparse connectivity for handling semantic dependencies.

USPS [23]: The USPS dataset consists of 9,298 grayscale handwritten digit images (0-9), each with a 16×16
pixel resolution. The dataset originates from real-world handwritten digits on envelopes, such as postal codes
and phone numbers, making it a classic benchmark for optical character recognition and machine learning tasks.

HHAR [48]: The HHAR dataset comprises 10,299 sensor measurements from smartphones and smartwatches,
partitioned into six human activity categories: biking, sitting, standing, walking, stair up, and stair down.

A.3 Metrics

Clustering Accuracy (ACC): The ACC is used to measure the correspondence between clustering labels and
ground-truth labels. Its calculation is as follows:

ACC =

n∑
i=1

Φ(yi,map(ŷi))

n
, (2)

where yi is the ground-truth label of the node i and map(ŷi) represents the clustering label after Hungarian
label matching. Φ is a counting function that increments the count by 1 if the labels are identical.

Normalized Mutual Information (NMI): The NMI is used to measure the degree of information sharing
between the distributions of clustering labels and ground-truth labels, reflecting the amount of ground-truth
information inferable from clustering labels. Ranging from 0 to 1, where 0 indicates complete irrelevance and 1
signifies perfect consistency, it is frequently employed in scenarios where the number of clustering categories
differs from that of ground-truth categories. The calculation is as follows:

NMI =
2 · MI(y, ŷ)
H(y) +H(ŷ)

, MI =
n∑

i=1

n∑
j=1

P (i, j) log
P (i, j)

P (i)P ′(j)
, (3)

21



where H(·) is entropy, which is the amount of uncertainty for a partition set. P (i) is the probability that an
object picked at random from y falls into class yi. P ′(j) is the probability that an object picked at random from
ŷ falls into class ŷj . P (i, j) is the probability that an object picked at random falls into both classes yi and ŷj .

Adjusted Rand Index (ARI): The ARI measures the agreement between clustering results and ground-truth
labels, with values ranging from [-1, 1]: 1 indicates a perfect match, 0 indicates performance equivalent to
random assignment, and -1 indicates worse-than-random clustering. ARI is particularly suitable for imbalanced
class distributions, and is given by:

ARI =
RI − E[RI]

max(RI)− E[RI]
, RI =

a+ b
1
2
n(n− 1)

, (4)

where E[RI] denotes the mathematical expectation of the Rand Index. a represents the number of node pairs that
are assigned to the same cluster in both y and ŷ, while b represents the number of node pairs that are assigned to
different clusters in both y and ŷ.

Macro F-score (F1): The F1 is the harmonic mean of precision and recall calculated between clustering labels
and ground-truth labels, used to comprehensively evaluate clustering performance. The F1 is given by:

F1 =
2× precision × recall

precision + recall
, precision =

TP
TP + FP

, recall =
TP

TP + FN
, (5)

where TP denotes true positive samples, FP denotes false positive samples, FN denotes false negative samples.

Homogeneity (HOM): The desirable objective of HOM is that each cluster contains only members of a single
class. The HOM is formally given by:

HOM = 1− H(C|K)

H(C)
, (6)

where H(C|K) is the conditional entropy of the classes given the cluster assignments. H(C) is the entropy of
the classes.

Completeness (COM): The desirable objective of COM is that all members of a given class are assigned to the
same cluster. The COM is formally given by:

COM = 1− H(K|C)

H(K)
, (7)

where H(K|C) is the conditional entropy of the cluster assignments given the classes. H(K) is the entropy of
the clusters.

Silhouette Coefficient (SC): A higher SC indicates a model with more distinct clusters. The SC is computed for
each sample and consists of two components: i) a denotes the mean distance between a sample and all other
points in its same cluster; ii) b denotes the mean distance between a sample and all other points in the nearest
neighboring cluster. The SC is then given as:

SC =
1

n

n∑
i=1

bi − ai

max(ai, bi)
. (8)

B Additional Experimental Results

B.1 Additional Results of Other Metrics

Building on the effectiveness analysis of the DGC methods across different dataset types using ACC and
NMI in Section 4.1, this section further introduces core clustering evaluation metrics ARI and F1-score, with
experimental results presented in Tables 6 and 7. These metrics further highlight the homophily bottleneck
in existing DGC methods. Section 4.6 reveals a typical characteristic of current DGC methods through a
dual validation system combining visualization and quantitative metrics: while they can learn highly cohesive
sample representations, these representations have significant discriminability limitations. Tables 8 to 10
comprehensively display three key metrics (i.e., COM, HOM, and SC) for 12 comparative methods across 12
benchmark datasets. Joint analysis of HOM and COM shows that contrastive learning-based methods have
notable advantages. Combined with the SC metric, AGC-DRR performs better on homogeneous graphs, DGClu
achieves better results on heterogeneous graphs, while DFCN is more suitable for clustering non-graph.

B.2 Additional Robustness Results on Blog

In Section 4.3, we analyze the performance of 12 methods under four perturbation types and three perturbation
intensities on the CORA dataset with a high homophily ratio. Experiments show that existing clustering methods

22



Table 6: The ARI of 12 benchmark methods on 12 datasets.
Method Wiki Cora ACM Citeseer DBLP PubMed ARXIV USPS HHAR Blog Flickr Roman

GAE 0.2974 0.4480 0.6784 0.3223 0.1694 0.2258 – 0.4453 0.3172 0.2386 0.0973 0.0476
♯best 0.3459 0.4942 0.6802 0.3224 0.1764 0.2341 – 0.4548 0.4742 0.2691 0.0984 0.0545
GAE_S 0.2352 0.4758 0.6535 0.2944 0.1976 0.2518 – 0.5177 0.3111 0.2183 0.0476 0.0415
♯best 0.2861 0.4914 0.6595 0.2991 0.2090 0.2611 – 0.5177 0.3230 0.2468 0.0895 0.0486
DAEGC 0.1695 0.4200 0.5861 0.3269 0.2124 0.2408 – 0.5815 0.4795 0.1653 0.0781 –
♯best 0.1769 0.4496 0.7189 0.3567 0.2356 0.2408 – 0.5790 0.4830 0.2078 0.0824 –
SDCN 0.0116 0.2640 0.6869 0.2757 0.3250 0.1615 – 0.6629 0.5934 0.0271 0.0240 0.0046
♯best 0.0192 0.3202 0.7300 0.2763 0.3386 0.2225 – 0.6646 0.5901 0.0877 0.0575 0.0059
DFCN 0.2264 0.3041 0.7276 0.3360 0.3241 0.0718 – 0.6593 0.5988 0.1516 0.0812 0.0152
♯best 0.2937 0.4680 0.7124 0.4398 0.4527 0.2956 – 0.7263 0.6869 0.3161 0.0978 0.0563
DGClu 0.3306 0.3812 0.5073 0.1658 0.0569 0.1752 – 0.6098 0.5971 0.2043 0.0658 0.0107
♯ best 0.3700 0.5145 0.7382 0.2913 0.2246 0.4023 – 0.6106 0.6041 0.2251 0.0821 0.0392
AGC-DRR 0.2630 0.4526 0.7445 0.4176 0.5425 0.2174 – 0.5679 0.4906 0.5688 0.1241 –
♯best 0.2537 0.4626 0.7735 0.4305 0.5448 0.2487 – 0.5761 0.4973 0.6683 0.1614 –
DCRN 0.0836 0.4383 0.7737 0.4533 0.4226 – – 0.0260 0.2948 0.2867 0.0118 –
♯best 0.1014 0.5023 0.7738 0.4725 0.4444 – – 0.0580 0.3000 0.6475 0.0665 –
HSAN 0.2639 0.4222 0.1025 0.2644 0.3752 – – – – 0.2353 – –
♯best 0.3218 0.5737 0.5116 0.4051 0.4272 – – – – 0.2572 – –
CCGC 0.2432 0.3987 0.4642 0.3338 0.0165 0.0674 – 0.2428 0.2797 0.0638 0.0467 0.0451
♯best 0.2885 0.5196 0.7059 0.4323 0.1864 0.2919 – 0.3310 0.4439 0.0924 0.0394 0.0571
MAGI 0.0739 0.5271 0.5525 0.4325 0.3748 0.1883 0.3225 0.4434 0.3301 0.1355 0.0868 0.0417
♯best 0.3486 0.5353 0.7538 0.4483 0.4268 0.3089 – 0.5144 0.5547 0.2200 0.1108 0.0649
NS4GC 0.2568 0.5155 0.5166 0.4371 0.4963 0.3099 – 0.5834 0.4288 0.1154 0.1064 0.0268
♯best 0.3463 0.5699 0.6976 0.4454 0.5314 0.3348 – 0.5931 0.4463 0.1738 0.1449 0.0509

Table 7: The F1 of 12 benchmark methods on 12 datasets.
Method Wiki Cora ACM Citeseer DBLP PubMed ARXIV USPS HHAR Blog Flickr Roman

GAE 0.3565 0.6165 0.8782 0.5431 0.4563 0.6478 – 0.5485 0.3640 0.4485 0.2424 0.1313
♯best 0.4268 0.6909 0.8790 0.5506 0.4989 0.6513 – 0.5835 0.5549 0.4827 0.2766 0.1412
GAE_S 0.2827 0.6637 0.8475 0.5260 0.5008 0.6646 – 0.6376 0.3576 0.4386 0.1270 0.1288
♯best 0.3235 0.6694 0.8509 0.5252 0.5090 0.6748 – 0.6376 0.3885 0.4385 0.2065 0.1317
DAEGC 0.2891 0.6354 0.8443 0.5699 0.5618 0.6540 – 0.6431 0.4802 0.3961 0.1634 –
♯best 0.2960 0.6519 0.8963 0.5774 0.5780 0.6540 – 0.6445 0.4875 0.4222 0.1747 –
SDCN 0.0409 0.4422 0.8791 0.4546 0.6025 0.5529 – 0.7020 0.6141 0.1316 0.0823 0.0246
♯best 0.0422 0.4598 0.8995 0.4540 0.6118 0.6038 – 0.7023 0.6271 0.2145 0.1255 0.0262
DFCN 0.3684 0.4620 0.8996 0.5268 0.5970 0.4270 – 0.6710 0.6226 0.3637 0.2907 0.1035
♯best 0.4085 0.6812 0.8937 0.6372 0.7550 0.6722 – 0.7495 0.7643 0.5954 0.2991 0.1649
DGClu 0.4056 0.4711 0.7569 0.3819 0.3175 0.5802 – 0.6991 0.6293 0.4025 0.1236 0.1027
♯ best 0.4239 0.6687 0.9047 0.5209 0.5795 0.7436 – 0.7092 0.6432 0.4213 0.1831 0.1149
AGC-DRR 0.3515 0.6378 0.9069 0.6213 0.7921 0.6291 – 0.6507 0.6439 0.7138 0.2586 –
♯best 0.3554 0.6598 0.9194 0.6361 0.7962 0.6442 – 0.6692 0.6512 0.8288 0.3033 –
DCRN 0.2534 0.6043 0.9181 0.6400 0.6929 – – 0.2237 0.2614 0.5307 0.1277 –
♯best 0.2875 0.6802 0.9186 0.6554 0.7347 – – 0.2464 0.2936 0.8371 0.2641 –
HSAN 0.3979 0.6252 0.5170 0.5027 0.6657 – – – – 0.4402 – –
♯best 0.4360 0.7585 0.8079 0.6241 0.7114 – – – – 0.4746 – –
CCGC 0.3694 0.5583 0.6767 0.5486 0.2768 0.4222 – 0.3454 0.3075 0.2744 0.1442 0.1304
♯best 0.4287 0.6976 0.8908 0.6152 0.5510 0.6497 – 0.5674 0.5006 0.3431 0.1701 0.1477
MAGI 0.1349 0.7179 0.8353 0.6242 0.6689 0.6155 0.2686 0.4718 0.3780 0.4001 0.3095 0.1004
♯best 0.4172 0.7215 0.9106 0.6392 0.6991 0.6847 – 0.6553 0.6754 0.4878 0.3283 0.1605
NS4GC 0.3832 0.6787 0.7922 0.6242 0.7704 0.6793 – 0.6872 0.6018 0.3322 0.3120 0.1280
♯best 0.4387 0.7441 0.8881 0.6399 0.7877 0.6956 – 0.7309 0.6425 0.4111 0.3727 0.1450

Table 8: The HOM of 12 benchmark methods on 12 datasets.
Method Wiki Cora ACM Citeseer DBLP PubMed ARXIV USPS HHAR Blog Flickr Roman

GAE 0.4655 0.5192 0.6185 0.3215 0.1896 0.2345 – 0.5234 0.4089 0.2964 0.1504 0.1002
♯best 0.4987 0.5423 0.6206 0.3198 0.1909 0.2406 – 0.5222 0.5786 0.3228 0.1639 0.1041
GAE_S 0.3640 0.5376 0.6034 0.3078 0.2158 0.2502 – 0.5912 0.4527 0.2768 0.0880 0.0905
♯best 0.4263 0.5472 0.6063 0.3089 0.2221 0.2610 – 0.5911 0.4619 0.2992 0.1206 0.0928
DAEGC 0.3262 0.4941 0.5175 0.3359 0.2291 0.2466 – 0.6586 0.5207 0.2333 0.1007 –
♯best 0.3274 0.5211 0.6544 0.3517 0.2450 0.2466 – 0.6566 0.5276 0.2681 0.1048 –
SDCN 0.0293 0.3187 0.6342 0.2838 0.3143 0.1963 – 0.7460 0.6633 0.0518 0.0440 0.0111
♯best 0.0316 0.3576 0.6729 0.2831 0.3305 0.2255 – 0.7400 0.6622 0.1026 0.0833 0.0104
DFCN 0.4354 0.4106 0.6712 0.3615 0.3180 0.0721 – 0.7324 0.6997 0.2567 0.1639 0.0633
♯best 0.4587 0.5326 0.6565 0.4249 0.4353 0.3044 – 0.7534 0.7560 0.3787 0.1686 0.1321
DGClu 0.4538 0.4526 0.5027 0.2105 0.0736 0.2043 – 0.6899 0.6856 0.2533 0.0854 0.0390
♯ best 0.4806 0.5510 0.6857 0.2911 0.2263 0.3409 – 0.6767 0.6900 0.2670 0.1130 0.0566
AGC-DRR 0.4120 0.5234 0.6825 0.4075 0.4889 0.2399 – 0.6762 0.6009 0.5719 0.2372 –
♯best 0.4108 0.5300 0.7083 0.4177 0.4936 0.2576 – 0.6806 0.6011 0.6509 0.2439 –
DCRN 0.2530 0.5307 0.7156 0.4415 0.4055 – – 0.1640 0.3845 0.3815 0.0608 –
♯best 0.2792 0.5495 0.7156 0.4527 0.4338 – – 0.2103 0.3861 0.6632 0.1677 –
HSAN 0.4748 0.5279 0.1982 0.3394 0.3893 – – – – 0.3034 – –
♯best 0.4974 0.5927 0.4955 0.4129 0.4243 – – – – 0.3142 – –
CCGC 0.4517 0.4965 0.4571 0.3510 0.0434 0.0873 – 0.3569 0.3720 0.1040 0.0691 0.0947
♯best 0.4819 0.5634 0.6473 0.4187 0.2323 0.3007 – 0.4810 0.5276 0.1447 0.0819 0.1147
MAGI 0.1848 0.5636 0.5272 0.4268 0.3765 0.1939 0.5061 0.5102 0.4098 0.2250 0.1548 0.0647
♯best 0.5026 0.5673 0.6963 0.4388 0.4059 0.3019 – 0.5878 0.6415 0.2859 0.1784 0.1243
NS4GC 0.4483 0.5746 0.4839 0.4334 0.4561 0.3131 – 0.6696 0.5547 0.1914 0.1654 0.0846
♯best 0.5245 0.6010 0.6356 0.4358 0.4840 0.3276 – 0.6724 0.5724 0.2490 0.2151 0.1197

23



Table 9: The COM of 12 benchmark methods on 12 datasets.
Method Wiki Cora ACM Citeseer DBLP PubMed ARXIV USPS HHAR Blog Flickr Roman

GAE 0.4326 0.5105 0.6225 0.3206 0.1918 0.2281 – 0.5269 0.6770 0.3071 0.1704 0.0932
♯best 0.4536 0.5328 0.6246 0.3189 0.1941 0.2355 – 0.5270 0.6258 0.3392 0.1886 0.1614
GAE_S 0.5326 0.5302 0.6102 0.3061 0.2182 0.2437 – 0.5904 0.5625 0.2886 0.2199 0.0833
♯best 0.4928 0.5391 0.6186 0.3093 0.2241 0.2583 – 0.5903 0.5909 0.2992 0.1431 0.0874
DAEGC 0.3417 0.4770 0.5187 0.3330 0.2372 0.2400 – 0.6650 0.7433 0.2393 0.1624 –
♯best 0.3452 0.5074 0.6566 0.3487 0.2493 0.2400 – 0.6629 0.7428 0.2797 0.1599 –
SDCN 0.9313 0.3165 0.6405 0.3234 0.3217 0.1959 – 0.7513 0.7536 0.2954 0.1661 0.8262
♯best 0.9364 0.3819 0.6758 0.3223 0.3449 0.2389 – 0.7482 0.7464 0.1975 0.1888 0.8166
DFCN 0.4246 0.4013 0.6730 0.3644 0.3289 0.0749 – 0.7698 0.7657 0.2802 0.2148 0.0616
♯best 0.4583 0.5227 0.6585 0.4251 0.4417 0.3130 – 0.7794 0.7920 0.4065 0.2197 0.1328
DGClu 0.4616 0.5180 0.5470 0.2874 0.1108 0.2126 – 0.6918 0.7764 0.2957 0.1767 0.0360
♯ best 0.4876 0.5680 0.6888 0.3154 0.2442 0.3452 – 0.6805 0.7798 0.3103 0.1655 0.0593
AGC-DRR 0.3962 0.5075 0.6846 0.4021 0.4886 0.2345 – 0.6735 0.6105 0.6172 0.3715 –
♯best 0.3899 0.5125 0.7089 0.4127 0.4948 0.2521 – 0.6777 0.6127 0.6587 0.3199 –
DCRN 0.3307 0.5196 0.7175 0.4407 0.4101 – – 0.3513 0.6035 0.4801 0.1699 –
♯best 0.3933 0.5497 0.7168 0.4548 0.4341 – – 0.3974 0.6006 0.6736 0.2685 –
HSAN 0.4339 0.5210 0.2871 0.3578 0.3878 – – – – 0.3164 – –
♯best 0.4605 0.5897 0.5075 0.4171 0.4217 – – – – 0.3266 – –
CCGC 0.4597 0.5237 0.5224 0.3709 0.0607 0.0986 – 0.3673 0.4813 0.1158 0.0831 0.0918
♯best 0.4832 0.5650 0.6495 0.4491 0.2425 0.3345 – 0.4894 0.5678 0.1594 0.0941 0.1124
MAGI 0.5262 0.5515 0.5420 0.4403 0.3824 0.1887 0.4359 0.5735 0.5250 0.2676 0.1669 0.0749
♯best 0.5083 0.5567 0.6982 0.4487 0.4092 0.3029 – 0.5850 0.6710 0.3243 0.2018 0.1198
NS4GC 0.4063 0.5620 0.4904 0.4330 0.4528 0.3125 – 0.6680 0.5630 0.2278 0.1713 0.0773
♯best 0.4740 0.5914 0.6378 0.4345 0.4806 0.3292 – 0.6714 0.5839 0.2748 0.2248 0.1110

Table 10: The SC of 12 benchmark methods on 12 datasets.
Method Wiki Cora ACM Citeseer DBLP PubMed ARXIV USPS HHAR Blog Flickr Roman

GAE 0.3029 0.2669 0.3972 0.2296 0.1628 0.3474 – 0.2548 0.3618 0.3708 0.3790 0.1671
♯best 0.2727 0.2814 0.3975 0.2187 0.1476 0.3207 – 0.2509 0.2260 0.3633 0.1563 0.1614
GAE_S 0.2204 0.3802 0.4330 0.2475 0.1797 0.3629 – 0.2987 0.4990 0.3903 0.4142 0.1571
♯best 0.2495 0.3471 0.4314 0.2263 0.1837 0.3501 – 0.2986 0.4451 0.3704 0.3929 0.1855
DAEGC 0.5434 0.3502 0.2835 0.2778 0.1135 0.2791 – 0.3853 0.3926 0.2809 0.2234 –
♯best 0.5624 0.3304 0.4702 0.2488 0.1209 0.2791 – 0.3846 0.4003 0.3030 0.2689 –
SDCN −0.0001 0.2193 0.6336 0.1978 0.4865 0.5125 – 0.5401 0.4187 0.1715 0.0304 −0.0151
♯best −0.0222 0.2134 0.6261 0.1835 0.4011 0.3750 – 0.5016 0.3778 0.0145 −0.1077 −0.0098
DFCN 0.1827 0.2921 0.3513 0.3583 0.4423 0.5609 – 0.7458 0.6501 0.3390 0.1038 0.1675
♯best 0.2124 0.1992 0.3020 0.1917 0.1055 0.2906 – 0.6827 0.4788 0.2323 0.1092 0.1235
DGClu 0.6032 0.3221 0.3739 0.1646 0.0716 0.2352 – 0.6087 0.8652 0.5872 0.4440 0.5378
♯ best 0.5993 0.4240 0.4117 0.1927 0.1276 0.2526 – 0.5878 0.8814 0.5650 0.3627 0.2868
AGC-DRR 0.4076 0.5586 0.7683 0.4806 0.6489 0.7005 – 0.6076 0.6160 0.5662 0.2398 –
♯best 0.3907 0.5257 0.6547 0.4668 0.6139 0.6333 – 0.6009 0.5839 0.4784 0.0723 –
DCRN 0.1673 0.3020 0.4586 0.4032 0.3938 – – 0.4402 0.2035 0.0494 0.4127 –
♯best 0.1787 0.2086 0.4422 0.2691 0.2553 – – 0.2585 0.1266 0.1645 0.1809 –
HSAN 0.2115 0.1002 0.0492 0.0427 0.1986 – – – – 0.3379 – –
♯best 0.1994 0.1098 0.0735 0.0482 0.1914 – – – – 0.2920 – –
CCGC 0.2625 0.1654 0.1893 0.2252 0.2474 0.0990 – 0.2347 0.4298 0.1804 0.2815 0.1358
♯best 0.2050 0.0887 0.0648 0.0615 0.0232 0.1140 – 0.2259 0.2688 0.1537 0.2956 0.1090
MAGI 0.0273 0.1888 0.6203 0.5739 0.3386 0.2834 0.2951 0.5314 0.5630 0.3777 0.2679 0.2812
♯best 0.3900 0.1893 0.6598 0.2905 0.4028 0.4048 – 0.1979 0.2065 0.2533 0.1810 0.1642
NS4GC 0.2921 0.2645 0.1502 0.1386 0.1275 0.2219 – 0.3199 0.4499 0.1591 0.1173 0.1104
♯best 0.2804 0.2689 0.3135 0.1346 0.1435 0.2272 – 0.3181 0.4405 0.1661 0.1815 0.1339

(a) GAE (b) GAE_S (c) DAEGC (d) SDCN (e) DFCN (f) DGClu

(g) AGC-DRR (h) DCRN (i) HSAN (j) CCGC (k) MAGI (l) NS4GC

Figure 6: NMI of 12 methods on Blog with light (L), moderate (M), and severe (S) perturbations.

suffered significant performance degradation under moderate to severe perturbations, while light perturbations
even improved performance for some methods. To further investigate their robustness on the dataset with a low
homophily ratio, we conducted experiments on the Blog dataset, with results shown in Figure 6. Overall, the
clustering performance of all methods declined as perturbation intensity increased, indicating their insufficient
robustness to perturbations. Analysis of perturbation type impacts revealed that edge addition had a more

24



significant effect on method performance, likely due to reduced graph homogeneity caused by increased edges.
Notably, certain methods like DAEGC, SDCN, and HSAN showed improved performance after perturbations,
which offers new insights for subsequent robustness improvements.

B.3 Additional Visualization Results

(a) GAE (b) GAE_S (c) DAEGC (d) SDCN (e) DFCN (f) DGClu

(g) AGC-DRR (h) DCRN (i) HSAN (j) CCGC (k) MAGI (l) NS4GC

(m) GAE (n) GAE_S (o) DAEGC (p) SDCN (q) DFCN (r) DGClu

(s) AGC-DRR (t) DCRN (u) HSAN (v) CCGC (w) MAGI (x) NS4GC

Figure 7: t-SNE (first and second rows) and UMAP (third and fourth rows) 2D visualization of
embeddings learned by 12 benchmark algorithms on ACM.

C Open-source Package

We provide an open-source Python package named PyDGC3, which adopts a modular architecture. The datasets
module not only includes 12 benchmark datasets but also is compatible with other data from the PyG and
OGB ecosystems. The models module has 12 representative Benchmark models built in, covering a variety
of research paradigms. The clusterings module provides commonly used clustering algorithms. The metrics
module implements the calculation of the core indicators of the evaluation system. The utils module offers
common utility functions for configuration, logging, device, data transformation, visualization, and more. In
addition, the library is designed with a DGCModel class and a standard pipeline interface BasePipeline. This
ensures the reproducibility of the built-in methods and also makes it convenient for developers to expand new
algorithms. We will continue to maintain the built-in methods and construct a leaderboard. We hope to build the
DGC ecosystem with everyone jointly.

Here is an example demonstrating how to quickly reproduce clustering of GAE on the Cora dataset using PyDGC:

1 from pydgc.utils import parse_arguments
2 from pydgc.pipelines import GAEPipeline
3

4 args = parse_arguments("CORA")
5 pipeline = GAEPipeline(args)
6 pipeline.run()

3https://github.com/Marigoldwu/PyDGC

25

https://github.com/Marigoldwu/PyDGC


D Parameter Settings

Twelve benchmark methods involve varying numbers of hyperparameters, and some require pretraining with
parameter configurations different from those in the formal training phase. To ensure fair comparison of their
true performance in unsupervised clustering tasks, parameter settings adopt the following strategy: if the
original literature provides optimized parameters for specific datasets, directly use the configurations stated
in the literature; if dataset-specific parameters are not provided, set them according to the publicly available
hyperparameter analysis strategies of the methods; if neither condition is met, use default parameters in the
source code. Specific parameter configurations are detailed in Table 11.

Table 11: Default hyper-parameters for benchmark algorithms.
Pretrain Train

GAE / lr=1e-3, max_epoch=30

GAE_SSC lr=1e-3, max_epoch=30 lr=1e-3, max_epoch=20, α=1e-3

DAEGC lr=1e-3, max_epoch=30,
weight_decay=1e-3, t=2

lr=1e-3, max_epoch=100, weight_decay=1e-3,
γ=10, t=2

SDCN lr=1e-3,
max_epoch=30

lr=1e-3, max_epoch=50 or 200,
α=0.1, β=0.01, σ=0.5

DFCN

lr=1e-3, max_epoch=30 or 100,
γ=0.1, α=0.1,
β=0.01, ω=0.1,

PCA=100

lr=1e-4, max_epoch=200,
γ=0.1, λ=10, PCA=100

DCRN

lr=1e-3, max_epoch=30 or 100,
γ=0.1, α=0.1,
β=0.01, ω=0.1,

PCA=100, alpha_value=0.2

lr=1e-4, max_epoch=200, γ=1000,
λ=10, PCA=100, alpha_value=0.2

AGC-DRR / lr=1e-4, view_lr=1e-3,
max_epoch=200, reg_lambda=1

CCGC / lr=1e-4, max_epoch=400,
τ=0.5, t=4, α=0.5

HSAN / lr=1e-3, max_epoch=400,
β=1, τ=0.9, t=2

DGClu / lr=1e-3, max_epoch=300,
α = 0.0, λ = 0.2

MAGI / lr=5e-4, max_epoch=400, weight_decay=1e-3,
τ=0.5, α=0.5

NS4GC /
lr=1e-3, max_epoch=200, weight_decay=1e-5,

λ = 1.0, γ = 1.0, s=0.6,
τ = 0.1, pd1 = pd2 = 0.5, pm1 = pm2 = 0.1

26


	Introduction
	Preliminary
	DGC Benchmark
	Benchmark Algorithms
	Benchmark Datasets
	Benchmark Evaluations
	Research Questions

	Experiments and Analyses
	Effectiveness Analysis (RQ1)
	Stability Analysis (RQ2)
	Robustness Analysis (RQ3)
	Efficiency Analysis (RQ4)
	Scalability Analysis (RQ5)
	Discriminability Analysis (RQ6)

	Conclusions and Future Directions
	Details of DGC Benchmark
	Details of Benchmark Algorithms
	Details of Benchmark Datasets
	Metrics

	Additional Experimental Results
	Additional Results of Other Metrics
	Additional Robustness Results on Blog
	Additional Visualization Results

	Open-source Package
	Parameter Settings

