
Under review as a conference paper at ICLR 2021

HOW AND WHEN ADVERSARIAL ROBUSTNESS
TRANSFERS IN KNOWLEDGE DISTILLATION?

Anonymous authors
Paper under double-blind review

ABSTRACT

Knowledge distillation (KD) has been widely used in teacher-student training,
with applications to model compression in resource-constrained deep learning.
Current works mainly focus on preserving the accuracy of the teacher model.
However, other important model properties, such as adversarial robustness, can
be lost during distillation. This paper studies how and when the adversarial ro-
bustness can be transferred from a teacher model to a student model in KD. We
show that standard KD training fails to preserve adversarial robustness, and we
propose KD with input gradient alignment (KDIGA) for remedy. Under certain
assumptions, we prove that the student model using our proposed KDIGA can
achieve at least the same certified robustness as the teacher model. Our exper-
iments of KD contain a diverse set of teacher and student models with varying
network architectures and sizes evaluated on ImageNet and CIFAR-10 datasets,
including residual neural networks (ResNets) and vision transformers (ViTs). Our
comprehensive analysis shows several novel insights that (1) With KDIGA, stu-
dents can preserve or even exceed the adversarial robustness of the teacher model,
even when their models have fundamentally different architectures; (2) KDIGA
enables robustness transfer to pre-trained students, such as KD from an adversar-
ially trained ResNet to a pre-trained ViT, without loss of clean accuracy; and (3)
Our derived local linearity bounds for characterizing adversarial robustness in KD
are consistent with the empirical results.

1 INTRODUCTION

Knowledge distillation (KD) (Hinton et al., 2015; Gou et al., 2021) is a popular machine learn-
ing framework for teacher-student training, with appealing applications to model compression in
resource-constrained deep learning (Sun et al., 2019; Wang et al., 2019), such as memory-efficient
inference on edge or mobile devices (Wang et al., 2021b; Lyu & Chen, 2020). In essence, KD trains
a small model under the supervision of a large teacher model with the goal of improving or re-
taining the performance of the student model. For classification tasks, existing works mainly focus
on preserving the accuracy of the teacher model (Zagoruyko & Komodakis, 2016b; Passban et al.,
2020; Mirzadeh et al., 2020), while ignoring other important properties, such as adversarial robust-
ness. For a student model, failing to preserve the same level of adversarial robustness as the teacher
model can bring about a false sense of successful knowledge distillation when put into deployment.
Therefore, ensuring and improving the adversarial robustness of the student model is critical to the
safe deployment of the model in many practical applications.

To illustrate the critical but overlooked failure mode of standard KD, in Figure1 we show that it
cannot preserve the adversarial robustness of the teacher model, and propose to use input gradient
alignment in KD (we name it KDIGA) for better adversarial robustness preservation. In addition
to empirical evidence, in this paper we also prove that our method can make the student achieve at
least the same certified robustness as the teacher model under certain assumptions. When compar-
ing our method with other baselines on ImageNet (Deng et al., 2009) and CIFAR-10 (Krizhevsky
et al.) datasets, the results show substantial improvement in the adversarial robustness of the student
models obtained by our method.

To demonstrate the generality of our proposed KDIGA method, we further study the transferability
of adversarial robustness between convolutional neural networks (CNNs) (He et al., 2016) and vision
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Figure 1: Clean accuracy (%) and robust accuracy (%) of the student models (MobileNetV2) against
20-step PGD attack (Madry et al., 2017) with different radii on CIFAR-10. The two students are
distilled from the same adversarially trained WideResNet with TRADES (Zhang et al., 2019). “KD”
stands for the standard knowledge distillation and “KDIGA” stands for our proposed knowledge
distillation with input gradient alignment.

transformers (ViTs) (Dosovitskiy et al., 2020). We show that our method enables the transfer of
adversarial robustness between these two fundamentally different architectures. We also show that
KDIGA can improve the adversarial robustness of a pre-trained ViT without sacrificing the clean
accuracy. We also extend our theoretical analysis and use local linearity measures to characterize
the transfer of adversarial robustness in KD, and show that our derived performance bounds match
the trends of the empirical robustness.

Our Contributions

• We propose to use KD with input gradient alignment (KDIGA) to train both accurate and adver-
sarially robust student models in knowledge distillation. For instance, using KDIGA, the robust
accuracy of the student model can be significantly increased from 5.97% to 17.81% compared
with KD on CIFAR-10, with even better clean accuracy, as shown in Figure 1. On ImageNet, the
robust accuracy of the student model is increased from 1.5% to 37.5% using KDIGA compared
with KD.

• We show that adversarial robustness can be transferred between fundamentally different architec-
tures with KDIGA, i.e., the robust accuracy of ResNet18 distilled from ViTs can achieve or even
exceed the teacher’s robust accuracy.

• KDIGA also extends to pre-trained student models. When we distill from adversarially trained
ResNet50 to the normally pre-trained ViT in a fine-tuning approach, the robust accuracy of ViT
boosts up to 11.1⇥ larger, together with even higher clean accuracy on the ImageNet dataset. We
also find that students with higher learning capacity can achieve better results.

• We prove that the student model distilled with KDIGA can achieve at least the same certified
robustness as the teacher with some mild assumptions. We further generalize the analysis and
provide a bound with local linearity measures for characterizing adversarial robustness in KD,
which is consistent with the empirical results on ImageNet and CIFAR-10.

2 RELATED WORK

There are some recent works studying when and how adversarial robustness will transfer in different
machine learning settings, such as transfer learning (Hendrycks et al., 2019; Chen et al., 2020;
Shafahi et al., 2019), representation learning (Chan et al., 2020) and Model-agnostic meta-learning
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(MAML) (Wang et al., 2021a). In contrast, we focus on the setting of knowledge distillation. The
basic Knowledge Distillation (KD) formulates the supervised learning objective as

argmin
fs

LKD(x, y) = argmin
fs

�CELCE(f
s(x), y) + �KDT 2LKL(f

s(x)/T, f t(x)/T ) (1)

where fs is the student model , f t is the teacher model, (x, y) 2 D, D is the training set, LCE is the
cross-entropy loss, LKL is the KL-divergence loss, �CE and �KD are constant factors to balance
the two losses, and T is a temperature factor.

One effective way to train adversarially robust model is adversarial training (Madry et al., 2017;
Zhang et al., 2019; Engstrom et al., 2019), which adds adversarial perturbations to the inputs during
training and forces the model to learn robust predictions. Goldblum et al. (2020) follows the same
idea and formulates an adversarially robust distillation (ARD) objective using adversarial training:

argmin
fs

LARD(x, y) = argmin
fs

�CELCE(f
s(x), y)+�KDT 2LKL(f

s(x+�)/T, f t(x)/T ), (2)

and � = argmax
k�kp✏

LCE(f
s(x+ �), y). (3)

However, it is computationally expensive to calculate the adversarial perturbations for all training
data especially when the dataset is large-scale (e.g. the ImageNet dataset (Deng et al., 2009)).
There are some major differences between our method and ARD. Firstly, our method does not use
adversarial training and thus is much more computationally efficient. Secondly, Our method can
also be used together with ARD and further improve the robust accuracy of the student model.

Projected gradient descent (PGD) is one of the most commonly used adversarial attacks for both
adversarial robustness evaluation and adversarial training, which solves Eq. 3 by iteratively taking
gradient ascent by

xadv

t+1 = Clipx0,✏(x
adv

t
+ ↵ · sgn

�
rxLCE

�
xadv

t
, y
��
), (4)

where t = 1, · · · , T , T is the number of iterations, xadv

t
stands for the solution after t iterations,rx

denotes the gradient with respect to x, and Clipx0,✏(·) denotes clipping the values to make each xadv

t+1
within [x0� ✏,x0+ ✏], according to the `p norm bounded threat model. The adversarial perturbation
is then obtained by �pgd = xadv

T
�x0. In addition, AutoAttack (Croce & Hein (2020)) is currently the

strongest white-box attack which evaluates adversarial robustness with a parameter-free ensemble
of diverse attacks.

3 KNOWLEDGE DISTILLATION WITH INPUT GRADIENT ALIGNMENT

In this section, we first introduce our proposed framework of knowledge distillation with input
gradient alignment (KDIGA) which we find is critical for adversarial robustness preservation in
knowledge distillation. Then we prove that the student model can achieve at least the same certified
robustness as the teacher model under two assumptions. We also give a general bound to analyze
the factors that affect the transferability of adversarial robustness in KDIGA.

3.1 PROBLEM FORMULATION

Suppose fs(x) : RD ! RN is the student model and f t(x) : RD ! RN is the teacher model,
where D is the input dimension and N is the number of classes. In KDIGA, we force the student to
learn both the logits and gradient knowledge from the teacher model, so the objective is defined as:

argmin
fs

LIGA(x, y) = argmin
fs

⇥
�CELCE(f

s(x), y) + �KLT
2LKL(f

s(x)/T, f t(x)/T )

+�IGAkrxLCE(f
s(x), y)�rxLCE(f

t(x), yk2)
⇤
,

(5)

where (x, y) 2 D is the input image and the corresponding label in the training dataset, LCE and
LKL stand for the cross-entropy loss and the KL-divergence loss respectively, �CE ,�KL and �IGA

are constants that balance the trade-off between different losses, T is the temperature factor, and
k · k2 is the `2 norm. The pseudo code of KDIGA is shown in Algorithm 1.
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Algorithm 1: Pseudocode of KDIGA
Input: teacher f t, student fs

✓
with trainable parameters ✓, training set D,�CE , �KL, �IGA,

learning rate ⌘, number of epochs Nepochs.
Output: adversarially robust student fs

✓
.

for epoch 2 Nepochs do
for batch (x, y) 2 D do

ps, pt  fs

✓
(x), f t(x);

`s, `t  LCE(ps, y),LCE(pt, y);
`KL  T 2LKL(ps/T, pt/T );
gs, gt  rx`s,rx`t;
`iga  �CE`s + �KL`KL + �IGAkgs � gtk2;
✓  ✓ � ⌘r✓`iga;

end
end

Besides, we show two ways to combine our method with adversarial training strategies for KD using
ARD (Goldblum et al., 2020), i.e., KDIGA-ARDC and KDIGA-ARDA. The objective for them are

argmin
fs

LIGAC (x, y) = argmin
fs

⇥
�CELCE(f

s(x), y) + �KLT
2LKL(f

s(x+ �)/T, f t(x)/T )

+�IGAkrxLCE(f
s(x), y)�rxLCE(f

t(x), yk2)
⇤
,

(6)
argmin

fs
LIGAA(x, y) = argmin

fs

⇥
�CELCE(f

s(x), y) + �KLT
2LKL(f

s(x+ �)/T, f t(x+ �)/T )

+�IGAkrxLCE(f
s(x+ �), y)�rxLCE(f

t(x+ �), yk2)
⇤
,

(7)
where “IGAC” is in short for KDIGA-ARDC and “IGAA” is in short for KDIGA-ARDA, � is cal-
culated by Eq. 3 as inner maximization. KDIGA-ARDC is a direct combination of the original ARD
formulation in Eq. 2 with our proposed IGA loss on clean samples as an additional regularization.
KDIGA-ARDA further considers perturbed samples in IGA. Their key difference is that KDIGA-
ARDC only aligns predictions of student on perturbed samples with the predictions of teacher on
clean samples in the KL-divergence loss. On the other hand, KDIGA-ARDA forces the student to
align with both the predictions and input gradients of the teacher on perturbed samples. We also
tried other variants but did not observe notable differences.

3.2 PRESERVATION OF CERTIFIED ROBUSTNESS

In this section, we prove that using KDIGA, the student model can provably achieve as good robust-
ness as the the teacher model’s in ideal situations. We first formally define �-robust in Definition 1.
Definition 1. (�-robust) Classifier f(x) : RD ! RN is �-robust if

argmax f(x+ ✏) = argmax f(x), 8x 2 D, 8✏ 2 [0, �]D. (8)

Under mild assumptions, we aim to show that if the teacher model has a robust radius of �, then the
student model is at least �-robust under ideal situations. The first assumption is the perfect student
assumption in which we suppose fs : RD ! RN is a student model distilled from the teacher model
f t : RD ! RN using distillation loss L, and fs is a perfect student if

L(x, y) = 0, 8(x, y) 2 D, (9)

which means the student model trust the teacher and can perfectly learn the knowledge defined by
the distillation objective. The second is the local linearity assumption, which assumes that neural
networks with piece-wise linear activation functions are locally linear (Sattelberg et al. (2020); Croce
et al. (2019); Lee et al. (2019)) and the certified robust area falls into these piece-wise linear regions.
These two assumptions collaboratively build an ideal situation of knowledge distillation in which
we can derive a strong property of KDIGA that the certified robustness of the student model can be
as good as or even better than that of the teacher model. Proposition 1 concludes our statement.
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Proposition 1. Suppose the teacher model f t : RD ! RN is �-robust, fs : RD ! RN is a perfect
student trained using KDIGA, then fs is at least �-robust.

We give a proof for Proposition 1 and illustrate why the knowledge distillation without input gradient
alignment cannot preserve the adversarial robustness in Appendix A.

3.3 GENERAL BOUND FOR THE ADVERSARIAL ROBUSTNESS OF THE STUDENT MODEL

In this section, we derive a general bound for the adversarial robustness of the student model in
knowledge distillation. No assumption is needed for this bound, and the knowledge distillation
method is not limited to any specific one. To derive this bound, we first introduce the Local Linearity
Measure (LLM, Qin et al. (2019)) in Definition 2.
Definition 2. (Local Linearity Measure) The local linearity of a classifier f(x) : RD ! RN is
measured by the maximum absolute difference between the cross-entropy loss and its first-order
Taylor expansion in the �-neighborhood:

LLM(f,x, �) = max
✏2B(�)

��LCE(f(x+ ✏)� LCE(f(x))� ✏TrxLCE(f(x))
�� . (10)

Proposition 2. Consider a student model fs : RD ! RN distilled from a teacher model f t : RD !
RN , then 8✏ 2 B(�),

��LCE(f
s(x+ ✏), y)� LCE(f

t(x+ ✏), y)
��  �s + �t + � (11)

where �s = LLM(fs,x, �), �t = LLM(f t,x, �), and � = LCE(fs(x), y) + LCE(f t(x), y) +
�krxLCE(fs(x), y)�rxLCE(f t(x), y)k, and k · k is a norm.

The proof for Proposition 2 can be found in Appendix B.

Proposition 2 states that the adversarial robustness of the student model can be bounded by the LLM
of both the student model and the teacher model, the clean accuracy of the student model, and the
alignment of the student input gradient with the teacher input gradient. We will use this to further
analyze the performance of different knowledge distillation methods in Section 4.

4 EXPERIMENTS

In this section, the ImageNet (Deng et al., 2009) and CIFAR-10 (Krizhevsky et al.) datasets are used
for model training and performance evaluation.

4.1 SETTINGS

Teacher Models We use pre-trained and publicly available neural networks of varying archi-
tectures as teacher models. For the ImageNet dataset, we use both adversarially trained CNNs
and normally trained vision transformers (ViTs) as the teacher models. We use the checkpoint of
ResNet50 (He et al., 2016) provided by Engstrom et al. (2019) which is adversarially trained with
an attack radius of 4/255. We also incorporate ViTs (Dosovitskiy et al., 2020) as teacher models
because they are shown to have better adversarial robustness than CNNs (Shao et al., 2021; Paul &
Chen, 2021; Naseer et al., 2021), and we are interested in the transferability of adversarial robustness
between different architectures. For the CIFAR-10 dataset, we use the WideResNet (Zagoruyko &
Komodakis, 2016a) adversarially trained with TRADES (Zhang et al., 2019) as the teacher model.

Student Models For the ImageNet dataset, we mainly use ResNet18 (He et al., 2016) as the
student model for experiments . To study the effect of model size, we also consider ResNet34,
ResNet50 and ResNet101. In addition, we use ViT-S/16 (Dosovitskiy et al., 2020) as the student
model to study the transferability of adversarial robustness from a CNN teacher to a ViT student.
Unless specified, the student models are all trained from scratch. Because the training of ViT relies
on the large-scale pre-training (Dosovitskiy et al., 2020), we use the pre-trained version provided
by Wightman (2019) and apply the knowledge distillation methods as a fine-tuning process. For the
CIFAR-10 dataset, we use MobileNetV2 (Sandler et al., 2018) as the student model.
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Training Configurations For knowledge distillation on the ImageNet dataset, we run all distilla-
tion for 50 epochs with a batch size of 128, an initial learning rate of 0.1 for training from scratch
and 0.00001 for fine-tuning, with milestones at [20, 30, 40] of a decreasing rate of 0.1. The SGD
optimizer with 0.9 momentum is used to update the model parameters, and a weight decay of 0.0001
is applied. For basic knowledge distillation, we set the temperature to 1 and the coefficients of the
cross-entropy loss and KL-divergence loss both to 0.5. For KDIGA, we keep the same setting as
that of the basic KD, and set the coefficient of the input gradient alignment term to 103

B
, where B is

the batch size of the inputs.

For experiments on the CIFAR-10 dataset, we run distillation for 200 epochs with a batch size of
125, an initial learning rate of 0.1 with milestones at [100, 150] of a decreasing rate of 0.1. The SGD
optimizer with a momentum of 0.9 and a weight decay of 0.0002 is used to update the parameters.
We set the coefficients of the cross-entropy loss and the KL-divergence loss both to 0.5, and the
coefficient for the input gradient alignment to 10

B
, where B is the batch size.

Evaluation Metrics Using the test sets of ImageNet and CIFAR-10, we evaluate both the standard
accuracy and the robust accuracy against adversarial attacks of the student models. We conduct
`1 norm bounded adversarial perturbations to generate adversarial examples for evaluating robust
accuracy (the pixel value is scaled between 0 to 1), where we use a 40-step projected gradient
descent (PGD) attack (Madry et al., 2017) and the parameter-free AutoAttack (Croce & Hein, 2020)
for 1000 ImageNet test samples, and a 20-step PGD attack and the AutoAttack for all CIFAR-10 test
samples. Different attack radii are used to test the robustness of the model under different degrees
of adversarial perturbations.

Notation of Comparative Methods We denote the standard knowledge distillation method as
“KD”, knowledge distillation combined with adversarial training proposed by Goldblum et al.
(2020) as “ARD”, our method as “KDIGA”, and the two kinds of combinations of KDIGA and
ARD defined in Section 3.1 as “KDIGA-ARDC” and “KDIGA-ARDA”. “Teacher Method����! Student”
stands for the distillation from the “Teacher” to the “Student” using “Method”.

4.2 RESULTS ON THE IMAGENET DATASET

We compare our method with the standard training (ST) and knowledge distillation (KD) on the
ImageNet dataset. We find that adversarially robust distillation (ARD) proposed by Goldblum et al.
(2020) cannot generalize to large-scale dataset, which shows no convergence in the setting as de-
scribed in Section 4 with a very low training speed. So we only compare with ARD in the exper-
iments on CIFAR-10 in Section 4.3. We run all experiments on ImageNet for 50 epochs to save
training cost and expect better performance can be achieved with more training epochs, e.g. 100
epochs.

Table 1 shows the robust accuracy of the models trained using different training strategies, i.e.,
standard training (ST), standard knowledge distillation (KD) and knowledge distillation with input
gradient alignment (KDIGA). Table 2 supplements some results of KDIGA against AutoAttack, as
it is the strongest attack method in the current literature. We show the trend in the AutoAttack result
is similar to that of PGD. From these results, we conclude the following observations.

Standard Knowledge Distillation Cannot Preserve Adversarial Robustness As shown in Ta-
ble 1, models trained using standard training are vulnerable to adversarial perturbations. The stan-
dard knowledge distillation shows no preservation of adversarial robustness from teacher models,
e.g., ResNet18 distilled from ViT-S/16 and the adversarially trained ResNet50 still have low robust
accuracy against PGD attack with various radii. When the PGD attack radius is 0.003, the robust
accuracy of the student distilled from {ResNet50 (AT), ViT-S/16} is only {1.5%, 2.9%} compared
with the teacher’s {59.4%, 24.6%}, where “AT” is in short for adversarial training. For the attack
radius of 0.005, the robust accuracy of the student distilled from {ResNet50 (AT), ViT-S/16} is only
{0.0%, 0.6%} compared with the teacher’s {57.2%, 10.2%}.

Input Gradient Alignment Makes Students More Robust From Table 1 and Table 2, students
distilled using KDIGA have higher robust accuracy than those distilled with KD or trained with ST.
When the teacher model is ResNet50(AT) and the PGD attack radius is 0.003, ResNet18 distilled
with KDIGA has a robust accuracy of 37.5%, while the ResNet18 distilled with KD only has a
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Table 1: Robust accuracy (%) of student models against 40-step PGD attack with different radii and
clean accuracy (%) on the ImageNet dataset. Robust accuracy of the teacher models are shown in
brackets. The pre-trained student model is denoted with “*” where the distillation is conducted as
a fine-tuning process. Other students are all trained from scratch. “ST” means the model is trained
following the standard approach without distillation nor adversarial training. “AT” means the model
is obtained by adversarial training.

PGD Attack radius
Model Clean 0.001 0.003 0.005 0.01
ResNet18 (ST) 68.7 (-) 24.9 (-) 2.0 (-) 0.6 (-) 0.0 (-)
ViT-S/16 (ST) 77.6 (-) 55.4 (-) 24.6 (-) 10.2 (-) 1.0 (-)
ViT-S/16 (ST) KD��!ResNet18 69.0 (77.6) 30.1 (55.4) 2.9 (24.6) 0.6 (10.2) 0.0 (1.0)
ViT-S/16 (ST) KDIGA����!ResNet18 60.0 (77.6) 51.0 (55.4) 32.7 (24.6) 18.0 (10.2) 3.3 (1.0)
ViT-B/16 (ST) KDIGA����!ResNet18 64.7 (76.3) 52.8 (48.9) 26.6 (14.6) 11.3 (6.0) 0.7 (0.9)
ViT-L/16 (ST) KDIGA����!ResNet18 65.9 (80.0) 53.2 (55.1) 28.6 (23.4) 12.4 (9.9) 1.4 (1.8)
DEIT-S/16 (ST) KDIGA����!ResNet18 63.6 (77.7) 53.1 (48.9) 31.5 (17.6) 15.6 (7.1) 1.6 (1.1)
ResNet50 (AT) KD��!ResNet18 66.3 (63.1) 25.7 (61.9) 1.5 (59.4) 0.0 (57.2) 0.0 (49.0)
ResNet50 (AT) KDIGA����!ResNet18 54.2 (63.1) 48.2 (61.9) 37.5 (59.4) 26.5 (57.2) 9.2 (49.0)
ResNet50 (AT) KDIGA����!ResNet34 59.2 (63.1) 53.9 (61.9) 42.7 (59.4) 31.2 (57.2) 12.1 (49.0)
ResNet50 (AT) KDIGA����!ResNet50 58.8 (63.1) 53.7 (61.9) 42.2 (59.4) 31.9 (57.2) 12.4 (49.0)
ResNet50 (AT) KDIGA����!ResNet101 60.3 (63.1) 55.3 (61.9) 44.7 (59.4) 33.1 (57.2) 12.7 (49.0)
ResNet50 (AT) KDIGA����!ViT-S/16⇤ 77.7 (63.1) 65.3 (61.9) 50.4 (59.4) 33.5 (57.2) 11.1 (49.0)

Table 2: Robust accuracy (%) of student models against AutoAttack with different radii and clean
accuracy (%) on the ImageNet dataset. Robust accuracy of the teacher models are shown in brackets.
The pre-trained student model is denoted with “*” where the distillation is conducted as a fine-tuning
process. Other students are all trained from scratch. “ST” means the model is trained following the
standard approach without distillation nor adversarial training. “AT” means the model is obtained
by adversarial training.

AutoAttack Attack radius
Model Clean 0.001 0.003 0.005 0.01
ResNet18 (ST) 68.7 (-) 14.3 (-) 0.4 (-) 0.0 (-) 0.0 (-)
ViT-S/16 (ST) 77.6 (-) 48.1 (-) 6.0 (-) 0.5 (-) 0.0 (-)
ViT-S/16 (ST) KDIGA����!ResNet18 60.0 (77.6) 47.2 (48.1) 25.0 (6.0) 10.1 (0.5) 0.7 (0.0)
ViT-B/16 (ST) KDIGA����!ResNet18 64.7 (76.3) 49.6 (39.8) 19.4 (5.4) 5.0 (0.6) 0.0 (0.0)
ViT-L/16 (ST) KDIGA����!ResNet18 65.9 (80.1) 49.6 (46.6) 19.1 (8.5) 5.8 (1.0) 0.0 (0.0)
DEIT-S/16 (ST) KDIGA����!ResNet18 63.6 (80.1) 50.0 (0.4) 23.7 (0.0) 7.8 (0.0) 0.1 (0.0)
ResNet50 (AT) KDIGA����!ResNet18 54.2 (63.1) 45.9 (47.5) 31.9 (42.5) 19.1 (35.0) 3.9 (30.0)
ResNet50 (AT) KDIGA����!ViT-S/16⇤ 77.7 (63.1) 65.3 (47.5) 32.6 (42.5) 13.4 (35.0) 1.1 (30.0)

robust accuracy of 1.5%, and ResNet18 (ST) only has a robust accuracy of 2.0%. When the teacher
model is ViT-S/16 (ST) and the PGD attack radius is 0.003, ResNet18 distilled with KDIGA has
a robust accuracy of 32.7%, while the ResNet18 distilled with KD only has a robust accuracy of
2.9%. This shows that our proposed input gradient alignment plays the key role to help preserve the
adversarial robustness during knowledge distillation.

Adversarial Robustness Can Transfer Between CNNs and Vision Transformers Vision trans-
formers and CNNs have entirely different model architectures, while Table 1 and Table 2 show that
the adversarial robustness can be transferred between them with KDIGA. We have already shown
that the adversarial robustness can be transferred from ViTs to CNNs in the previous paragraph,
and here we show the reverse also holds. With PGD attack radius of {0.003, 0.005, 0.1}, the robust
accuracy of ViT/S-16 obtained by ST is only {24.6%, 10.2%, 1.0%} while the distilled ViT-S/16
has an accuracy of {50.4%, 33.5%, 11.1%}. While under AutoAttack, when the attack radius is
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{0.001, 0.003, 0.005}, the robust accuracy of ViT-S/16 (ST) is {14.3%, 0.4%, 0.0%}, but after dis-
tillation, the robust accuracy becomes {65.3%, 32.6%, 13.4%}. As ViTs are difficult to train even
in the standard setting, this result shows that we can consider to transfer adversarial robustness from
adversarially trained CNNs to ViTs to obtain robust ViTs.

Input gradient alignment Works for Pre-trained Models The student model in stan-
dard knowledge distillation is generally trained from scratch. While in the experiments of
“ResNet50 KDIGA�����!ViT-S/16?” as shown in Table 1 and Table 2, we take the pre-trained ViT as
the student to help the training converge in a shorter time. In Table 2, ViT-S/16 remains the high
clean accuracy of 77.7% after distillation compared with the original clean accuracy of 77.6% in
standard pre-training. This result shows the feasibility to further promote the adversarial robustness
of a pre-trained model using our proposed input gradient alignment without harming the model’s
performance on the clean dataset in knowledge distillation, which gives a novel and inspiring ap-
proach to train new robust models more efficiently at less cost of the clean accuracy.

Students Can Obtain Even Better Adversarial Robustness Than Teachers From Proposition1,
we proved that the student model can achieve at least the same certified robustness as the teacher
model’s under certain assumptions. The results in Table 1 and Table 2 also show that the student
can obtain even higher robust accuracy against adversarial perturbations than teacher’s with KDIGA
empirically. For example, when the teacher model is not robust, i.e. DEIT-S/16, ResNet18 dis-
tilled from it with KDIGA achieves an robust accuracy of {50.0%, 23.7%, 7.8%} against AutoAt-
tack with attack radius of {0.001, 0.003, 0.005}, while the teacher model only has an accuracy of
{0.4%, 0.0%.0.0%} in the same situations. This shows that input gradient alignment can still help
the student obtain better adversarial robustness even when the teacher is not very robust.

Students with Higher Learning Capacity Achieve Better Results In Table 1, we set the student
model to different sizes, i.e., ResNet18, ResNet34, ResNet50, and ResNet101, to check the effect
of the student’s learning capacity on knowledge distillation. As shown in the table, both the clean
accuracy and the robust accuracy increase as the the model size grows, e.g., ResNet101 achieves a
robust accuracy of 12.7% under attack radius of 0.01 while ResNet18 achieves 9.2% in the same
case. Therefore, we can expect students with higher learning capacities to achieve better perfor-
mance. It is also worth noting that the student model in KD is commonly smaller than the teacher
for some practical purposes like model compression. While in our setting, student can be larger than
the teacher model (like the case of noisy student training), meaning we can train a robust teacher
with less computing cost and then transfer the adversarial robustness to larger students, in order to
eventually obtain a high-capacity and robust model.

4.3 RESULTS ON THE CIFAR-10 DATASET

We compare our method with ST, KD and ARD on the CIFAR-10 dataset in Table 3. We show
that KDIGA has the highest clean accuracy compared with other baseline methods. We also show
that two combinations of our method with ARD have the highest robust accuracy in knowledge
distillation.

We use the fair comparison setting described in Section 4.1, though we find ARD can achieve higher
robust accuracy with �CE set to 0 and �KL set to 1, in which case its clean accuracy will decrease
a lot. �CE is critical to preserve the clean accuracy and it is an important term in the standard KD.
So we set both �CE and �KL to 0.5 as in the standard KD setting for all experiments.

From Table 3, we find the student distilled with KDIGA achieves comparable robust accuracy with
ARD. But KDIGA has the advantage of dispensing the computation of the adversarial examples
and thus is more cheap and efficient. Moreover, KDIGA has the highest clean accuracy which even
exceeds the result of KD. When combined with KDIGA, both the KDIGA-ARDC and KDIGA-
ARDA obtain higher robust accuracy than ARD. This shows that it is feasible to combine KDIGA
with other state-of-the-art methods to further improve the student’s robust accuracy.
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Table 3: Robust accuracy (%) of student models against 20-step PGD attack with different radii and
clean accuracy (%) on the CIFAR-10 dataset. All students are trained from scratch. “ST” means
the model is trained following the standard approach without distillation nor adversarial training.
“TRADES” means the model is adversarially trained using TRADES (Zhang et al., 2019).

PGD Attack radius
Model Clean 1/255 2/255 3/255 4/255 5/255 6/255 7/255 8/255
WideResNet(TRADES) 84.92 82.36 79.35 75.99 72.28 68.54 64.54 60.57 56.68
MobileNetV2 (ST) 91.82 7.43 1.11 0.04 0.0 0.0 0.0 0.0 0.0
WideResNet(TRADES) KD��!MobileNetV2 92.56 42.74 24.63 16.79 12.55 9.98 8.56 7.17 5.97
WideResNet(TRADES) ARD���!MobileNetV2 91.65 80.35 68.34 58.43 49.49 41.74 33.78 26.17 20.73
WideResNet(TRADES) KDIGA����!MobileNetV2 93.03 60.68 44.49 36.29 30.16 25.68 22.39 19.76 17.81
WideResNet(TRADES) KDIGA-ARDC��������!MobileNetV2 92.22 83.29 71.76 61.85 53.46 45.28 37.70 31.12 25.85

WideResNet(TRADES) KDIGA-ARDA��������!MobileNetV2 90.67 81.82 70.57 60.69 52.58 45.50 38.59 32.72 27.50

Table 4: Bounds for adversarial robustness (as defined in Proposition 2) of different models on
CIFAR-10. llm✏ is defined by Definition 2 where ✏ is the radius of perturbations. lCE is the cross-
entropy loss. kgs � gtk2 calculates the l2-norm of input gradient alignment term. “ST” means
the model is trained following the standard approach without distillation nor adversarial training.
“TRADES” means the model is adversarially trained using TRADES (Zhang et al., 2019). We
calculate kgs � gtk2 with WideResNet(TRADES) as the teacher model for MobileNetV2 (ST) for
comparison, though the training process of MobileNetV2 (ST) doesn’t involve a teacher model.

Model llm4/255 llm8/255 lCE kgs � gtk2
MobileNetV2 (ST) 12.413 21.691 0.364 4.099
WideResNet(TRADES) KD��!MobileNetV2 5.960 10.286 0.218 1.958
WideResNet(TRADES) ARD���!MobileNetV2 1.326 3.034 0.261 0.569
WideResNet(TRADES) KDIGA����!MobileNetV2 2.561 4.914 0.235 0.587
WideResNet(TRADES) KDIGA-ARDC��������!MobileNetV2 1.081 2.421 0.228 0.339

WideResNet(TRADES) KDIGA-ARDA��������!MobileNetV2 1.107 2.442 0.285 0.377

4.4 LOCAL LINEARITY BOUNDS FOR ADVERSARIAL ROBUSTNESS IN KNOWLEDGE
DISTILLATION

From Proposition 2, we prove that the certified robustness of the student model can be bounded by
the LLM (as defined in Definition 2), the cross-entropy loss, and the gradient alignment norm, if we
regard other terms of the teacher as fixed. Table 4 shows the bounds for adversarial robustness of
models trained on CIFAR-10. We randomly sample 1000 test samples to calculate the terms in the
bounds.

In reference to Table 3 and Table 4, the empirical performance matches the theoretical insights
that models with better adversarial robustness have smaller values in the bounds, i.e., MobileNetV2
trained with standard training has the highest bounds, and students distilled with KDIGA-ARD
has the lowest bounds. The LLM bound and input gradient alignment norm for ARD are much
lower than KD, showing that adversarial training also has the effect of improving the local linearity
and aligning the input gradients. KDIGA achieves similar bounds as ARD though the training
process does not use adversarial examples. Table 4 also shows that combining our method with
ARD can further reduce the bounds and induce better adversarial robustness. KD only has the
lowest cross-entropy loss while other terms are high, which can explain its failure in preserving
adversarial robustness, as its objective design only focuses on improving standard accuracy.

5 CONCLUSION

This paper provides a comprehensive study on how and when can adversarial robustness transfer
from the teacher model to student model in knowledge distillation, in addition to standard accuracy.
For the how, we show that standard knowledge distillation fails to preserve adversarial robustness,
and we propose a novel input gradient alignment technique (KDIGA) to address this issue. For the
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when, under certain assumptions we prove that using KDIGA the student model can be at least as ro-
bust as the teacher model, and we generalize our theoretical analysis using local linearity measures.
The superior performance of KDIGA over baselines in terms of improved adversarial robustness
while retaining clean accuracy is empirically validated using CNNs and vision transformers.
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