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Abstract001

This paper proposes a novel method for Text002
Style Transfer (TST) based on parameter-003
efficient finetuning of Large Language Mod-004
els (LLMs). Addressing the scarcity of paral-005
lel corpora that map between styles, the study006
employs round-trip translation to synthesize007
such parallel datasets from monolingual cor-008
pora. This approach creates "neutralized" text009
devoid of stylistic attributes, essentially creat-010
ing a shared input style at training-time and011
inference-time. Experimental results demon-012
strate consistent superiority of this method013
over zero-shot prompting and few-shot ICL014
techniques measured by BLEU scores and015
style accuracy scores across 6 investigated do-016
mains. Furthermore, the integration of retrieval-017
augmented generation (RAG) for terminology018
and name knowledge enhances robustness and019
stylistic consistency.020

1 Introduction021

Text Style Transfer (TST) is the task of rephrasing022

text by modifying stylistic attributes while preserv-023

ing its core attribute-independent semantics and024

intent (Shen et al., 2017; Toshevska and Gievska,025

2024). These stylistic attributes encompass for-026

mality, attitude, verbosity, preferred terminology,027

and other characteristics inherent to the text. A028

significant challenge in TST lies in the scarcity029

of annotated parallel corpora, which hinders the030

application of fully supervised learning or finetun-031

ing methods (Pan et al., 2024) in most text style032

domains.033

Roundtrip translation is a machine translation034

technique where a sentence is translated from one035

language to a pivot language and then back to the036

original language. It has been previously used037

to evaluate MT system robustness and generation038

quality (Somers, 2005; Moon et al., 2020). Prior039

work on TST has observed that round-trip trans-040

lating a sentence effectively diminishes stylistic041
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In vain we roam: Each in
the end must call a
strange land home.

Vergeblich wandern wir
umher: Am Ende muss
jeder ein fremdes Land
sein Zuhause nennen.

Futilely drifting: Eventrually,
every person's home will be

a strange place.
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Figure 1: Our proposed workflow for finetuning large
language models (LLMs) for text style transfer (TST)
using only non-parallel dataset in the target domain. A
bilingual general-domain parallel dataset is used to train
a pair of neural machine translation (NMT) models capa-
ble of translating between English and a pivot language.
We then obtain machine-translated style-neutral texts of
the original in-domain texts by roundtrip translating the
in-domain set with the NMT models. This enables su-
pervised finetuning of LLMs for TST, where we finetune
LLMs for MT-output-domain to target-domain transfer
using the synthetic parallel corpus.

attributes specific to the author, yielding a "neu- 042

tralized and generative" style while retaining the 043

content (Sennrich et al., 2016; Rabinovich et al., 044

2017). This observation motivates the use of 045

roundtrip-translation pipelines as autoencoders in 046

many encoder-decoder styled TST frameworks to 047

extract destylized latent vectors from input text, 048

so that style-specific decoders can be trained in a 049

supervised fashion even when input style domains 050

are unpredictable (Prabhumoye et al., 2018). 051

In this paper, we propose a novel TST method 052

that adapts LLMs for style transfer tasks using non- 053

parallel in-domain corpora and roundtrip transla- 054

tion (Figure 1). Our workflow involves first train- 055

ing two neural machine translation models that 056

serve as the roundtrip translation pipeline, using 057

large-scaled general-domain bilingual parallel cor- 058
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Stylistically neutral

Informal

Formal

Literary

Shakespearean

He is really worried about it.

He’s losing sleep over it!

He is experiencing considerable
distress about this matter.

He poured rocks in the dungeon
of his mind.

He doth fret greatly upon it.

Figure 2: Example sentences illustrating semantically
equivalent content in various styles. Outputs of our
roundtrip translation pipeline is considered as stylisti-
cally neutral.

pora. We then roundtrip translate a monolingual,059

stylistically consistent corpus using the pretrained060

NMT models to construct a style-neutral to target-061

domain pseudo-parallel corpus. This corpus can062

thus be used to finetune LLMs for TST tasks. Fur-063

thermore, to enhance the model’s robustness to un-064

seen or complex style domains, we implemented an065

inference-time workflow that roundtrip translates066

queries before doing inference, improving training067

and inference time coherence (§3.1).068

We experimented (§4) our style transfer method069

on several text style domains with distinctive style070

features (§4.1.1), and compared its performance071

against two state-of-the-art methods: Few-shot072

In Context Learning (ICL) and Automatic Post-073

Editing (APE) (Liu et al., 2024b; Moon et al.,074

2022). Following prior research, style transfer qual-075

ity is evaluated using BERT-based style classifiers076

trained on held-out data and the BLEU score (Sub-077

ramanian et al., 2018; Wan et al., 2023; Aycock and078

Bawden, 2024). Our main contributions are:079

• Pseudo-parallel dataset construction (§3.1).080

We propose a roundtrip translation method for081

generation synthetic parallel corpus, enabling082

TST with supervised finetuning in domains083

lacking bitext.084

• Methods for TST-finetuning (§4). We sys-085

tematically evaluate finetuned TST-LLMs em-086

ploying several different models, prompts,087

RAG methods, and inference methods, com- 088

pared against state-of-the-art baselines. 089

• Retireval augmentation for finetuning and 090

inference (§3.2.3). We propose the use of 091

retrieval-augmentation for finetuning, care- 092

fully experimented with RAG in both finetun- 093

ing and inference prompts, and validate its 094

effectiveness beyond prompting. 095

2 Related Work 096

Supervised TST Several parallel corpora for 097

TST have been released (Voigt et al., 2018; Rao 098

and Tetreault, 2018) that motivated supervised TST 099

on these pre-selected domains with sufficient paral- 100

lel data, such as Jhamtani et al. (2017)’s work on 101

Shakespearizing modern English. This approach is 102

limited to domains with parallel corpora. 103

Unsupervised / Semi-supervised Text Style 104

Transfer Due to the scarcity of parallel TST data 105

in most domains, one major focus of prior TST 106

research (Lai et al., 2021; Hu et al., 2022; Nouri, 107

2022) is the seq2seq encoder-decoder models for 108

unsupervised training with non-parallel target-side 109

data. Central to these frameworks are effective 110

disentanglement of latent representations of styles 111

(Nangi et al., 2021; Voigt et al., 2018) and the 112

preservation of original content through the TST 113

pipeline (Tian et al., 2018). There is recent work 114

on UTST frameworks using LLM prompting and 115

attention masking (Pan et al., 2024). 116

Roundtrip translation for TST Prior works ob- 117

served that roundtrip translation tend to reduce au- 118

thors’ stylistic features while preserving the style- 119

independent content (Prabhumoye et al., 2018; Ra- 120

binovich et al., 2017). This observation motivates 121

the use of roundtrip-translation as auto-encoders 122

to extract destylized latent vectors from text with 123

various input style domains that represent content. 124

Style-specific decodes then transform these latent 125

vectors to output texts with the same content and 126

the target style (Prabhumoye et al., 2018; Riley 127

et al., 2021). In these settings, roundtrip transla- 128

tion is believed to transform instances in various 129

domains to the same latent representation, essen- 130

tially turning the task of transferring from varying 131

domains to the simpler task of decoding destylized 132

latent vectors to target style generation, which can 133

be achieved in a supervised fashion. 134
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Figure 3: Our proposed workflow. We show two inference routes that we tested on: route i (blue in figure)
involves first roundtrip translate the input to match the training-time input domains and then perform RAG-enhanced
TST-LLM inference with two retrievers we built (§3.2) on the intermediary text, where as route ii (red in figure)
directly performs RAG-enhanced TST-LLM inference using the original input. Controlled experiments on these
methods demonstrate that roundtrip translating the input first significantly enhances model’s performance, bringing
especially considerable improvements facing stylistically diverse and complex queries. Findings in this experiment
are described in §4.4.

.

LLM-supported TST Recent research indi-135

cates that state-of-the-art Large Language Mod-136

els (LLMs) possess the capability to perform TST137

tasks when appropriately prompted or finetuned138

(Liu et al., 2024a; Zhang et al., 2024; Mukherjee139

et al., 2024). Prior works have developed prompt140

learning methods for TST that use non-parallel141

data(Liu et al., 2024a; Wan et al., 2023; Aycock142

and Bawden, 2024; Zhang et al., 2024). These143

strategies typically involve augmenting prompts144

with retrieved data (Liu et al., 2024b; Zhang et al.,145

2024) and a limited set of in-domain, non-parallel146

examples (“shots”) (Chen, 2024; Liu et al., 2024a;147

Bhandarkar et al., 2024) in optimized prompt con-148

figurations (Liu et al., 2024a). However, these149

methods are limited to prompts, lacking the abil-150

ity to introduce parameter-level adjustments that151

could enhance LLM adaptability to specific TST or152

domain adaptation contexts. Parameter-efficient153

finetuning for TST has been investigated very re-154

cently (Liu et al., 2024b; Mukherjee et al., 2024),155

but only limited to domains with existing parallel156

corpora.157

3 Methods 158

3.1 Roundtrip Translation 159

We propose a novel TST framework that adapts 160

LLMs for style transfer tasks using only nonpar- 161

allel in-domain corpora (Figure 3). We first train 162

a pair of neural machine translation (NMT) mod- 163

els using Marian (Junczys-Dowmunt et al., 2018) 164

and a large-scale generic bilingual corpus between 165

English and a selected pivot language. This pair 166

of generic NMT models constitutes a roundtrip 167

translation pipeline, which reduces stylistic fea- 168

tures of input texts with rich and diverse styles to 169

roundtrip translated style-neutral output. A mono- 170

lingual style-consistent dataset is roundtrip trans- 171

lated to form a pseudo-parallel dataset, and then 172

we finetune a LLM on this dataset to specialize in 173

MT-destylized to in-domain style transfer tasks. 174

A potential issue with our method is that, during 175

finetuning we essentially provide RT-destylized 176

domain to target domain supervision, rather than 177

arbitrary domain to target domain supervision. 178

We make such distinction since machine-translated 179

texts tend to be neutralized and style homogenized, 180

whereas arbitrary inference-time inputs may not 181

exhibit such feature. To mitigate this issue, we 182

designed an inference-time workflow where the in- 183
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ference sentence is also roundtrip-translated to its184

stylistically neutral counterpart before queried to185

the finetuned LLM. We compared direct inference186

and our RT-first inference method in the experi-187

ments section (§4.4), and report that RT-first in-188

ference yields noticeably better generation quality189

when dealing with unseen text domains.190

3.2 RAG Retrievers for TST-LLM191

Lewis et al. (2020) proposed a RAG framework in192

which a retriever-generator model is trained end-to-193

end to enhance coherence between the pre-trained194

retriever and generator subsystems. Inspired by this195

approach, we incorporate RAG into both the fine-196

tuning and inference stages of our TST-LLM ap-197

proach to enhance the LLM’s adaption to retrieval-198

enhanced prompts at inference-time, unlike previ-199

ous TST-with-LLM methods where RAG is primar-200

ily considered a prompting technique (Liu et al.,201

2024a; Wan et al., 2023; Aycock and Bawden,202

2024; Zhang et al., 2024) and finetuning experi-203

ments are largely limited to the zero-shot strategy204

with various prompt templates (Liu et al., 2024b;205

Mukherjee et al., 2024). In §4.3, we present a com-206

parative implementation of retrieval augmentation207

at both training time and inference time, demon-208

strating that RAG also yields significant improve-209

ments when applied during training.210

3.2.1 Training-time similarity-based example211

retrieval212

Our example retrieval augmentation method in-213

volves obtaining sentence pairs as instructions for214

how we would like the query to be transferred. In215

order for the example transfer sentence pairs to216

be instructive, we adapt a similarity-based retrieval217

method (Figure 4) to retrieve transfer sentence pairs218

that are similar to the task objective, using cosine219

distance obtained through the Faiss vectorization220

liberary (Douze et al., 2024).221

Since we provide sentence pairs as examples,222

an issue that naturally arises is whether to provide223

example pairs whose source-sides are similar to224

the query or those target-sides are similar to the225

expected output. We consider this distinction nec-226

essary and vital to the quality of the retrieved shots.227

Consider the informal phrase "I’m good". Transfer-228

ring it to the formal domain would have many valid229

answers, such as "I do not require anything further",230

"I am content with the arrangement", or straight-231

forwardly "I appreciate your concern; I am in good232

health." Searching with target-side would at least233

provide correct answers, if not helpful, whereas 234

searching with source-side would potentially yield 235

misleading examples. 236

Essentially this is the difference between search- 237

ing with the questions and searching with the an- 238

swers. At training-time, providing examples pairs 239

with relevant target-sides is rather straightforward, 240

since the actual output text (or the "completion") is 241

present. We constructed a Faiss vector bank for the 242

monolingual in-domain corpus. Then, for each in- 243

stance in the pseudo-parallel dataset obtained from 244

roundtrip translation, we take its target-side text, 245

search for top-k most similar examples excluding 246

itself, and look up the source-side counterparts of 247

these retrieved sentences to form example transfer 248

sentence pairs to be put into finetuning prompts. 249

3.2.2 Inference-time "sketch-first" example 250

retrieval 251

At inference time when only the out-of-domain- 252

side input is present, we follow Wang et al. (2022)’s 253

schema to use a "sketch-first" example retrieval 254

augmentation logic (Figure 4). We first perform 255

few-shot inference with randomly-selected exam- 256

ples to generate a sketch output that resembles the 257

in-domain transferred generation, though with lim- 258

ited quality due to the randomly selected shots. 259

We then use the sketch as the query to retrieve ex- 260

amples with high similarity from the Faiss vector 261

bank to enhance the second-round inference that 262

yields the refined output. In §4.4, we report on 263

inference-time experiments on the inference-time 264

example retrieval augmentation methods described 265

above and the RT-first inference pipeline described 266

in (§3.1). 267

3.2.3 Terminology and Name List Retrieval 268

Diction and word preferences are an important as- 269

pect of text style domains. The same concept or 270

object can be referred to by different terminologies 271

in different domains, such as football in British 272

English and soccer in American English, so consis- 273

tently using the correct terminology for the target 274

domain is vital for semantic correctness and style 275

consistency. In literary-translation domains, there 276

is a similar issue of naming consistency, where 277

machine-translated works may use semantic trans- 278

lations and direct translations in different contexts 279

to refer to the same characters, causing confusion 280

and inconsistency. 281

We improve our TST model’s terminology cor- 282

rectness and long-term consistency by retrieving 283
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Input (source-
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Prompt 1: Identify
terminologies or character
names in this sentence.

Prompt 2: Find the counterpart of
this word in a similar sentence

from another translator.

Prompting 1

Prompting 2

Terminology
Pair List

Input (source-
side) text

Word preference
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Figure 4: Retrieval augmentation workflow. Left (a): Similarity-based example retriever. We vectorize and
index the target-side texts of the parallel synthetic datasets for nearest-neighbor search. For each query, we first
do k-shot inference with the finetuned TST-LLM to obtain an "in-domain" sketch, which is used as search query
in the target-side dataset to obtain k most similar pairs. Note that this is for inference-time RAG. For finetuning
prompts, we can search with the target side texts directly without the need for an in-domain sketch. Right (b)
Terminology and name retriever: For each instance in the synthetic parallel datasets, the first LLM call extracts
relevant words from the source side, then the second call matches them with their counterparts in the target side,
yielding a terminology pair list for each domain. During inference, each input is checked against these term pairs;
where relevant matches are found, a concise guiding sentence is appended to the prompt.

a terminology and name list from our pseudo-284

parallel corpus, and add relevant terminology in-285

structions to prompts when some trigger words are286

present in the query (Figure 4). For each object in287

the pseudo-parallel corpus, we first prompt a LLM288

with the source side of the paired sentences and289

ask it to identify any terminologies or names in it.290

Then, we do a second round of prompting with the291

target side of the sentence pairs alongside the re-292

trieved terminologies, and ask the LLM to find their293

counterparts. Through this pipeline, we construct a294

list of source domain to target domain preferred ter-295

minologies pairs. If any of the source-side words296

are present in the query, we add a one-sentence297

instruction in the inference prompt that provides298

terminology and name transfer guidance. Prompts299

we used are in Appendix A.300

3.3 Parameter Efficient LoRA Finetuning301

LoRA (Low-Rank Adaptation of Large Language302

Models) is an efficient approach that reduces com-303

putational and memory costs by using low-rank304

approximation techniques (Hu et al., 2021). The305

LoRA approach involves freezing the pre-trained306

model’s weight matrices and introducing trainable307

low-rank decomposition matrices into the model’s308

layers. This approach allows us to finetune the309

7B and 8B LLMs with 2 NVIDIA A100 GPUs,310

each with 81GB of memory. Hyperparameters and311

configurations we used are put in Appendix B.312

3.4 Evaluation: BLEU and style classification 313

accuracy score 314

We primarily evaluate two aspects of our models, 315

namely style transfer quality and content preserva- 316

tion ability. We train a BERT-based (Devlin et al., 317

2018) style classifier for each style domain using 318

held-out in-domain data, in the same fashion as 319

Liu et al. (2024b,a); Mukherjee et al. (2024)’s prior 320

works. The trained classifier classifies a given text 321

to be either in-domain or out-of-domain, thus the 322

generation from our TST models is tested with 323

these classifiers to yield a style classification ac- 324

ccuracy, as a measure of how well the generated 325

texts aligns with the target domain in terms of text 326

style. BLEU scores between generation and source 327

texts are used to evaluate to what extent the original 328

meaning is preserved after transfer. 329

4 Experiments 330

4.1 Experiment Setup 331

4.1.1 Datasets and Synthetic Data Generation 332

A large-scale generic parallel training set is used 333

to train the Neural Machine Translation model pairs 334

for each pivot language. We used Marian(Junczys- 335

Dowmunt et al., 2018) for these Neural Machine 336

Translation models. Detailed configurations we 337

used are given in Appendix B. Several monolingual 338

style-consistent corpora are roundtrip translated to 339

construct pseudo-parallel datasets for finetuning. 340

Our experiments encompassed six distinct stylistic 341

domains: corpus of administrative documentation 342

from the Internal Revenue Service (IRS), corpus of 343
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Dataset Language # Sentence # Word

WMT24 en–de 75,991,652 1,160,839,966
WMT24 en–zh 72,192,512 857,631,464
IRS nonparallel en 455,733 7,349,231
Treasury nonparallel en 408,004 8,990,216
NCBI nonparallel en 201,888 3,509,166
Dailymed nonparallel en 496,013 9,154,195
Literary nonparallel en 105,030 3,643,974
Webnovel nonparallel en 1,000,000 16,498,331

Table 1: Datasets. The WMT24 datasets are used to
train generic NMT models for roundtrip-translation. We
selected Chinese and German as the pivot languages.
These datasets are obtained through WMT24 general
MT track training set releases. The IRS dataset, the
Treasury dataset, the Dailymed dataset, and the NCBI
dataset are crawled from their respective websites. The
literary dataset is a collection of English translations of
pre-modern Asian literary works. The webnovel dataset
is released by the WMT24 literary MT track.

official communication corpus from the U.S. De-344

partment of Treasury, medical literature from the345

Dailymed database, scientific publications from346

the National Center for Biotechnology Information347

(NCBI) Database, the corpus of literary transla-348

tions of pre-modern Chinese texts by six produc-349

tive translator, including David Hawkes and John350

Minford, and a corpus of human-translated Chi-351

nese web novels from WMT 2024. These domain-352

specific corpora served as the foundation for creat-353

ing parallel finetuning datasets.354

4.1.2 TST Prompt Templates355

We experimented on three potential prompt tem-356

plates for TST finetuning. Prompt details and ex-357

periments on prompts are in Appendix A. After358

careful examination we decided to use the prompt359

template in Figure 5 throughout our experiments.360

Rewrite the given sentence into the style of [style
name].
Here are [n] examples:
Input: [example input i]. Output: [example output i].
......
Note that you may want to rewrite "[input terminol-
ogy]" to "[output terminology]" for contextual con-
sistency.
Now go ahead: Input: [query input]. The [style name]
output:

Figure 5: The prompt template we use for Text Style
Transfer Finetuning. Performances of other prompts
that we experimented on are put in Appendix A.

4.2 Experiments on Pretrained LLMs 361

We experimented on various LLMs to evaluate their 362

potentials for TST finetuning with synthetic paral- 363

lel data. For all models, we performed sketch-first 364

5-shot finetuning without any other knowledge re- 365

trieval. A BERT classifier is trained for each text 366

style domain and used on the generated text to 367

yield the style accuracy score for each experimen- 368

tal group. Results are shown in Table 2. 369

Out of the four models we investigated, Llama- 370

3-8B-Instruct and Gorilla-openfunctions-v2 have 371

the best overall performances across the four tested 372

style domains, with the finetuned Gorilla LLM 373

having the highest average BLEU score and the 374

finetuned Llama-3 LLM having the highest aver- 375

age style accuracy score. We will use Llama-3- 376

8B-Instruct as the base model for prompting and 377

finetuning for other experiments in the rest of this 378

section. 379

4.3 Experiments on Retrieval Augmentation 380

Methods 381

Here we present the experiment results with re- 382

gards to various RAG methods that we used dur- 383

ing both finetuning and inference (Table 3). The 384

random k-shot example retrieval method retrieves 385

k random pairs of style-neutral to target-domain 386

sentences for each finetuning prompt and each in- 387

ference prompt (Figure 5). Similar k-shot method 388

retrieve the k most similar examples pairs, which is 389

achieved through direct cosine distance search at 390

finetuning time, and through sketch-first method 391

(§3.2.2) at inference time. Terminology and name 392

retrieval are achieved by constructing a terminol- 393

ogy pair bank (§3.2.3). 394

Note that these groups in Table 3 are using dif- 395

ferent finetuning methods and different inference 396

methods, since we also include the retrieved in- 397

formation in the finetuning prompts. Sketch-first 398

similar 5-shot finetuning consistently outperforms 399

the prompting and zero-shot finetuning baselines 400

across the four tested domains, with a highest 401

BLEU score of 52.35 and highest Style Accuracy 402

score of 0.865 both in the Pre-modern Literary do- 403

main. The affect of example retrieval on the BLEU 404

score is more consistent and stable that its affect 405

on the style classification accuracy. For style clas- 406

sification accuracy, the similar 5-shot model is still 407

predominantly the best-performing model, though 408

random 3-shot and 5-shot models have a 0.030 - 409

0.037 higher classification acc. in the IRS domain 410
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Pretrained LLMs IRS domain Literary domain Treasury domain NCBI domain

BLEU Acc. BLEU Acc. BLEU Acc. BLEU Acc.

Baseline 22.53 0.391 21.90 0.172 24.15 0.245 19.87 0.354
meta-llama/Llama-3.1-8B-Instruct 48.89 0.826 41.42 0.721 45.22 0.812 46.30 0.896
gorilla-llm/gorilla-openfunctions-v2 47.40 0.756 42.31 0.663 47.80 0.714 49.62 0.823
mistralai/Mistral-7B iii 43.30 0.742 36.85 0.701 40.12 0.710 38.43 0.734
facebook/opt-2.7b 38.12 0.640 35.15 0.570 42.00 0.820 41.27 0.676

Table 2: TST Finetuning performance with Various Base LLMs (random 5-shot instructions finetuning). All four
tested models exhibit strong potential in performing TST tasks with proper finetuning, with Llama-3.1-8B-Instruct
and Gorrila-openfunctions-v2 having considerablly higher performance in both content preservation and style
adaptation across the four tested domains.

RAG methods IRS domain Literary domain Treasury domain NCBI domain

BLEU Acc. BLEU Acc. BLEU Acc. BLEU Acc.

5-shot ICL 27.79 0.591 25.90 0.613 24.72 0.541 27.87 0.462
APE with Marian 36.81 0.642 35.72 0.649 36.37 0.621 35.95 0.659
Zero-shot finetuning 42.39 0.793 40.39 0.742 41.43 0.826 39.30 0.742
Random 3-shot finetuning 47.23 0.839 39.96 0.732 44.41 0.796 42.07 0.823
Random 5-shot finetuning 48.89 0.826 41.42 0.721 45.22 0.812 46.30 0.896
Similar 3-shot finetuning 47.79 0.749 48.83 0.812 47.79 0.820 49.01 0.776
Similar 5-shot finetuning 49.50 0.796 52.35 0.865 50.46 0.876 49.96 0.831
5-shot ICL w/
terminology and name retrieval

28.53 0.672 26.25 0.669 26.69 0.729 29.31 0.586

Similar 5-shot finetuning w/
terminology and name retrieval

49.28 0.895 52.61 0.933 50.25 0.894 50.37 0.872

Table 3: TST performance with various retrieval augmentation methods and scale (Using Llama-3.1-8B-Instruct).
The ICL method prompts the LLM with k in-domain example sentences as context knowledge. Random k-shot
finetuning provides random examples at both finetuning and inference time; Similar k-shot provides similar examples
for finetuning prompts through cosine distance search, and for inference prompts in a sketch-first manner (§3.2.2).
Terminology and name retrieval constructs a term pair bank, which is added to the prompt when triggered (§3.2.3).
Providing LLMs with examples at both training and inference time brings considerable improvements, especially
when providing similar examples. 5-shot groups tend to have stronger effects on both BLEU score and Acc. than
3-shot and 0-shot.

and the NCBI health domain. We attribute this411

to the fact that the IRS and NCBI domains are412

closer to the general domain than the Literary413

and Treasury domains, making the classification of414

generated texts for these domains more nuanced415

and unpredictable.416

Looking into the generated text across the ex-417

perimental groups and the style domains, we ob-418

served that similarity-based n-shot finetuning is419

much more stable than random n-shot finetuning,420

especially for the Literary domain, where sentence421

length, diction, and phrasing habits vary to a great422

extent throughout the corpus. When provided with423

irrelevant examples at inference time, such as one424

word long sentence examples for long discourses425

or descriptive sentences provided as examples for426

character speeches, the examples can even mis- 427

lead the model and lower the generation quality 428

compared to zero-shot inference. Similarity-based 429

3-shot and 5-shot finetuning, on the other hand, 430

exhibits a much more stable improvement in gen- 431

eration quality, as it always provides examples 432

with similar length and overlapping words with 433

the query sentence. It yields up to 12.22 increase in 434

BLEU score and 0.191 increase in style classifica- 435

tion accuracy across the four tested style domains. 436

We also observed that terminology and name 437

retrieval has stronger influence on prompting than 438

on the finetuning – adding the terminology para- 439

phrase guidance results in a 7.29% average im- 440

provement on the Acc. score for 5-shot finetuning, 441

and a 18.62% average improvement on the Acc. 442
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Inference methods IRS domain Literary domain Treasury domain NCBI domain

BLEU Acc. BLEU Acc. BLEU Acc. BLEU Acc.

0-shot inference 43.21 0.811 46.68 0.842 42.25 0.742 46.63 0.696
RT & random 5-shot inference 45.53 0.809 47.12 0.792 43.31 0.782 45.51 0.742
similar 5-shot inference 48.73 0.829 52.33 0.820 50.47 0.833 49.96 0.793
RT & similar 5-shot inference 46.28 0.895 51.61 0.933 50.25 0.894 50.37 0.872

Table 4: TST Finetuning performance with various inference-time workflows. All groups are inferences with a
LLama3.1-8B-instruct that is finetuned with similar 5-shot and terminology RA from the previous experiment(§4.3).
0-shot inference uses prompts that do not provide any additional knowledge besides task description. RT-first
inferences means we roundtrip translate the queries to match finetuning input domains(§3.1) before being given to
the LLMs. Results suggest a significant boost in style classification accuracy brought by RT-first and similar shots,
and a moderate improvement in BLEU score brought by similar shots.

score for 5-shot ICL.443

4.4 Experiments on Inference methods444

We also conducted controlled experiments on var-445

ious inference-time workflows. All inference446

groups utilized the LLama3.1-8B-instruct model,447

finetuned with the same 5-shot approach. They448

only differ in inference methods. The 0-shot in-449

ference setting employed inference prompts con-450

taining only task descriptions without additional451

knowledge. The RT-first inference method involved452

roundtrip translation (RT) of queries to align with453

the finetuning input domain (§3.1) before feeding454

them into the LLM. The similar k-shot inference455

method retrieves and provides relevant examples456

in a sketch-first manner, as elaborated in §3.2.2.457

Results indicate that RT-first and similar-shot458

approaches both bring significant enhancements459

to style classification accuracy, while similar-shot460

inference also yields a moderate improvement in461

BLEU score. However, we observed that roundtrip462

translation can reduce BLEU scores, suggesting463

potential semantic drift when queries are mapped464

to the MT-output style neutral domain. The extent465

of this information loss is likely influenced by sev-466

eral factors, including pivot language selection,467

the quality of NMT models, and the complexity468

of the style domain. Despite this trade-off, the469

substantial improvement in style classification ac-470

curacy underscores the importance of the RT-first471

workflow.472

5 Conclusion473

This study has established a robust method for474

Text Style Transfer (TST) that leverages parameter-475

efficient finetuning of Large Language Models476

(LLMs) combined with round-trip translation to477

address the challenges posed by the scarcity of par- 478

allel corpora in most stylistic domains. Through 479

round-trip translation, we produce synthesized 480

pseudo-parallel texts that reconstruct a supervised 481

Text Style Transfer setting from MT-neutralized 482

domain to target style domain. The MT-neutralized 483

style domain serves as a shared input style, so 484

that inputs with unseen stylistic features better 485

match the finetuned LLM at inference time, en- 486

hancing adaptability and robustness when facing 487

out-of-domain input sentences. Our experiments 488

across six distinct style domains demonstrate that 489

the round-trip translation augmented finetuning 490

method consistently outperforms state-of-the-art 491

approaches, such as In-Context Learning and Au- 492

tomatic Post-Editing for TST. 493

We also found that retrieval-augmented genera- 494

tion (RAG) effectively enhances terminology and 495

name consistency within our roundtrip translation 496

augmented finetuning framework. Our comprehen- 497

sive experiments show that incorporating retrieved 498

examples and generation guidance helps maintain 499

long-term stylistic consistency and improves over- 500

all generation quality. These findings demonstrate 501

that the application of knowledge and example re- 502

trieval augmentation can go beyond prompting. 503

Our TST finetuning method has the potential to 504

extend beyond single-domain adaptation. Future 505

work could explore multi-style transfer within a sin- 506

gle finetuned LLM and investigate more nuanced, 507

non-binary style transfer tasks, such as formality 508

editing. 509

Limitations 510

The main limitations of our work are as follows: 511

• Semantic drift and error propagation. Our 512

method relies on machine translation models 513
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to generate parallel finetuning datasets. As a514

result, its performance depends on the qual-515

ity of the underlying NMT systems and their516

training data. We observed that when these517

models introduce errors or cause semantic518

drift during roundtrip translation, such inaccu-519

racies become embedded in the synthetic par-520

allel corpus used for finetuning. We applied521

post-processing steps to mitigate such effects,522

and further efforts could also be made to test523

various NMT methods or architectures to find524

the most ideal configuration for the TST task.525

These improvements and post-editing works,526

however, are beyond the scope of this study.527

• Alternatives for the Current Roundtrip528

Translation Pipeline. In this work, we pri-529

marily used Marian to train the NMT models530

and did not explore alternative methods or531

workflows for performing roundtrip transla-532

tion. An intriguing potential alternative is to533

employ large language models to perform ma-534

chine translation, either by ICL or finetuning,535

which might yield better results compared to536

the current Marian-based approach. However,537

we did not test these alternative approaches in538

the current study due to the limit of time and539

length.540

• Limits to domains with available corpus.541

Due to data availability constraints, our ex-542

periments are conducted on six style domains,543

which may not fully capture the range of stylis-544

tic variations encountered in real-world sce-545

narios. This limitation could introduce biases546

into our analysis and potentially restrict the547

generalizability of our methods. We selected548

domains that are as diverse and distinctive549

as possible—from literary to governmental550

and medical texts—in an effort to enhance551

the overall robustness and applicability of our552

method. We strive to enhance the generaliz-553

ability of our experiments and demonstrate554

the effectiveness of our method in different555

domains and conditions.556
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A Prompt Templates753

TST finetuning prompts:754

755

We experimented on three potential prompt tem-756

plates for text style transfer (TST) finetuning with757

synthetic parallel data (Table 5). These prompts758

organize the query input sentence and several759

example sentence pairs into a prompt, with proper760

task descriptions and guidance for the generation.761

Template (I) and (II) explicitly states the rewriting762

task, but have different orders of the example and763

query content. Template (III) is a classic Machine764

Translation prompt template with demonstrated765

effectiveness for Machine Translation with LLM.766

By changing language name to style domain name,767

we adapt it to guide LLM for text style transfer task.768

769

In this experiment (Table 6), we conducted770

random 5-shot finetuning with terminology771

retrieval on Llama3.1-8B-Instruct with the dif-772

ferent templates, while leaving other conditions773

unchanged. Template (I) has the overall highest774

Table 5: Prompts for TST finetuning

Prompt
Template
Index

Prompt Template Text

I Rewrite the following sentence into the
style of [style name]. Here are [n] examples:
Input: [example input i]. Output: [example
output i]. Note that word [input terminol-
ogy] should be rewritten to [output termi-
nology] for contextual consistency. Now
go ahead: Input: [query input]. The [style
name] output:

II Rewrite the following sentence into the
style of [style name]: Input: [query input].
Here are [n] examples: Input: [example in-
put i]. Output: [example output i]. Note
that word [input terminology] should be
rewritten to [output terminology] for con-
textual consistency.

III Note that word [input terminology] should
be rewritten to [output terminology] for con-
textual consistency. General domain: [ex-
ample input i]. [style name] domain: [ex-
ample output i]. general domain: Input:
[query input]. [style name] domain:

Candidate prompt templates for LLM style transfer fine-
tuning. [example input i] and [example output i] indicate the
ith pair of retrieved similar examples. In zero-shot finetuning
and inferences these lines are removed from the template. [in-
put terminology i] and [export terminology i] are the ith pair
of terminologies on the terminology list that is relevant to this
inference. [style name] indicate the one-word name for the
text style we are adapting to. The naming of style domains are
less signifcant for finetuning.

score in the two tested domains. This is potentially 775

because the query input in template (I) is closer 776

to the end, while in the second template there are 777

many examples separating the query input and 778

the expected generation output. The phrasing of 779

the text style transfer task in prompt (I) is also 780

more ideal than the simplified version in template 781

(III) and better describes the task. Noticeably, 782

template (III), though simple and concise, also 783

has consistently high style accuracy scores in the 784

tested domains. 785

786

Terminology RAG prompts: 787

We retrieved terminology and name pair lists for 788

each domain to enhance TST performances, by 789

calling the LLM twice for each instance in the 790

synthetic parallel corpus. The prompts we used are 791

shown in Table 7. 792

B Hyperparameters and experiment 793

configurations 794

LoRA finetuning hyperparameters: 795

We set the learning rate to 2e-4, rank for the 796

low-rank approximation is set to 512, the scaling 797
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Template IRS domain Literary domain

BLEU Acc. BLEU Acc.

Baseline 22.53 0.391 21.90 0.172
Template I 48.89 0.826 41.42 0.721
Template II 45.40 0.542 38.29 0.563
Template III 46.28 0.781 37.71 0.794

Table 6: BLEU and acc. score across IRS and Liter-
ary domains for three potential templates. Template (I)
has consistently higher BLEU score compared to tem-
plate (II) and (III), indicating superior ability in content-
preservation. Both Template (I) and (III) have stablly
high style classification accuracy, indicating robust abil-
ity in transferring to target style. In general, the effect
of phrasing in prompt templates on TST performance is
relatively mild, with template (I) being the most ideal
template amid the tested three.

Table 7: Prompts for terminology RAG

Prompt
type

Prompt Text

First round Identify terminologies or character names
in the sentence and return in comma sepa-
rated format, without any additional expla-
nation. Sentence: [source-side sentence].
Terminologies and names:

Second
round

Find the counterpart of the word [source-
side retrieved word] in the following sen-
tence and return a single word, without any
additional explanation. Sentence: [target-
side sentence]:

Prompts for terminology RAG. The first prompt retrieves a
list of terminologies and names from the source side sentence
of each parallel instance, and for each of these retrieved words,
the second prompt retrieves its counterpart in the correspond-
ing target side sentence.

factor is set to 256, and we use float16 data type.798

A dropout rate of 0.05 is applied. We save and799

evaluate the model every 2000 steps.800

801

Marian Configurations:802

We used Marian for the Neural Machine Trans-803

lation model pairs in the round-trip translation804

system. In our system we used the Transformer805

architecture with R2L Reranking, with learning806

rate 0.0001, 49500 BPE operations, and step size807

20000.808
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