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ABSTRACT

This paper tackles the critical issue of constructing multi-modal trackers by effec-
tively adapting the extensive knowledge of pre-trained RGB trackers to auxiliary
modalities. To address the challenges, we propose a novel modality sensitivity-
aware tuning framework, namely MST, which delicately models the learning pro-
cess via adaptive tuning of model weights by inherent modality characteristics.
Specifically, we first investigate the parameter modality-sensitivity as a crite-
rion for measuring a precise element-wise essentiality for multi-modal adapta-
tion. Then, in the tuning phase, we further leverage such sensitivity to bolster the
stability and coherence of multi-modal representations, thereby enhancing gener-
alization capabilities. Extensive experiments showcase the effectiveness of the
proposed method, surpassing current state-of-the-art techniques across various
multi-modal tracking scenarios and demonstrating remarkable performance even
in extreme conditions. The source code will be publicly available.

1 INTRODUCTION

Object tracking, a foundation task of visual perception, has seen significant advancements over the
past decades (Hong et al., 2024; Xie et al., 2024; Zheng et al., 2024; Cai et al., 2024). Despite the
promising results, RGB-based trackers often struggle with some complex and degraded conditions,
such as extreme illumination, motion blur, and occlusions. Therefore, multi-modal tracking with
more comprehensive information (e.g., event, depth, thermal) has garnered growing interest. With
the popularity of the data-driven methods in the object tracking community, both data scale and
model size have got huge explosions (Ye et al., 2022; Lin et al., 2022; Chen et al., 2023). There
is a prevailing paradigm that explores pre-trained trackers on large-scale RGB-based datasets and
adapts them to diverse auxiliary modalities, a process known as cross-modal fine-tuning or transfer
learning, to enhance performance and accelerate convergence.

Figure 1: The training and testing performance
on the LasHeR dataset over the training phase,
between our method and existing FFT and PEFT
methods. Our method effectively mitigates the
ill-fitting problem, and enhances the stability and
generalization of the multi-modal tracker.

Some existing approaches follow the full fine-
tuning (FFT) paradigm (Tang et al., 2022; Wang
et al., 2023; Zhu et al., 2023c), where the mod-
els are initialized with pretrained weights and
are tuned by elaborately designed task-specific
objectives. This type of method investigates
cross-modal alignment to enhance the connec-
tion among modalities and obtain compact multi-
modal representations. Nevertheless, due to the
significant distribution gap and limited scale of
auxiliary modalities, they are intractable to retain
the pre-trained knowledge in the transfer phase
and tend to induce catastrophic forgetting and
over-fitting. In contrast to full fine-tuning, re-
cent research has shifted toward parameter effi-
cient fine-tuning (PEFT) (Jia et al., 2022; Chen
et al., 2022; Lian et al., 2022). The core princi-
ple of PEFT is to keep the majority of pre-trained
parameters frozen, updating or introducing only a small fraction of task-specific parameters to pre-
serve pretrained prior knowledge. Several methods fall under this umbrella (Yang et al., 2022;
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Zhu et al., 2023a; Hou et al., 2024), including prompt tuning, visual adapter, etc., aiming at di-
rectly shifting and scaling to modulate the pre-trained patterns. Prompt tuning adapts the features of
pre-trained vision transformers by introducing trainable auxiliary-modal tokens into one or more at-
tention layers. Visual adapters insert some lightweight, nonlinear adapters to adjust for cross-modal
distribution shifts. While effective and powerful, PEFT methods impose strong constraints on the
primary model weight, resulting in a limited capacity for handling the vast distribution drift caused
by different modalities.

This work seeks to refine the fine-tuning process to mitigate the ill-fitting issue (over- or under-
fitting) for cross-modal tracking. To this end, we propose a modality sensitivity-aware framework
that minimizes empirical risk while modulating parameter updates, thereby smoothing the adap-
tation process to jointly optimize both modal-specific and modal-agnostic general representations.
Specifically, we optimize the learning dynamics of cross-modal trackers from the following two
key perspectives. (a) Modeling Parameter-wise Modality Sensitivity. To learn robust representation
from multi-modal data, we first leverage the training objective as a criterion to reflect the influence
of parameters’ variations, facing the multi-modal data, which is so-called multi-modal sensitivity.
Moreover, we approximate such multi-modal sensitivity via the off-the-shelf gradient matrix from
the training process. (b) Modality Sensitivity-Aware Adaptive Tuning. With the aforementioned
modality sensitivity, we then construct an adaptive tuning scheme. It preserves the prior knowledge
from pretrained model via adaptively adjusting the learning step according to the precise modality
sensitivity. By incorporating such a modality sensitivity-aware regularization of parameter learning
dynamics, our approach effectively preserves pre-trained knowledge and facilitates seamless trans-
fer to multi-modal tracking tasks, which can continuously enhance the model in the training phase
(please refer to Fig. 1).

Our method strategically guides the cross-modal fine-tuning process to optimize downstream tasks
while preserving the generalization capacity of the pre-trained model. Extensive experimental re-
sults showcase our method achieves new state-of-the-art results on all benchmarks. Comprehensive
ablation studies demonstrate the effectiveness of the self-regularized fine-tuning concept.

In summary, the main contributions of this paper are:

• we revisit the ill-fitting issue of cross-modal tracking for adapting foundational models and
propose a self-regularized fine-tuning framework to indicate better generalization, which is
in contrast to the existing FFT and PEFT methods;

• we propose to exploit the parameter modality sensitivity to regularize the parameter updat-
ing and suggest a self-ensemble weight strategy over iterations to enhance the stability and
consistency of multi-modal representations, thereby facilitating the generalization; and

• we conduct comprehensive experiments covering three multi-modal tracking tasks and five
datasets and push cross-modal tracking accuracy to new levels.

2 RELATED WORK

Multi-Modal Tracking. Object tracking is one of the cornerstone tasks in computer vision, involv-
ing predicting the position and scale of an object in subsequent frames given an arbitrary object in
the initial frame. In recent years, due to the unreliability of RGB-only data in challenging scenar-
ios, increasing studies are expected to integrate auxiliary modalities (e.g., event, depth, thermal) to
enhance tracking performance. For example, (Zhang et al., 2021a; 2023; 2024a) combine RGB and
event streams to predict objects in low-dynamic scenarios. (Mueller et al., 2017; Liu et al., 2018;
Qian et al., 2021) incorporate additional depth maps for tracking in occlusion environments. Simi-
larly, (Wang et al., 2020; Zhang et al., 2021b; Hui et al., 2023) fuse thermal infrared data to obtain
reliable appearance and motion cues. In summary, these delicate and impressive methods focus on
effective feature interaction and fusion across multiple modalities (Tang et al., 2022; Zhang et al.,
2023; Wang et al., 2023; Zhang et al., 2024a). With the emergence of large-scale datasets and univer-
sal backbones (e.g., vision transformer), pre-trained trackers (Ye et al., 2022; Wu et al., 2023) have
demonstrated remarkable generalization capabilities. As a result, there is a growing tendency to
explore pre-trained models in multiple auxiliary modalities to further enhance performance. In this
work, we focus on optimizing the use of pre-trained knowledge for efficient cross-modal transfer.
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Cross-modal Transfer Learning. To facilitate training multi-modal trackers with the pre-trained
ones, two primary types of efforts have recently been made. Some works follow the full fine-tuning
(FFT) paradigm (Tang et al., 2022; Wang et al., 2023; Zhu et al., 2023c), which draw upon the
pre-trained models for initialization and update it by elaborately designing cross-modal alignment
objectives. These methods desire a shared/compact feature space to inherit the generalization capa-
bility of the original model, by aligning auxiliary modal with RGB. Although effective, one primary
drawback may be innate to this paradigm: the overfitting is significant due to the contradiction be-
tween the paucity of large-scale auxiliary datasets and the huge appetites of the cross-modal transfer
process. Profited by the affluent experience of natural language processing (NLP) and computer
vision (CV) communities (e.g., prompt tuning (Jia et al., 2022), visual adapter (Chen et al., 2022),
and LoRA (Hu et al., 2021), etc), some parameter efficient fine-tuning (PEFT) methods (Yang et al.,
2022; Zhu et al., 2023a; Cao et al., 2024; Hou et al., 2024) have been proposed. These techniques
involve tuning only a minimal number of additional parameters for downstream tasks while keeping
the pre-trained weights frozen. For instance, ViPT modulates the RGB features by introducing train-
able auxiliary-modal tokens into multiple attention layers. SDSTrack inserts a lightweight module
with a bottleneck architecture between attention layers to address cross-modal distribution shifts.
Despite their effectiveness, these modulated models tend to overfit since the additional parameters
are optimized from scratch with respect to the modal-specific objective. Furthermore, these PEFT
methods impose strong constraints on the pre-trained weights, often incurring insufficient transfer
learning. Thus, how to efficiently fine-tune the RGB-based pre-trained models for target modalities
remains a major challenge.

3 PROPOSED METHOD

Learning robust and effective multi-modal latent representations is crucial for adapting RGB-based
neural models to multi-modal tasks. To fully boost the capabilities of multi-modal object tracking,
we re-examine the fundamentals of multi-modal adaptation and object tracking. For clarity, we first
illustrate the architectural designs, which mainly consist of cascaded self-attention layers in Sec. 3.1.
We then investigate to quantify the crucial modality sensitivity in Sec. 3.2. Finally, in Sec. 3.3, such
sensitivity is designed to integrate into the tuning phase of multi-modal tracking, which dynamically
panels the parameter-wise updation with an accumulated scheme.

3.1 OVERVIEW OF NETWORK ARCHITECTURE

Tuned parameters

RGB tokens Auxiliary tokens

Frozen parameters

ViT Block ViT Block

Fusion Stage 1

ViT Block ViT Block

Fusion Stage 4

Box Head

… …

RGB Auxiliary
template search

Embedding Embedding

Self-regularization

template search

Summation

Figure 2: Overview of Architecture.

Fig. 2 depicts the overall architecture of our method. The
RGB and auxiliary inputs are first fed to the embedding layer
to generate the corresponding tokens. Then the symmetric
transformer backbones (ViT) are used for feature extraction
and interaction. Without involving customized multi-modal
fusion modules, we reuse part of the ViT blocks to implement
multi-stage fusion among multi-modal tokens. To retain the
modal-agnostic object association knowledge, we utilize and
freeze the pre-trained box head. Last, we take the fusion fea-
tures as the input for the head. In contrast to existing full
fine-tuning and the parameter-efficient fine-tuning paradigms,
which usually result in over-fitting and under-fitting, respec-
tively, we seek to refine the fine-tuning process to address the
issue of ill-fitting. To this end, we propose a self-regularizing
method that guides the training process to efficiently transfer
the generalization of RGB-based pre-trained trackers to auxil-
iary modalities and fuses multi-modal features effectively.

Denote by fθ(·) a multi-modal tracker, where θ = {θ1, · · · ,θN} the corresponding parame-
ters of the multi-modal tracker with a total number of N parameter. Consider a training set
D = {(xi, yi) |i = 1, · · · , M} with M total samples, where xi is a multi-modal data pair, and
yi is the corresponding bounding-box label. Multi-modal tracking aims to learn a well-generalized
model by fine-tuning the θ. The vanilla fine-tuning strategy first applies the pre-trained parameter
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to initialize it and update it based on the objective:

θ(i+1) = θ(i) − α∇θ(i)L
(
θ(i);D

)
s.t. θ(0) := θ(p), (1)

where L(·) is the loss function, α is the learning rate, i indicates the iteration step, and θ(p) represents
weights of the pre-trained neural network.

3.2 MODELING MODALITY SENSITIVITY FOR MULTI-MODAL TRACKING

Figure 3: The parameter-wise sensitivity across
different auxiliary modalities. For a given pa-
rameter, similarities occur within the modality
and differences across modalities during training.
Event Branch#1 and #2 correspond to the VisEv-
ent and CoeSot datasets, respectively.

To learn a robust and effective multi-modal
tracker from pre-trained weights, the critical is-
sue lies in the correct modeling of gradient de-
scent direction. Moreover, by assuming that a ro-
bust and effective neural network should equiv-
alently and effectively leverage all parameters,
in this section, we first investigate the parameter
sensitivity for the multi-modal task, which quan-
tifies the contributions of each parameter for neu-
ral network performance.

To measure the algorithm’s performance, we uti-
lize the value of learning objectives, which is eas-
ily derived. Thus, the influence of parameters’
variations can be quantified by the following gen-
eral formulation,
Sθ(ϵ) = L (θ;D)− L (θ′;D | θ′ = θ + ϵ) ,

(2)
where L(·) : Rn → R1 indicates the inference process, which maps the network weights with
training samples to the value of training objective; θ ∈ Rn indicates the weights of pretrained
model; θ′ represents the corresponding weights of θ perturbed by a small noise ϵ ∈ Rn; and
S(·) : Rn → R1 represents the neural network sensitive function, which shows the variations of
neural network performance given the parameter perturbation. Through expanding L (θ′;D) as the
Taylor series over θ and omitting the high-order terms, we can derive S(ϵ) ≈ ∂L

∂θ ϵ
T .

As the aforementioned, an effective method should ensure that the network does not focus on specific
parameters, and different perturbations should result in similar responses. We then start to find an
optimal weight θ∗ by

θ∗ = argmin
ϵ,ϵ′∼Pn

∥Sθ(ϵ)− Sθ(ϵ
′)∥2 , (3)

where ϵ and ϵ′ are two different noise samples from the same distribution Pn. Moreover, under the
assumption that the total energy of gradient matrix is fixed, i.e., ∥∂L

∂θ ∥2 = C (C denotes a scalar
constant), we can easily derive a closed-form solution of equation 3, that all elements from gradient
vector ∂L

∂θ have the same magnitude, i.e., ∂L
∂θn

= ± C√
N
, n = 1, · · · , N .

We bring the general formulation of equation 2 to the dynamic learning process of equation 1. Here,
we adjust the parameter θ via the gradient ∇θL (θ;D)1 instead of previously mentioned ϵ. Thus, we
can easily derive S(∇θL (θ;D)) = ∂L

∂θ [∇θL (θ;D)]
T
=

〈
∂L
∂θ ,

∂L
∂θ

〉
, where ⟨·, ·⟩ indicates the inner

product of two vectors. Note that aforementioned sensitivity S(∇θL (θ;D)) is designed for analysis
the adjustment for all the parameters in θ. To delicately investigate and regularize the gradient, we
further extend aforementioned sensitivity into a parameter-wise formulation as sn = ∂L

∂θn

2
, where

sn denote the sensitivity of the nth parameter.

Based on the above analysis, we can summarize that for a robust and effective multi-modal tracker,
the gradient matrix should be uniformly distributed. It indicates neural networks equivalently lever-
age different parameters. To utilize such characteristics to boost the training of cross-modal trackers,
we illustrate the method that integrates the parameter-wise sensitivity sn into the learning process
of cross-modal trackers in the next section.

1Both terms ∇θL (θ;D) and ∂L
∂θ

represent the same meaning of gradients from the loss function L on the
parameter θ. However, they are introduced for different utilization, i.e., ∇θL (θ;D) for network optimization
and ∂L

∂θ
for sensitivity analysis.
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3.3 MODALITY SENSITIVITY-AWARE TUNING OF MULTI-MODAL TRACKERS

We regularize the learning process by previously discussed modality-sensitivity to derive modality-
robust trackers. However, the established formulations are based on the gradient from the whole
dataset, i.e., gradient descent with full dataset D. It makes a naive implementation to be computa-
tionally expansive and even intractable. Thus, in this section, we further explore the temporal cor-
relation of the learning dynamics to naturally combine the sensitivity-aware tuning into the learning
process of multi-modal trackers.

Algorithm 1: Modality Sensitivity-
aware Tuning

Input: Pre-trained model θ(0),
initialized momentum ρ(0),
training set D

Output: Optimal parameters θ∗

for i ∈ {1, . . . ,K} do
Get the i-th batch data Mi from D;
Compute loss L and gradients G(i);
Update sensitivity by
S(i) = β

〈
∂L

∂θ(i) ,
∂L

∂θ(i)

〉
;

Momentum update by Eq. (4);
Parameter update via Eq. (5);

end

Since the full-dataset gradient is an expectation over
D, we establish a memory-capable gradient to further
adapt the introduced modality sensitivity tuning strat-
egy. Specifically, we deploy a momentum-driven gra-
dient to modulate the parameter update, where the sen-
sitivity serves as the momentum coefficient. Formally,
we compute the gradient w.r.t. G(i) := ∂L (θ;Mi) /∂θ

and the sensitivity s
(i)
n , where the i-th iteration of pa-

rameter update is illustrated:

ρ(i+1) = S(i) ⊙ ρ(i) + (1− S(i))⊙G(i) (4)

θ(i+1) = θ(i) − αρ(i+1), (5)
where Mi represents a mini-batch, ρ(i) denotes the mo-
mentum gradient with our modality sensitivity (ρ(0) =
0), S(i) indicates the previously mentioned sensitivity,

shown in Algorithm 1 with β for a re-scaling factor, ⊙ for Hadamard product, and α is the learning
rate. To adapt to the momentum updates (Sutskever et al., 2013), we rank the sensitivity metrics and
apply a linear mapping to a continuous range [a, b], as the subset of [0, 1]. (Please refer to Sec 4.3
for more analysis). The momentum update in Eq. (4) suggests that more sensitive parameters
should retain their previous states to a greater extent, to avoid oscillations or over-adjustments. This
manner allows θ to evolve more smoothly than its vanilla counterpart. As a result, the tracker for
the different samples is kept as consistent as possible despite its evolution.

Remark. As analyzed, most gradient-aware sensitivity methods, such as (Zhang et al., 2024b; He
et al., 2023; Fu et al., 2023), select the most sensitive parameters for sparse fine-tuning. In con-
trast, our method prioritizes penalizing these sensitive parameters. Furthermore, we avoid masking
to forcefully restrict the parameter solution space. For temporal-aware weight aggregation, some
methods ensemble pre-trained or cross-epoch weights (Wortsman et al., 2022; Khattak et al., 2023).
Instead, our approach applies iteration-level parameter modulation. We also discuss these potentially
viable tuning methods in the Appendix A.3.

3.4 LEARNING OBJECTIVES

The overall loss function of ours is the same as the foundation model without extra adjusting, shown
as:

L = Lcls + λiou Liou + λl1L1, (6)

where Lcls is the weighted focal loss for classification, l1 loss L1 and GIoU loss Liou are employed
for bounding box regression, λiou = 2 and λl1 = 5 are the regularization factors, and all the
corresponding settings are the same as (Ye et al., 2022).

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Datasets and Metrics. To verify the effectiveness and generalization of the proposed method,
we conduct comprehensive experiments on multiple multi-modal benchmark datasets. Our tracker
is evaluated on FE108 (Zhang et al., 2021a), VisEvent (Wang et al., 2023) and CoeSot (Tang
et al., 2022) for RGB-Event tracking, DepthTrack (Yan et al., 2021b) for RGB-Depth tracking,
and LasHeR (Li et al., 2020) for RGB-Thermal tracking. For object tracking, we utilize four widely

5
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(c) Quantitative results on LasHeR dataset(b) Quantitative results on DepthTrack dataset(a) Quantitative results on CoeSot dataset

Ours-OSTrack SDSTrack-OSTrackSDSTrack-DropTrackOurs-DropTrack ViPT-OSTrackViPT-DropTrack

Figure 4: Visualization of the precision and success plots of the CoeSot, DepthTrack, and LasHeR
datasets. We also refer readers to the Appendix A.3 for more comprehensive evaluations. Zoom in
to see details.

Ours-DropTrack Ours-OSTrack SDSTrack-DropTrack SDSTrack-OSTrack ViPT-DropTrack ViPT-OSTrackGT

Figure 5: Visual comparisons of the tracking performance of different methods on the (Left) CoeSot,
(Middle) DepthTrack and (Right) LasHeR datasets.

used metrics for comparisons, i.e., representative success rate (RSR), representative precision rate
(RPR), and overlap precision (OP) with the threshold equal to 0.5 (OP0.5) and 0.75 (OP0.75). For
DepthTrack benchmark, we use precision (Pr) and recall (Re) to measure the performance.
F-score, calculated by F = 2RePr

Re+Pr , is its primary measure.

Pre-trained Models and Baselines. In this paper, we choose two classic one-stream RGB-based
trackers, e.g., OSTrack (Ye et al., 2022) and DropTrack (Wu et al., 2023), as the pre-trained models.
Notably, these two trackers adopt the ViT-B/16 (Dosovitskiy et al., 2020) as the backbone. Corre-
sponding to the pre-trained settings, we present two variants with different input resolution: OSTrack
(Template: 128×128, Search: 256×256); DropTrack (Template: 192×192, Search: 384×384). To
objectively and sufficiently validate the effectiveness of our method, we conduct the following exper-
iments. First, we construct several top-notch RGB-based trackers as single-modal baselines, which
follow the full fine-tuning fashion. Then, we compare our method with a variety of cross-modal
transfer protocols, including the full fine-tuning and the parameter-efficient fine-tuning paradigms.
Moreover, we extend the current state-of-the-art trackers to their DropTrack versions. Notably, the
methods with pre-trained OSTrack and DropTrack are compared separately.

Training Details. We follow the data processing of SDSTrack (Hou et al., 2024) in all the datasets.
The models are trained on 8 NVIDIA 3090Ti GPUs with a batch size of 192 and 30 epochs. Each
epoch involves sampling 80k samples. We utilize the AdamW optimizer with a learning rate set to
1× 10−4 and a weight decay set to 10−4.

4.2 COMPARISON WITH STATE-OF-THE-ART METHODS

Extensive comparative analyses are presented in Tab. 1 and Tab. 2, where our method demonstrates
excellent performance on all multi-modal benchmarks after applying the proposed techniques dur-
ing training. The corresponding precision and success plots are shown in Fig. 4. Evidently, we can
observe that both the RGB-only and the cross-modal strategies are becoming increasingly profitable
with pre-trained models. In particular, cross-modal approaches exhibit substantial performance
gains, highlighting the complementarity between RGB and auxiliary data under complex condi-
tions. Importantly, the notable improvement of our method suggests the significance and necessity
of pursuing suitable cross-domain generalization methods for multi-modal object tracking.
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Table 1: Quantitative comparison on the three RGB-Event dataset (FE108, VisEvent and CoeSot).
For all metrics, the larger, the better. The best results are marked with “bold”, and the second best
results are marked with “underline”. “†” indicates our implementation.

Method Base Model FE108 VisEvent CoeSot
RSR OP0.5 OP0.75 RPR RSR OP0.5 OP0.75 RPR RSR OP0.5 OP0.75 RPR

Image-based Methods (Only-RGB)
DiMP (Bhat et al., 2019) ICCV’19 ResNet 48.5 60.2 22.3 72.6 50.3 60.4 42.2 66.3 57.6 66.9 48.9 65.6

PrDiMP (Danelljan et al., 2020) CVPR’20 ResNet 47.5 57.9 20.6 72.5 46.8 56.1 39.1 60.7 54.8 62.4 45.8 59.4
TransT (Chen et al., 2021) CVPR’21 ResNet 47.9 57.5 21.6 72.8 45.1 53.9 38.9 58.6 59.1 68.4 55.8 67.8
Stark-S (Yan et al., 2021a) ICCV’21 ResNet 50.6 61.0 23.9 76.0 41.3 48.8 34.5 53.7 55.7 63.9 50.5 62.9
ToMP (Mayer et al., 2022) CVPR’22 ResNet 50.1 61.2 21.8 76.1 38.3 45.7 31.3 50.4 57.9 68.1 51.6 66.2
OSTrack (Ye et al., 2022) ECCV’22 OSTrack 48.5 59.8 26.3 70.7 55.9 66.4 52.7 69.5 64.3 73.2 64.4 73.3

DropTrack (Wu et al., 2023) CVPR’23 DropTrack 52.0 65.1 29.7 74.9 57.1 68.1 54.1 71.3 66.1 75.3 66.2 75.5

Cross-modal Transfer Learning
FENet (Zhang et al., 2021a) ICCV’21 DiMP 61.6 78.7 34.7 91.0 51.3 61.6 42.2 67.9 57.8 68.3 55.5 69.8
AFNet (Zhang et al., 2023) CVPR’23 DiMP 61.5 80.3 31.1 90.9 51.1 61.3 42.5 67.5 59.6 69.7 54.3 69.6

CEUTrack (Tang et al., 2022) - OSTrack 55.6 73.2 30.4 84.5 56.2 66.8 53.2 69.9 61.9 72.4 61.3 72.8
ProTrack (Yang et al., 2022) MM’22 OSTrack 58.0 74.6 30.0 84.5 57.1 67.6 53.2 71.6 66.1 74.6 66.3 74.9
ViPT (Zhu et al., 2023a) CVPR’23 OSTrack 64.9 84.2 39.9 92.4 59.5 70.5 57.6 73.8 67.7 76.8 68.5 77.0

SDSTrack (Hou et al., 2024) CVPR’24 OSTrack 60.0 77.1 34.4 86.1 59.8 71.0 57.9 74.2 67.8 77.0 68.5 77.3
ViPT (Zhu et al., 2023a) CVPR’23 DropTrack 65.1 84.0 41.7 91.9 60.4 72.1 57.5 75.0 68.5 77.2 68.7 77.8

SDSTrack (Hou et al., 2024) CVPR’24 DropTrack 65.6 84.5 42.2 93.4 61.5 73.4 59.1 76.4 68.9 78.1 69.4 78.6

Ours† OSTrack 67.4 87.1 44.2 95.5 62.1 73.8 61.0 76.5 69.9 79.0 71.2 79.2
Improvement OSTrack +2.5 +2.9 +4.3 +3.1 +2.3 +2.8 +3.1 +2.3 +2.1 +2.0 +2.7 +1.9

Ours† DropTrack 68.7 89.2 47.1 96.0 63.2 75.4 61.4 78.1 71.3 80.9 72.4 81.1
Improvement DropTrack +3.1 +4.7 +4.9 +2.6 +1.7 +2.0 +2.3 +1.7 +2.4 +2.8 +3.0 +2.5

Results on RGB-Event. As illustrated in Tab. 1, our method surpasses all state-of-the-art trackers
across all RGB-Event datasets, achieving the highest precision of 96.0%, 78.1% and 81.1% on the
FE108, VisEvent, and CoeSot datasets, respectively. Notably, on FE108, our method exceeds the
previous top results by a large extent: 3.1% in RSR, 4.7% in OP0.5, 4.9% in OP0.75, and 2.6% in
RPR. full fine-tuning approaches such as CEUTrack fall short in limited improvement. Contrarily,
parameter efficient fine-tuning paradigms like ViPT and SDSTrack attain remarkably competitive
results. However, these methods encounter performance bottlenecks on FE108, which relies on
event data and includes extensive low-light scenes, likely due to architectural modifications that
adversely affect the cross-modal transfer potentiality.

Results on RGB-Depth. As shown in the left of Tab. 2, our method outperforms all previous
state-of-the-art trackers on the DepthTrack, obtaining the top performance of 75.2% and 62.7% in
precision and success, significantly exceeding prior best results. Using the pre-trained OSTrack, our
method yields substantial improvements: 4.2% in Pr, 4.1% in Re, and 4.1% in F-score. Similarly,
based on the pre-trained DropTrack, our method shows significant gains: 4.3% in Pr, 3.9% in Re,
and 4.1% in F-score.

Success Rate Precision Rate

Figure 6: Attribute analysis on LasHeR.

Results on RGB-Thermal. As
listed in right of Tab. 2, our method
surpasses all previous state-of-the-
art trackers on the LasHeR, achiev-
ing the new state-of-the-art perfor-
mance of 73.0% and 58.8% in pre-
cision and success, which exceeds
the SDSTrack by a significant mar-
gin, i.e., 4.1% in RSR, 4.9% in
OP0.5, 4.8% in OP0.75, and 4.5%
in RPR. Importantly, our method
further unleashes the potential of
the pre-training model with more
knowledge (i.e., DropTrack), and yields a greater performance gain. We reason such an effect may
result from promoting thoroughly cross-modal transfer learning.
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Table 2: Quantitative comparison on the two reflective RGB-Depth and RGB-Thermal datasets
(DepthTrack and LasHeR). The best results are marked with “bold”, and the second/ best results
are marked with “underline”.“†” indicates our implementation.

Method Base Model DepthTrack LasHeR
Pr Re F-score RSR OP0.5 OP0.75 RPR

Image-based Methods (Only-RGB)
DiMP (Bhat et al., 2019) ICCV’19 ResNet 46.3 42.8 44.5 42.8 51.3 30.3 53.8

Stark-S (Yan et al., 2021a) ICCV’21 ResNet 39.3 37.6 38.4 37.7 44.1 23.6 45.7
OSTrack (Ye et al., 2022) ECCV’22 OSTrack 53.6 52.2 52.9 45.7 54.6 36.7 56.2

DropTrack (Wu et al., 2023) CVPR’23 DropTrack 56.4 55.8 56.1 47.7 57.7 38.4 58.8

Cross-modal Transfer Learning
SPT (Zhu et al., 2023b) AAAI’23 Stark-S 52.7 54.9 53.8 39.1 46.1 22.6 47.4

APFNet (Xiao et al., 2022) AAAI’22 Stark-S 51.6 51.4 51.5 41.3 48.7 27.1 50.4
ProTrack (Yang et al., 2022) MM’22 OSTrack 58.3 57.3 57.8 45.9 54.3 36.3 55.9
ViPT (Zhu et al., 2023a) CVPR’23 OSTrack 59.2 59.6 59.4 52.5 63.1 43.2 64.5

SDSTrack (Hou et al., 2024) CVPR’24 OSTrack 61.9 60.9 61.4 53.1 64.5 43.6 65.9
ViPT (Zhu et al., 2023a) CVPR’23 DropTrack 62.6 61.6 62.1 52.5 63.7 42.9 65.0

SDSTrack (Hou et al., 2024) CVPR’24 DropTrack 63.5 62.4 62.9 54.7 66.6 45.4 68.5

Ours† OSTrack 66.1 65.0 65.5 56.3 68.0 48.5 69.5
Improvement OSTrack +4.2 +4.1 +4.1 +3.2 +3.5 +4.9 +3.6

Ours† DropTrack 67.8 66.3 67.0 58.8 71.5 50.2 73.0
Improvement DropTrack +4.3 +3.9 +4.1 +4.1 +4.9 +4.8 +4.5

More Comparisons and Analyses. In addition, we perform analysis of various challenging at-
tributes, such as illumination variation, motion blur, out-of-view, etc. As shown in Fig. 6, it can be
seen that we also achieve the best tracking performance in these extreme scenarios. For example,
the proposed regularization achieves 7.2% precision and 5.3% success improvements under the low
illumination attribute. We also refer readers to Appendix A.2 for a more detailed attribute analysis.

4.3 ABLATION STUDY AND ANALYSIS

Effectiveness of Proposed Components. We conduct comprehensive experiments to better un-
derstand the relationship and effectiveness of the two proposed regularization technique, as shown
in Tab 3. Comparing (a) and (b) demonstrats that fine-tuning significantly enhances the domain
adaptation ability. Further, to mitigate the over-fitting issue in fine-tuning, we propose two regular-
ization technologies. As shown in Tab 3, comparisons between (b) and (c) (or (d) and (e)) figure
out that the sensitivity-aware scheme significantly improves the RSR by 2.1% and RPR by 3.0%
on the LasHeR dataset, highlighting its effectiveness. Moreover, comparing (b) and (d) (or (c) and
(e)) shows that interpolating parameter dynamics optimized with different data leads to substantial
improvements. Notably, it can be seen that applying both techniques simultaneously yields much
more significant improvements than using either method alone. These observations confirm that the
two techniques are complementary. Although the improvement from sensitivity regularization alone
is not substantial on the FE108, it still contributes to the method’s leading performance.

Table 3: Ablative study results of the proposed key components. Note that all methods are based on
the pre-trained OSTrack. “F-Tune.” refers to fully fine-tuning the model, where we only re-train the
backbone; “Param.Sens.” represents constraining parameter updates based on their sensitivities;
and “Momen.” indicates to interpolate parameters from successive iterations. (a) denotes the zero-
shot performance. (b) serves as our baselines,

Exp. F-Tune. Param. Sens. Momen. FE108 DepthTrack LasHeR
RSR OP0.5 OP0.75 RPR Pr Re F-score RSR OP0.5 OP0.75 RPR

(a) 48.1 59.5 16.6 74.2 38.2 36.0 37.1 36.7 41.2 26.8 42.9
(b) ✓ 65.2 84.3 41.9 93.0 61.7 61.5 61.6 53.2 64.1 45.3 65.4
(c) ✓ ✓ 66.5 85.8 43.7 94.1 63.4 62.5 62.9 55.3 67.0 47.2 68.4
(d) ✓ ✓ 66.6 85.3 42.9 94.3 64.1 63.1 63.6 55.0 66.3 46.9 67.9
(e) ✓ ✓ ✓ 67.4 87.1 44.2 95.5 66.1 65.0 65.5 56.3 68.0 48.5 69.5

Effectiveness on Single-modal Methods. This work aims to mitigate the overfitting issue when
adapting the foundation models to downstream tasks. A key question is how the proposed regu-
larization methods perform on single-modal data. To investigate this, we conduct ablation studies
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highlighting their impact on different modalities. As shown in Tab 4, both RGB and Auxiliary
modalities benefit significantly from the proposed regularization techniques. For example, the RGB
and Depth gain 5.1% F-score improvements on the DepthTrack dataset. Notably, despite huge distri-
bution differences, our method significantly and consistently enhances the adaptability of Auxiliary
modal across multiple tasks. These findings underscore the importance and necessity of imposing
constraints when transferring the pre-trained trackers to downstream data.

Table 4: Ablation results of the proposed regularization fine-tuning method on single-modal data.
“RGB/Auxiliary” refers to the fine-tuning fashion. Note that all methods are built upon the pre-
trained OSTrack.

Exp. CoeSot DepthTrack LasHeR
RSR OP0.5 OP0.75 RPR Pr Re F-score RSR OP0.5 OP0.75 RPR

RGB 64.3 73.2 64.4 73.3 53.9 53.0 53.4 47.2 56.4 37.6 58.0
RGB+Ours 68.0 76.8 69.2 76.9 58.7 58.4 58.5 50.3 60.2 41.2 62.0

Improvement +3.7 +3.6 +4.8 +3.6 +4.8 +5.4 +5.1 +3.1 +3.8 +3.6 +4.0
Auxiliary 57.7 67.6 52.8 67.2 49.1 47.4 48.2 42.7 51.8 29.3 53.1

Auxiliary+Ours 60.3 70.8 55.2 70.4 52.6 51.2 51.9 45.8 55.2 32.6 57.0
Improvement +2.6 +3.2 +2.4 +3.2 +3.5 +3.8 +3.7 +3.1 +3.4 +2.9 +3.9

Compatibility with PEFT Methods. Existing PEFT methods (Yang et al., 2022; Zhu et al., 2023a;
Hou et al., 2024) typically freeze pre-trained parameters and update only a minimal number of ad-
ditional parameters, which may limit sufficient optimization. To assess the compatibility of our
proposed regularization techniques with existing PEFT methods, we unfreeze their backbone pa-
rameters and retrain with regularization applied (detailes in Appendix A.1). As shown in Tab 5, for
ViPT, our method yields notable gains on LasHeR: 2.4% in RSR and 3.3% in RPR. These results af-
firm that overly constraining pre-trained models limit their transfer potential. However, our method
negatively impacts the performance of SDSTrack. This occurs because our method optimizes the
pre-trained parameters, whereas SDSTrack introduces modal-specific adapters learned from scratch.

Table 5: Compatibility study results of the proposed regularization fine-tuning method on
ViPT and SDSTrack, using the pre-trained OSTrack weights. “F-Tune.” denotes full fine-
tuning of the backbone, while “Self-Reg.” represents the self-regularization scheme.

Exp. VisEvent DepthTrack LasHeR
RSR OP0.5 OP0.75 RPR Pr Re F-score RSR OP0.5 OP0.75 RPR

ViPT 59.5 70.5 57.6 73.8 59.2 59.6 59.4 52.5 63.1 43.2 64.5
ViPT + F-Tune. 57.5 68.4 54.4 72.0 58.2 57.4 57.8 50.9 61.7 41.6 63.2

ViPT + F-Tune. + Self-Reg. 61.4 72.9 59.8 75.8 61.7 61.1 61.4 54.9 66.1 46.2 67.8
SDSTrack 59.8 71.0 57.9 74.2 61.9 60.9 61.4 53.1 64.5 43.6 65.9

SDSTrack + F-Tune. 55.6 66.9 51.2 70.4 57.8 56.4 57.1 50.6 61.7 40.4 63.2
SDSTrack + F-Tune. + Self-Reg. 57.5 68.9 54.9 72.1 59.2 58.0 58.6 52.4 63.7 42.5 65.0

Ours 62.0 73.7 60.9 76.5 66.1 65.0 65.5 56.3 68.0 48.5 69.5

Settings of Momentum Coefficient. In this section, we conduct an experimental evaluation to
assess the impact of varying values of the momentum coefficient. The results are presented in
Tab. 6, where we systematically increase the coefficient from 0.5 to 0.95, while evaluating different
momentum ranges derived from parameter sensitivity mapping. We observe that a moderately large
momentum coefficient (e.g., 0.8) works better than both smaller (e.g., 0.5) and larger values (e.g.,
0.95), suggesting that a relatively slow evolving encoder is key to effectively utilizing a data queue.
When the parameter sensitivity is scaled to an appropriate range (e.g., [0.8, 0.85]), parameter updates
are subject to dual constraints of sensitivity and momentum, thereby enhancing transfer capabilities.

Table 6: Ablation analysis of momentum coefficient on the FE108 dataset. Note that all methods
are based on the pre-trained OSTrack weight. “Mc.” refers to momentum coefficient; Scalar repre-
sents that all parameters employ the same momentum coefficient, while Range [a, b] represents the
momentum coefficients derived from parameter sensitivity mapping.

Mc. 0 0.5 0.6 0.7 0.75 0.8 0.85 0.9 0.95 [0.75, 0.95] [0.8, 0.9] [0.85, 0.9] [0.8, 0.85]

RSR 65.2 65.6 65.7 66.2 66.4 66.6 66.5 66.3 65.8 66.9 67.1 67.1 67.4
RPR 93.2 93.2 93.4 93.8 94.0 94.3 94.4 93.9 93.6 94.8 95.1 95.2 95.5

Observations on Sensitivity Patterns. The sensitivity criterion identifies task-specific key patterns,
highlighting the precedence of pre-trained parameters to downstream tasks. We visualize the sensi-

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

0.5

1.0

0

(a) Event Blocks

D
ep

th

(b) Depth Blocks (c) Thermal Blocks

Channel

Figure 7: Visualization of the parameter sensitivity patterns cross different auxiliary modalities (e.g.,
event, depth, thermal), where the colorbar denotes the sensitivity metric. The upper represents the
pre-trained parameter patterns, while the bottom shows the parameter patterns well-tuned by our
method.
tivity matrices of different auxiliary branches (ViT-B/16) in Fig. 7. We observed notable differences
in sensitivity patterns, indicating a significant modal-aware bias. Additionally, the clustering of
sensitive parameters in certain areas (upper of Fig. 7) indicates an over-reliance on specific param-
eters, hindering the global transfer of the pre-trained model. Following the application of sensitivity
penalties, the patterns (bottom of Fig. 7) become more balanced and distributed, suggesting that
mitigating parameter bias improves the model’s generalization and robustness.

Efficiency of Self-regularization Fine-tuning. We compare the training efficiency of our method
with vanilla fine-tuning. Our method introduces parameter-wise sensitivity quantification and mo-
mentum updates with marginal computational overhead, as sensitivity is derived from the off-the-
shelf gradients. In vanilla fine-tuning, the training speed is 37.5 ms per iteration, while our method
operates at 39.3 ms per iteration, resulting in only a 5.7% increase in computational time.

Computational Cost and Inference Speed. Com-
putational efficiency is a key consideration in object
tracking. We compare the computational complexi-
ties and speeds. Note that the proposed regulariza-
tion techniques are applied solely during training,
imposing no additional computational burden dur-
ing testing. These experiments were run on the
same computer with an Intel(R) Xeon(R) 6456C
CPU, 256 GB RAM, and one NVIDIA 3090Ti
GPU. As shown in Tab. 7, our method enables real-
time tracking at 29.2 frames per second, while deliv-
ering top-tier performance. Integrating our method,
“ViPT+Ours” yields both superior speed and perfor-
mance. Under the DropTrack base model, it still
operates at 48.8 frames per second, maintaining a
respectable speed given its focus on accuracy.

Table 7: Computational complexity and speed
analysis on the LasHeR dataset. The marks
“faster”, “best” and “balance” signify the
most superior speed, performance, and their op-
timal trade-off, respectively.

Method Base Model Param (M) Flops (G) FPS RSR RPR
OSTrack OSTrack 92.1 58.1 98.4 45.7 56.2

DropTrack DropTrack 92.1 130.6 57.6 47.7 58.8
ProTrack OSTrack 92.7 58.4 92.3 45.9 55.9

ViPT OSTrack 92.9 59.9 88.6 52.5 64.5
ViPT DropTrack 92.9 131.9 48.8 52.5 65.0

SDSTrack OSTrack 102.1 108.7 44.6 53.1 65.9
SDSTrack DropTrack 102.1 244.2 26.8 54.7 68.5

Ours OSTrack 202.0 149.0 49.0 55.9 69.2
Ours DropTrack 202.0 335.3 29.2 58.3 72.5

ViPT+Ours OSTrack 92.9 59.9 88.6 54.9 67.8
ViPT+Ours DropTrack 92.9 131.9 48.8 57.1 70.5

5 CONCLUSION

This paper re-examined the critical issues of constructing multi-modal trackers by effectively trans-
ferring the extensive knowledge of pre-trained RGB trackers to auxiliary modalities. To this end, we
introduced a novel modality sensitivity-aware tuning framework, by delicately modulating the learn-
ing process from two key perspectives. First, we leveraged the task objectives to reflect parameter
sensitivity, enabling optimizing the updates of essential parameters. Further, in the intertemporal up-
date, we deployed a momentum-driven gradient to bolster the stability and coherence of multi-modal
representations. Extensive experiments demonstrate the effectiveness of the proposed method, sur-
passing current state-of-the-art techniques across various multi-modal tracking scenarios, with sig-
nificant improvements observed post-regularization. We believe these insights will inspire further
exploration of multi-modal transfer learning for scene perception.
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REPRODUCIBILITY STATEMENT

In Section 4.1 and Appendix A.1, we outline the configurations of the hyper-parameters, describe
the training process, and detail the implementation aspects of our approach. We also offer a com-
prehensive explanation of the datasets used in our study. To ensure accuracy and reproducibility,
we perform multiple experiments using the FE108 (Zhang et al., 2021a), VisEvent (Wang et al.,
2023) and CoeSot (Tang et al., 2022), DepthTrack (Yan et al., 2021b), and LasHeR (Li et al., 2020)
datasets. Furthermore, if our paper is accepted for publication at ICLR 2025, we will release the
source code and configuration files on GitHub.
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A APPENDIX

This appendix contains the following contents. We illustrate the implementation details of MST
in A.1, including the network architecture and training details. In A.2, we report more quantitative
results, comprising the precision-success plots and attribute analysis. We also compare and discuss
other potentially viable regularization methods in A.3. Moreover, we have supplemented some
tracking visuals for a better qualitative comparison in A.4.

• Section A.1: Implementation details.
• Section A.2: More quantitative results.
• Section A.3: More ablation studies.
• Section A.4: Visualization of tracking results.

A.1 IMPLEMENTATION DETAILS.

Network Architecture. The input of our proposed method consists of a pair of template frames
and a pair of search frames, i.e., one RGB template frame zR ∈ RHz×Wz×3, one RGB search frame
xR ∈ RHx×Wx×3, one Auxiliary-modal template frame zA ∈ RHz×Wz×3, and one Auxiliary-
modal search frame xA ∈ RHx×Wx×3. Notably, to make event data compatible with the RGB
domain, we aggregate the event set between the image and its next one into a three-channel
event frame. These data are first split and flattened into sequences of patches zR, zA ∈ RNz×(3P 2)

and xR, xA ∈ RNx×(3P 2), where P × P is the resolution of each patch, and Nz = HzWz

P 2 , Nx =
HxWx

P 2 . Next, two modal-aware patch embedding layers are used to project zR, xR and zA, xA into
the D-dimensional latent space, zR, zA ∈ RNz×D and xR, xA ∈ RNx×D. The patch embeddings zR
and xR are concatenated as H

(0)
R = [zR; xR] ∈ R(Nz+Nx)×D, and zA and xA are concatenated as

H
(0)
A = [zA; xA] ∈ R(Nz+Nx)×D. The computation of modal-aware ViT block can be formulated

as:
H

′(l)
X = H

(l−1)
X +MSA

(
LN

(
H

(l−1)
X

))
H

(l)
X = H

′(l)
X +MLP

(
LN

(
H

′(l)
X

))
where X ∈ R,A, X(l−1)

X and H
(l)
X represent the outputs of the (l−1)-th and l-th ViT blocks, respec-

tively. For the cross-modal block, we concatenate HF = [zR; xR; zA; xA] ∈ R(Nz+Nx+Nz+Nx)×D

as input, and use the same attention block as above for cross-modal feature interaction.

Evaluation Metrics. Specifically, success rate cares the frame of that overlap between ground truth
and predicted bounding box is larger than a threshold; We employ the area under curve (AUC) of a
success rate plot as representative success rate (RSR). Precision rate focuses on the frame of that the
center distance between ground truth and predicted bounding box within a given threshold; We use
the precision rate score associated with a 20-pixel threshold as representative precision rate (RPR).
OPT represents success rate with T as the threshold, 0.5 (OP0.5) and 0.75 (OP0.75) represent the
success rates under moderate and challenging conditions, respectively.

Training Details. Our method is evaluated on FE108 (Zhang et al., 2021a), VisEvent (Wang et al.,
2023) and CoeSot (Tang et al., 2022) for RGB-Event tracking, DepthTrack (Yan et al., 2021b) for
RGB-Depth tracking, and LasHeR (Li et al., 2020) for RGB-Thermal tracking. More precisely,
the FE108 dataset is captured under different degraded conditions (e.g., motion blur, high dynamic
range). We follow the official sequence splits: 76 sequences for training and 32 for testing. The
VisEvent dataset reflects many challenging dynamic outdoor scenes like motion blur, fast and non-
rigid motion, etc. Notablely, there are some sequences that miss ⋆.aedat file or have misaligned
timestamps, the VisEvent dataset only includes 295 sequences for training and 219 for test-
ing. The CoeSot dataset consists of 578K image-event pairs, including 824 sequences for training
and 528 for testing. DepthTrack is a large-scale long-term RGB-Depth tracking benchmark, which
contains 152 training and 50 testing videos. LasHeR is a large-scale high-diversity benchmark for
short-term RGB-Thermal tracking, it includes 979 sequences for training and 245 for testing. For
these datasets, there is a slight difference in the learning rate settings. For the VisEvent, Co-
eSot, DepthTrack and LasHeR, we set the learning rate of RGB blocks and auxiliary-modal blocks
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Figure 8: The detailed architecture of the proposed regularization fine-tuning method on the ViPT
and SDSTrack.

(b) Quantitative results on VisEvent dataset(a) Quantitative results on FE108 dataset

Figure 9: Visualization of the precision and success plots of the FE108 and VisEvent datasets.

to 10−4, and the learning rate of cross-modal blocks to 5 × 10−5. But for the FE108 dataset, the
learning rate of the RGB blocks, auxiliary-modal blocks and cross-modal blocks are set to 10−4,
5× 10−5 and 5× 10−5, respectively.

Details for Compatibility Study. To assess the compatibility of our proposed regularization tech-
niques with ViPT and SDSTrack, we unfreeze their backbone parameters and retrain with regular-
ization applied. For a clear understanding, please refer to Fig. 8.

A.2 MORE QUANTITATIVE RESULTS.

More Precision and Success Plots. For a comprehensive and clear comparison, we also present the
precision and success plots of FE108 and VisEvent datasets.

Detailed Attribute Analysis. In the VisEvent, CoeSot, and LasHe datasets, detailed attribute labels
are available. To comprehensively analyze the robustness of our method, we compared its perfor-
mance against previous methods on various challenging attributes. As shown in Tab 8 and Tab 9,
Our method achieves state-of-the-art performance across most attributes in the VisEvent and CoeSot
dataset. Specifically, in sequences involving motion, such as Camera Motion (CM), Background Ob-
ject Motion (BOM), Fast Motion (FM), and Motion Blur (MB), our method consistently delivers the
best results, highlighting its ability to accurately track objects despite degradation caused by move-
ment. In sequences related to illumination, such as Low Illumination (LI), Over Exposure (OE), and
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Abrupt Illumination Variation (AIV), our method demonstrates the best performance. Particularly, it
achieves a precision improvement of 4.7% and a success improvement of 6.6% in the Over Exposure
category, showcasing its adaptability to varying lighting conditions. For sequences involving occlu-
sion, such as Partial Occlusion (PO) and Full Occlusion (FO), our method again achieves the best
results, demonstrating its effectiveness in tracking targets even when partially or fully occluded.
As shown in Tab 10, Our method is optimal on almost all attributes while significantly leading.
Notably, our method outperforms other methods in sequences involving illumination interference,
such as Low Illumination (LI), High Illumination (HI), and Abrupt Illumination Variation (AIV).
Especially, it shows a precision rate of 81.3% and a success rate of 64.5% in High Illumination, a
precision rate of 65.2%, and a success rate of 52.5% in Low Illumination. This highlights its effec-
tive use of multi-modal information to enhance tracking robustness. Additionally, our method excels
in challenging attributes such as Thermal Crossover, Background Clutter, Aspect Ratio Change, Full
Occlusion, Out-of-View, Viewpoint Change, and Scale Variation, further showcasing its improved
robustness. Overall, the results across the VisEvent, CoeSot, and LasHeR datasets demonstrate the
strong performance and robustness of our method.

Table 8: Attribute performance on the VisEvent test set.The right superscript o represents the pre-
trained OSTrack, and † denotes the pre-trained DropTrack. The metric is the RSR/RPR.

OSTrack DropTrack FENet AFNet CEUTrack ProTracko ViPTo ViPT† SDSTracko SDSTrack† Ourso Ours†

Camera Motion 56.0/69.3 58.5/72.7 39.2/51.6 37.5/51.0 56.3/69.8 56.3/70.5 58.1/77.2 61.2/76.1 58.7/73.0 61.8/76.8 61.5/75.8 63.6/78.5
Rotation 48.6/56.2 51.2/59.5 30.9/34.1 37.6/45.1 51.8/60.5 53.2/64.9 56.5/66.5 60.0/70.4 56.9/67.2 62.6/74.0 57.3/67.0 62.5/73.1

Deformation 35.3/41.8 36.1/44.2 28.0/35.3 26.4/33.3 34.6/41.0 29.5/37.8 33.3/41.6 36.3/45.3 39.0/48.1 40.5/52.3 37.2/45.0 42.1/53.1
Full Occlusion 42.9/55.9 48.7/62.3 19.1/29.0 24.4/35.0 46.0/59.1 46.2/59.6 499.4/63.0 53.3/68.0 50.1/63.9 55.0/69.9 52.8/66.9 56.0/70.8

Low Illumination 54.9/67.4 56.9/70.4 37.4/49.4 38.4/52.3 54.1/66.4 49.5/60.8 55.9/69.1 56.6/69.8 57.9/72.0 59.9/75.3 59.7/73.6 61.8/76.1
Out-of-View 43.3/53.2 47.8/59.1 21.7/28.1 27.6/39.6 45.8/56.7 43.1/52.3 45.8/55.9 51.2/62.3 47.1/58.0 52.7/64.4 59.4/60.5 52.6/64.4

Partial Occlusion 50.3/64.1 50.1/63.4 26.4/36.4 28.8/39.1 51.9/65.8 53.7/68.9 56.1/70.6 56.4/71.1 55.0/69.7 57.2/72.2 59.1/74.5 60.2/75.5
Viewpoint Change 68.9/69.2 61.3/72.8 40.7/47.6 44.2/53.0 61.2/71.8 60.1/71.4 63.1/73.9 64.6/76.0 63.4/74.3 65.7/78.0 67.4/79.8 68.6/81.2

Scale Variation 48.2/60.0 48.4/60.2 31.3/40.5 34.6/45.7 49.0/60.4 51.0/63.3 54.3/66.5 52.7/64.4 54.3/66.9 55.3/68.3 56.6/70.1 57.8/71.3
Background Clutter 54.7/67.9 55.1/68.8 36.5/48.4 35.5/48.1 54.5/67.8 56.3/71.0 58.6/72.7 58.4/72.5 58.0/71.9 59.5/73.8 60.4/74.6 61.3/75.7

Motion Blur 50.4/61.0 51.3/62.4 33.2/41.7 34.0/45.3 50.3/61.2 59.2/60.6 50.2/61.0 53.0/64.1 51.0/61.9 55.6/67.8 52.3/63.3 54.2/65.2
Aspect Ration Change 56.2/68.4 54.8/66.2 31.9/40.1 36.8/47.5 55.7/67.4 52.0/63.4 57.8/70.0 57.1/69.2 59.7/72.6 61.0/74.7 60.1/73.9 62.6/75.7

Fast Motion 51.3/63.0 53.9/66.4 34.3/42.9 37.3/49.6 53.0/65.2 52.2/64.7 54.1/66.4 57.2/70.0 54.8/67.3 59.1/72.4 57.0/69.3 59.4/72.4
No Motion 57.2/68.9 57.4/69.6 36.1/47.1 35.1/46.1 57.2/69.9 57.4/71.6 59.6/72.9 60.8/73.9 57.8/70.7 64.0/78.2 62.6/77.4 64.9/79.5

Illumination Variation 58.0/71.5 57.1/70.5 45.5/57.6 44.8/60.0 58.0/71.4 59.6/74.1 61.2/74.9 58.3/71.8 61.1/74.7 60.7/75.0 63.8/78.2 62.6/77.4
Over Exposure 54.9/69.9 53.5/66.3 43.0/55.3 43.3/54.8 54.1/68.1 59.1/74.3 58.8/74.0 55.5/69.1 59.1/73.6 56.6/70.0 63.2/78.3 59.8/75.5

Background Object Motion 53.0/66.2 54.0/67.5 34.2/45.1 33.6/45.4 53.1/66.3 55.0/69.9 56.9/71.0 57.6/71.9 56.5/70.3 58.7/73.2 59.1/73.2 60.4/74.9

Table 9: Attribute performance on the CoeSot test set. The right superscript o represents the pre-
trained OSTrack, and † denotes the pre-trained DropTrack. The metric is the RSR/RPR.

OSTrack DropTrack FENet AFNet CEUTrack ProTracko ViPTo ViPT† SDSTracko SDSTrack† Ourso Ours†

Camera Motion 52.1/60.8 54.8/64.6 46.6/59.9 46.3/58.5 49.1/60.2 52.4/60.5 56.0/65.4 57.9/67.8 55.6/64.9 59.1/70.1 59.0/69.2 62.1/73.2
Rotation 71.9/81.8 72.4/82.6 56.2/67.6 63.0/72.2 71.0/83.0 72.1/81.1 74.1/’84.1 74.3/84.2 74.1/84.6 74.6/84.8 76.2/86.6 76.4/86.9

Deformation 67.1/68.5 72.7/75.9 56.7/62.2 60.0/63.5 71.6/80.1 75.0/80.7 77.3/83.0 75.1/79.6 75.7/81.4 75.3/79.7 77.1/81.8 75.8/81.0
Full Occlusion 48.3/59.5 53.1/66.0 34.8/51.6 37.5/46.7 47.1/59.7 45.0/54.0 49.7/59.9 56.2/68.5 51.4/62.4 54.0/65.8 56.1/68.2 58.0/70.2

Low Illumination 51.2/60.0 54.3/63.8 50.9/65.4 44.3/52.9 50.8/61.9 54.5/63.1 58.1/67.6 59.3/69.0 57.4/66.5 61.0/71.5 60.2/69.7 64.2/76.1
Out-of-View 45.6/52.4 47.9/55.6 37.0/44.9 38.5/46.5 42.3/50.2 48.0/53.9 49.6/56.4 50.6/57.9 50.0/57.7 52.6/60.6 52.5/60.2 54.0/62.5

Partial Occlusion 69.9/78.9 71.7/81.2 56.6/66.9 59.6/67.2 68.0/78.8 71.1/79.9 72.3/81.5 73.2/82.4 72.6/82.1 72.9/82.3 74.4/83.7 74.6/84.1
Viewpoint Change 64.7/72.1 69.3/77.0 52.1/60.3 55.3/61.6 59.7/69.6 67.8/75.7 68.6/75.6 70.3/78.7 70.1/78.1 71.8/79.7 71.0/79.3 73.8/82.5

Scale Variation 67.7/76.0 69.3/78.8 50.8/57.3 57.9/65.8 66.7/76.9 68.6/76.6 70.0/78.2 71.4/81.0 70.5/80.0 71.8/81.4 73.2/82.3 74.1/84.0
Background Clutter 55.3/64.8 57.0/67.0 48.6/63.3 46.8/57.4 50.7/61.7 58.1/67.7 59.2/69.0 61.0/71.3 59.4/69.4 61.3/72.0 62.1/71.7 64.8/76.3

Motion Blur 56.5/65.2 56.6/66.0 43.8/57.0 51.6/62.7 55.6/66.2 55.4/64.5 61.1/72.6 58.6/68.9 59.5/70.7 58.7/69.6 62.0/73.5 62.7/74.3
Aspect Ration Change 63.8/73.9 66.3/76.7 48.1/58.1 52.6/61.5 61.3/74.4 66.8/76.5 67.9/77.1 67.9/77.0 68.2/77.8 68.4/77.5 69.8/79.0 70.2/79.6

Fast Motion 64.7/69.8 66.7/73.0 54.5/59.8 54.3/56.8 63.2/70.7 66.8/71.8 67.9/73.3 69.4/75.3 68.7/74.8 69.9/76.0 69.8/76.0 71.1/77.5
No Motion 72.1/80.9 75.9/83.4 64.6/74.1 64.1/71.0 71.9/83.3 76.6/84.2 77.3/85.3 76.8/84.2 76.6/84.7 77.3/85.4 77.0/85.1 78.2/86.4

Illumination Variation 65.0/69.8 67.2/73.3 55.3/61.8 57.6/60.1 63.8/71.0 67.9/73.9 70.4/77.5 70.1/76.4 69.9/76.9 71.0/77.5 71.7/79.4 72.8/80.0
Over Exposure 67.0/70.9 69.4/75.5 58.5/64.8 58.1/60.8 65.7/73.1 70.4/76.4 72.2/78.9 71.8/78.0 72.0/78.9 72.8/79.2 73.0/80.4 73.7/80.8

Background Object Motion 64.0/72.7 66.0/75.2 54.3/65.5 54.8/62.8 61.2/71.8 65.8/74.2 67.3/76.1 68.4/77.4 67.3/76.3 69.2/78.6 69.6/78.7 71.3/81.1

Comparison with UnTrack. Here, we compare our method with the recent state-of-the-art
multi-modal tracker, UnTrack (Wu et al., 2024). UnTrack is a unified tracker of a single set of
parameters for three auxiliary modalities (e.g., VisEvent, DepthTrack and LasHeR datasets),
which integrates the LoRA-tuning and Prompt-tuning techniques. As shown in Tab. 11, our
method surpasses UnTrack across all multi-modal datasets.

A.3 MORE ABLATION STUDIES.

Comparison with sensitivity-aware sparse tuning (SPT). In the proposed method, we exploit the
parameter sensitivity to regularize parameter updates, instead of selecting the most sensitive param-
eters for sparse fine-tuning, e.g., SPT (He et al., 2023). In this section, we conduct experiments to
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Table 10: Attribute performance on the LasHeR test set. The right superscript o represents the
pre-trained OSTrack,and † denotes the pre-trained DropTrack. The metric is the RSR/RPR.

OSTrack DropTrack SPT APFNet ProTracko ViPTo ViPT† SDSTracko SDSTrack† Ourso Ours†

Illumination Variation 37.7/42.2 40.2/46.2 34.1/35.7 38.6/41.0 28.4/30.7 35.8/38.0 38.9/43.6 48.2/54.2 43.8/50.1 49.1/55.7 53.5/62.1
Aspect Ration Change 43.4/51.4 45.1/53.7 35.9/40.7 37.7/42.8 42.5/49.7 49.4/58.5 49.5/59.5 50.1/60.4 50.9/61.9 51.9/62.4 55.5/67.4

Background Clutter 43.1/52.8 44.2/54.2 38.6/46.6 39.4/47.5 41.4/50.1 52.0/64.5 50.7/63.6 51.3/63.6 55.0/69.6 55.7/69.1 57.9/72.3
Camera Motion 37.4/45.6 39.4/49.1 31.9/38.9 34.6/41.7 40.7/50.7 46.6/58.7 47.0/58.7 46.5/59.2 47.5/60.6 48.0/60.4 51.7/65.3

Deformation 47.8/57.6 47.5/57.6 45.5/54.1 48.3/56.9 46.7/54.8 55.7/66.7 55.6/67.5 56.3/68.8 59.5/73.4 60.3/73.2 61.7/75.2
Frame Lost 47.3/53.1 60.5/68.4 45.0/45.1 44.0/45.3 64.6/74.8 64.8/75.4 66.6/76.5 60.6/69.5 66.4/77.0 62.8/71.5 62.6/72.3
Fast Motion 45.2/54.9 46.5/56.6 38.7/45.6 40.1/47.6 44.4/53.2 51.4/62.4 51.6/63.2 52.8/64.9 53.7/66.7 56.0/68.7 58.0/71.6

High Illumination 41.4/51.1 45.5/58.2 46.5/58.8 50.4/63.1 46.6/58.5 54.6/68.2 57.5/73.1 55.1/69.1 58.8/75.2 56.8/70.7 64.5/81.3
Hyaline Occlusion 41.8/43.5 43.7/47.5 38.4/36.9 40.7/41.7 31.7/30.6 42.1/44.8 44.6/47.4 52.7/58.8 49.8/56.1 49.8/55.6 53.5/61.2
Low Illumination 34.5/41.7 37.1/45.0 33.5/39.6 36.7/43.8 34.0/39.8 41.4/49.3 43.6/53.3 43.8/53.4 47.2/58.0 48.9/60.1 52.5/65.2
Low Resolution 34.9/47.4 38.5/51.8 28.3/39.9 30.4/41.5 34.2/45.7 41.8/56.4 42.9/58.0 42.5/57.2 45.0/60.9 47.2/62.8 48.4/64.8

Motion Blur 40.3/49.5 41.6/51.4 33.8/41.4 35.8/44.0 38.5/47.1 46.1/57.0 45.9/57.3 46.2/57.2 48.7/61.2 50.3 /62.2 53.3/66.3
No Occlusion 62.8/76.7 64.7/79.9 59.2/74.4 63.0/77.9 62.4/78.3 68.3/83.3 68.0/83.6 70.8/86.9 70.7/87.3 74.0/90.2 72.9/88.8
Out-of-View 38.9/47.7 40.8/51.2 34.4/42.1 35.6/43.2 39.1/47.7 45.7/56.8 46.5/58.4 47.5/59.6 49.3/62.3 49.5/62.0 53.7/67.7

Partial Occlusion 43.6/53.6 45.1/55.7 36.5/43.8 38.7/46.8 43.5/52.7 50.5/62.1 50.3/62.5 50.6/62.9 52.7/66.1 54.1/67.0 56.8/70.8
Similar Appearance 40.8/49.5 40.8/50.0 34.1/40.5 35.2/41.8 40.2/48.0 46.6/57.2 45.0/55.6 46.3/57.1 48.2/60.1 49.6/61.3 52.5/64.7

Scale Variation 46.4/56.8 48.0/59.1 39.3/47.5 41.8/50.6 46.4/56.6 52.4/64.4 52.7/65.1 53.0/65.8 54.7/68.4 56.5/69.7 58.7/72.8
Thermal Crossover 43.7/53.8 44.9/55.8 37.3/45.5 39.4/48.1 43.1/52.9 49.9/61.5 50.7/63.5 50.7/63.2 52.8/66.2 53.9/66.6 57.6/72.0

Total Occlusion 41.7/51.9 41.6/51.8 35.2/42.5 37.4/45.5 38.7/47.2 46.4/57.5 47.2/59.3 47.8/60.0 48.6/60.9 51.8/64.4 52.9/66.3

Table 11: Comparison of the tracking performance between UnTrack and our method based on
VisEvent, DepthTrack and LasHeR datasets.

Exp. Base Model VisEvent DepthTrack LasHeR
RSR OP0.5 OP0.75 RPR Pr Re F-score RSR OP0.5 OP0.75 RPR

UnTrack OSTrack 59.1 69.7 57.1 73.2 61.1 60.8 61.0 52.5 63.7 42.9 65.3
Ours OSTrack 62.0 73.7 60.9 76.5 66.1 65.0 65.5 56.3 68.0 48.5 69.5

Improvement OSTrack +2.9 +4.0 +3.8 +3.3 +5.0 +4.2 +4.5 +3.8 +4.3 +5.6 +4.2
UnTrack DropTrack 62.0 73.9 59.8 76.7 63.7 63.7 63.7 53.7 65.0 43.6 67.0

Ours DropTrack 63.2 75.4 61.4 78.1 67.8 66.3 67.0 58.8 71.5 50.2 73.0
Improvement DropTrack +1.1 +1.5 +1.6 +1.4 +4.1 +2.6 +3.3 +5.1 +6.5 +6.6 +6.0

investigate our performance against SPT. Note that the training configuration of those methods is
exactly the same, except for the trainable parameter ratio. As shown in Tab. 12, the experimental
results show that applying sparse fine-tuning to the cross-modal adaptation cannot achieve consid-
erable performance.

Table 12: Comparison of the tracking performance between SPT and our regularized fine-tuning
method based on the DepthTrack dataset, using the pre-trained OSTrack as the base model. We have
set up a series of trainable parameter ratios τ of SPT (top-τ sensitive parameters) to fully explore its
adaption effect.

Exp. Pr Re F-score
w/o fine-tuning (τ = 0%) 38.2 36.0 37.1

full fine-tuning (τ = 100%) 61.7 61.5 61.6
SPT (τ = 50%) 61.1 60.9 61.0
SPT (τ = 20%) 60.7 59.7 60.2
SPT (τ = 10%) 56.2 52.8 54.5

Ours (τ = 100%) 66.1 65.0 65.5

Comparison with low rank adaptation tuning (LoRA). Low-rank adaptation tuning (e.g.,
LoRA (Hu et al., 2021)) is a widely used parameter-efficient fine-tuning method. Hence, we
also conduct experiments to investigate its cross-modal transfer performance. As summarized
in Tab. 13, the results indicate that applying LoRA to cross-modal tracking yields limited per-
formance gains. We attribute this to the strong constraints imposed on pre-trained weights,
similar to other parameter-efficient methods like prompt tuning and visual adapters, which
hinder effective transfer learning.
Smaller learning rates. In the proposed method, we exploit the sensitivity-aware momentum
gradients to bolster the stability and coherence of multi-modal representations. A straight-
forward smoothing approach might involve using smaller learning rates. In this section, we
explore the impact of smaller learning rates on performance. As shown in Tab. 14, the results
indicate that a smaller learning rate (i.e., lr = 10−5) offers negligible improvement. Fur-
ther reduction (i.e., lr = 10−6) leads to performance degradation. These findings suggest that
smaller learning rates fail to effectively address the overfitting issue in cross-modal adaptation,
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Table 13: Comparison of the tracking performance between LoRA and our method based on FE108,
DepthTrack and LasHeR datasets, using the pre-trained OSTrack. And we have set up a series of
ranks (r) of LoRA to fully explore its adaptability.

Exp. FE108 DepthTrack LasHeR
RSR OP0.5 OP0.75 RPR Pr Re F-score RSR OP0.5 OP0.75 RPR

r=2 64.1 82.7 41.0 91.1 61.7 61.0 61.3 54.1 64.5 43.6 64.9
r=4 64.7 83.7 42.4 91.4 61.8 61.1 61.4 54.3 64.6 43.7 65.2
r=8 64.5 83.8 41.1 91.3 61.6 61.0 61.2 54.3 64.6 43.8 65.1
Ours 67.5 87.0 44.4 95.5 66.1 65.0 65.5 56.3 68.0 48.5 69.5

as they treat all parameters uniformly without focusing on the update of sensitive/high-risk pa-
rameters.

Table 14: We explored the effect of smaller learning rates lr. All experiments were conducted on
the LasHeR dataset, using the pre-trained OSTrack as the base model.

Exp. RSR OP0.5 OP0.75 RPR
lr = 10−4 54.3 64.1 45.3 65.4
lr = 10−5 53.7 64.8 45.0 65.9
lr = 10−6 52.5 63.7 44.2 65.1

Ours 56.3 68.0 48.5 69.5

Effectiveness across different resolutions. As only OSTrack-256 and DropTrack-384 model
weights are officially available, other resolution settings were not discussed in the previous
manuscript. In transformer-based trackers, resolution profoundly affects position embeddings
and tokens, both essential for object-aware relation encoding. To verify whether the proposed
method works effectively across resolutions, we conducted the experiments in Tab. 15, testing
the OSTrack at 384 resolution and the DropTrack at 256 resolution. The results confirm that
resolution changes substantially impact tracking performance, aligning with our claim.

Table 15: Ablation of the cross-resolution performance of our method based on the VisEvent, Depth-
Track and LasHeR datasets.

Exp. VisEvent DepthTrack LasHeR
RSR OP0.5 OP0.75 RPR Pr Re F-score RSR OP0.5 OP0.75 RPR

OSTrack-256 (Official) 62.0 73.7 60.9 76.5 66.1 65.0 65.5 56.3 68.0 48.5 69.5
OSTrack-384 60.7 72.1 59.5 74.8 65.2 64.7 64.9 55.3 66.7 47.7 68.4

DropTrack-384 (Official) 63.2 75.4 61.4 78.1 67.8 66.3 67.0 58.8 71.5 50.2 73.0
DropTrack-256 61.7 73.3 60.2 76.4 66.3 64.6 65.4 57.5 69.8 49.0 71.4

A.4 VISUALIZATION OF TRACKING RESULTS.

In Fig 11, we present a more qualitative comparison of tracking results between our method and
existing approaches. We can observe that the proposed method shows better regression capability in
challenging conditions.
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Figure 10: Relation L2 distance between our fine-tuning method and the full fine-tuning on the
DepthTrack and pre-trained OSTrack model in the parameter space. Our method significantly
reduces weight deviation, indicating improved retention of the pretrained knowledge while
achieving the desired adaptation.

Ours-DropTrack Ours-OSTrack SDSTrack-DropTrack SDSTrack-OSTrack ViPT-DropTrack ViPT-OSTrackGT

Figure 11: Visual comparisons of the tracking performance of different methods on the (Left) RGB-
Event, (Middle) RGB-Depth and (Right) RGB-Thermal datasets.
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