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Abstract
We address the challenge of certifying the
performance of a federated learning model on an
unseen target network using only measurements
from the source network that trained the model.
Specifically, consider a source network “A” with
K clients, each holding private, non-IID datasets
drawn from heterogeneous distributions, modeled
as samples from a broader meta-distribution
µ. Our goal is to provide certified guarantees
for the model’s performance on a different,
unseen network “B”, governed by an unknown
meta-distribution µ′, assuming the deviation
between µ and µ′ is bounded—either in Wasser-
stein distance or an f -divergence. We derive
worst-case uniform guarantees for both the
model’s average loss and its risk CDF, the latter
corresponding to a novel, adversarially robust
version of the Dvoretzky–Kiefer–Wolfowitz
(DKW) inequality. In addition, we show how
the vanilla DKW bound enables principled
certification of the model’s true performance
on unseen clients within the same (source)
network. Our bounds are efficiently computable,
asymptotically minimax optimal, and preserve
clients’ privacy. We also establish non-asymptotic
generalization bounds that converge to zero as
K grows and the minimum per-client sample
size exceeds O(logK). Empirical evaluations
confirm the practical utility of our bounds across
real-world tasks. The project code is available
at: github.com/samin-mehdizadeh/
Robust-Evaluation-DKW
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1. Introduction
The distributed nature of modern learning environments,
where local datasets are scattered across clients in a net-
work, presents significant challenges for the machine learn-
ing community. Federated learning (FL) addresses some
of these challenges by enabling clients to collaboratively
train a decentralized model through communications with
a central server (McMahan et al., 2017; Liu et al., 2024).
A major obstacle in FL is the heterogeneity of data distri-
butions among clients. This non-IID nature of client data
not only impacts the training stage but also complicates
the evaluation of trained models, especially when applied
to unseen clients from the same or different networks (Ye
et al., 2023; Zawad et al., 2021). In this paper, we focus on
the latter problem.

Consider a network with K clients, each possessing their
own private dataset. For k ∈ [K], the kth client’s dataset
is assumed to include nk ≥ 1 samples from a unique and
unknown distribution Pk, which forms an empirical and
private estimate P̂k. Note that the distributions P1, . . . , PK

may be highly heterogeneous and distant from one another.
In this setting, assume the server wants to assess the perfor-
mance of a given machine learning model h on this network.
Let the risk function R(h, P̂k) denote the loss of h when
evaluated over the private data samples of the kth client, i.e.,
P̂k. This quantity can be queried by the server by sending
h to client k and requesting its local loss value, without di-
rectly accessing any of the private data samples in client k’s
dataset. Hence, the server can collect all K loss values and
empirically approximate the average performance of h over
the network, using various metrics. One common approach
is the average loss: 1

K

∑K
k=1R(h, P̂k), which measures the

empirical average performance of the model in the network.

Another approach is the loss CDF, representing the per-
centage of clients whose loss exceeds a given threshold λ:
1
K

∑K
k=1 1

(
R(h, P̂k) ≥ λ

)
, which is useful for estimating

the quantiles of the risk (see (Laguel et al., 2021)). For a
recent related work on the use of super-quantiles in FL with
heterogeneous clients, see (Pillutla et al., 2024). While that
study focuses on optimization and convergence aspects, our
work provides a theoretical treatment of generalization.
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A critical challenge arises when certifying the performance
of h on a different and unseen network with completely
different clients. Mathematically, assume a large group of
T ≫ 1 new and unseen clients with corresponding hetero-
geneous distributions Q1, . . . , QT , which may differ sub-
stantially from one another and also from Pk’s. This cor-
responds to a beta testing scenario, where, for instance, a
product owner may test a product on a small subset of a
network before wider deployment (Reisizadeh et al., 2020;
Ma et al., 2024). Our goal is to certify the same performance
metrics over Qis without accessing them.

Clearly, without a connection between Pk’s and Qi’s, the
certification task is fundamentally infeasible. To address
this, we can rely on the following common assumption
in many beta testing scenarios: P1:K and Q1:T are all in-
dependent samples from the same meta-distribution µ (a
distribution over distributions), which governs higher-level
factors influencing the clients, such as cultural or geographi-
cal attributes (Yuan et al., 2021; Ajay et al., 2022; Wu et al.,
2024a; Chen et al., 2023; Patel et al., 2022). In this setting,
the empirical average risk and empirical risk CDF over Pk’s
provide unbiased estimates for those of the unseen clients,
i.e., Qi’s. Still, a natural question would be how large K or
either of nk’s need to be such that the mentioned estimates
become statistically reliable?

In this work, we propose a novel approach by leveraging the
Dvoretzky–Kiefer–Wolfowitz (DKW) inequality (Dvoret-
zky et al., 1956) that uniformly bounds the CDF estimation
error from empirical observed samples. Note that in our
setting, the CDF is considered for the performance metric
of clients drawn from meta distribution µ. Therefore, the
observed clients’ performance values lead to a proxy empir-
ical CDF, and we want to provide an upper-bound on the
true CDF to provide a performance guarantee for an unseen
client Qi ∼ µ. Our approach is to extend the DKW inequal-
ity to bound the gap between the empirical and population
(true) CDFs. Figure 2 illustrates our DKW inequality-based
approach and how it can provide a certified upper-bound on
the true CDF of unseen clients’ performance.

On the other hand, in real-world applications, target clients
can belong to distinct populations with considerable cultural
or behavioral differences compared to those observed in
the evaluation phase. For example, an app developer might
be limited to test a mobile application on users from Hong
Kong, but ultimately hopes to release it for users from New
York. This scenario corresponds to a meta-distributionally
robust evaluation, where the objective is to evaluate the per-
formance of h under worst-case shifts from µ to µ′. Here,
µ and µ′ represent unknown meta-distributions, with K
empirical samples from µ corresponding to P1, . . . , PK .
Unfortunately, µ′ is completely unseen, however, it is as-
sumed to deviate at most ε from µ, for some known ε > 0.

Figure 1. A graphical illustration of meta-distributional shifts be-
tween two client networks governed by µ and µ′. Meta-shifts
shifts may only denote changes in densities (f -divergence) or can
involve support as well (Wasserstein shifts). Each client Pk is a
sample from µ, with P̂ks as its empirical counterpart based on a
local datasets. The client distributions Pk can vary significantly,
such as one having primarily landscape images while another con-
tains mostly vehicle images.

Again, without this assumption certifying the performance
of h under µ′ is mathematically impossible. The degree
of deviation (ε) between µ and µ′ can be quantified us-
ing metrics such as Kullback-Leibler (KL) divergence or
Wasserstein distance, both interpreted in the context of meta-
distributions. KL, or more generally, an f -divergence cap-
tures situations where client types in one meta-distribution
are reweighted in another (Mehta et al., 2024), whereas
Wasserstein distance accounts for the emergence of entirely
new client types, representing novel regions of the meta-
distribution’s support (Wang et al., 2022; Kuhn et al., 2019).
For example, smartphone users in a coastal area may often
take pictures of the sea, whereas residents in mountainous
regions cannot do so unless they travel. See Figure 1 for
more details. We are not aware of any prior theoretical
bounds for meta-distributionally robust evaluation (or beta
testing) in federated settings. In any case, a review of prior
works on similar scenarios of non-IID federated learning
and model evaluation is provided in Section A.

Our Contribution: Our problem, formally defined in Sec-
tion 3, is to address the robust evaluation of any given h un-
der the above-mentioned scenario. Section 4 presents some
initial results for the non-robust evaluation when µ = µ′, i.e.,
standard beta testing. Theorem 4.1 proves non-asymptotic
concentration bounds for both the empirical average and
CDF of the risk, with exponential convergence as both K
and mink nk increase. Notably, our convergence results
for the loss CDF are uniform over thresholds λ, meaning
they hold for all λ ∈ R simultaneously, via utilizing clas-
sical tools in statistics, including the DKW inequality and
Glivenko-Cantelli theorem (Dvoretzky et al., 1956).

Next, we provide robust bounds on the average loss and/or
risk CDF when target network is adversarially shifted from
the source. We extend the concept of distributional robust-
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Figure 2. Our theoretical bounds are estimated from a set of seen users in a federated network governed by meta-distribution µ. We
extend the application of DKW inequality to provide a certified upper-bound on the true CDF of the performance score of unseen clients
following the same meta-distribution µ.

ness to meta-distributional robustness, considering both f -
divergences and Wasserstein-type adversaries, respectively
in Sections 5 and 6, to provide worst-case guarantees.

The majority of existing robust evaluation schemes require
aggregating all private datasets in a central server for a
collective adversarial manipulation of all the samples (Liu
et al., 2024; Reisizadeh et al., 2020; Sinha et al., 2018),
which severely violates user privacy. Another category of
approaches simply compute the average ordinary risk of
h in the source network, but are then forced to add a non-
vanishing (ε-dependent) generalization gap that does not
go to zero even when K,n1:K grow to infinity (see Section
A and also (Rahimian and Mehrotra, 2019; Zeng and Lam,
2022)). The latter approaches fail to take into account the
possible inherent wellness or robustness of h, thus usually
result into excessively inflated risk certificates.

We prove that globally robust evaluations under both f -
divergence and Wasserstein regimes can be done in a fed-
erated manner as long as: i) server can query the local
ordinary or adversarial (only for Wasserstein attacks) loss
of h from each client, and ii) server can repeat such queries
with potentially various attack budgets for polynomially
many times. Note that we do not need to directly access
client’s data. Our evaluation guarantees are asymptotically
minimax optimal, and have vanishing generalization gaps
which converge to zero as both K and (mink nk)/ logK
grow. Our robust and uniform bounds on risk CDF in Sec-
tion 5 are based on a novel extension of DKW inequality
to adversarial scenarios, which is extensively detailed in
Section B. The numerical results on standard datasets in
Section 8 validate the tightness of our bounds.

2. Notations and Preliminaries
For K ∈ N, [K] denotes the set {1, 2, . . . ,K}. Consider
two measurable spaces X and Y , referred to as the fea-
ture and label spaces, respectively. Typically, we assume
X ⊆ Rd for some d ∈ N, while Y may be {±1} for binary
classification tasks or R in regression problems. However,
we make no extra assumptions regarding X and Y . We de-
fine the joint feature-label space as Z ≜ X ×Y . LetM(Z)
denote the set of all probability measures supported on Z .
Each P ∈M(Z) corresponds to a joint measure over a ran-
dom feature vector X ∈ X and its associated random label
y ∈ Y . The expectation operator with respect to a measure
P is denoted by EP . We refer to µ as a meta-distribution
over Z , expressed as µ ∼ M2(Z) ≜M (M (Z)), where
each sample from µ is itself a probability measure over Z .
In other words, a meta-distribution is a distribution over
distributions supported on Z . In our work, µ models the
heterogeneity and non-IID-ness of the clients, since indepen-
dent samples from µ represent different data distributions
shifted from one another.

For simplicity, we abbreviateM(Z) asM. For any two
measures P,Q ∈M, let D(P,Q) ∈ R≥0 denote any given
distance or divergence between the two distributions such as
KL or Wasserstein distance. In this context, let Bρ denote an
ρ-distributional ambiguity ball for ρ ≥ 0. Mathematically,
for any measure P ∈M:

Bρ(P ) ≜ {Q ∈M | D(P,Q) ≤ ρ} , (1)

which represents the set of distributions within ρ dis-
tance/divergence from P according to D. Similarly, meta-
distributional ambiguity balls Gε(µ) are defined as the
set of meta-distributions over M2 within an ε distance
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from a base meta-distribution µ. Mathematically, we have
Gε (µ) ≜

{
µ′ ∈M2 | D̃ (µ, µ′) ≤ ε

}
. Here, the deviation

D̃ can be any properly defined f -divergence or a Wasserstein
metric between the meta-distributions inM2. In particular,
the transportation cost in the Wasserstein distance can itself
be a Wasserstein metric onM in its ordinary sense.

Let h : X → Y represent a hypothesis (e.g., a classifier)
that maps the feature space X onto the label space Y 1.
Additionally, assume a fixed loss function ℓ (y, ŷ), which
assigns a loss value to each pair of actual and predicted
labels, y and ŷ, respectively. The expected loss, or Risk, of
a hypothesis h w.r.t. a data distribution P ∈ M is defined
as R(h, P ) ≜ EP {ℓ (y, h(X))}. Here, P could be the true
distribution or an empirical approximation obtained from
a dataset, usually denoted by P̂ . The adversarial risk of h
w.r.t. a base measure P (or empirical P̂ ) and a robustness
radius ε ≥ 0, is formulated as (Sinha et al., 2018):

Rε−adv (h, P ) ≜ sup
Q∈Bε(P )

EQ [ℓ(y, h(X))] , (2)

and denotes the worst risk over all distributions in a ε-
neighborhood of P according to D. Similarly, the meta-
distributionally robust loss of h with respect to a base meta-
distribution µ is defined as:

sup
µ′∈Gε(µ)

EP∼µ′ [EP [ℓ(y, h(X))]] . (3)

The geometry of the ball Gε inM2 can be determined us-
ing various application-specific divergences or metrics over
M2. In Section 5, we deal with f -divergence balls, while
Wasserstein meta-distributional balls (using the ordinary
Wasserstein metric as their transportation cost) are utilized
in Section 6. We also discuss how to practically implement
such loss values in Section 7 and Appendix F.

3. Problem Definition
This section formally defines our problem. First, we outline
the data generation process, privacy constraints, and spec-
ify the query policy that governs communication between
clients and the server.

Data Generation: Consider K ∈ N clients connected to
a central server, where client k ∈ [K] has a unique data
distribution Pk ∈ M(Z). We assume P1, P2, . . . , PK are
heterogeneous samples of an unknown meta-distribution µ
over Z . No one knows Pks, however, client k has access to
a dataset Dk of size nk ≥ 1, which contains independent
samples from Pk, i.e.,

Dk ≜
{(

X
(k)
i , y

(k)
i

) ∣∣∣ i ∈ [nk]
}
∼ P⊗nk

k . (4)

1It should be noted that our work goes beyond this limitation
and can be applied to any supervised or unsupervised machine
learning task.

Let P̂k denote the empirical version of Pk based on the
private samples in Dk, which are known only to client k.

Server-Client Query Policy: The server can query each of
the K clients by sending a model h and a robustness radius
ρ ≥ 0 to client k ∈ [K]. In response, the client returns the
adversarial loss of h around P̂k:

Q̂Vk(h, ρ) ≜ sup
Q∈Bρ(P̂k)

EQ[ℓ(y, h(X))]. (5)

The type of distributional ball Bρ(·) can be defined using
any user-defined divergence or metric overM. When the
robustness radius is unspecified, the client assumes it is zero,
and returns the non-robust loss, i.e., Q̂Vk(h) = Q̂Vk(h, 0).
We later show that the local adversarial loss (when ρ >
0) is not needed for f -divergence-based guarantees and
only appears in Section 6 which focuses on Wasserstein
shifts. Each client k accepts a maximum number of queries,
referred to as the query budget.

Our Problem Setup: Assume the server sends a model
h to the clients and requests a number of robust or non-
robust loss values for several arbitrary robustness radii.
Server’s ultimate goal is to use these values to provide a
meta-distributionally robust upper bound for the average
or CDF of the loss of h. Mathematically speaking, the
objective is to efficiently compute empirical values Ê1(ε)

and Ê2(ε, λ) such that the following bounds hold with high
probability over the sampling of clients and datasets:

sup
µ′∈Gε(µ)

EP∼µ′ [EP [ℓ(y, h(X))]] ≤ Ê1(ε) + ζ, (6)

sup
µ′∈Gε(µ)

µ′
(
EP [ℓ(y, h(X))] ≥ λ

)
≤ Ê2 (ε, λ) + ζ ′.

The generalization gaps ζ, ζ ′ should vanish as both K and
mink nk increase asymptotically. Also, the second high-
probability bound needs to hold for all threshold values
λ, simultaneously (or uniformly). We consider both f -
divergence and Wasserstein metrics to specify the geometry
of the meta-distributional ambiguity ball Gε(µ).

From an algorithmic perspective, Ê1:2 must be computable
using only the private server-client query policy Q̂Vk(h, ρ)
for various robustness radii ρ. Server decides the number
of queries for each client, as well as the value of ρ for each
query. However, the computational cost of evaluating each
query at the client side, and the total number of queries per
client should increase at most polynomially with parame-
ters.

4. Non-Robust (Ordinary) Guarantees
In this section, we solve the problem setting of section 3
in the non-robust regime, i.e., when µ′ = µ or equiva-
lently ε = 0. This scenario corresponds to the standard
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beta testing, which has been extensively applied in practice
(Chen et al., 2024). Simple statistical bounds can establish
the high-probability concentration of the empirical average
1
K

∑K
k=1R(h, P̂k) around its true mean w.r.t. µ, as long as

the loss function ℓ(·) is measurable and bounded (e.g., let
ℓ be 1-bounded such as the 0-1 loss). However, the same
argument does not directly extend to the loss CDF, as the
bounds must hold uniformly for all threshold values λ ≥ 0.
Without uniformity, such guarantees are significantly weak-
ened. By ”uniform,” we mean that, with high probability
over the sampling of the K users, the worst-case deviation
between the empirical and true tail probabilities is consis-
tently bounded. This challenge is resolved using a classic
result on the convergence of empirical CDFs, specifically
the Dvoretzky–Kiefer–Wolfowitz (DKW) inequality and the
Glivenko–Cantelli theorem (see Section B, and in particular
Lemma B.1). The following theorem summarizes our main
findings in the non-robust setting.
Theorem 4.1. Let µ be a meta-distribution, and assume
P1, . . . , PK be K independent instances of µ, while P̂k for
k ∈ [K] represent their empirical counterparts, formed
using nk independent private samples from the k-th client.
Let h : X → Y be any model and ℓ be any measurable and
1-bounded loss function. Then, for any δ > 0, the following
holds with probability at least 1− δ:

Eµ [EP (ℓ (y, h (X)))] ≤ 1

K

K∑
k=1

Q̂Vk (h)+ (7)

√
log (Kδ−1)O

(
1√
K

+
1

K

K∑
k=1

n
−1/2
k

)
.

For the loss CDF, the following bound holds with probability
at least 1− δ uniformly for all λ ∈ R:

µ

(
EP [ℓ (y, h (X))] ≥ λ

)
≤ (8)

1

K

K∑
k=1

1

Q̂Vk(h) ≥ λ−

√
log (K+1)

δ

2nk

+

√
log 2(K+1)

δ

2K
.

The proof is given in Appendix C. By ignoring poly-
logarithmic terms, the empirical means over both the K
users and the nk samples from each client k converge at a
rate of (min {K,mink nk/ logK})−1/2. In both inequal-
ities, the left-hand sides represent strong statistical quan-
tities, while the right-hand sides consist of: i) vanishing
generalization gaps, plus ii) empirical values that can be
fully evaluated based on users’ private datasets and using
the private query policy described earlier (i.e., the Q̂i(h)
values). Additionally, each client needs to be queried only
once.

In Section 7, we discuss the computational complexity, cer-
tificates of privacy, and tightness of the all the bounds in

our work. Before that, Sections 5 and 6 extend Theorem
4.1 to the robust setting, where µ′ can be adversarially per-
turbed from µ by either an f -divergence or a Wasserstein
adversary.

5. f -Divergence Meta-Distributional Shifts
In this section, we provably bound the meta-distributionally
robust performance of h, in terms of the average risk and
risk CDF.

Definition 5.1. Consider two meta-distributions µ, µ′ ∈
M2 where µ′ is absolutely continuous with respect to µ. Let
f : [0,∞)→ [−∞,∞] be a convex function such that f(x)
is finite for all x > 0, f(1) = 0, and f(0) = limt→0+ f(t)
(which could be infinite). The f -divergence between µ and
µ′ is defined as:

Df (µ
′∥µ) =

∫
P∈M

f

(
dµ′(P )

dµ(P )

)
dµ(P ). (9)

Also, for ε ≥ 0, the f -divergence ball Gf−div
ε (µ) is defined

as {µ′ | Df (µ
′∥µ) ≤ ε}, which describes a neighborhood

around µ where the divergence does not exceed ε.

Our goal is to provide a theoretical guarantee for the loss of
h under the worst-case meta-distribution µ′ ∈ Gf -div

ε (µ), us-
ing only the query values from client samples in the source
network governed by µ. Since clients generated by µ′ may
follow different densities compared to µ, it is natural to
reweight the robust loss to achieve a robust upper bound.
The following theorem formalizes this idea by reweighting
the query values using coefficients αk, k ∈ [K], and opti-
mizing for the worst-case weights, provided they remain
close to uniform weights. This approach yields a minimax-
optimal bound with a vanishing generalization gap.

Theorem 5.2. Assume an unknown meta-distributions µ ∈
M2, let ε ≥ 0, and consider f(·) to be as in Definition 5.1.
Let h : X → Y be any model and ℓ be any measurable
and 1-bounded loss function. Assume P1, . . . , PK represent
K independent and unknown sample distributions from µ.
Accordingly, let P̂k for k ∈ [K] represent their empirical
counterparts, formed using nk independent private samples
from the k-th client. Let Λ ≜ 1 + κε. Define B̂∗ as:

B̂∗(ε) ≜ sup
0≤α1,...,αK≤Λ

1

K

K∑
k=1

αkQ̂Vk (h) (10)

subject to

∣∣∣∣∣ 1K
K∑

k=1

αk − 1

∣∣∣∣∣ ≤ c1√log (δ−1)/K,

1

K

K∑
k=1

f(αk) ≤ ε+ c2
√
log (δ−1)/K,

where constants κ, c1, c2 ≥ 0 are known and depend on
f(·). Then, for any δ > 0, the following bound holds with
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probability at least 1− δ:

sup
µ′∈Gf−div

ε (µ)

EP∼µ′ [EP [ℓ (y, h (X))]] ≤ B̂∗(ε) (11)

+
√
log (Kδ−1)O

[
1√
K

+
1

K

K∑
k=1

n
−1/2
k

]
.

The proof including the formulations for κ, c1, c2 are pro-
vided in Appendix D. This theorem establishes a robust
bound on the expected loss under meta-shifts using B̂∗(ε),
along with a vanishing generalization gap with a decay rate
of Õ

(
min{K,n1:K}−1/2

)
. The empirical quantity B̂∗(ε)

is derived from a convex optimization problem performed
server-side. In Section 7, we discuss all of aspects of com-
puting this quantity. Also, it worth noting that as both ε, 1

K
tend to zero, the bound becomes increasingly similar to the
non-robust case of Theorem 4.1, which should be expected.
As discussed before, a key advantage of our result is that
the generalization gap lacks any non-vanishing ε-dependent
term. Next, we present our main result for robust CDF
estimation of the loss under KL meta-shifts:

Theorem 5.3. Assume the setting of Theorem 5.2. For any
λ ∈ R, let us define the empirical value Ĵ∗ (ε, λ) as

sup
0≤α1:K≤Λ

1

K

K∑
k=1

αk1

Q̂Vk (h) ≥ λ−

√
log
(
K+2
δ

)
2nk


subject to

∣∣∣∣∣ 1K
K∑

k=1

αk − 1

∣∣∣∣∣ ≤ c1
√

1

K
log (Kδ−1),

1

K

K∑
k=1

f (αk) ≤ ε+ c2

√
1

K
log (Kδ−1),

Then, with probability at least 1 − δ, the following bound
holds uniformly over all λ ∈ R:

sup
µ′∈Gf−div

ε (µ)

µ′
(
EP [ℓ (y, h (X))] ≥ λ

)
≤ (12)

Ĵ∗ (ε, λ) +O
(√

K−1 log (Kδ−1)
)
.

Proof is in Appendix D, and extends the classical results
from Glivenko-Cantelli theorem and DKW bound into an
adversarial setting. We have detailed our new theoretical
findings in Section B. The bound in Theorem 5.3 exhibits
the following properties: i) It is forward-shifted with respect
to the true CDF, meaning it exhibits a delayed reaction to
increasing λ compared to the true CDF. The maximum delay
is on the order of O(

√
logK/mink nk). ii) The value of

the CDF estimator also deviates from the true estimator
by the amount O(

√
logK/K). Consequently, as K and

(mink nk)/ logK tend to infinity, the generalization gap
becomes zero. iii) The bound holds uniformly over all

λ ∈ R, similar to the original DKW inequality. Again,
the empirical value Ĵ∗ (ε, λ) is the solution to a server-side
convex and thus efficient program. More details will be
given in Section 7.

6. Wasserstein Meta-Distributional Shifts
This section addresses the case of Wasserstein meta-shifts
from µ to µ′. Such shifts present significant challenges, as
the model h may encounter entirely unseen regions of the
meta-distributional support. In practical terms, users may
exhibit data distributions that are entirely novel compared to
P̂ks of the evaluation phase in the source network. To miti-
gate this effect, as we will show later in this section, server
needs to query out-of-domain loss values from each of the
K clients. Here, we provide theoretical guarantees for the
average risk, but not for the entire risk CDF. Addressing the
full risk CDF requires a more advanced methodology, which
falls beyond the scope of the current paper and is defered
to future work. We begin by introducing both standard and
meta-distributional Wasserstein metrics, and then present
our main result, an analog of Theorem 5.2 for Wasserstein-
type shifts.

Definition 6.1. For any two measures P,Q ∈M (Z) and
a lower semi-continuous function c : Z × Z → R≥0, we
define the Wasserstein distance between P and Q as

Wc (P,Q) ≜ inf
ν∈C(P,Q)

E(Z,Z′)∼ν {c (Z,Z ′)} , (13)

where C (P,Q) denotes the set of all couplings between P
and Q, i.e., all joint probability measures in M (Z × Z)
that have fixed P and Q as their respective marginals (Kuhn
et al., 2019).

The function c is called the transportation cost and is user-
defined. For example, c (Z,Z ′) = ∥X −X ′∥2 + ∞ ·
1 (y ̸= y′) corresponds to a typical feature-shift scenario in
robust ML.Wc (P,Q) (which is a metric overM) measures
the minimum cost of transforming P intoQ or vice versa ac-
cording to the cost characterized by c. Unlike f -divergence,
Wasserstein distance can stay bounded under support shifts.
In fact, it is a powerful tool to model slight support changes
between distributions and due to this property is widely used
in adversarial robustness research.

In a similar fashion, one can define the Wasserstein distance
between any two meta-distributions µ, µ′ ∈ M2 (Z) with
respect to any valid transportation cost over the space of
measuresM (Z), such as the ordinary Wasserstein distance.

Definition 6.2 (Wasserstein metric overM2). For any two
meta-distributions µ, µ′ ∈M2 (Z), assume a distributional
transportation cost such as ordinary Wasserstein distance
Wc (·, ·), where c is a bounded and proper (according to
Definition 6.2) transportation cost on Z ×Z . In this regard,

6
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Figure 3. A graphical illustration of the core idea behind Theorem
6.3. Each tuple ρ1:K that satisfies the constraints corresponds to
one possibility for µ′, via extending the local risk of P̂ks to their
worst-case out-of-distribution values in Bρk

(
P̂k

)
. Therefore, we

maximize over all such ρ1:K to account for the worst µ′.

let us define

∥µ− µ′∥Wc
≜ inf

ν∈C(µ,µ′)
E(P,Q)∼ν {Wc (P,Q)} (14)

as the Wasserstein distance between µ and µ′ according to
transportation costWc.

Here, C (µ, µ′) is the set of all couplings (joint measures
in M (M (Z)×M (Z))) with µ and µ′ as their respec-
tive marginals. Accordingly, for ε ≥ 0 and P ∈ M, we
define the Wasserstein ball of radius ε around P ∈ M
as Bwass

ε (P ) ≜ {Q| Wc (P,Q) ≤ ε} , where the trans-
portation cost c is hidden from formulation for the sake
of simplicity. Similarly, one can define the Wasserstein
ball around meta-distribution µ ∈ M2 (Z) with radius ε
as Gε (µ) ≜

{
µ′
∣∣ ∥µ− µ′∥Wc

≤ ε
}
, which is the set of

meta-distributions with a (meta-distributional) Wasserstein
distance of at most ε from µ.

We now present our main result of this section: a quasi-
convex (and thus polynomial-time) optimization problem
that provides empirical meta-distributionally robust evalua-
tion guarantees against Wasserstein shifts, with a asymptoti-
cally vanishing generalization gap.

Theorem 6.3 (Empirical Evaluation with Wasserstein Ro-
bustness). Consider the same setting as in Theorem 5.2. Let
c be a bounded and proper (according to Definition 6.2)
transportation cost on Z × Z . For any given ε, δ > 0,
consider the following constrained optimization problem:

Û∗ (ε) ≜ sup
ρ1,...,ρK≥ ε/K

1

K

K∑
k=1

Q̂Vk (h, ρk) (15)

subject to
1

K

K∑
k=1

ρk ≤ ε
(
1 +

1

K

)
+ c1

√
log
(
K+2
δ

)
K

,

where c1 is a universal constant. Then, the following
bound holds with probability at least 1 − δ for the meta-

distributionally robust loss of h around µ:

sup
µ′∈Gε(µ)

EP∼µ′ (EP [ℓ (y, h (X))]) ≤ Û∗ (ε)+

O

(√
1

K
log (Kδ−1) +

1

K

K∑
k=1

√
1

nk
log

Knk
εδ

)
.

The proof is provided in Appendix E. Similar to Theorem
5.2, Theorem 6.3 offers a robust bound on the expected loss
under Wasserstein meta-distributional shifts using Û∗(ε).
Once again, the generalization gap decreases asymptoti-
cally as both K and

(
mink∈[K] nk

)
/ logK increase with

rate O
(√

logK/K +maxk∈[K]

√
1
nk

log(Knk)
)

. It is
important to note that the inherent robustness of h against
Wasserstein-type distributional shifts, if it exists, would be
reflected in Û∗(ε), thereby reducing the bound.

A notable contribution of our work in this section is that
we show robust evaluation against Wasserstein adversarial
attacks to µ is possible using only Q̂Vi(h, ρ) values. In
other words, it is not needed to move data points into a
central server to perform collective attacks, and each client
can independently assess the performance of h under local
attacks. However, the budget values ρk for each client
need to be carefully selected. In Section 7, we show this
is possible at the server-side in polynomial time. Figure 3
gives a graphical illustration of the procedure in Theorem
6.3.

7. Asymptotic Minimax Optimality, Privacy,
and Computational Efficiency

In this section, we address the computational complexity of
our proposed empirical upper-bounds in Theorems 4.1, 5.2,
5.3 and 6.3 both the server and client sides. We also discuss
their privacy w.r.t. local user data. Finally, we prove their
asymptotic minimax optimality.
Remark 7.1 (Server-side Computational Complexity).
The server-side optimization problems in Theorems 5.2 and
5.3 are convex and efficiently (in polynomial-time w.r.t. K)
solvable. Each client is queried only once for their non-
robust (ordinary) loss value (ρk = 0). Robust local losses
are not required for f -divergence shifts, since the reweight-
ing attack can be carried out entirely at the server-side. On
the other hand, the bound in Theorem 6.3, i.e., Û∗ (ε), is
the solution to a quasi-convex program, where a standard
bisection method (e.g., Algorithm 1 in Appendix F), can
approximate Û∗ (ε) within an arbitrary error margin ∆ > 0,
in polynomial time w.r.t. K and 1

∆ . The total query budget
per client in this case is also polynomial with respect to both
K and log 1

∆ .
Remark 7.2 (Client-side Computational Complexity). For
the case of f -divergence shifts in Theorems 5.2 and 5.3,

7
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clients only return the ordinary loss values which can be
computed in time O (nk) at client k. In Theorem 6.3, as-
sume the transportation cost c is convex with respect to its
second argument2 and is differentiable. Then, the client-
side optimization problem to determine Q̂Vk(h, ρ) in equa-
tion 15, for any given h and ρ, is convex (Sinha et al., 2018).
A standard stochastic gradient descent algorithm can approx-
imate Q̂Vk(h, ρ) within an arbitrary error margin ∆ > 0,
with polynomial time complexity relative to ∆−1.

Proofs of Remarks 7.1 and 7.2, as well as the bisection
method in Algorithm 1 can be found in Appendix F.
Remark 7.3 (Privacy). All empirical bounds in this work
only use the local ordinary or adversarial loss values, with-
out direct access to local private samples or model gradients.
In particular, the empirical value Û∗(ε) in equation 15 re-
lies solely on the Wasserstein adversarial loss of clients,
i.e., Q̂Vk(h, ρ) for polynomially many values of ρ. To the
best of our knowledge, there are no well-known privacy
attacks capable of effectively recovering private data from
this procedure. It should be noted that providing Differential
Privacy (DP) certificates goes beyond the scope of our work.

Notably, working on novel attacks or providing information-
theoretic analysis for the recover-ability of private data from
multiple local adversarial loss values can be a proper future
research direction. Finally, the following remark (proved in
Appendix F) provides tightness guarantees for our bounds.
Remark 7.4 (Asymptotic Minimax Optimality). All em-
pirical upper-bounds in Theorems 4.1, 5.2, 5.3 and 6.3 are
asymptotically minimax optimal, which means they can be
achieved by a worst-case shift when K and all nk/ logK
grow toward infinity. This means our bounds are tight and
cannot be improved, at least when network and local dataset
sizes become sufficiently large.

8. Experimental Results
Our work is mainly theoretical; In any case, we present a
series of experiments on real-world datasets to show tight-
ness and computability of our bounds in practice. First, we
outline our client generation model and present a number
of non-robust risk CDF guarantees. A more complete set
of experiments with complementary explanations can be
found in Appendix G. We simulated a federated learning
scenario with n = 1000 nodes, where each node contains
1000 local samples. The experiments were conducted using
four different datasets: CIFAR-10 (Krizhevsky et al., 2009),
SVHN (Netzer et al., 2011), EMNIST (Cohen et al., 2017),
and ImageNet (Russakovsky et al., 2015). To create each
user’s data within the network, we applied three types of
affine distribution shifts across users:

2This assumption is generally not restrictive, as any norm ex-
hibits this property

Figure 4. Non-robust Risk CDF bounds for unseen clients. Here,
“Meta” refers to the main population with 1000 nodes. DKW-
robust bounds are depicted only for tightness comparison.

Figure 5. Meta-distributional shifts based on resolutions (left) and
colors (right). (a) Sample images from each resolution/color. (b)
Average number of samples per resolution/color within each net-
work selected from the meta distributions. (c) Histogram of model
accuracy densities for the two meta distributions.

Feature Distribution Shift: Each sample X
(k)
i in the

dataset is manipulated via a transformation chosen randomly
for each node. Specifically, each user is assigned a unique
matrix Λ(k) and shift vector δ(k), and the data is modi-
fied as X̃

(k)
i = (I + Λ(k))X

(k)
i + δ(k), where Λ(k) and

δ(k) are respectively random matrices and vectors with i.i.d.
zero-mean Gaussian entries. The standard deviation varies
based on the dataset: 0.05 for CIFAR-10 and SVHN, 0.1
for EMNIST, and 0.01 for ImageNet.

Label Distribution Shift: Here, we assume that each meta-
distribution is characterized by a specific α coefficient. To
generate each user’s data under this shift, the number of
samples per class is determined by a Dirichlet distribution
with parameter α. In our experiments, we use α = 0.4.

Feature & Label Distribution Shift: This shift combines
both the feature and label distribution shifts described above
to create a new distribution for each user.

Figure 4 illustrates our bounds on the risk CDF of unseen

8
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Figure 6. f-divergence certificates for two meta-distributions based
on resolutions (Left) and colors (Right).

clients with no shifts. We selected 500 nodes from the popu-
lation and considered 500 other nodes as unseen clients. We
then plotted the CDFs based on 500 samples and confirmed
that our bounds hold for the real population as well. Due to
the standard DKW inequality, the empirical CDF is a good
estimate for the test-time non-robust risk CDF.

8.1. f -Divergence Meta-Distributional Shifts

We assumed users belong to two distinct meta-distributions:
the source and the target. A CNN-based model is initially
trained on a network of clients sampled from the source.
The resulting risk values are then fed into the optimization
problems in Section 5 to obtain robust CDF bounds, consid-
ering both the Chi-Square and KL divergence as potential
choices for f . Finally, we empirically estimate the risk CDF
for users from the target meta-distribution and validate our
bounds. Specifically, we tested our certificates in two dis-
tinct settings using the CIFAR-10 dataset (see Figure 5).
We generated various image categories with differing res-
olutions or color schemes, and then sampled from these
categories to create different distributions. More details of
this procedure can be found in Section G.

Figure 6 verifies our CDF certificates based on both chi-
square and KL-divergence (dotted curves) for the target
meta distribution (orange curve). As can be seen, bounds
have tightly captured the behavior of risk CDF in the target
network. More detailed experiments are shown in Figure 9
in Appendix G.

We then used the above-mentioned affine distribution shifts
to create new domains according to a Wasserstein metric.
Figure 7 summarizes our numerical results in this scenario.
To generate different networks within the meta-distribution,
we applied the affine distribution shifts described in Section
G.1. Once again, the results validate our certificates, this
time for Wasserstein-type shifts. It is important to note that
the bounds presented here remain tight, particularly under
adversarial attacks as defined by a distributional adversary

Figure 7. Wasserstein-based certificates for unseen clients. “Meta”
refers to the main population with 1000 nodes. Dotted curves are
based on 500 networks within the population.

in (Sinha et al., 2018). More detailed experiments with vari-
ous levels of tightness are shown in Figure 10 in Appendix
G. Although our theoretical findings in Section 6 focus on
the average risk and not the risk CDF, we extended the same
framework to the CDF in this experiment to explore whether
the theory might also apply. The results were positive, sug-
gesting potential for extending our theoretical findings in
this area.

9. Conclusion
This work introduces new polynomial-time computable per-
formance bounds to guarantee the performance of a model
h on an unseen network B, using only data and queries from
network A. The key assumption is that the meta-distributions
behind user data in the two networks are ε-close, measured
by f -divergence or Wasserstein shifts, which address diverse
practical scenarios. The bounds, backed by rigorous proofs,
achieve vanishing generalization gaps as network size K
and normalized samples grow. Novel contributions include a
robust GC theorem and DKW bound for f -divergence shifts.
Experiments confirm the bounds’ tightness and efficiency.

Impact Statement
This paper proposes a certifiably robust evaluation frame-
work for federated learning under meta-distributional shifts,
providing theoretical guarantees on performance under de-
ployment shifts. The proposed approach may benefit real-
world federated systems by improving reliability and trust
in evaluation across diverse clients. However, if misapplied
without properly validating the assumptions on shift struc-
ture, the certificates may give a false sense of robustness.
Care should be taken to ensure the theoretical assumptions
hold approximately in practice, and to transparently com-
municate the limitations of the guarantees.
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Figure 8. A graphical illustration of meta-distributional shifts between two different networks (or societies) of clients/users. Heterogeneous
user data distributions can be considered as i.i.d. samples from a meta-distribution. In this example, clients from one meta-distribution
primarily have vehicle images, while those from another meta-distribution mostly have animal images.

A. Complementary Review of Previous works
In this section, we review several related works in federated training and evaluation of models with non-IID clients. We
then review a series of known (mostly theoretical) results regrading generalization gaps and shortcomings of current
methodologies related to our problem set in this paper, i.e., beta testing in FL scenarios.

A.1. Generalization in FL

The challenge of generalizing FL models to unseen clients and distributions has been studied in several related works. Li
et al. (2020) introduce a method to address the heterogeneity of client data, focusing on improving the generalization of FL
models. Similarly, Ma et al. (2024) propose a topology-aware federated learning approach that leverages client relationships
to enhance model robustness against out-of-federation data. Also, Zeng et al. (2023) explore adaptive federated learning
techniques to dynamically adjust model parameters based on client data distributions. The robustness of FL models against
distribution shifts and adversarial attacks has been the focus of several related references. Reisizadeh et al. (2020) propose
a robust federated learning framework to handle affine distribution shifts across clients’ data. Their proposed framework
incorporates a Wasserstein-distance-based distribution shift model to account for device-dependent data perturbations. Also,
Zhang et al. (2023) conduct comprehensive evaluations on the adversarial robustness of FL models, proposing the decision
boundary-based FL Training algorithm to enhance the the trained model’s robustness. Zhou et al. (2022) gain insight from
the bias-variance decomposition to improve adversarial robustness in FL. Also, Ben Mansour et al. (2022) propose a robust
aggregation method to reduce the effect of adversarial clients.

A.2. Non-IID Federated Learning

The heterogeneous nature of FL, where clients have different data distributions has been a topic of great interest in
the literature. In particular, modeling the heterogeneity of local data distributions/datasets via assuming a higher-level
meta-distribution has been the center of several researches.
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See, for example, Wu et al. (2024a); Chen et al. (2023); Patel et al. (2022); Matta et al. (2024). Please refer to Figures 1, 2
and 8 for a more illustrative definition of meta-distribution over local statistical or empirical distributions in a heterogeneous
and non-IID network. In this regard, Fallah et al. (2020) introduce a personalized federated learning framework based on
model-agnostic meta-learning, which provides performance guarantees by optimizing for data distribution heterogeneity.
Farnia et al. (2022) propose an optimal transport approach to personalized federated learning by learning and inverting the
optimal transport map between the distribution of clients, which has been further extended to fairness-aware personalized
federated learning in (Lei et al., 2025). Diamandis et al. (2021) propose a Wasserstein-based framework to federated learning
under the non-IID scenario by training a mixed linear regression model capturing the non-IID-ness of the clients’ data.
Luo et al. (2021) propose a classifier calibration method that adjusts for bias in heterogeneous data, offering improved
performance guarantees in non-IID settings. Tan et al. (2022) develop FedProto, a framework that leverages prototype
learning to improve convergence and robustness under non-convex objectives. Moreover, Wu et al. (2024b) propose
FedLoRA, which adapts low-rank parameter sharing techniques to mitigate the effects of heterogeneity in personalized
federated learning. Also, Cheng et al. (2024) and Jia et al. (2024) introduce group-based customization and local parameter
sharing strategies, respectively, to provide fairness and efficiency guarantees for heterogeneous client types and multiple
tasks in FL. A recent work on using super-quantiles in FL with heterogeneous clients is (Pillutla et al., 2024), which focuses
on optimization and convergence aspects of the this problem.

A.3. Theory of Federated Model Evaluation

Evaluating models over networks of clients, also known as beta testing, or alpha/beta testing, or A/B testing, involves
evaluating the performance of a model or application on a small, randomly selected sample of potential users before wider
deployment (Soltani et al., 2023). Specifically, this process assumes that a central server has access to a limited subset of K
clients from a large network and can request these clients to evaluate a given machine learning model h on their local data.
The clients then report the results to the server. The objective is to estimate the average performance of the model across the
entire network based on this limited sample (Liu et al., 2024).

Several critical challenges emerge in beta testing scenarios: i) Data Privacy: Can we reliably assess the average performance
without direct access to clients’ local data? ii) Sample Efficiency: How many randomly selected clients are necessary to
achieve a reliable performance assessment? iii) Meta-Distributional Robustness: How can we guarantee a minimum
level of performance for the model if the underlying meta-distribution governing the clients/users changes slightly? Other
considerations include the computational efficiency of server-side and client-side algorithms required for such evaluations.

Questions (i) and (ii) above are relatively well-addressed in the literature, either through federated evaluation frameworks
(see Sections A.1 and A.2), or via conventional concentration inequalities (see, for example, our Theorem 4.1). However,
the challenge of Meta-Distributionally Robust Assessment (M-DRA) remains underexplored. This problem addresses the
robustness of model evaluation when the meta-distribution governing client data (µ) shifts slightly to a new distribution (µ′).
A straightforward yet naive approach to tackle this problem is to use the concept of Maximum Mean Discrepancy (MMD)
(see Hu et al. (2024) or Gao et al. (2021)) in order to provide a bound on the performance of h on the target meta-distribution
µ′, based on its performance on the source meta-distribution µ (Sinha et al., 2018). Mathematically, for any meta-distribution
µ′ which is in an ε-vicinity of µ, we have:

EP∼µ′ [EP (ℓ (y, h (X)))] = EP∼µ [EP (ℓ (y, h (X)))] + Eµ′−µ [EP (ℓ (y, h (X)))]

≤ EP∼µ [EP (ℓ (y, h (X)))] + sup
h∈H

Eµ′−µ [EP (ℓ (y, h (X)))]

= EP∼µ [EP (ℓ (y, h (X)))] + MMD(µ, µ′|H) , (16)

where H is a class of functions that h belongs to, and Eµ′−µ (·) is defined as Eµ′ (·) − Eµ (·). This way, closeness of
µ′ to µ (ε-vicinity) is reflected into the MMD value, i.e., MMD is proportional to ε. Also, note that the first term, i.e.,
EP∼µ [EP (ℓ (y, h (X)))] can be estimated according to any unbiased averaging over the sample distributions P1, . . . , PK

of µ (and not µ′), or their empirical counterparts P̂1:K .

While MMD offers a promising starting point, however, the gap term MMD(µ, µ′|H) does not shrink as K or either of nks
increase asymptotically. It is an ε-dependent and non-vanishing error term that inflates the adversarial loss of h regardless of
any possible inherent robustness in h around µ. To the best of our knowledge, there are no prior works that have already
addressed this issue in federated beta testing (or model evaluation in general).
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B. Uniform Convergence of Empirical CDFs from Adversarial Samples: GC Theory Revisited
Assume we are given n i.i.d. samples of a distribution P , denoted by X1, . . . , Xn ∈ R and we aim to estimate the true
cumulative distribution function (CDF) of X ∼ P based on these empirical observations. The Glivenko-Cantelli theorem
provides strong guarantees on the asymptotic behavior of the worst-case error when estimating a CDF from a finite number
of i.i.d. samples (Talagrand, 1987). The theorem states that the ℓ∞-norm of the difference between the true CDF of X ∼ P ,
denoted by F , and its empirical version based on n i.i.d. samples, denoted by F̂n, which can be formulated as

F̂n(x) ≜
1

n

∑
i∈[n]

1 (Xi ≤ x) , ∀x ∈ R,

almost surely converges to zero as n approaches infinity. Mathematically, this is expressed as:

lim
n→∞

∥∥∥F − F̂n

∥∥∥
∞

a.s.
= 0. (17)

Furthermore, the well-known Dvoretzky-Keifer-Wolfowitz (DKW) theorem provides non-asymptotic bounds for this
asymptotic behavior.

Lemma B.1 (DKW Inequality (Dvoretzky et al., 1956)). Let X be a measurable subset of R, and let P be any probability
measure supported on X . Let X1, . . . ,Xn ∈ R be n i.i.d. samples from P . Then, the following bound holds for the
ℓ∞-norm of the difference between the empirical and true CDF of P :

P

sup
λ∈R

∣∣∣∣∣∣P (X ≥ λ)− 1

n

∑
i∈[n]

1 (Xi ≥ λ)

∣∣∣∣∣∣ ≤
√

log 2
δ

2n

 ≥ 1− δ, (18)

for any δ > 0.

The proof of this lemma can be found in the reference. This result allows us to provide uniform convergence guarantees
on the tail probability of the loss of h, i.e., P(ℓ (y, h (X)) ≥ λ) for any λ ∈ R, based on K i.i.d. observations of the loss
across the network. By “uniform,” we mean that, with high probability over the sampling of the K users, the worst deviation
between the empirical and statistical tail probability is consistently bounded.

For the case of f -divergence robustness, we show that it is also possible to derive an asymptotically consistent and uniform
bound for the risk distribution (CDF) over the target network, which estimates

µ′ (EP [ℓ (y, h (X))] ≥ λ) ,

for all λ ∈ R, simultaneously. Here, µ′ represents the unknown target meta-distribution, which is assumed to be within an
ε-proximity of the source meta-distribution µ. Note that µ is also unknown, and our access to it is through K independent
empirical realizations P̂1, . . . , P̂K , where each P̂k is known only to client k via a private sample set of size nk. To achieve
this, we first derive a robust version of the uniform convergence bound on empirical CDFs, i.e., the robust Dvoretzky-Kiefer-
Wolfowitz (DKW) inequality:

Lemma B.2 (Robust Version of DKW Inequality). Let µ and µ′ be two probability measures on R where µ′ is absolutely
continuous w.r.t. µ. Assume X1, . . . , Xn for n ∈ N to be i.i.d. samples drawn from µ. Suppose we have Df (µ

′∥µ) ≤ ε for
some ε ≥ 0 and a proper convex function f(·). For δ > 0, let us define the set An (ε, δ) as

An (ε, δ) ≜

{
α ∈ Rn

+

∣∣∣∣∣
∣∣∣∣∣ 1n

n∑
i=1

αi − 1

∣∣∣∣∣ ≤ c1
√
n−1 log

(
1

δ

)
,
1

n

n∑
i=1

f (αi) ≤ ε+ c2

√
n−1 log

(
1

δ

)}
, (19)

where constants c1 and c2 depend only on f(·). Then, there exists α ∈ An (ε, δ) such that the following uniform bound
holds with probability at least 1− δ:

sup
λ∈R

∣∣∣∣∣µ′ (X ≤ λ)− 1

n

n∑
i=1

αi1 (Xi ≤ λ)

∣∣∣∣∣ ≤ O
(√

n−1 log
(n
δ

))
. (20)
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Proof of Lemma B.2. The proof for most of its initial parts follows the same path as in the proof of Theorem 5.2. In
particular, we use Lemmas D.1 and D.2 from the proof of Theorem 5.2 (see Section D) to show that the following events
occur separately with probability at least 1− δ

3 , for any δ > 0:∣∣∣∣∣∣ 1n
∑
i∈[n]

dµ′(Xi)

dµ(Xi)
− 1

∣∣∣∣∣∣ ≤ c1
√

log 1
δ

n
, (21)

∣∣∣∣∣∣Df (µ
′∥µ)− 1

n

∑
i∈[n]

f

(
dµ′(Xi)

dµ(Xi)

)∣∣∣∣∣∣ ≤ c2
√

log 1
δ

n
, (22)

where c1, c2 > 0 are constants depending on f(·). These probabilities are with respect to the randomness in drawing i.i.d.
samples X1, . . . , Xn ∼ µ. This is equivalent to the following statement:

P

[(
dµ′(Xi)

dµ(Xi)

)
i∈[n]

∈ An

]
≥ 1− 2δ

3
. (23)

Next, define F̂n(λ) for λ ∈ R as

F̂n(λ) ≜
1

n

n∑
i=1

ω(Xi)1(Xi ≤ λ), (24)

where the weight function ω(X) ≥ 0 is the unknown (bounded) density ratio between µ′ and µ, i.e.,

ω(X) ≜
dµ′(X)

dµ(X)
. (25)

Since ω(·) is non-negative, F̂n(λ) is non-decreasing in λ, starting at 0 when λ = −∞ and not exceeding an upper-bound
Λ < +∞ (due to absolute continuity property) as λ→∞.

Consider the probability measure µ′. For m ≥ 2, define λ∗0, λ
∗
1, . . . , λ

∗
m such that (i) λ∗0 = −∞ and λ∗m = ∞, and (ii)

µ′(X ≤ λ∗i ) = i/m for i ∈ [m − 1]. These λ∗i , i ∈ [m] ∪ {0} represent the m-quantiles of µ′. For any λ ∈ R, let
i = i(λ) ∈ [m] be such that λ ∈ [λ∗i−1, λ

∗
i ). Then, the following chain of inequalities holds almost surely for all λ ∈ R:

F̂n(λ)− µ′(X ≤ λ) ≤ F̂n(λ
∗
i )− µ′(X ≤ λ∗i−1) ≤ F̂n(λ

∗
i )− µ′(X ≤ λ∗i ) +

1

m
,

F̂n(λ)− µ′(X ≤ λ) ≥ F̂n(λ
∗
i−1)− µ′(X ≤ λ∗i ) ≥ F̂n(λ

∗
i−1)− µ′(X ≤ λ∗i−1)−

1

m
. (26)

Thus, the following bound holds for all λ ∈ R:∥∥∥F̂n − µ′(X ≤ ·)
∥∥∥
∞

= sup
λ∈R

∣∣∣F̂n(λ)− µ′(X ≤ λ)
∣∣∣

≤ max
i∈{0,1,...,m}

∣∣∣F̂n(λ
∗
i )− µ′(X ≤ λ∗i )

∣∣∣+ 1

m
. (27)

On the other hand, for any fixed λ ∈ R, we have the following relation for the expectation of F̂n(λ):

Eµ[F̂n(λ)] = Eµ

[
1

n

n∑
i=1

ω(Xi)1(Xi ≤ λ)

]

=
1

n

n∑
i=1

Eµ [ω(Xi)1(Xi ≤ λ)]

=
1

n

n∑
i=1

∫
R

dµ′(X)

dµ(X)
1(X ≤ λ)dµ(X)

= µ′(X ≤ λ). (28)
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Given that the weight functions ω(Xi) for i ∈ [n] are bounded, and 1(·) ∈ {0, 1}, McDiarmid’s inequality states that for
any ε > 0,

P
(∣∣∣F̂n(λ

∗
i )− µ′(X ≤ λ∗i )

∣∣∣ > ε
)
≤ 2e−2O(nε2). (29)

Therefore, using the union bound over all i = 0, 1, . . . ,m, we obtain:

P
(

max
i∈{0,1,...,m}

∣∣∣F̂n(λ
∗
i )− µ′(X ≤ λ∗i )

∣∣∣ > ε

)
≤ 2(m+ 1)e−2O(nε2). (30)

Equivalently, for any δ > 0, the following bound holds with probability at least 1− δ/3:

max
i∈{0,1,...,m}

∣∣∣F̂n(λ
∗
i )− µ′(X ≤ λ∗i )

∣∣∣ ≤ O(√(2n)
−1

log

(
6(m+ 1)

δ

))
. (31)

Using the preceding inequalities, in particular relations in equation 23, equation 27 and equation 31, we can say there exists
α ∈ An such that the following bounds for F̂n hold with probability at least 1− δ:∥∥∥F̂n − µ′(X ≤ ·)

∥∥∥
∞
≤ max

i∈{0,1,...,m}

∣∣∣F̂n(λ
∗
i )− µ′(X ≤ λ∗i )

∣∣∣+ 1

m

≤ O

(
inf

m∈N≥2

{√
(2n)

−1
log

(
6(m+ 1)

δ

)
+

1

m

})

≤ O
(√

n−1 log
(n
δ

))
. (32)

Thus, the proof is complete.

A direct corollary of Lemma B.2 is the following robust (again with respect to f -divergence adversaries) of the well-known
Gilivenko-Cantelli theorem:

Corollary B.3 (Robust Version of Glivenko-Cantelli Theorem). Let µ and µ′ be two probability measures on R and let
S ≜ {Xi}∞i=1 be an i.i.d. sequence drawn from µ. Assume µ and µ′ are absolutely continuous with respect to each other.
Additionally, suppose Df (µ

′∥µ) ≤ ε for some ε ≥ 0 and a proper convex function f(·). Then, there exists a non-negative
sequence {αi}∞i=1 that can depend on S , has the following properties:

lim
n→∞

1

n

n∑
i=1

αi = 1 and lim
n→∞

1

n

n∑
i=1

f (αi) ≤ ε, (33)

and also satisfies the following condition:

lim
n→∞

sup
λ∈R

∣∣∣∣∣µ′ (X ≤ λ)− 1

n

n∑
i=1

αi1 (Xi ≤ λ)

∣∣∣∣∣ a.s.= 0. (34)

Corollary B.3 follows directly from Lemma B.2.

C. Proofs of the Statements in Section 4
Proof of Theorem 4.1. The proof for the average risk is straightforward and combines several applications of McDiarmid’s
inequality (or, more simply in this case, Hoeffding’s inequality). For any instance of distributions P ∼ µ, let us define the
random variable ζ = ζ(P ) as follows:

ζ(P ) ≜ EP [ℓ (y, h (X))] =

∫
Z
ℓ (y, h (X)) P (dZ), (35)
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where ℓ denotes the loss function, and Z is the space of possible outcomes. We omit the detailed proof that P being a
random variable implies ζ(P ) is also a random variable, as this follows from standard measurability arguments.

Now, for any δ > 0, we apply McDiarmid’s inequality to obtain:

P

ζ − Eµ[ζ] ≤

√
log K+1

δ

2K

 ≥ 1− δ

K + 1
, (36)

where the bound holds due to the one-sided version of McDiarmid’s inequality, and the fact that ζ ∈ [0, 1] almost surely.

Next, for each k ∈ [K], we similarly have:

P

 1

nk

nk∑
i=1

ℓ
(
y
(k)
i , h

(
X

(k)
i

))
− EPi

[ℓ (y, h (X))] ≤

√
log K+1

δ

2nk

 ≥ 1− δ

K + 1
. (37)

This follows from Hoeffding’s inequality, given that the data points in the local dataset of the k-th client are i.i.d. By the
union bound, the above K + 1 inequalities hold simultaneously with probability at least 1− δ. Finally, combining these
inequalities gives us the desired bound in the theorem, thus completing the proof.

For the bound concerning the empirical CDF, the proof follows more or less the same path. Let us define the statistical
query value of the kth client as QVk(h), i.e.,

QVk (h) ≜ EPk
[ℓ (y, h (X))] , (38)

where Pk is the true (unknown) data generating distribution which is assigned to client k ∈ [K]. In this regard, according to
Lemma B.1, for any δ > 0 we have

P

sup
λ∈R

∣∣∣∣∣∣µ
(
EP [ℓ (y, h (X))] ≥ λ

)
− 1

K

∑
k∈[K]

1 (QVk(h) ≥ λ)

∣∣∣∣∣∣ ≤
√

log 2(K+1)
δ

2K

 ≥ 1− δ

K + 1
.

Also, applying the McDiarmid’s inequality for K times (once, with respect to each client k ∈ [K]), the following bounds
also hold:

P

 1

nk

nk∑
i=1

ℓ
(
y
(k)
i , h

(
X

(k)
i

))
− EPi

[ℓ (y, h (X))] ≤

√
log K+1

δ

2nk

 ≥ 1− δ

K + 1
, (39)

which show the boundedness of the deviation between the empirical query values Q̂Vk(h) and statistical ones QVk(h). This
is similar to the previous part of the proof. Again, applying union bound and combining all the inequalities mentioned
so far in the proof, the final bound in the statement of the theorem holds with probability at least 1 − δ and the proof is
complete.

D. Proofs of the Statements in Section 5
Proof of Theorem 5.2. For each k ∈ [K], let us define the event ξ(k)1 as follows:

ξ
(k)
1 ≡ EPk

[ℓ (y, h (X))] ≤ 1

nk

∑
i∈[nk]

ℓ
(
y
(k)
i , h

(
X

(k)
i

))
+

√
log
(
K+3
δ

)
2nk

, (40)

where, since ℓ(·) is assumed to be a 1-bounded loss function and the samples are drawn independently, McDiarmid’s
inequality tells us that P

(
ξ
(k)
1

)
≥ 1− δ

K+3 (McDiarmid et al., 1989). For the rest of the proof, we assume the density ratio
of the meta-distributions µ, µ′ are bounded, i.e., we have

dµ′

dµ
(P ) ≤ Λ, ∀P ∈ supp (µ) , (41)
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for some positive Λ. We call this property the Λ-boundedness of density ratio. At the end of the proof, we show that in
our problem we have Λ ≤ 1 + κε. We now state and prove two essential lemmas which will be used in the subsequent
arguments.

Lemma D.1. Consider two meta-distributions µ, µ′ ∈M2 which are absolutely continuous with respect to each other and
have a Λ-bounded density ratio for some Λ ≥ 1. For K ∈ N, assume P1, . . . , PK ∈ M to be i.i.d. sample distributions
sampled from µ. Then, for all ϵ > 0, the following concentration bound holds:

P

∣∣∣∣∣∣ 1K
∑

k∈[K]

dµ′(Pk)

dµ(Pk)
− 1

∣∣∣∣∣∣ ≥ ϵ
 ≤ exp

(
−2Kϵ2

Λ2 (1− Λ−2)
2

)
. (42)

Proof of Lemma D.1. Due to the assumed mutual absolute continuity, µ and µ′ share the same support. Therefore, for
P ∼ µ, we can define the scalar random variable

ζ = ζ(P ) ≜
dµ′(P )

dµ(P )
. (43)

This variable is bounded by Λ−1
a.s.
≤ ζ

a.s.
≤ Λ. Regarding the expected value of ζ, we have:

E [ζ] = EP∼µ

[
dµ′(P )

dµ(P )

]
=

∫
M

dµ′(P )

dµ(P )
dµ(P ) = 1. (44)

Let ζk = ζ(Pk). Since ζ(P1), . . . , ζ(PK) represent i.i.d. instances of ζ, McDiarmid’s inequality states that:

P

∣∣∣∣∣∣ 1K
∑

k∈[K]

ζk − E [ζ]

∣∣∣∣∣∣ ≥ ϵ
 ≤ exp

(
− 2Kϵ2

(Λ− Λ−1)
2

)
, (45)

which completes the proof.

Lemma D.2. For Λ ≥ 1, assume two meta-distributions µ, µ′ ∈M2 are absolutely continuous with respect to each other
and have a Λ-bounded density ratio. Let f be a convex function that satisfies the conditions described in Definition 5.1.
For K ∈ N, assume P1, . . . , PK ∈M to be i.i.d. sample distributions sampled from µ. Then, the following concentration
bound holds:

P

∣∣∣∣∣∣Df (µ
′∥µ)− 1

K

∑
k∈[K]

f

(
dµ′ (Pk)

dµ (Pk)

)∣∣∣∣∣∣ ≥ ϵ
 ≤ exp

(
−2Kϵ2

BW2 (f (·) ,Λ)

)
, (46)

where BW (f (·) ,Λ) is defined as:
BW (f (·) ,Λ) ≜ sup

Λ−1≤u,v≤Λ

f(u)− f(v). (47)

Proof of Lemma D.2. The proof follows similarly to that of Lemma D.1. For P ∼ µ, let us define the random variable

ζ(P ) = f

(
dµ′ (P )

dµ (P )

)
. (48)

Then, having defined ζk = ζ (Pk), we know that ζ1, . . . , ζK represent i.i.d. instances of ζ. Moreover, the expected value of
ζ is the f -divergence between µ′ and µ:

E [ζ] = EP∼µ

[
f

(
dµ′(P )

dµ(P )

)]
= Df (µ

′∥µ) . (49)

Finally, since µ′ and µ have the Λ-bounded density ratio property, the following bounds hold almost surely:

ζ
a.s.
≤ sup

Λ−1≤u≤Λ

f(u) , ζ
a.s.
≥ inf

Λ−1≤v≤Λ
f(v), (50)
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which means the range of ζ is almost surely equal to BW (f (·) ,Λ). Hence, again using McDiarmid’s inequality, we get the
bound:

P

∣∣∣∣∣∣ 1K
∑

k∈[K]

ζk − E [ζ]

∣∣∣∣∣∣ ≥ ϵ
 ≤ exp

(
−2Kϵ2

BW2 (f (·) ,Λ)

)
, (51)

and this completes the proof.

With the lemmas established, let us define additional events ξ2 and ξ3 based on the concentration bounds:

ξ2 ≡
1

K

∑
k∈[K]

dµ′(Pk)

dµ(Pk)
⋚ 1± C1K

−1/2, (52)

ξ3 ≡
1

K

∑
k∈[K]

f

(
dµ′(Pk)

dµ(Pk)

)
⋚ Df (µ

′∥µ)± C2K
−1/2, (53)

where C1, C2 are constants which only depend on Λ and f(·), according to Lemmas D.1 and D.2. Based on the above
arguments and the results of the mentioned lemmas, we have P (ξ2) ,P (ξ2) ≥ 1 − δ

K+3 . Using the central idea for
importance sampling (Glynn and Iglehart, 1989), the following equations hold for all µ, µ′, ℓ and h:

EP∼µ

[(
dµ′(P )

dµ(P )

)
EP [ℓ (y, h (X))]

]
=

∫
P∈M

(
dµ′(P )

dµ(P )

)
EP [ℓ (y, h (X))] dµ(P )

= EP∼µ′ [EP [ℓ (y, h (X))]] . (54)

At this point, and similar to the idea of Lemma D.1, we define ξ4 as the event of the empirical loss over meta-distribution µ′

concentrates (with high probability) around its expected value, i.e.,

ξ4 ≡

EP∼µ

[(
dµ′(P )

dµ(P )

)
EP [ℓ (y, h (X))]

]
≤

1

K

∑
k∈[K]

dµ′(Pk)

dµ(Pk)
EPk

[ℓ (y, h (X))] + Λ

√
log
(
K+3
δ

)
2K

. (55)

Again, since

0
a.s.
≤ dµ′(Pk)

dµ(Pk)
EPk

[ℓ (y, h (X))]
a.s.
≤ Λ,

McDiarmid’s inequality states that the probability bound P (ξ4) ≥ 1− δ
K+3 holds. Our final definition in this proof is a

random set of meta-distributions G ⊆M2 which represents an empirical candidate for the neighbors of µ. Mathematically
speaking, let us define:

G ≜

ν ∈M2

∣∣∣∣ 1

K

∑
k∈[K]

dν(Pk)

dµ(Pk)
⋚ 1± C1K

−1/2 ,

1

K

∑
k∈[K]

f

(
dν (Pk)

dµ (Pk)

)
≤ ε+ C2K

−1/2

 , (56)

which depends on ε and has a random (empirical) nature since it also depends on sample distributions P1, . . . , PK . Based on
prior discussions and lemmas, we have µ′ a.s.

∈ G as long as the events ξ2 and ξ3 hold, simultaneously. By further assuming
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that events ξ4 and ξ(k)1 s for all k ∈ [K] also hold, we can finally write the following chain of inequalities:

EP∼µ′ [EP [ℓ (y, h (X))]] (57)

≤ 1

K

∑
k∈[K]

dµ′(Pk)

dµ(Pk)
EPk

[ℓ (y, h (X))] + Λ

√
log
(
K+3
δ

)
2K

≤ 1

K

∑
k∈[K]

dµ′(Pk)

dµ(Pk)
ÊPk

[ℓ (y, h (X))] + Λ

√
log
(
K+3
δ

)
2K

+
1

K

∑
k∈[K]

√
log
(
K+3
δ

)
2nk

a.s.
≤ 1

K
sup
ν∈G

∑
k∈[K]

dν(Pk)

dµ(Pk)
ÊPk

[ℓ (y, h (X))] +

√
log

(
K + 3

δ

)√ Λ2

2K
+

1

K

∑
k∈[K]

√
1

2nk

 .
It should be noted that the condition ν ∈ G can be interpreted as introducing

αk ≜
dν(Pk)

dµ(Pk)
, ∀k ∈ [K],

and force α1 . . . , αK to satisfy the constraints in the definition of B̂∗(ε). Hence, this gives us the high probability bound
claimed inside the statement of theorem. The only remaining part of the proof is to show events ξ(k)1 , ξ2, ξ3 and ξ4 for all
k ∈ [K] hold, simultaneously, with a probability at least 1− δ.

For any event ξ, let ξc denote its complement. Then, we already have

P
(
ξ
(k)c
1

)
,P (ξc2) , . . . ,P (ξc4) ≤

δ

K + 3
, ∀k ∈ [K].

In this regard, one can simply use the union bound and obtain the following chain of inequalities:

P

 ⋃
k∈[K]

ξ
(k)c
1 ∪ ξ2 ∪ ξ3 ∪ ξ4

 ≤ ∑
k∈[K]

P
(
ξ
(k)c
1

)
+

4∑
i=2

P (ξci ) =
Kδ

K + 3
+ 3

δ

K + 3
= δ. (58)

This means the bound in the statement of theorem holds with a probability at least 1− δ, and thus completes the proof.

Finally, let us derive an upper-bound for Λ, a.k.a., the density ratio bound. According to the definition of f -divergence, we
have:

Df (µ
′∥µ) = EP∼µ

[
f

(
dµ′

dµ
(P )

)]
≤ ε. (59)

Assume there exists a region in the distributional space S ⊆M (Z), where for all P ∈ S the density ratio dµ′/dµ(P ) is
at least Λ, for some Λ ≥ 1. Then, we have Df (µ

′∥µ) ≥ µ (S) f (Λ). Setting µ (S) equal to δ (our high-probability error
margin in this problem), we get

f (Λ) ≤ ε/δ,
which means Λ ≤ f−1 (ε/δ). On the other hand, we already know that f is a convex function (see Definition 5.1) which
means f−1 must be concave. Additionally, we must have f(1) = 0. Therefore, the following inequality holds:

Λ ≤ f−1 (ε/δ) ≤ 1 +
(
δ−1

[
f−1

]′
(0)
)
ε ≜ 1 + κε, (60)

where κ does not depend on ε.

Proof of Theorem 5.3. Similar to the proof of Theorem 5.2, we begin by noting that, due to McDiarmid’s inequality, for any
δ > 0, with probability at least 1− Kδ

K+2 , the following set of inequalities holds simultaneously for all k ∈ [K]:

Q̂V (h) ≤ QV (h) +

√
log
(
K+2
δ

)
2nk

. (61)
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Next, it can be readily verified that:

1 (QV (h) ≥ λ) ≤ 1

Q̂V (h) ≥ λ−

√
log
(
K+2
δ

)
2nk

 , ∀k ∈ [K]. (62)

Additionally, note that:

EP∼µ′ [1 (QV (h) ≥ λ)] = µ′ (QV (h) ≥ λ) . (63)

The remainder of the proof simply involves applying the result of Lemma B.2 with a maximum error probability of 2δ
K+2 .

This concludes the proof.

E. Proofs of the Statements in Section 6
Proof of Theorem 6.3. Proof consists of two parts:

• Proving the statement of theorem for the statistical case, where mink∈[K] nk → ∞ and thus we have Q̂Vk(h, ρ) =
QVk(h, ρ) for all h ∈ H, ρ ≥ 0 and k ∈ [K].

• Replacing the statistically exact adversarial loss QVk(h, ρ) which is based on the unknown distribution sample Pk

with its empirically calculated counterpart Q̂Vk(h, ρ) which is computed based on the known (yet private) distribution
P̂k for all k ∈ [K]. This part of the proof requires establishing a uniform convergence bound over all values of ρ ≥ 0.

Part I The core mathematical tool used throughout the proof is the following duality result from (Sinha et al., 2018)
(originally derived in (Blanchet and Murthy, 2019)) which works for general Wasserstein-constrained optimization problems:

Lemma E.1 (Proposition 1 of Sinha et al. (2018)). Let P be a probability measure defined over a measurable space Ω,
ℓ(·) : Ω→ R be any loss function, c denote a proper and lower semi-continuous transportation cost on Ω× Ω, and assume
ε ≥ 0. Then, the following equality holds for the Wasserstein-constrained DRO around P :

sup
Q∈Bwass

ε (P )

EQ [ℓ (Z)] = inf
γ≥0

{
γε+ EP

[
sup
Z′∈Ω

ℓ (Z ′)− γc (Z ′,Z)

]}
. (64)

Proof can be found inside the reference. Also, (Blanchet and Murthy, 2019) and (Zhang et al., 2024) along with several
other papers have theoretically analyzed alternative proofs. Based on the duality formulation in Lemma E.1, and considering
the fact that meta-distribution µ is also a “distribution” over the measurable space M, one can rewrite the original
Wasserstein-constrained MDRO in the statement of the theorem in its dual form:

sup
µ′∈Gε(µ)

EP∼µ′ [EP [ℓ (y, h (X))]]

= inf
γ≥0

{
γε+ EP∼µ

[
sup
Q

EQ [ℓ (y, h (X))]− γWc (P,Q)

]}
= inf

γ≥0

{
Eµ

[
sup
Q

EQ [ℓ (y, h (X))]− γ (Wc (P,Q)− ε)
]}

. (65)

The main advantage achieved by this reformulation is the substitution of µ′ with the fixed meta-distribution µ inside the
expectation operators. Therefore, the optimization no longer has to be carried out in theM2 space. For the sake of simplicity
in the proof, assume supreme value in equation 65 is attainable. This assumption is not necessary, and can be relaxed
by using a more detailed mathematical analysis which is replacing the optimal distribution Q∗ with a Cauchy series of
distributions and proceed with similar arguments. However, we have decided to avoid this scenario in order to simplify the
proof. In this regard, let us define:

Q∗ (P, γ; ε) ≜ argmax
Q

EQ [ℓ (y, h (X))]− γ (Wc (P,Q)− ε) , ∀P ∈ supp (µ) . (66)
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Then, the following relation holds:

sup
µ′∈Gε(µ)

EP∼µ′ [EP [ℓ (y, h (X))]] = inf
γ≥0

{
Eµ

[
EQ∗(P,γ) [ℓ (y, h (X))]− γ (Wc (P,Q

∗ (P, γ))− ε)
]}

= inf
γ≥0

{
EP∼µ

[
EQ∗(P,γ) [ℓ (y, h (X))]

]
−

γEP∼µ [Wc (P,Q
∗ (P, γ))− ε]} . (67)

which, can be simply rewritten as:

sup
µ′∈Gε(µ)

EP∼µ′ [EP [ℓ (y, h (X))]] = inf
γ≥0

Eµ

[
EQ∗(P,γ) [ℓ (y, h (X))]

]
subject to EP∼µ [Wc (P,Q

∗ (P, γ))] ≤ ε. (68)

Using a similar argument as before, let us assume the infγ≥0 in equation 68 is also attainable and denote the optimal value
by γ∗ = γ∗ (µ, ε). Once again, this assumption is not necessary and can be relaxed at the expense of introducing more
mathematical details and making the proof less readable. In this regard, we have:

sup
µ′∈Gε(µ)

EP∼µ′ [EP [ℓ (y, h (X))]] = Eµ

[
EQ∗(P,γ∗) [ℓ (y, h (X))]

]
, (69)

where it has been already guaranteed that the optimal parameter γ∗ ≥ 0 and optimal distribution Q∗ (P, γ∗), the following
constraint holds:

EP∼µ [Wc (P,Q
∗ (P, γ∗))] ≤ ε. (70)

For any P ∈ supp (µ) ⊆M, let us define the following optimal robustness radius function

ρ∗ (P ; ε, µ) ≜Wc (P,Q
∗ (P, γ∗)) . (71)

Therefore, the original MDRO objective in the statement of the theorem can be readily upper-bounded using the following
distributionally robust formulation:

sup
µ′∈Gε(µ)

EP∼µ′ [EP [ℓ (y, h (X))]] = EP∼µ

[
EQ∗(P,γ∗) [ℓ (y, h (X))]

]
≤ EP∼µ

[
sup

Q∈Bwass
ρ∗(P )

(P )

EQ [ℓ (y, h (X))]

]
. (72)

Using the upper-bound in equation 72 and the inequality condition on optimal Wasserstein radius functions ρ∗(P ) described
in equation 70, we can proceed to the empirical stage of the proof. At this stage, the true expectation operators should
be replaced by their empirical counterparts which are based on i.i.d. realizations of meta-distribution µ, i.e., unknown
distributions P1, . . . , PK and their known yet private empirical realizations, i.e., P̂i for i ∈ [K].

For P ∼ µ, let us define the following new and real-valued random variables ψ(P ) and ζ(P ) as follows:

ψ(P ) ≜ sup
Q∈Bwass

ρ∗(P )
(P )

EQ [ℓ (y, h (X))] ,

ζ(P ) ≜ ρ∗ (P ; ε, µ) . (73)

It should be noted that ψ(P ) is readily known to be (almost surely) bounded by 1, since ℓ(·) is assumed to be 1-bounded.
Additionally, the boundedness for ζ(P ) directly results from the assumption that c is a bounded transportation cost.

Lemma E.2. There exists R < +∞ such that We have ρ∗(P ;µ, ε)
a.s.
< R for P ∼ µ.

Proof. The proof is straightforward and directly results from the definition of Wasserstein distance:

ζ(P ) ≜ ρ∗(P ; ε, µ) =Wc (P,Q
∗ (P, γ∗))

= inf
ν∈C(P,Q∗)

Eν [c (Z,Z
′)]

a.s.
≤ sup

Z,Z′∈Z
c (Z,Z ′) < +∞, (74)

which concludes the proof.

23



Certifiably Robust Model Evaluation in Federated Learning under Meta-Distributional Shifts

Using a similar series of arguments to the ones explained in Lemmas D.1 and D.2 (proof of Theorem 5.2), together with
the fact that ψ (Pk)s are all bounded by 1, one can directly apply the McDiarmid’s inequality and show that the following
bound holds with probability at least 1− δ

K+2 , for any δ > 0:

EP∼µ

[
sup

Q∈Bwass
ρ∗(P )

(P )

EQ [ℓ (y, h (X))]

]
≤ 1

K

∑
k∈[K]

sup
Q∈Bwass

ρ∗(Pk)
(Pk)

EQ [ℓ (y, h (X))] +

√
log
(
K+2
δ

)
2K

. (75)

On the other hand, by using the boundedness property for ζ(P ) proved in Lemma E.2 and applying McDiarmid’s inequality
once again, the following bound holds with probability 1− δ

K+2 (for any δ > 0) for the empirical mean of ζ(P ) over true
sample distributions P1, . . . , Pk:

1

K

∑
k∈[K]

ζ (Pk) ≤ EP∼µ [ζ(P )] + c1

√
log
(
K+2
δ

)
K

≤ ε+ c1

√
log
(
K+2
δ

)
K

, (76)

where c1 is a known universal constant depending only on the bound on transportation cost c. Here, the last inequality is a
direct consequence of the property shown in equation 70.

Let S ⊂ RK
≥0 be defined as the following subset:

S ≜

(ζ1, . . . , ζK) ∈ RK

∣∣∣∣ ζk ≥ 0, ∀k ∈ [K],
1

K

∑
k∈[K]

ζk ≤ ε+ c1

√
log
(
K+2
δ

)
K

 . (77)

So far, we have shown that

P
(
{ζ (Pk)}k∈[K] ∈ S

)
≥ 1− δ

K + 2
. (78)

In a similar procedure to the one used in the proof of Theorem 5.2, union bound ensures that the bound in equation 75
and the mathematical statement of {ζ (Pk)}k∈[K] ∈ S simultaneously hold with probability at least 1 − 2δ

K+2 . Then the
following chain of bounds also hold with the same probability w.r.t. drawing of P1, . . . , PK from µ:

sup
µ′∈Gε(µ)

EP∼µ′ [EP [ℓ (y, h (X))]] ≤ EP∼µ

[
sup

Q∈Bwass
ρ∗(P )

(P )

EQ [ℓ (y, h (X))]

]

≤ 1

K

∑
k∈[K]

sup
Q∈Bwass

ρ∗(Pk)
(Pk)

EQ [ℓ (y, h (X))] +

√
log
(
K+2
δ

)
2K

≤ sup
ρ∈S

1

K

∑
k∈[K]

sup
Q∈Bwass

ρk
(Pk)

EQ [ℓ (y, h (X))] +

√
log
(
K+2
δ

)
2K

= sup
ρ∈S

1

K

∑
k∈[K]

QVk (h, ρk) +

√
log
(
K+2
δ

)
2K

. (79)

For reasons that become clear in the final stages of the proof, we need to replace the set S with a new one denoted by S ′
which should be defined as:

S ′ ≜

(ζ1, . . . , ζK) ∈ RK

∣∣∣∣ ζk ≥ ε

K
, ∀k ∈ [K],

1

K

∑
k∈[K]

ζk ≤ ε
(
1 +

1

K

)
+ c1

√
log
(
K+2
δ

)
2K

 .

Evidently, replacing S ′ with S in the maximization step of equation 79, i.e., supρ∈S′ , gives an upper bound for the original
formulation of supρ∈S , since each member of S ′ can be formed by taking a member from S and add all radius values by a
constant ε/K. Obviously, this procedure only makes the adversarial loss value larger and hence all the bounds still apply.
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Part II: So far, we have managed to (partially) prove the proposed bound in the statement of the theorem in scenarios
where mink nk →∞ and thus we have P̂k

a.s.
= Pk for all k ∈ [K]. At this stage of the proof we focus on replacing

QVk (h, ρ) = sup
Q∈Bwass

ρk
(Pk)

EQ [ℓ (y, h (X))] ,

for any k ∈ [K] and arbitrary ρ ≥ 0, with its empirical version Q̂Vk (h, ρ). Let us reiterate that we do not have any
knowledge regarding Pk, and only client k has access to its empirical version P̂k which is based on nk i.i.d. samples.
Therefore, Q̂Vk (h, ρ) is computable via the querying policy described in Section 3, while the true query value QV(h, ρ) is
always unknown.

To this aim, similar to (Sinha et al., 2018) first let us define the following ϕγ (Z) function for γ ≥ 0 and Z ∈ Z:

ϕγ (Z) ≜ sup
Z′∈Z

ℓ (Z ′)− γc (Z ′,Z) , (80)

where c(·, ·) is the original transportation cost and ℓ (Z) abbreviates ℓ (y, h (X)) where we have omitted h for simplicity in
notation. First, it can readily verified that if ℓ is bounded between 0 and 1, so does ϕγ for any γ ≥ 0. Second, note that from
Lemma E.1 we have the following duality formulation for QVk and Q̂Vk for any ρk ≥ 0:

QVk (h, ρk) ≜ sup
Q∈Bwass

ρk
(Pk)

EQ [ℓ (y, h (X))] = inf
γ≥0
{γρk + EPk

[ϕγ (Z)]} , (81)

Q̂Vk (h, ρk) ≜ sup
Q∈Bwass

ρk
(P̂k)

EQ [ℓ (y, h (X))] = inf
γ≥0

γρk +
1

nk

∑
i∈[nk]

ϕγ

(
Z

(k)
i

) .

In the following, first we show that ϕγ (Z), for any Z ∈ Z is a Lipschitz function with respect to γ where the Lipschitz
constant only depends on the way the transportation cost c is bounded, i.e., the inherent boundedness of c or the compactness
of Z . Additionally, we show that the optimal γ ≥ 0 in both minimization problems on the right-hand sides of equation 81
is bounded by a known constant. The latter result is deduced from the fact that all robustness radii ρk, k ∈ [K] in the
statement of theorem has a known margin from zero. Finally, we show the above-mentioned properties can guarantee
that EP̂k

[ϕγ (Z)] uniformly converges to its true expected value EPk
[ϕγ (Z)] for all relevant value of γ ≥ 0. Hence, the

empirical and statistical query values are always within a controlled and asymptotically small deviation from each other
regardless of the robustness radius value ρk.

In this regard, the following lemma shows that ϕγ (Z) for any Z ∈ Z is a Lipschitz function with respect to γ ≥ 0:

Lemma E.3. There exists a constant R ≥ 0 which only depends on transportation cost c such that function ϕγ (Z) is
R-Lipschitz with respect to γ ≥ 0, for all Z ∈ Z .

Proof. For any two distinct values γ, γ′ ≥ 0, let Z∗
γ and Z∗

γ′ denote the optimal values for which the sup in equation 80 is
attained. Similar to several previous arguments, attainability of the sup in this case is not necessary again, and thus this
assumption is made for the sake of simplifying the proof.

Then, for any Z ∈ Z we have:

ϕγ (Z) = sup
Z′∈Z

ℓ (Z ′)− γc (Z ′,Z) ≥ ℓ
(
Z∗

γ′

)
− γc

(
Z∗

γ′ ,Z
)
,

ϕγ′ (Z) = ℓ
(
Z∗

γ′

)
− γ′c

(
Z∗

γ′ ,Z
)
,

which directly gives us the following bound:

ϕγ (Z)− ϕγ′ (Z) ≥ − (γ − γ′) c
(
Z∗

γ′ ,Z
)
. (82)

Through a set of similar arguments and replacing γ and γ′, the following complementary bound can be achieved as well:

ϕγ (Z)− ϕγ′ (Z) ≤ − (γ − γ′) c
(
Z∗

γ ,Z
)
. (83)
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Therefore, the following inequality can be established according to the boundedness of c (or alternatively, compactness of
Z):

|ϕγ (Z)− ϕγ′ (Z)| ≤ |γ − γ′| max
r∈{γ,γ′}

{c (Z∗
r ,Z)}

≤ |γ − γ′| sup
Z′∈Z

c (Z ′,Z)

≤ R |γ − γ′| , (84)

which proves the Lipschitz-ness of ϕγ with respect to γ.

The following lemma shows that optimal values of γ in the right-hand side minimization of equation 81 (or the infimum-
achieving sequence in case the infimum is not attainable) is bounded by a known constant:

Lemma E.4. In both minimization problems on the right-hand side of equation 81, the optimal γ value denoted by γ∗ (if
attained), or the tail of its sequence in case the inf is not attainable, satisfies 0 ≤ γ∗ ≤ 1

ρk
.

Proof. Proof directly results from the fact that ℓ(·) is bounded between 0 and 1. Therefore, looking at the dual optimization
problem in equation 81, increasing γ beyond 1/ρk results in γρk > 1 while the second term (i.e., the adversarial loss) is
always lower-bounded by zero which makes the whole objective to become larger than 1. On the other hand, setting γ = 0
would (at worst) results in the objective to be 1. Therefore, the optimizer infγ≥0 should not choose a γ value that is larger
than 1/ρk.

At this point, we can state the main lemma in the second part of the proof, which theoretically shows that empirical query
values, i.e., Q̂Vk(h, ρ) for any fixed h ∈ H and uniformly all ρ ≥ 0 converge to their true statistical expected values with a
high probability.

Lemma E.5 (Uniform Convergence of Empirical Queries). For k ∈ [K], assume the unknown sample distribution Pk

and let
{
Z

(k)
i =

(
X

(k)
i , y

(k)
i

)}
for i ∈ [nk] denote nk ∈ N i.i.d. feature-label pairs drawn from Pk. The kth dataset is

only known to client k. Then, for any fixed classifier h and any δ > 0, the following bound holds with probability at least
1− δ/(K + 2):

sup
ρ≥ε/K

∣∣∣Q̂Vk (h, ρ)− QVk (h, ρ)
∣∣∣ ≤ O(√n−1

k log

(
(K + 2)nk

εδ

))
. (85)

Proof. Using the dual formulation of Lemma E.1, we can rewrite the main objective of the theorem as follows:

sup
ρ≥ε/K

∣∣∣Q̂Vk (h, ρ)− QVk (h, ρ)
∣∣∣

= sup
ρk≥ε/K

{
inf
γ̂≥0

[
γ̂ρk + EP̂k

[ϕγ̂ (Z)]
]
− inf

γ≥0
[γρk + EPk

[ϕγ (Z)]]

}
. (86)

Again, for the sake of simplicity in the proof let us assume both optimal values γ∗ and γ̂∗ in the minimization problems on
the right-hand side of equation 86 are attainable. It should be noted that this assumption is not necessary and can be relaxed
by adding more mathematical work. Then, from Lemma E.4 we already know

0 ≤ γ∗, γ̂∗ ≤ 1

ρk
≤ K

ε
.

Let us partition the feasible search set of γ, γ̂ ≥ 0, i.e., [0,K/ε] into L ≜ ⌈K
2R

ε∆ ⌉ equal intervals, where ∆ > 0 is a
small constant which should to be determined later in the proof. For each interval, let us choose a representative (for
example, the value at the beginning of the interval) denoted by γi with i = 1, . . . , L. Then, based on Lemma E.3, for any
ρk ∈ [ε/K, 2Kε], any corresponding γ ∈ [0, 1/ρk] and all Z ∈ Z we have

|ϕγ (Z)− ϕγi∗ (Z)| ≤ R |γ − γi∗ | ≤ R ·
K

ε
· ε∆
K2R

=
∆

K
, (87)
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where i∗ = argmini∈[L] |γ − γi|. On the other hand, from the maximization problem that defines Û∗(ε) in equation 15, we
have that

ρk ≤ O

(
Kε+

√
K log

(
K + 2

δ

))
, ∀k ∈ [K], (88)

where we have omitted constants for the sake of readability. Therefore, the above discussions directly lead to the following
bound in the statistical sense (i.e., with respect to Pk):∣∣∣∣ infγ≥0

[γρk + EPk
[ϕγ (Z)]]− min

i∈[L]
[γiρk + EPk

[ϕγi (Z)]]

∣∣∣∣
≤ min

i∈[L]
|γ∗ − γi| (R+ sup ρk)

≤ K

ε
· ε∆
K2R

· O

(
R+Kε+

√
K log

(
(K + 2)

δ

))

≤ ∆ · O

 1

K
+
ε

R
+

1

R

√
log
(
K+2
δ

)
K

 . (89)

Through a similar procedure, the following bound also holds for the empirical case (i.e., P̂k), but this time almost surely:∣∣∣∣ infγ̂≥0

[
γ̂ρk + EP̂k

[ϕγ̂ (Z)]
]
− min

i∈[L]

[
γiρk + EP̂k

[ϕγi
(Z)]

]∣∣∣∣
a.s.
≤ ∆ · O

 1

K
+
ε

R
+

1

R

√
log
(
K+2
δ

)
K

 . (90)

Therefore, according to the fact that P̂k is an empirical estimate of Pk based on nk i.i.d. samples , we have:

sup
ρ≥ε/K

∣∣∣Q̂Vk (h, ρ)− QVk (h, ρ)
∣∣∣ a.s.≤ ∆ · O

 1

K
+
ε

R
+

1

R

√
log
(
K+2
δ

)
K

+

max
i∈[L]

∣∣∣EP̂k
[ϕγi

(Z)]− EPk
[ϕγi

(Z)]
∣∣∣ . (91)

Since ϕγi
for each i ∈ [L] is a non-negative and 1-bounded (adversarial) loss function, simply applying McDiarmid’s

inequality and the union bound over all L values of γis would give us the following bound which holds with probability at
least 1− δ/(K + 2) for any δ > 0:

max
i∈[L]

∣∣∣EP̂k
[ϕγi

(Z)]− EPk
[ϕγi

(Z)]
∣∣∣ ≤

√√√√ log
[
L(K+2)

δ

]
2nk

, (92)

which gives us the following bound for supρ≥ε/K

∣∣∣Q̂Vk (h, ρ)− QVk (h, ρ)
∣∣∣ with the same high probability:

sup
ρ≥ε/K

∣∣∣Q̂Vk (h, ρ)− QVk (h, ρ)
∣∣∣ ≤ O

 inf
∆>0

∆ζ (K, ε, δ) +

√√√√ log
[
RK2(K+2)

εδ∆

]
nk


 , (93)

where function ζ(·) is defined as

ζ(K, ε, δ) ≜
1

K
+
ε

R
+

1

R

√
log
(
K+2
δ

)
K

.
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It should be noted that R is a constant that does not depend on other parameters. Also, we have minimized over ∆ > 0 since
the bound holds irrespective of ∆. Exact solution of the minimization problem in equation 93 is not needed, since choosing
∆ = O

(
K−1n

−1/2
k

)
gives us the following bound:

sup
ρ≥ε/K

∣∣∣Q̂Vk (h, ρ)− QVk (h, ρ)
∣∣∣ ≤ O


√√√√ log

(
(K+2)nk

εδ

)
nk

 , (94)

and completes the proof.

By using the uniform convergence result from Lemma E.5 and applying it to all K clients simultaneously, we see that (via
a union bound argument) with probability at least 1−Kδ/(K + 2) the empirical and statistical queries Q̂Vk (h, ρk) and
QVk (h, ρk) are asymptotically close for all k ∈ [K], and uniformly for all robustness radii

ρk ∈

[
ε

K
,O

(
Kε+

√
log((K + 2)/δ)

K

)]

which are considered for the maximization problem of equation 15. Finally, using another union bound argument to
incorporate the bounds from equation 75 and equation 78 in addition to the previous K events, we can say that with
probability at least 1− δ the following bound holds:

sup
µ′∈Gε(µ)

EP∼µ′ [EP [ℓ (y, h (X))]]

≤ sup
ρ∈S′

1

K

∑
k∈[K]

sup
Q∈Bwass

ρk
(Pk)

EQ [ℓ (y, h (X))] + c2

√√√√ log
(

(K+2)nk

εδ

)
nk

+

√
log
(
K+2
δ

)
2K

= sup
ρ∈S′

1

K

∑
k∈[K]

Q̂Vk (h, ρk) + c2

√√√√ log
(

(K+2)nk

εδ

)
nk

+

√
log
(
K+2
δ

)
2K

, (95)

where c2 is a constant that only depends on either the transportation cost c or the compactness of sample space Z . This
completes the proof.

F. Proofs of Remarks in Section 7
Proof of Remark 7.1. We begin by discussing the server-side programs in Section 5, which address f -divergence meta-
robustness, followed by the analysis in Section 6, which focuses on Wasserstein meta-robustness.

Server-side Programs in Theorems 5.2 and 5.3 : The objective function in both programs is a linear function of the
optimization variables α1, . . . , αK . Furthermore, the constraints define a convex feasible set:

• The constraint ∣∣∣∣∣ 1K
K∑

k=1

αk − 1

∣∣∣∣∣ ≤ C,
for any positive constant C, is equivalent to the intersection of the two constraints: 1

K

∑K
k=1 αk ≤ 1 + C and

1
K

∑K
k=1 αk ≥ 1− C. These correspond to a band region bounded by two hyperplanes in RK , forming a convex set.

• The other constraint,
1

K

K∑
k=1

f(αk) ≤ ε+ C ′,
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Algorithm 1 Server-side Bisection Algorithm
Require: K, ε, δ
input h, ∆ > 0, and poly

(
K, log 1

∆

)
query budget for Q̂Vk, for all k ∈ [K]

1: Initialize a← min ℓ(·) (or 0), b← max ℓ(·) (or 1)
2: while b− a > ∆ do
3: t← (a+ b)/2
4: Solve convex feasibility problem:
5: Find ρ1, . . . , ρK ≥ ε/K such that

6: 1
K

∑
k∈[K] ρk ≤ ε

(
1 + 1

K

)
+ c1

√
log(K+2

δ )
K

7: 1
K

∑
k∈[K] Q̂Vk(h, ρk) ≥ t

8: if problem is feasible then
9: a← t

10: else
11: b← t
12: end if
13: end while
output upper-bound b

for a constant C ′, represents the (ε+ C ′)-sublevel set of the convex function 1
K

∑K
k=1 f(αk). The convexity of this

function follows directly from the convexity of f(·), as stated in Definition 5.1. Consequently, this constraint also
defines a convex set.

Therefore, both programs feature linear objectives and feasible sets that are intersections of convex sets in RK , implying that
both programs are convex and can be solved efficiently (Boyd, 2004; Ghadimi and Lan, 2013). This completes the proof.

Server-side Program in Theorem 6.3 : The query functions Q̂Vk(h, ρ), for any fixed h ∈ H, are non-decreasing with
respect to ρ ≥ 0. Therefore, the following function:

ζ (ρ1, . . . , ρK) ≜
1

K

∑
k∈[K]

Q̂Vk (h, ρk) (96)

is a summation of K non-decreasing functions, where each function depends only on one of the ρk values. This function,
ζ(ρ1, . . . , ρK), is a quasi-concave function. Although quasi-concave functions are not generally concave, they do possess
concave superlevel sets. Specifically, for each t ∈ R, the following sets are convex in RK :

St ≜

(ρ1, . . . , ρK) ∈ RK

∣∣∣∣ 1

K

∑
k∈[K]

Q̂Vk (h, ρk) ≥ t

 . (97)

As a result, the original optimization problem in equation 15 can be decomposed into a sequence of convex optimization
problems. Each sub-problem is essentially a feasibility problem that checks whether the set St is feasible for a given t ∈ R.
Given that the original objective function is bounded between 0 and 1, a binary search can be employed to iteratively
approximate the maximum attainable value of the objective within any desired error margin ∆ > 0. This process is detailed
in Algorithm 1, which implements a bisection algorithm.

It is important to note that each feasibility check sub-problem in Algorithm 1 is a convex problem, and therefore can be
solved in polynomial time with polynomial evaluations of the constraint functions, i.e., the Q̂Vk functions. Consequently,
both the computational complexity and the required query budget remain polynomial. In particular, for a given ∆ > 0, the
maximum of the objective in equation 96 can be approximated with an error of at most ∆, requiring at most log 1

∆ iterations
(feasibility checks) in Algorithm 1 (Boyd, 2004).
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Proof of Remark 7.2. We turn to client-side optimizations for this theorem, which take the form:

sup
Q∈Bwass

ρ (P )

EQ [ℓ (Z)] ,

where the notation ℓ (y, h (X)) has been simplified to ℓ (Z) (for Z = (X, y)) for clarity and ease of notation. For a client
k ∈ [K], the local distribution P corresponds to P̂k, which is derived from nk samples drawn from an arbitrary distribution
Pk. This optimization program is initially defined within a restricted distributional space, Bwass

ρ , and may appear intractable
at first glance. However, by leveraging Lemma E.1 (see Appendix E), which relies on a core mathematical tool from the
seminal works of (Sinha et al., 2018) (originally derived in (Blanchet and Murthy, 2019)), this formulation can be rewritten
in its dual form. This dual reformulation is subsequently shown to be implementable in polynomial time (Sinha et al., 2018).
The rest of the proof of Remark 7.2 is the summary of the method proposed and subsequently used in the above-mentioned
reference (not our work).

Let P be a probability measure defined over a measurable space Ω, ℓ(·) : Ω→ R be any loss function, c denote a proper
and lower semi-continuous transportation cost on Ω × Ω, and assume ε ≥ 0. Then, the following equality holds for the
Wasserstein-constrained DRO centered around P :

sup
Q∈Bwass

ρ (P )

EQ [ℓ (Z)] = inf
γ≥0

{
γρ+ EP

[
sup
Z′∈Ω

ℓ (Z ′)− γc (Z ′,Z)

]}
. (98)

The optimization over γ is one-dimensional. On the other hand, the term EP [supZ ′ ∈ Ωℓ (Z ′)− γc (Z ′,Z)] is non-
increasing for γ ≥ 0, while the other term, γρ, is affine. In fact, γ and ρ are dual counterparts, where increasing ρ decreases
the optimal γ value and vice versa. Therefore, the outer minimization infγ≥0 can be handled in polynomial time as long as
the inner expected maximization can be numerically solved efficiently (in polynomial time).

For the inner maximization, we have

EP̂k

[
sup
Z′∈Ω

ℓ (Z ′)− γc (Z ′,Z)

]
=

1

nk

∑
i∈[nk]

sup
Z′∈Ω

ℓ (Z ′)− γc (Z ′,Zi) ,

for Zi =
(
X

(k)
i , y

(k)
i

)
, which follows from the fact that P̂k is an atomic empirical measure. We follow the same procedure

as in (Sinha et al., 2018):

• Assume ℓ is twice differentiable with a bounded-from-below (but potentially negative) curvature, i.e., the Hessian
matrix satisfies∇2ℓ ⪰ −βI for some bounded β ≥ 0.

• Assume c is 1-strongly convex in its first argument (same as Assumption A in Sinha et al. (2018)).

These assumptions are not overly restrictive, as most candidates for the loss function ℓ (·), such as cross-entropy loss
coupled with a deep neural network architecture for h, directly correspond to analytic and twice-differentiable functions with
bounded curvature from below. Note that we do not assume convexity for ℓ, thus maintaining the generality of the problem.
On the other hand, most choices for the transportation cost c are convex in their first argument (e.g., any valid norm).

Based on the above-mentioned two assumptions, it is straightforward to see that the term ℓ (Z ′)− γc (Z ′,Zi) is concave as
long as γ ≥ β (i.e., ε is not excessively large). According to standard convergence theorems in convex optimization theory
(see, for example, Ghadimi and Lan (2013) or Boyd (2004)), any vanilla local first-order optimization algorithm with oracle
access to gradients, such as stochastic gradient descent (SGD), can achieve an O

(
T−1/2

)
approximation of

Obj (Z1, . . . ,Znk
; γ) ≜

1

nk

∑
i∈[nk]

sup
Z′∈Ω

ℓ (Z ′)− γc (Z ′,Zi) ,

after T ≥ 2 iterations. This completes the proof.

Proof of Remark 7.4. As K,mink nk → ∞, the bounds presented in Theorems 4.1, 5.2, 5.3, and 6.3 achieve minimax
optimality, referred to as Asymptotic Minimax Optimality (AMO). Mathematically, this implies that the proposed empirical
bounds on the right-hand sides become attainable by an adversary, rendering them unimprovable. This particular approach
in demonstrating the tightness of such bounds is a standard practice in nearly all theoretical works within this field and
related areas (see Sinha et al. (2018); Ashtiani et al. (2018); Saberi et al. (2023); etc.).
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AMO for Theorem 4.1 : This theorem provides non-robust guarantees and thus there are no adversaries involved.
Therefore, the proof for this part is straightforward since we only need to show the right-hand side of the inequalities equal
the left-hand sides in the asymptotic regime. In this regard, we have

lim
K,n1:K→∞

1

K

K∑
k=1

Q̂Vk (h) = lim
K→∞

1

K

K∑
k=1

(
lim

nk→∞

1

nk

nk∑
i=1

ℓ
(
y
(k)
i , h

(
X

(k)
i

)))

a.s.
= lim

K→∞

1

K

K∑
k=1

EPk
[ℓ (y, h (X))]

a.s.
= EP∼µ (EPk

[ℓ (y, h (X))]) . (99)

The first almost sure equality follows from the fact that that dataset
{(

X
(k)
i , y

(k)
i

)}nk

i=1
consists of i.i.d. samples from Pk

for each k ∈ [K]. The second one is a a result of P1, . . . , PK being i.i.d. samples of µ. In both cases we have used the
strong law of large numbers.

In a similar fashion, for the loss CDF and all subsequent values of λ ∈ R, the following almost sure equalities hold:

lim
K,n1:K→∞

1

K

K∑
k=1

1

Q̂Vk(h) ≥ λ−

√
log (K+1)

δ

2nk

 = lim
K→∞

1

K

K∑
k=1

1

 lim
nk→∞

Q̂Vk(h) +

√
log (K+1)

δ

2nk
≥ λ


= lim

K→∞

1

K

K∑
k=1

1

 lim
nk→∞

Q̂Vk(h) + lim
nk→∞

√
log (K+1)

δ

2nk
≥ λ


a.s.
= lim

K→∞

1

K

K∑
k=1

1 (EPk
[ℓ (y, h (X))] ≥ λ)

a.s.
= EP∼µ [1 (EP [ℓ (y, h (X))] ≥ λ)]
= µ (EP [ℓ (y, h (X))] ≥ λ) . (100)

Again, the almost sure equalities are the result of applying law of large numbers in both distributional and meta-distributional
levels. Therefore, the proof for this part is complete.

AMO for Theorems 5.2 and 5.3 : Assume two arbitrary meta-distributions µ′ and µ and only assume Df (µ
′∥µ) ≤ ε

(note that for ε <∞, this assumption automatically enforces relative continuity as well), and let P1, P2, . . . be an infinite
i.i.d. sequence from µ. The only extra restriction over µ′ is that it represents a probability measure. Combining all these
natural restrictions we get

• Non-negativity of µ′, which means for any S ⊆M (Z) we have µ′ (S) ≥ 0.

• Normalization condition of probability measures which mathematically translates into the following equalities:

1 = µ′ (M (Z)) =
∫
P∈M

µ′ (dP ) = EP∼µ

(
µ′ (dP )

µ (dP )

)
a.s.
= lim

K→∞

1

K

K∑
k=1

dµ′

dµ
(Pk) .

• Boundedness of f -divergence, which can be written as follows:

ε ≥ Df (µ
′∥µ) = EP∼µ

[
f

(
dµ′

dµ
(P )

)]
a.s.
= lim

K→∞

1

K

K∑
k=1

f

(
dµ′

dµ
(Pk)

)
.

In all the above statements, the almost sure equality holds with respect to the randomness of drawing the i.i.d. sequence of
distributions P1, P2, . . . from µ and utilizes the application of the law of large numbers. Based on the above discussions, any
measure defined on a Borel σ-field overM (Z) that satisfies the above conditions is a potential candidate for the worst-case
µ′ in the statement of theorem.
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On the other hand, the proposed bound in the right-hand side of the main result in Theorem 5.2 is computed via the following
optimization problem:

B̂∗(ε) ≜ sup
0≤α1,...,αK≤Λ

1

K

K∑
k=1

αkQ̂Vk (h) (101)

subject to

∣∣∣∣∣ 1K
K∑

k=1

αk − 1

∣∣∣∣∣ ≤ c1√log (δ−1)/K,

1

K

K∑
k=1

f(αk) ≤ ε+ c2
√
log (δ−1)/K.

Since, for all δ > 0 we have

lim
K→∞

c1
√

log (δ−1)/K = 0, and lim
K→∞

ε+ c2
√
log (δ−1)/K = ε, (102)

in the asymptotic regime of K → ∞ the vector (α1, . . . , αK) converges to the sequence {αi}i∈N, with the following
properties:

αi ≥ 0, ∀i ∈ N, lim
K→∞

1

K

K∑
i=1

αi = 1 and lim
K→∞

1

K

K∑
i=1

f(αi) ≤ ε. (103)

Therefore, it can be deduced that any {αi}i∈N that satisfies such conditions corresponds to an achievable density ratio,
i.e. αk = dµ′/dµ (Pk) , k ∈ N, for some µ′ ∈ M2 (Z). In other words, the sup value is achievable. The same set of
arguments hold for Theorem 5.3, and the proof for this part is complete.

AMO for Theorem 6.3 : The proof relies heavily on the theory developed in the proof of Theorem 6.3 (see Section E),
and we adopt the same procedure and notations. Recall the bound proposed in Theorem 6.3: For any ε, δ > 0, consider the
following constrained optimization problem:

Û∗ (ε) ≜ sup
ρ1,...,ρK≥ ε/K

1

K

K∑
k=1

Q̂Vk (h, ρk) (104)

subject to
1

K

K∑
k=1

ρk ≤ ε
(
1 +

1

K

)
+ c1

√
log
(
K+2
δ

)
K

.

In the asymptotic regime (i.e., K,mink nk →∞), we have

lim
nk→∞

Q̂Vk (h, ρk)
a.s.
= sup

Q∈Bρk
(Pk)

EQ [ℓ (y, h (X))] , (105)

where P1, P2, . . . is an infinite (but countable) i.i.d. sequence from the meta-distribution µ. The almost sure convergence
follows from the law of large numbers. Define ρ :MZ → R+. In the asymptotic regime (K →∞), the constraint becomes:

EP∼µ [ρ (P )]
a.s.
= lim

K→∞

1

K

K∑
k=1

ρk

≤ lim
K→∞

ε

(
1 +

1

K

)
+ c1

√
log
(
K+2
δ

)
K

= ε. (106)

Thus, the optimization problem defining Û∗ when K,nk →∞ (almost surely) reduces to:

Û∗ (ε)
a.s.
= sup

ρ:M(Z)→R+

EP∼µ

[
sup

Q∈Bρk
(Pk)

EQ [ℓ (y, h (X))]

]
subject to EP∼µ [ρ (P )] ≤ ε. (107)
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Introducing a Lagrange multiplier γ ≥ 0, and using strong duality, this problem becomes:

inf
γ≥0

{
sup

ρ:M(Z)→R+

EP∼µ

[
sup

Q∈Bρ(P )(P )

EQ [ℓ (y, h (X))]

]
− γ (EP∼µ [ρ (P )]− ε)

}

= inf
γ≥0

{
sup

ρ:M(Z)→R+

EP∼µ

[
sup

Q∈Bρ(P )(P )

EQ [ℓ (y, h (X))]− γ (ρ (P )− ε)

]}

= inf
γ≥0

{
γε+ sup

ρ:M(Z)→R+

EP∼µ

[
sup

Q∈Bρ(P )(P )

EQ [ℓ (y, h (X))]− γρ (P )

]}
. (108)

The combined effect of the two supremum operators (supρ:MZ→R+
and supQ∈Bρ(P )(P )) yields the following min-max

problem:

inf
γ≥0

{
γε+ EP∼µ

[
sup

Q∈MZ

EQ[ℓ (y, h (X))]− γWc(P,Q)

]}
. (109)

By Lemma E.1, this is equal to:

sup
µ′∈Gε(µ)

EP∼µ′ (EP [ℓ (y, h (X))]) . (110)

Thus, the proposed bound Û∗ converges to the above expression as K,mink nk → ∞, which is exactly equal to the
statistical quantity that it was supposed to upper-bound. This completes the proof.

G. Complementary Experimental Results
In this section, we present a complementary series of experiments on real-world datasets to demonstrate: (i) the validity and
tightness of our bounds, and (ii) that our bounds are not only theoretically sound but also practical to compute. For clarity
and readability, we repeat key explanations from Section 8 to maintain a cohesive narrative.

G.1. Client Generation and Risk CDF Certificates for Unseen Clients

In the first part of our experiments, we outline our client generation model and present a number of risk CDF guarantees.
We simulated a federated learning scenario with n = 1000 nodes, where each node contains 1000 local samples. The
experiments were conducted using four different datasets: CIFAR-10 (Krizhevsky et al., 2009), SVHN (Netzer et al., 2011),
EMNIST (Cohen et al., 2017), and ImageNet (Russakovsky et al., 2015). To create each user’s data within the network, we
applied three types of affine distribution shifts across users:

• Feature Distribution Shift: Each sample X(k)
i in the dataset is manipulated via a transformation chosen randomly for

each node. Specifically, each user is assigned a unique matrix Λ(k) and shift vector δ(k), and the data is modified as
follows:

X̃
(k)
i = (I + Λ(k))X

(k)
i + δ(k). (111)

In our experiments, Λ(k) and δ(k) are respectively random matrices and vectors with i.i.d. zero-mean Gaussian entries.
The standard deviation varies based on the dataset: 0.05 for CIFAR-10 and SVHN, 0.1 for EMNIST, and 0.01 for
ImageNet.

• Label Distribution Shift: Here, we assume that each meta-distribution is characterized by a specific α coefficient. To
generate each user’s data under this shift, the number of samples per class is determined by a Dirichlet distribution with
parameter α. In our experiments, we use α = 0.4.

• Feature & Label Distribution Shift: As the name suggests, this shift combines both the feature and label distribution
shifts described above to create a new distribution for each user.

Figure 4 illustrates our performance certificates (i.e., bounds on the risk CDF) for unseen clients when there are no shifts. We
selected 100 nodes from the population and considered 400 other nodes as unseen clients. We then plotted the CDFs based
on 100 samples and confirmed that our bounds hold for the real population as well. Due to the standard DKW inequality, the
empirical CDF is a good estimate for the test-time non-robust risk CDF.
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G.2. Certificates for f -Divergence Meta-Distributional Shifts

Figure 9. Extension of previous experiments to a broader range of adversarial budgets for f -divergence attacks. DKW-based certificates
for unseen clients in our four examined datasets. Meta refers to the main population with 1000 nodes.

In this section, we examined scenarios where users belong to two distinct meta-distributions: the source and the target. A
DNN-based model is initially trained on a network of clients sampled from the source. The resulting risk values are then
fed into the optimization problems introduced in Section 5 to obtain robust CDF bounds, considering both the Chi-Square
and KL divergence as potential choices for f . Finally, we empirically estimate the risk CDF for users from the target
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Figure 10. Wasserstein distance-based certificates for unseen clients in our four examined datasets. Meta refers to the main population
with 1000 nodes. Dotted curves are based on 500 networks within the population.

meta-distribution and validate our bounds. Specifically, we tested our certificates in two distinct settings using the CIFAR-10
dataset (see Figure 5). We generated various image categories with differing resolutions or color schemes, and then sampled
from these categories to create different distributions:

• Resolutions: Images were cropped and resized to create eight different resolutions. The Dirichlet α coefficients for the
first (source) meta-distribution range from 0.4 to 0.7 for the four lower resolutions and from 0.7 to 1 for the four higher
resolutions. For the second (target) meta-distribution, the ranges are reversed: 0.7 to 1 for the lower resolutions and 0.4
to 0.7 for the higher resolutions. The number of samples per resolution for each user is determined using a Dirichlet
distribution, with α coefficients randomly selected from the specified range for the meta-distribution. As a result, users
sampled from source will have more high-resolution images, while users from the target will have more low-resolution
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samples.

• Colors: The color intensity of the images varies from 0.00 (gray-scale) to 1.00 (fully colored). For the source
meta-distribution, the α coefficients range from 0 to 0.5 for images with color intensity below 0.5, and from 0.5 to 1
for images above 0.5. As with the resolution setting, the ranges are reversed for the target, and the number of samples
per color intensity for each user is calculated similarly. Therefore, users sampled from source will have more colorful
images, while those from the target will have more gray-scale images.

Figure 6 (left) verifies our CDF certificates based on both chi-square and KL-divergence (dotted curves) for the target meta
distribution (orange curve). As can be seen, bounds have tightly captured the behavior of risk CDF in the target network.
More detailed experiments are shown in Figure 9 in Appendix G.

G.3. Certificates for Wasserstein-based Meta-Distributional Shifts

In this experiment, as previously mentioned, we used affine distribution shifts to create new domains. Figure 6 (right)
summarizes our numerical results in this scenario. To generate different networks within the meta-distribution, we applied
the affine distribution shifts described in Section G.1. Once again, the results validate our certificates, this time for
Wasserstein-type shifts. The blue curve, representing the real population, consistently falls within or beneath the blue shaded
area. Regarding tightness, it is important to note that the bounds presented here remain tight, particularly under adversarial
attacks as defined by a distributional adversary in (Sinha et al., 2018). More detailed experiments with various levels of
tightness are shown in Figure 10 in Appendix G.

Although our theoretical findings in Section 6 focus solely on the average risk and not the risk CDF, we extended the
same framework to the CDF in this experiment to explore whether the theory might also apply. The results were positive,
suggesting potential for extending our theoretical findings in this area. A more detailed series of simulation results are
presented via Figures 9 and 10, respectively.

Figure 9 illustrates complementary results for f -divergence bounds on risk CDF, which are robust extensions of the DKW
bound. Simulations have been repeated for several different values of ε, where both KL and χ2 (Chi-Square) divergences
have been considered.

Figure 10 shows the robust CDF bounds for Wasserstein shifts. Again, different values of ε for Wasserstein distance have
been considered which have resulted in several bounds with various levels of tightness. It should be noted that all bounds
are asymptotically minimax optimal, meaning that an adversary can choose a distribution to perform exactly as bad as the
bounds, at least in the asymptotic regime where both K and mink nk tend to infinity.
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