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Abstract

Do generalist agents only require large models pre-trained on massive amounts of
data to rapidly adapt to new environments? We propose a novel approach to pre-
train relatively small models and adapt them to unseen environments via in-context
learning, without any finetuning. Our key idea is that retrieval offers a powerful
bias for fast adaptation. Indeed, we demonstrate that even a simple retrieval-based
1-nearest neighbor agent offers a surprisingly strong baseline for today’s state-of-
the-art generalist agents. From this starting point, we construct a semi-parametric
agent, REGENT, that trains a transformer-based policy on sequences of queries and
retrieved neighbors. REGENT can generalize to unseen robotics and game-playing
environments via retrieval augmentation and in-context learning, achieving this
with up to 3x fewer parameters and up to an order-of-magnitude fewer pre-training
datapoints, significantly outperforming today’s state-of-the-art generalist agents. 1

1 Introduction
AI agents, both in the digital [1, 2, 3, 4, 5] and real world [6, 7, 8, 9, 10, 11], constantly face changing
environments that require rapid or even instantaneous adaptation. True generalist agents must not
only be capable of performing well on large numbers of training environments, but arguably more
importantly, they must be capable of adapting rapidly to new environments. While this goal has been
of considerable interest to the reinforcement learning research community, it has proven elusive. The
most promising results so far have all been attributed to large models [1, 2, 3, 4, 6], pre-trained on
large datasets across many environments, and even these models still struggle to generalize to unseen
environments without many new environment-specific demonstrations.

In this work, we take a different approach to the problem of constructing such generalist agents.
We start by asking: Do generalist agents only require large models and massive datasets, or could
the right biases help achieve more with less? Observing that retrieval offers a powerful bias for
fast adaptation, we first evaluate a simple 1-nearest neighbor method: “Retrieve and Play (R&P)”.
To determine the action at the current state, R&P simply retrieves the closest state from a few
demonstrations in the target environment and plays its corresponding action. Tested on a wide
range of environments, both robotics and game-playing, R&P performs on-par or better than the
state-of-the-art generalist agents. Note that these results involve no pre-training environments, and
not even a neural network policy: it is clear that larger model and pre-training dataset sizes are not
the only roadblock to developing generalist agents.

Having thus established the utility of retrieval for fast adaptation of sequential decision making agents,
we proceed to incorporate it into the design of a “Retrieval-Augmented Agent” (REGENT). REGENT is
a semi-parametric architecture: it pre-trains a transformer policy whose inputs are not only the current
state and previous reward, but also retrieved tuples of (state, previous reward, action) from a set of
demonstrations for each pre-training task, drawing inspiration from the recent successes of retrieval
augmentation in language modeling [12]. At each “query” state, REGENT is trained to prescribe an
action through aggregating the action predictions of R&P and the transformer policy. By exploiting
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Figure 1: Problem setting in JAT/Gato environments. The problem setting in ProcGen, adapted from [3], is in Figure 5 in the Appendix.

retrieval-augmentation as well as in-context learning, REGENT permits near-instantaneous deployment
in entirely unseen environments and tasks with only a few demonstrations. REGENT is only one of
two models developed so far that can adapt to new environments via in-context learning: the other
model is the multi-trajectory transformer (MTT) [3]. We train and evaluate REGENT on two problem
settings in this paper, shown in Figures 1 and 5. The first setting is based on the environments used in
Gato [1] (and its open source reproduction JAT [2]) and the second setting is based on the ProcGen
environments used in MTT [3].

In both settings, REGENT demonstrates significant generalization to unseen environments without
any finetuning. In the JAT/Gato setting, REGENT outperforms JAT/Gato even when the baseline
is finetuned on demonstrations from the unseen environments. In the ProcGen setting, REGENT
significantly surpasses MTT. Moreover, in both settings, REGENT trains a smaller model with 1.4x to
3x fewer parameters and with an order-of-magnitude fewer pre-training datapoints. Finally, while
REGENT’s design choices are aimed at generalization, its gains are not limited to unseen environments:
it even performs better than baselines when deployed within the pre-training environments.

2 Related Work and Problem Formulation
Related Work: We provide a detailed related work in Appendix A and only give a summary here.
Many existing generalist agents [1, 2] struggle to adapt to new environments. Many recent generalist
agents [6, 7, 8, 9, 10, 11] cannot leverage in-context learning. Agents that can adapt to new tasks
via in-context learning do so within the same environment [13, 14, 15]. We also compare with and
outperform MTT [3], the only other model that can adapt in-context in the ProcGen setting.

Problem Formulation: We aim to pre-train a generalist agent on datasets obtained from different
environments, with the goal of generalizing to new unseen environments. The agent has access to a
few expert demonstrations in these new environments. In this work, the agent achieves this through
in-context learning without any additional finetuning. We model each environment i as a Markov
Decision Process. We denote the expert demonstration dataset corresponding to the i-th (training or
unseen) environment consisting of tuples of (state, previous-reward, action) as Di. Let us assume that
we have access to K such training environments and unseen environments from K + 1 through M .

3 REGENT: A Retrieval-Augmented Generalist Agent
Simple nearest neighbor retrieval approaches have a long history in few-shot learning [16, 17, 18,
19, 20]. These works have found that, at small training dataset sizes, while parametric models
might struggle to extract any signal without extensive architecture or hyperparameter tuning, nearest
neighbor approaches perform about as well as the data can support. Motivated by these prior results
in other domains, we first construct such an approach for an agent that can learn directly in an unseen
environment with limited expert demonstrations. Then, we consider how to improve this agent
through access to experience in pre-training environments, so that it can transfer some knowledge to
novel environments that allows it to adapt even more effectively.

Retrieve and Play (R&P): This is arguably one of the simplest decision agents that leverages the
retrieval toolset for adaptation. Given a state st from an environment j, let us assume that it is
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Figure 2: The REGENT architecture and overview. (1) A query state (from the unseen environment during deployment or from training
environments’ datasets during pre-training) is processed for retrieval. (2) The n nearest states from a few demonstrations in an unseen
environment or from a designated retrieval subset of pre-training environments’ datasets are retrieved. These states, and their corresponding
previous rewards and actions, are added to the context in order of their closeness to the query state, followed by the query state and previous
reward. (3) The predictions from the REGENT transformer are combined with the first retrieved action. (4) At deployment, only the predicted
query action is used. During pre-training, the loss from predicting all actions is used to train the transformer.

possible to retrieve the n-nearest states (and their corresponding previous rewards, actions) from Dj .
We refer to this as the context ct ∈ Cj . The R&P agent takes the state st and context ct as input, picks
the nearest retrieved state s′ in ct, and plays the corresponding action a′. That is, πR&P(st, ct) = a′.
Clearly, R&P is devoid of any learning components which can transfer capabilities from pre-training
to unseen environments.

Retrieval-Augmented Generalist Agent (REGENT): To go beyond R&P, we posit that if an agent
learns to meaningfully combine relevant context to act in a set of training environments, then this skill
should be transferable to novel environments as well. We propose exactly such an agent in REGENT.
We provide an overview of REGENT in Figure 2. REGENT consists of a deep neural network policy πθ,
which takes as input the state st, previous reward rt−1, context ct, and outputs the action directly for
continuous environments and the logits over the actions in discrete environments. In the context ct,
the retrieved tuples of (state, previous reward, action) are placed in order of their closesness to the
query state st with the closest retrieved state s′ placed first. Let d(st, s′) be the distance between st
and s′. We perform a distance weighted interpolation between the the neural network policy and R&P,

πθ
REGENT(st, rt−1, ct) = e−λd(st,s

′)πR&P(st, ct) + (1− e−λd(st,s
′))σ(πθ(st, rt−1, ct)) (1)

where σ(x) = Softmax(x) if the action space is discrete and σ(x) = L×MixedReLU(x) otherwise.
We use the MixedReLU : R → [−1, 1] activation function from [21]. We simply set both L and λ to
10 everywhere. The function πθ is a causal transformer. All distances are normalized and clipped to
[0, 1]. For discrete action spaces, where the transformer outputs a distribution over actions, we modify
πR&P as πR&P(a|st, ct) = 1+(Nact−1)(1−d(st,s

′))
Nact

if a = a′ and πR&P(a|st, ct) = d(st,s
′)

Nact
if a ̸= a′. The

distribution induced by the modified πR&P function assigns all probability mass to the action a′ when
d(st, s

′) = 0 and acts like a uniform distribution when d(st, s
′) = 1. Further, Equation (1) allows

us to smoothly transition between R&P and πθ. When the state st is close enough to first retrieved
state in the context ct, πREGENT simply plays the retrieved action. However, as it moves further away,
policy πR&P becomes a uniform distribution and the parametric policy πθ takes more precedence. We
also hypothesize that this interpolation allows the transformer to more readily generalize to unseen
environments, since it is given the easier task of predicting the residual to the R&P action rather than
predicting the complete action.

REGENT Architecture: REGENT adapts the JAT architecture in the JAT/Gato setting. It consists of a
causal transformer trunk. It has a shared linear encoder for image embeddings, vector observations,
and continuous actions. It has a large shared lookup table with the GPT2 [22] vocabulary size for
encoding discrete actions, discrete observations, and text observations. Another linear layer is used to
combine multiple discrete values and text tokens present in a single observation vector. It has a shared
linear head for predicting continuous actions. A shared linear head is used for predicting distributions
over discrete actions. All of the above components are shared across environments but only a subset
of input encoders and output heads may be triggered during a forward and backward pass depending
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on the input modalities in an environment and output action space. REGENT has a total of 138.6M
parameters, including the frozen ResNet18 image encoder, compared to JAT’s 192.7M parameters.
We detail architectural hyperparameters in Appendix B. We simplify REGENT for the ProcGen setting
and also detail it in Appendix B. Here, REGENT has a total of 116M params vs MTT’s 310M params.

Pre-training REGENT and Loss Function: We train REGENT by minimizing the total cross-entropy
loss on discrete actions and total mean-squared error on continuous actions for all n + 1 action
predictions (n in the context and 1 query) with more details in Appendix B.

REGENT Training Data and Environment Suites: In the JAT/Gato setting, we pre-train on 100k
transitions in each of the 45 Metaworld training environments, 9 Mujoco training environments,
52 Atari training environments, and 39 BabyAI training environments. This adds up to a total of
14.5M transitions used to pre-train REGENT. We obtain these transitions by taking a subset of the
open-source JAT dataset [2]. The complete JAT dataset consists of 5-10x the amount of data we use
in each environment. We detail the state and action spaces of each environment suite in Appendix B.
In the ProcGen setting that borrows from MTT [3], we use an order of magnitude fewer pre-training
datapoints than MTT and provide all details in Appendix B.

Processing Raw Observations, Distance Metrics, Retrieval Mechanism, and Preprocessing
Training Data: In the JAT/Gato setting, if the raw observations are images, we embed the image
with an off-the-shelf ResNet18 encoder [23] trained on ImageNet. Otherwise, we use the raw
observations directly without modification. In the JAT/Gato setting, we use the ℓ2 distance metric to
compute distances between pairs of observations, either image embeddings or proprioceptive vectors,
and use similarity search indices to speed up the retrieval [24]. In the ProcGen setting, we utilize
the SSIM distance [25] to obtain distances between two images and parallelize search on GPUs.
R&P simply performs the retrieval process described above at evaluation time, obtains the closest
state to a query state, and plays the corresponding action. REGENT on the other hand has to setup its
pre-training dataset of retrieved and query inputs (see Appendix B).

Evaluating REGENT: In the JAT/Gato setting, we hold-out 5 Metaworld, 5 Atari, and two Mujoco
environments (see Figure 1). In the ProcGen setting, following MTT [3], we hold-out 5 environments.
Unlike MTT, we also evaluate on unseen levels in training environments (see Figure 5). We explain
these choices in Appendix B. Finally, we also note that in all game envs, we add a sticky probability
[26]: 0.05 in unseen Atari and 0.2 in unseen ProcGen envs following [3]. This is not present in any
data or demonstration, which induces further stochasticity and tests the ability of both R&P and REGENT
to truly generalize under novel and stochastic dynamics against simply replaying demonstrations.

Theoretical guarantees: Inspired by [21], we bound the sub-optimality gap of REGENT in Appendix
C. Our theory (and results) show that the sub-optimality gap reduces with more demonstrations.
4 Experimental Evaluation
In our experiments, we aim to answer the following key questions in the two settings from Figures 1
and 5. (1) How well can R&P and REGENT generalize to unseen environments? (2) How does finetuning
in the new environments improve REGENT? (3) How well can REGENT generalize to variations of the
training environments and perform in aggregate on training environments?
Metrics: We plot the normalized return computed using the return of a random and expert agent in
each environment (with values from [2] and [27] for the two settings) as (total return−random return)

(expert return−random return) .
Baselines: In the JAT/Gato setting, we compare with two JAT models: one trained on the REGENT
dataset and another trained on the full JAT dataset with 5-10x the data. We call the former JAT/Gato
and the latter JAT/Gato (All Data). In the ProcGen setting, we compare with MTT’s best result.
Finetuning and Train-from-scratch Baselines: We finetune both JAT/Gato and REGENT on the few
demonstrations that are available in each unseen environment in the JAT/Gato setting. We also
compare with a train-from-scratch behavior cloning baseline. The finetuning hyperparameters are the
same for both methods and can be found with the train-from-scratch details in Appendix B.

Generalization to Unseen Environments: We plot the normalized return obtained by all methods in
unseen Metaworld and Atari environments for various number of demonstrations (25, 50, 75, 100) in
Figure 3. In Atari environments with differences in episode horizons, we put number of states in the
demos (atleast 10k, 15k, 20k, 25k) on the x axis. These demonstrations can be used by the different
methods for retrieval or fine-tuning. We also plot the normalized return obtained by all methods
in unseen ProcGen environments against various number of demonstrations (2, 4, 8, 12, 16, 20) to
retrieve from in Figure 4. In both Figures 3 and 4, we observe that R&P and REGENT can generalize
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Figure 3: Normalized returns in the unseen Metaworld and Atari environments against the number of demonstration trajectories the agent can
retrieve from or finetune on. Each value is an average across 100 rollouts of different seeds in Metaworld and 15 rollouts of different seeds (with
psticky = 0.05) in Atari. See Table 1 for detailed results.

Figure 4: Normalized returns in unseen ProcGen environments against the number of demonstration trajectories the agent can retrieve from.
Each value is an average across 10 levels with 5 rollouts each with psticky = 0.2. See Table 7 for detailed results.

well to unseen Atari and ProcGen environments with image observations and discrete actions as well
as to unseen Metaworld environments with vector observations and continuous actions. R&P is a
surprisingly strong baseline, but REGENT improves on R&P consistently. In general, both methods
appear to steadily improve with more demonstrations. In Figure 3, we observe that JAT/Gato cannot
generalize to most unseen environments. REGENT (and even R&P) outperform even the All Data
variants of JAT/Gato which were pre-trained on 5-10x the size of the REGENT dataset. In Figure 4,
REGENT (and even R&P) outperform MTT, which uses more data & parameters.

Effect of Finetuning: From Figure 3, we see that JAT/Gato, and even its All Data variant, struggle
to perform even after finetuning. Training from scratch on the few demonstrations in each unseen
environment also does not obtain any meaningful performance in most environments. JAT/Gato (and
even R&P), without any finetuning, outperform both finetuned variants of JAT/Gato. Moreover, we
can see that REGENT further improves after finetuning, even with only a few demonstrations. Whereas,
the closest generalist policy that finetunes to new Atari envs, MGDT [4], requires 1M datapoints.
Generalization to the unseen very long-horizon atari-spaceinvaders & atari-stargunner and to unseen
Mujoco embodiments proves challenging and we discuss this in detail in Appendix D.
Generalization to variations (unseen levels) of ProcGen training environments is similar (see
Appendix E) with REGENT performing the best while R&P is a strong baseline. REGENT’s aggregate
performance on JAT/Gato training environments equals or surpasses JAT/Gato (see Appendix D).

5 Conclusions and Future Work
We showed that a simple retrieval-based 1-nearest neighbor agent, R&P, is a strong baseline for today’s
state-of-the-art generalist agents. We proposed REGENT, which leverages retrieval-augmentation and
in-context learning for deployment in unseen environments with only a few demonstrations. Even
after pre-training on an order of magnitude fewer datapoints than other generalist agents and with
fewer parameters, REGENT outperforms them even if they’re finetuned. REGENT further improves
with finetuning on even a small number of demonstrations. In future work, a larger diversity of
embodiments and improved retrieval can help REGENT overcome its challenges with new embodiments
and long-horizon environments. We conclude with the conviction that retrieval in general and REGENT
in particular redefines the possibilities for developing highly adaptive and efficient generalist agents.
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Appendix

Figure 5: Problem setting in ProcGen environments adapted from [3].

A Detailed Related Work

Recent work in the reinforcement learning community has been aimed at building foundation models
and multi-task generalist agents [1, 2, 6, 4, 7, 8, 9, 10, 11, 28, 29, 30, 31, 32, 33, 34, 35, 36].

Many existing generalist agents struggle to adapt to new environments. Gato [1], a popular
generalist agent trained on a variety of gameplay and robotic environments, struggles to achieve
transfer to an unseen Atari game even after fine-tuning, irrespective of the pretraining data. The
authors attribute this difficulty to the "pronounced differences in the visuals, controls, and strategy"
among Atari games. They also attribute Gato’s lack of in-context adaptation to the limited context
length of the transformer not allowing for adequate data to be added in the context. Our method
sidesteps this issue by retrieving only limited but relevant parts of demonstration trajectories to
include in the context. JAT [2], an open-source version of Gato, faces similar problems. We compare
with and significantly outperform JAT/Gato using fewer parameters and an order-of-magnitude
fewer pre-training datapoints. While REGENT is a 138.6M parameter model, JAT uses 192.7M
parameters. The closed-source Gato, with similar performance as the open-source JAT, reports using
1.2B parameters. JAT is also pre-trained on up to 5-10x the amount of data used by our method and
yet cannot generalize to unseen environments. Even after finetuning on a few demonstrations from an
unseen environment, JAT fails to meaningfully improve.

Many recent generalist agents cannot leverage in-context learning. In-context learning capabilities
enable easier and faster adaptation compared to finetuning. Robocat [6], which builds on the Gato
model, undergoes many cycles of fine-tuning, data collection, and pre-training from scratch to adapt
to new manipulation tasks. The multi-game decision transformer [4], an agent trained on over 50
million Atari gameplay transitions, requires another 1 million transitions for fine-tuning on a held-out
game which is not practical in real robot settings. We, on the other hand, show that REGENT (and
even R&P) can adapt to new Atari games with as little as 10k transitions and no finetuning on said
transitions. Finally, the RT series of robotics models [7, 8, 9], recent Vision-Language-Action models
like Octo, OpenVLA, Mobility VLA [10, 11, 28], and other generalist agents like BAKU, RoboAgent
[29, 30] do not evaluate or are demonstrated to not possess in-context learning capabilities. REGENT
on the other hand can adapt simply with in-context learning to unseen environments.

Agents that can adapt to new tasks via in-context learning do so within the same environment.
Algorithm Distillation [13], Decision Pretrained Transformer [14], and Prompt Decision Transformer
[15] are three in-context reinforcement learning methods proposed to generalize to new goals and
tasks within the same environment and not across changes in visual observations, available controls,
and game dynamics.
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We also compare with and outperform MTT [3], the only other model that can adapt in-context
in the ProcGen setting, with improved data efficiency and a smaller model size. MTT trains a
transformer on sequences of trajectories from a particular level and environment and adapts to unseen
environments by throwing the demonstrations into its context. The ProcGen variant of REGENT use
an order-of-magnitude fewer transitions in pre-training and is about one-third the size of MTT.

Retrieval-augmented generation for training and deployment is a core part of our policy. Various
language models trained with retrieval-augmentation such as the original RAG model [37], RETRO
[38], and REALM [39] have demonstrated performance on par with vanilla language models with
significantly fewer parameters. Moreover, retrieval-augmented generation [12] with large language
models has enabled them to quickly adapt to new or up-to-date data. We hope that our work can
enable similar capabilities for decision-making agents.

B Additional Details on REGENT: A Retrieval Augmented Generalist Agent

Assumptions: We assume that the state and action spaces of unseen environments are known.

MixedReLU activation: MixedReLU is a tanh-like activation function from [21] given by
MixedReLU(x) = (2(ReLU(x+1

2 ) − ReLU(x−1
2 )) − 1) which simplifies to −1 for x < −1, x

for −1 ≤ x ≤ 1, and 1 for x > 1.

Normalizing distances to [0, 1]: We compute the 95th percentile of all distances d(s, s′) between any
(retrieved or query) state s and the first (closest) retrieved state s′. This value is computed from the
demonstrations Dj and is used to normalize all distances in that environment. This value is calculated
for all (training or unseen) environments during the preprocessing stage. If after normalization, a
distance value is greater than 1, we simply clip it to 1.

REGENT architecture in the ProcGen setting: We simplify REGENT for the ProcGen setting keeping
the transformer trunk with only a convolution encoder for direct image inputs; a lookup table for
encoding discrete actions; and a linear head for predicting distributions over discrete actions. Here,
following the MTT recipe, we do not use any rewards. We only use the states and actions.

Architectural hyperparameters: The continuous encoder in the JAT/Gato setting takes a maximum
input vector of length 513, accommodating the largest input vectors—image embeddings of size
512—plus a single reward value. When the length of an input vector is less than that, it is cyclically
repeated and padded to the maximum length. We note that states and rewards are concatenated
together before encoding following the JAT recipe [2].

In both settings, the transformer trunk consists of 12 layers and 12 heads with a hidden size of 768.
We set the maximum position encodings to 40 for 20 (state, previous reward)’s and 20 actions. Of
these 20, 19 belong to the retrieved context and 1 belongs to the query. In the JAT/Gato setting, the
maximum multi-discrete observation size is 212 (for BabyAI). The maximum continuous observation
size as discussed before in Section 3 is set to 513, a consequence of the ResNet18 image embedding
models’s [23] embedding size of 512 with an additional 1 dimension for the reward. All linear
encoding layers map from their corresponding input size to the hidden size. Following the JAT model,
the linear decoder head for predicting continuous actions maps from the hidden size to the maximum
continuous size discussed above (513). On the other hand, the linear decoder head for predicting
distributions over discrete actions maps from the hidden size to only the maximum number of discrete
actions across all discrete environments (18), whereas in the JAT model, they map to the full GPT2
vocab size of 50257.

In the JAT/Gato setting, the original JAT architecture has a much larger context size (that is not
required for REGENT), a larger image encoder (than the resnet18 used in REGENT), a much larger
discrete decoder predicting distributions over the entire GPT2 vocab size (instead of just the maximum
number of discrete actions in REGENT), and has (optional) decoders for predicting various observations
(that is also not required for REGENT).

In the ProcGen setting, MTT has a 18 layers, 16 heads, and a hidden size of 1024 – all three of which
are much larger than REGENT’s architectural hyperparameters mentioned above.

Training hyperparameters: In the JAT/Gato setting, we use a batch size of 512 and the AdamW
optimizer with parameters β1 = 0.9 and β2 = 0.999. The learning rate starts at 5e-5 and decays to
zero through 3 epochs over all pre-training data. We early stop after a single epoch because we find
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that overtraining reduces in-context learning performance. This observation is consistent with similar
observations about the transience of in-context learning in literature [40]. We also follow the JAT
recipe in ensuring that each training batch consists only of data from a single environment’s dataset.

In the ProcGen setting, we use a batch size of 1024, a starting learning of 1e-4 also decaying over 3
epochs over all the pre-training data with an early stop after the first epoch. We again use the AdamW
optimizer with parameters β1 = 0.9 and β2 = 0.95.

State and Action Spaces of Various Environment Suites: The Atari environments have 18 discrete
actions and four consecutive grayscale images as states. However, we embed each combined four-
stacked image into a vector of 512 dimensions and use this image embedding everywhere (for R&P
and REGENT). The details of embedding images are discussed later in this Section. The Metaworld
and Mujoco environments have proprioceptive vector observations and continuous action spaces.
All Metaworld environments have observations with 39 dimensions and actions with 4 dimensions.
Mujoco environments have observations with 4 to 376 dimensions and actions with 1 to 17 dimensions.
The BabyAI environments have discrete observations and up to 7 discrete actions. They also have
text observations specifying a goal in natural language. Together, after tokenizing the text into 64
tokens, BabyAI observations have 212 dimensions and consist only of discrete values. All ProcGen
environments have an image-based state space and discrete actions.

Training data and environment suites in the ProcGen setting: In the ProcGen setting that borrows
from MTT [3], we generate 20 rollouts with PPO policies on each of the 12 training environments for
various levels depending on the environment. We do so to ensure that the total number of transitions
in each environment is 1M. The total size of the pre-training dataset is 12M. The number of levels
varies from 63 at the smallest in bigfish to 1565 at the largest in maze. This variation arises from
the difference in rollout horizon in each environment. We note that, even the largest value of 1565
levels in maze is an order-of-magnitude fewer than the 10,000 levels in each game used by MTT for
pre-training.

Re-training JAT/Gato hyperparameters: When retraining JAT/Gato, we follow all hypepermaters
chosen in [2]. We note that we skip the VQA datasets in our retraining of JAT/Gato, and use a smaller
batch size to fit available GPUs. For JAT/Gato (All Data) we train over the full JAT dataset for the
specified 250k training steps. For JAT/Gato we train on the REGENT subset (which is 5-10x smaller)
for 25k training steps. In both variants, the training loss converges to the same low value at about
5000 steps into the training run.

Finetuning hyperparemeters: Starting from a pre-trained checkpoint, we finetune using the same
optimizer as pre-training time but starting with 1/10th the learning rate (i.e., 5e-6) and for 3 epochs
over the finetuning demonstrations. We use this same recipe across all environments and for both
REGENT and JAT/Gato. We only use 3 epochs to prevent the overwriting of any capabilities learned
during pre-training.

Train-from-scratch baseline: For the policy in this baseline, we use the Impala CNN [41] in Atari
environments and a MLP with two hidden layers with 256 neurons each in Metaworld and Mujoco
environments. We use the same learning rate (5e-5) for the same 3 epochs with the same optimizer
(AdamW with β1 = 0.9 and β2 = 0.999) as used for REGENT except we use a constant learning rate
schedule.

Pre-processing dataset setup for REGENT: REGENT first designates a certain number of randomly
chosen demonstrations per environment as the retrieval set in that environment. This is described
in the next paragraph. Then, for each state in each environment’s training dataset, we retrieve the
n = 19 closest states from the designated retrieval subset for that dataset. We ensure that none of the
retrieved states are from the same demonstration as the query state. In this process, we convert our
dataset of transitions to a dataset of (context, query state, query reward) datapoints where the context
consists of 19 retrieved (state, reward, action) tuples. Now, we can begin pre-training REGENT on this
dataset.

Designating retrieval demonstrations in each training environment’s dataset: In the JAT/Gato
setting, we designate 100 random demonstrations from the each of training vector observation
environments as the retrieval subset for that environment. We also designate 5 random demonstrations
from the training image environments as the retrieval subsets for said environments. In the ProcGen
setting, with only 20 demonstrations per level per environment, we designate all 20 as the retrieval
set for that level in that environment.
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We use all states in all demonstrations in each training environment’s dataset as query states. So,
when a query state is from a demonstration in the designated retrieval subset, we simply retrieve
from all other demonstrations in the designated retrieval subset except the current one. When a
query state is from a demonstration not in the designated retrieval subset, we retrieve simply from
the designated retrieval subset. This way, we ensure that none of the retrieved states are from the
same demonstration as the query state. A possible direction for future work includes intelligently
designating and collecting demonstrations for retrieval (perhaps using ideas like persistency of
excitation [42], memory-based methods [43, 21, 44, 45], expert intervention methods [46]).

Choice of held-out environments: In the JAT/Gato setting, for the unseen environments, we hold-
out the 5 Metaworld environments recommended in [47], the 5 Atari environments held-out in [4],
and finally, we choose two Mujoco environments of mixed difficulty (see Figure 1). In the ProcGen
setting, following MTT [3], we hold-out 5 environments.

In this work, we generalize to unseen environments from the same suites as the training environments.
In future work, it would be interesting to examine what is needed for generalization to new suites (such
as more manipulation suites [48], quadrotor, driving simulators [49, 50, 51], biological simulation
[52], etc.).

C Theoretical Guarantees

In this section, we aim to bound the sub-optimality of the REGENT policy. This is measured with
respect to the expert policy π∗

j , that generated the retrieval demonstrations Dj . We focus on the
discrete action case here and leave the continuous action case for future work. The sub-optimality
gap in (training or unseen) environment j is given by (J(π∗

j )− J(πθ
REGENT)). Inspired by the theory

in the MCNN paper [21], we define the "most isolated state" and use this definition to bound the total
variation in the REGENT policy class and hence the sub-optimality gap.

That is, first, given Dj , we wish to obtain the maximum value of the distance term d(st, s
′) in

Equation (1). To do so, we define the most isolated state as follows.
Definition C.1 (Most Isolated State). For a given set of retrieval demonstrations Dj in environment
j, we define the most isolated state sIDj

:= argmax
s∈Sj

(
min
s′∈Dj

d(s, s′)
)
, and consequently the distance to

the most isolated state as dIDj
= min

s′∈Dj

d(sIDj
, s′).

All distances between a state in this environment and its closest retrieved state are less than the above
value, which also measures state space coverage by the demonstrations available for retrieval.

Let us refer to the family of policies represented by πθ
REGENT(a|s, r, c) in Equation (1) for various θ as

Πθ(a|s, r, c). The parameters θ of the transformer are drawn from the space Θ.

Lemma C.2. (Total Variation in the Policy Class) The total variation of the policy class Πθ(a|s, r, c)
in environment j, ∀ θ1, θ2 ∈ Θ and for some s ∈ Sj , r ∈ Rj , c ∈ Cj , defined as

sup
θ1,θ2

sup
a

|πθ1
REGENT(a|s, r, c)− πθ2

REGENT(a|s, r, c)|, is upper bounded by (1− e
−λdI

Dj ).

Proof : We have,

sup
θ1,θ2

sup
a

|πθ1
REGENT(a|s, r, c)− πθ2

REGENT(a|s, r, c)|

= sup
θ1,θ2

sup
a

(1− e−λd)

(
Softmax(πθ1(a|s, r, c))− Softmax(πθ2(a|s, r, c))

)
(2)

= (1− e−λd)sup
θ1,θ2

sup
a

(
Softmax(πθ1(a|s, r, c))− Softmax(πθ2(a|s, r, c))

)
(3)

≤ (1− e
−λdI

Dj ) (4)

The first equality holds because for the same tuple of (state, previous reward, context), the R&P
component does not change since it is not affected by the choice of parameters. The last inequality
can be interpreted as a property of Softmax and the distance to the most isolated state.
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Using the above definition and lemma, we have the following theorem.

Theorem C.3. The sub-optimality gap in environment j is

J(π∗
j )− J(πθ

REGENT) ≤ min{H,H2(1− e
−λdI

Dj )}

Proof : Recall that in imitation learning, if the population total variation (TV) risk T(π̂, π∗) ≤ ϵ,
then, J(π∗)− J(π̂) ≤ min{H,H2ϵ} (See [53] Lemma 4.3). Using this with Lemma C.2 proves the
theorem.

The main consequence of this theorem, also observed in our results, is that the sub-optimality gap
reduces with more demonstrations in Dj because of the reduced distance to the most isolated state.

D Additional JAT/Gato Results

Generalization to unseen very long-horizon environments: We note that all methods face a hurdle
in generalizing to the very long-horizon atari-spaceinvaders and atari-stargunner environments, which
have horizons about 10x that of atari-pong and hence have not been shown in Figure 3.

Generalization to unseen Mujoco environments/embodiments: In the two unseen Mujoco tasks
shown in Figure 6, R&P appears to be a strong baseline even at generalizing to new embodiments!
Moreover, after finetuning on just 25 demonstrations, only REGENT, not JAT/Gato, significantly
improves to outperform other methods and only continues to get better with more demonstrations.

Figure 6: Normalized returns in the unseen Mujoco environments against the number of demonstration trajectories the agent can retrieve from or
finetune on. Each value is an average across 100 rollouts of different seeds.

Qualitative Examples: We plot examples of the inputs and outputs of REGENT at various states
during a rendered rollout in the atari-pong environment in Figure 7 to highlight REGENT’s learned
in-context learning capabilities and interpolation with R&P. We also provide a qualitative example in
the continuous metaworld-bin-picking environment in Figure 8.
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Figure 7: Qualitative examples of a few inputs and outputs of REGENT for two states in a rendered rollout in the unseen, discrete action space,
atari-pong environment. REGENT leverages its in-context learning capabilities and interpolation with R&P to either make a simple decision and
predict the same action as R&P (see blue box on the right) or predict better actions at key states (see black box on the left) that leads to better
overall performance as seen in Figure 3.

Figure 8: Qualitative examples of a few inputs and outputs of REGENT for various states in a rendered rollout in the unseen, continuous action
space, metaworld-bin-picking environment. REGENT can be seen predicting actions that are somewhat similar to but not the same as the first
retrieved (R&P) action. These differences lead to better overall performance as seen in Figure 3. These differences are also the direct result of
REGENT’s in-context learning capabilities, learned from the preprocessed datasets from the pre-training environments.

Aggregate Performance on Training Environments: We plot the aggregate normalized return, both
IQM [54] and mean, on training environments for each of the 4 suites (in the first setting) in Figure 9.
We notice that REGENT significantly exceeds JAT/Gato on Metaworld, exceeds it on Atari, matches it
on Mujoco, and is close to matching it on BabyAI. This demonstrates the dual advantage of REGENT
which gains the capability to generalize to unseen environments while preserving overall multi-task
performance in training environments.

Figure 9: Aggregate normalized returns in the 45 training Metaworld environments, 9 training Mujoco environments, 52 training Atari
environments, and 39 training BabyAI environments. See Figures 10, 11, 12, 13 for performance on each training environment of each suite.
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Figure 10: Normalized returns in each of the 45 seen Metaworld envs. Each value is an average across 100 rollouts of different seeds. See Table
3 for all values.

Figure 11: Normalized returns in each of the 9 seen Mujoco envs. Each value is an average across 100 rollouts of different seeds. See Table 4 for
all values.

Figure 12: Normalized returns in each of the 52 seen Atari envs. Each value is an average across 15 rollouts of different seeds. See Table 5 for
all values.

Figure 13: Normalized returns in each of the 45 seen BabyAI envs. Each value is an average across 100 rollouts of different seeds. See Table 6
for all values.
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Env Num R&P REGENT REGENT JAT/Gato JAT/Gato JAT/Gato JAT/Gato Train
demos Finetuned Finetuned (All Data) (All Data) From

Finetuned Scratch
metaworld-bin-picking 25 0.33 0.19 0.27 0.0 0.0 0.0 0.0 0.0
metaworld-bin-picking 50 0.4 0.53 0.6 0.0 0.0 0.0 0.0 0.0
metaworld-bin-picking 75 0.34 0.53 0.66 0.0 0.01 0.0 0.01 0.0
metaworld-bin-picking 100 0.33 0.65 0.73 0.0 0.0 0.0 0.01 0.0
metaworld-box-close 25 0.58 0.58 0.76 0.0 0.0 0.0 0.0 0.01
metaworld-box-close 50 0.69 0.69 0.86 0.0 0.0 0.0 0.0 0.0
metaworld-box-close 75 0.68 0.82 0.98 0.0 0.0 0.0 0.0 0.0
metaworld-box-close 100 0.81 0.86 0.97 0.0 0.0 0.0 0.0 0.0
metaworld-door-lock 25 0.58 0.72 0.8 0.13 0.12 0.24 0.31 0.0
metaworld-door-lock 50 0.55 0.78 0.83 0.13 0.15 0.24 0.25 0.03
metaworld-door-lock 75 0.63 0.83 0.83 0.13 0.17 0.24 0.27 0.01
metaworld-door-lock 100 0.64 0.83 0.85 0.13 0.17 0.24 0.28 0.03

metaworld-door-unlock 25 0.53 0.58 0.67 0.01 0.03 0.06 0.07 0.0
metaworld-door-unlock 50 0.55 0.75 0.82 0.01 0.03 0.06 0.07 0.01
metaworld-door-unlock 75 0.78 0.87 0.91 0.01 0.02 0.06 0.05 0.0
metaworld-door-unlock 100 0.86 0.89 0.93 0.01 0.03 0.06 0.08 0.03
metaworld-hand-insert 25 0.27 0.6 0.55 0.01 0.07 0.01 0.05 0.0
metaworld-hand-insert 50 0.54 0.66 0.68 0.01 0.04 0.01 0.06 0.0
metaworld-hand-insert 75 0.56 0.76 0.79 0.01 0.04 0.01 0.06 0.0
metaworld-hand-insert 100 0.69 0.76 0.83 0.01 0.02 0.01 0.03 0.01

atari-pong 7 (11599) 0.08 0.08 0.2 0.0 0.0 0.0 0.0 0.0
atari-pong 10 (16533) 0.18 0.2 0.23 0.0 0.0 0.0 0.0 0.0
atari-pong 13 (21468) 0.18 0.22 0.22 0.0 0.0 0.0 0.0 0.0
atari-pong 16 (26400) 0.18 0.22 0.25 0.0 0.0 0.0 0.0 0.0
atari-alien 3 (12759) 0.04 0.08 0.09 0.0 0.0 0.0 0.0 0.0
atari-alien 4 (17353) 0.05 0.08 0.08 0.0 0.0 0.0 0.0 0.0
atari-alien 5 (22684) 0.05 0.08 0.1 0.0 0.0 0.0 0.0 0.0
atari-alien 6 (27692) 0.05 0.09 0.1 0.0 0.0 0.0 0.0 0.0

atari-mspacman 4 (11902) 0.68 0.84 0.83 0.0 0.0 0.01 0.02 0.0
atari-mspacman 5 (14520) 0.68 0.83 0.83 0.0 0.01 0.01 0.02 0.0
atari-mspacman 9 (22490) 0.82 0.86 0.9 0.0 0.02 0.01 0.01 0.0
atari-mspacman 10 (25160) 0.82 0.86 0.9 0.0 0.01 0.01 0.02 0.0
Aggregate Mean 0.473 0.572 0.627 0.019 0.029 0.04 0.052 0.004

Table 1: Values in Figure 3. Each value is an average across 100 rollouts of different seeds in Metaworld and 15 rollouts of different seeds in
Atari.

Env Num R&P REGENT REGENT JAT/Gato JAT/Gato JAT/Gato JAT/Gato Train
demos Finetuned Finetuned (All Data) (All Data) From

Finetuned Scratch
mujoco-halfcheetah 25 0.08 0.01 0.19 0.0 0.0 0.0 0.0 0.04
mujoco-halfcheetah 50 0.08 0.01 0.26 0.0 0.01 0.0 0.0 0.04
mujoco-halfcheetah 75 0.09 0.0 0.31 0.0 0.03 0.0 0.0 0.04
mujoco-halfcheetah 100 0.1 0.0 0.34 0.0 0.03 0.0 0.01 0.04

mujoco-hopper 25 0.21 0.01 0.01 0.0 0.0 0.01 0.03 0.04
mujoco-hopper 50 0.26 0.01 0.04 0.0 0.0 0.01 0.03 0.02
mujoco-hopper 75 0.24 0.01 0.1 0.0 0.0 0.01 0.05 0.02
mujoco-hopper 100 0.25 0.01 0.12 0.0 0.0 0.01 0.05 0.01

Aggregate Mean 0.164 0.008 0.171 0.0 0.009 0.005 0.021 0.031
Table 2: Values in Figure 6. Each value is an average across 100 rollouts of different seeds.

17



Env Num demos REGENT JAT/Gato
metaworld-assembly 100 0.83 0.89
metaworld-basketball 100 0.68 0.03

metaworld-button-press-topdown-wall 100 0.62 0.43
metaworld-button-press-topdown 100 0.62 0.43

metaworld-button-press-wall 100 0.94 0.61
metaworld-button-press 100 0.62 0.43
metaworld-coffee-button 100 0.84 0.33
metaworld-coffee-pull 100 0.62 0.01
metaworld-coffee-push 100 0.18 0.04

metaworld-dial-turn 100 0.83 0.33
metaworld-disassemble 100 2.24 0.0
metaworld-door-close 100 1.0 0.46
metaworld-door-open 100 0.98 0.46

metaworld-drawer-close 100 1.0 0.89
metaworld-drawer-open 100 0.96 0.91
metaworld-faucet-close 100 0.53 0.16
metaworld-faucet-open 100 0.99 0.68

metaworld-hammer 100 0.95 0.52
metaworld-handle-press-side 100 0.99 0.83

metaworld-handle-press 100 0.99 0.83
metaworld-handle-pull-side 100 0.48 0.0

metaworld-handle-pull 100 0.48 0.0
metaworld-lever-pull 100 0.19 0.03

metaworld-peg-insert-side 100 0.7 0.15
metaworld-peg-unplug-side 100 0.31 0.02
metaworld-pick-out-of-hole 100 0.01 0.0
metaworld-pick-place-wall 100 0.99 0.01

metaworld-pick-place 100 0.99 0.01
metaworld-plate-slide-back-side 100 1.0 0.02

metaworld-plate-slide-back 100 1.0 0.02
metaworld-plate-slide-side 100 0.99 0.19

metaworld-plate-slide 100 1.0 0.02
metaworld-push-back 100 0.84 0.01
metaworld-push-wall 100 0.81 0.01

metaworld-push 100 0.84 0.01
metaworld-reach-wall 100 0.99 1.03

metaworld-reach 100 0.99 1.03
metaworld-shelf-place 100 0.96 0.0

metaworld-soccer 100 0.61 0.21
metaworld-stick-pull 100 0.88 0.04
metaworld-stick-push 100 0.75 0.02
metaworld-sweep-into 100 0.91 0.16

metaworld-sweep 100 0.91 0.16
metaworld-window-close 100 0.9 0.1
metaworld-window-open 100 0.97 0.14

Aggregate Mean 0.82 0.281
Table 3: Values in Figure 10. Each value is an average across 100 rollouts of different seeds.

Env Num demos REGENT JAT/Gato
mujoco-ant 100 0.17 0.12

mujoco-doublependulum 100 0.02 0.01
mujoco-humanoid 100 0.02 0.02
mujoco-pendulum 100 0.06 0.03

mujoco-pusher 100 0.9 0.95
mujoco-reacher 100 0.9 0.91
mujoco-standup 100 0.26 0.2

mujoco-swimmer 100 0.82 0.97
mujoco-walker 100 0.05 0.16

Aggregate Mean 0.356 0.374
Table 4: Values in Figure 11. Each value is an average across 100 rollouts of different seeds.
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Env Num demos REGENT JAT/Gato
atari-amidar 5 0.96 0.02
atari-assault 5 0.02 0.02
atari-asterix 5 0.13 0.03

atari-asteroids 5 0.07 0.0
atari-atlantis 5 0.18 0.03

atari-bankheist 5 0.46 0.18
atari-battlezone 5 0.47 0.01
atari-beamrider 5 0.04 0.0

atari-berzerk 5 0.14 0.0
atari-bowling 5 1.0 1.0
atari-boxing 5 0.22 0.38

atari-breakout 5 0.15 0.0
atari-centipede 5 0.35 0.07

atari-choppercommand 5 0.02 0.0
atari-crazyclimber 5 0.19 0.14

atari-defender 5 0.1 0.01
atari-demonattack 5 0.0 0.0
atari-doubledunk 5 0.54 0.28

atari-enduro 5 0.0 0.0
atari-fishingderby 5 0.62 0.1

atari-freeway 5 0.82 0.6
atari-frostbite 5 0.44 0.01
atari-gopher 5 0.66 0.01
atari-gravitar 5 0.03 0.06

atari-hero 5 1.0 0.17
atari-icehockey 5 0.21 0.1
atari-jamesbond 5 0.01 0.0
atari-kangaroo 5 0.0 0.0

atari-krull 5 0.5 0.41
atari-kungfumaster 5 0.0 0.02

atari-montezumarevenge 5 0.0 0.0
atari-namethisgame 5 0.61 0.03

atari-phoenix 5 0.07 0.0
atari-pitfall 5 0.97 1.01

atari-privateeye 5 0.0 0.79
atari-qbert 5 0.57 0.01

atari-riverraid 5 0.19 0.04
atari-roadrunner 5 0.03 0.02
atari-robotank 5 0.23 0.04
atari-seaquest 5 0.48 0.11
atari-skiing 5 0.0 0.0
atari-solaris 5 0.0 0.0

atari-surround 5 0.36 0.03
atari-tennis 5 0.15 0.01

atari-timepilot 5 0.04 0.0
atari-tutankham 5 0.16 0.02
atari-upndown 5 0.13 0.01
atari-venture 5 1.0 1.0

atari-videopinball 5 0.0 0.01
atari-wizardofwor 5 0.76 0.01
atari-yarsrevenge 5 0.01 0.01

atari-zaxxon 5 0.14 0.01
Aggregate Mean 0.293 0.131

Table 5: Values in Figure 12. Each value is an average across 15 rollouts of different seeds.
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Env Num demos REGENT JAT/Gato
babyai-action-obj-door 20 0.39 0.57

babyai-blocked-unlock-pickup 20 0.45 0.97
babyai-boss-level-no-unlock 20 0.49 0.1

babyai-boss-level 20 0.49 0.1
babyai-find-obj-s5 20 0.61 0.92
babyai-go-to-door 20 0.49 0.89

babyai-go-to-imp-unlock 20 0.21 0.03
babyai-go-to-local 20 0.66 0.46

babyai-go-to-obj-door 20 0.14 0.76
babyai-go-to-obj 20 0.14 0.76

babyai-go-to-red-ball-grey 20 0.68 0.76
babyai-go-to-red-ball-no-dists 20 0.95 0.98

babyai-go-to-red-ball 20 0.68 0.76
babyai-go-to-red-blue-ball 20 0.71 0.71

babyai-go-to-seq 20 0.46 0.46
babyai-go-to 20 0.49 0.89

babyai-key-corridor 20 0.07 0.47
babyai-mini-boss-level 20 0.61 0.28

babyai-move-two-across-s8n9 20 0.0 0.0
babyai-one-room-s8 20 0.96 0.97
babyai-open-door 20 0.58 0.92

babyai-open-doors-order-n4 20 0.54 0.33
babyai-open-red-door 20 0.99 0.99

babyai-open-two-doors 20 0.37 0.37
babyai-open 20 0.58 0.92

babyai-pickup-above 20 0.44 0.86
babyai-pickup-dist 20 0.66 0.4
babyai-pickup-loc 20 0.42 0.38

babyai-pickup 20 0.44 0.86
babyai-put-next-local 20 0.12 0.0

babyai-put-next 20 0.12 0.0
babyai-synth-loc 20 0.5 0.3
babyai-synth-seq 20 0.59 0.07

babyai-synth 20 0.5 0.3
babyai-unblock-pickup 20 0.25 0.23

babyai-unlock-local 20 0.93 0.99
babyai-unlock-pickup 20 0.81 0.96

babyai-unlock-to-unlock 20 0.35 0.79
babyai-unlock 20 0.93 0.99

Aggregate Mean 0.508 0.577
Table 6: Values in Figure 13. Each value is an average across 100 rollouts of different seeds.
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E Additional ProcGen Results

Generalization to Unseen Levels in Training Environments: We plot the normalized returns on
unseen levels of the 12 training environments (with a sticky probability of 0.1) in Figure 14. In Figure
14, we again observe that REGENT performs the best in unseen levels while R&P remains a strong
baseline. We also depict the performance of REGENT on seen levels of these training environments
with a dotted line which represents an upper bound for REGENT’s performance in unseen levels. We
observe that with a large number of demonstrations, REGENT appears to reach close to this upper
bound simply via retrieval-augmentation and in-context learning in some environments.

Figure 14: Normalized returns in unseen levels in all 12 ProcGen training environments against the number of demonstration trajectories the
agent can retrieve from. Each value is an average across 10 levels with 5 rollouts each with psticky = 0.1. See Table 8 for all values.

Discussion about MTT’s performance: We note that it is likely that MTT performance is close
to random on a couple of environments only because the authors are forced to constrain MTT
rollouts to 200 steps, stopping short of the true horizon of these environments, simply because of the
quadratically increasing complexity of attention with increase in context size. MTT also likely does
not report results beyond 4 demonstrations in the context for this reason. Yet, this is not an issue for
R&P or REGENT which can scale to any number of demonstrations to retrieve from since it only uses
the 19 closest states in the context.
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Env sticky prob num demos (epoch, end batch) REGENT R&P MTT [3]

ninja p=0.2 n=2 (0, 11612) (7.2, 1.17) (5.67, 1.1)
n=4 (0, 11612) (7.4, 2.06) (5.5, 1.25) (4.1, 0.35)
n=8 (0, 11612) (7.4, 1.02) (6.4, 1.5)
n=12 (0, 11612) (7.8, 0.4) (6.33, 1.2)
n=16 (0, 11612) (8.0, 0.63) (7.4, 1.11)
n=20 (0, 11612) (8.2, 0.75) (7.6, 1.2)

climber p=0.2 n=2 (0, 11612) (4.98, 0.85) (3.17, 0.93)
n=4 (0, 11612) (6.52, 2.06) (3.95, 1.42) (1.85, 0.41)
n=8 (0, 11612) (6.38, 1.52) (3.12, 1.87)
n=12 (0, 11612) (6.92, 1.19) (5.64, 2.37)
n=16 (0, 11612) (6.66, 1.18) (3.77, 2.0)
n=20 (0, 11612) (7.04, 1.65) (5.41, 1.78)

plunder p=0.2 n=2 (0, 11612) (10.98, 2.23) (8.46, 1.26)
n=4 (0, 11612) (11.9, 0.77) (8.3, 1.88) (2.5, 0.2)
n=8 (0, 11612) (12.14, 1.22) (8.2, 1.72)
n=12 (0, 11612) (13.8, 1.59) (9.36, 2.16)
n=16 (0, 11612) (14.04, 2.63) (9.84, 2.11)
n=20 (0, 11612) (13.78, 1.81) (10.8, 1.87)

jumper p=0.2 n=2 (0, 11612) (4.6, 0.8) (3.75, 1.45)
n=4 (0, 11612) (5.8, 1.47) (4.0, 1.28) (4.65, 0.28)
n=8 (0, 11612) (6.0, 1.26) (4.25, 1.69)
n=12 (0, 11612) (6.4, 0.49) (5.25, 0.92)
n=16 (0, 11612) (6.8, 0.75) (6.0, 1.02)
n=20 (0, 11612) (6.8, 1.6) (5.5, 1.54)

Table 7: Values in Figure 4 before normalization. The tuples represent (mean, std) obtained across 10 levels with 5 rollouts each.
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Env sticky prob num demos (epoch, end batch) REGENT R&P REGENT (seen levels)

bigfish p=0.1 n=2 (0, 11612) (11.32, 2.2) (6.75, 3.92)
n=4 (0, 11612) (14.32, 2.55) (11.85, 3.09)
n=8 (0, 11612) (18.82, 3.45) (14.7, 4.08)
n=12 (0, 11612) (20.66, 3.33) (14.02, 4.4)
n=16 (0, 11612) (21.32, 5.07) (14.43, 3.24)
n=20 (0, 11612) (22.74, 4.23) (13.28, 3.28) (25.7, 3.03)

bossfight p=0.1 n=2 (0, 11612) (3.76, 0.77) (1.45, 1.13)
n=4 (0, 11612) (5.52, 0.56) (3.38, 1.4)
n=8 (0, 11612) (5.24, 1.47) (3.67, 1.1)
n=12 (0, 11612) (5.12, 0.74) (3.17, 1.4)
n=16 (0, 11612) (4.32, 1.98) (3.51, 1.13)
n=20 (0, 11612) (4.44, 1.23) (4.1, 1.38) (5.6, 1.12)

caveflyer p=0.1 n=2 (0, 11612) (7.44, 1.13) (2.74, 0.92)
n=4 (0, 11612) (7.34, 0.71) (2.98, 1.13)
n=8 (0, 11612) (7.0, 0.89) (3.29, 0.69)
n=12 (0, 11612) (6.96, 0.4) (3.27, 1.27)
n=16 (0, 11612) (6.72, 0.83) (3.31, 1.1)
n=20 (0, 11612) (7.08, 0.81) (4.04, 0.85) (7.68, 0.48)

chaser p=0.1 n=2 (0, 11612) (1.15, 0.2) (1.01, 0.19)
n=4 (0, 11612) (1.51, 0.43) (1.51, 0.45)
n=8 (0, 11612) (1.46, 0.16) (1.47, 0.34)
n=12 (0, 11612) (1.61, 0.11) (1.77, 0.74)
n=16 (0, 11612) (1.47, 0.08) (1.53, 0.47)
n=20 (0, 11612) (1.79, 0.47) (1.73, 0.47) (2.4, 0.47)

coinrun p=0.1 n=2 (0, 11612) (7.8, 1.6) (6.2, 1.17)
n=4 (0, 11612) (7.2, 0.75) (5.9, 1.37)
n=8 (0, 11612) (7.0, 0.89) (6.4, 1.28)
n=12 (0, 11612) (6.8, 0.98) (6.2, 1.08)
n=16 (0, 11612) (7.2, 1.17) (6.6, 1.28)
n=20 (0, 11612) (8.0, 1.1) (5.8, 0.87) (8.2, 0.4)

dodgeball p=0.1 n=2 (0, 11612) (3.36, 1.04) (1.93, 0.93)
n=4 (0, 11612) (3.44, 0.32) (1.8, 0.86)
n=8 (0, 11612) (4.04, 1.09) (2.17, 0.54)
n=12 (0, 11612) (3.72, 0.69) (2.07, 0.72)
n=16 (0, 11612) (3.64, 0.82) (2.33, 0.67)
n=20 (0, 11612) (3.56, 0.74) (2.4, 0.6) (7.12, 1.12)

fruitbot p=0.1 n=2 (0, 11612) (3.18, 0.7) (0.98, 1.48)
n=4 (0, 11612) (7.48, 2.44) (1.6, 3.05)
n=8 (0, 11612) (11.02, 1.94) (3.67, 3.37)
n=12 (0, 11612) (13.02, 1.39) (4.38, 4.59)
n=16 (0, 11612) (15.04, 2.26) (7.45, 5.22)
n=20 (0, 11612) (15.62, 1.76) (4.67, 4.56) (16.36, 3.49)

heist p=0.1 n=2 (0, 11612) (4.6, 0.8) (3.8, 1.72)
n=4 (0, 11612) (5.0, 2.83) (3.7, 1.9)
n=8 (0, 11612) (5.2, 1.72) (4.9, 1.3)
n=12 (0, 11612) (5.4, 1.2) (3.4, 1.11)
n=16 (0, 11612) (6.0, 0.63) (5.1, 1.3)
n=20 (0, 11612) (5.4, 1.36) (4.6, 1.2) (7.2, 1.17)

leaper p=0.1 n=2 (0, 11612) (6.4, 1.2) (3.33, 1.73)
n=4 (0, 11612) (7.4, 1.62) (5.83, 1.35)
n=8 (0, 11612) (7.6, 1.36) (7.17, 1.0)
n=12 (0, 11612) (8.2, 0.75) (7.5, 1.43)
n=16 (0, 11612) (9.0, 1.1) (7.83, 1.0)
n=20 (0, 11612) (9.2, 0.75) (6.17, 0.78) (9.2, 0.75)

maze p=0.1 n=2 (0, 11612) (5.6, 0.49) (5.0, 1.41)
n=4 (0, 11612) (4.8, 1.17) (3.1, 0.94)
n=8 (0, 11612) (5.8, 1.17) (4.9, 0.83)
n=12 (0, 11612) (6.0, 0.63) (4.6, 0.8)
n=16 (0, 11612) (6.0, 1.67) (4.5, 1.02)
n=20 (0, 11612) (6.0, 0.89) (4.5, 1.12) (8.4, 0.8)

miner p=0.1 n=2 (0, 11612) (2.88, 1.22) (2.14, 0.72)
n=4 (0, 11612) (4.72, 0.82) (3.12, 0.54)
n=8 (0, 11612) (3.68, 1.53) (2.96, 1.46)
n=12 (0, 11612) (4.54, 1.54) (3.09, 1.05)
n=16 (0, 11612) (4.38, 0.93) (3.45, 1.04)
n=20 (0, 11612) (3.76, 0.38) (3.12, 1.11) (6.58, 1.56)

starpilot p=0.1 n=2 (0, 11612) (12.52, 1.16) (10.28, 2.07)
n=4 (0, 11612) (11.94, 2.27) (11.33, 2.16)
n=8 (0, 11612) (12.82, 2.75) (10.93, 2.19)
n=12 (0, 11612) (14.9, 4.75) (10.8, 1.03)
n=16 (0, 11612) (15.34, 2.32) (10.49, 1.85)
n=20 (0, 11612) (11.8, 1.82) (10.08, 2.25) (16.1, 3.8)

Table 8: Values in Figure 14 before normalization. The tuples represent (mean, std) obtained across 10 levels with 5 rollouts each.
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