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ABSTRACT

Oft-policy evaluation (OPE) is the task of estimating the expected reward of a given
policy based on offline data previously collected under different policies. Therefore,
OPE is a key step in applying reinforcement learning to real-world domains such as
medical treatment, where interactive data collection is expensive or even unsafe. As
the observed data tends to be noisy and limited, it is essential to provide rigorous
uncertainty quantification, not just a point estimation, when applying OPE to
make high stakes decisions. This work considers the problem of constructing non-
asymptotic confidence intervals in infinite-horizon off-policy evaluation, which
remains a challenging open question. We develop a practical algorithm through
a primal-dual optimization-based approach, which leverages the kernel Bellman
loss (KBL) of [Feng et al.| (2019) and a new martingale concentration inequality
of KBL applicable to time-dependent data with unknown mixing conditions. Our
algorithm makes minimum assumptions on the data and the function class of the
Q-function, and works for the behavior-agnostic settings where the data is collected
under a mix of arbitrary unknown behavior policies. We present empirical results
that clearly demonstrate the advantages of our approach over existing methods.

1 INTRODUCTION

Off-policy evaluation (OPE) seeks to estimate the expected reward of a target policy in reinforcement
learnings (RL) from observational data collected under different policies (e.g., Murphy et al., 2001}
Fonteneau et al.| 2013} Jiang & Li,[2016; |L1u et al., 2018a). OPE plays a central role in applying
reinforcement learning (RL) with only observational data and has found important applications in
areas such as medicine, self-driving, where interactive “on-policy” data is expensive or even infeasible
to collect. A critical challenge in OPE is the uncertainty estimation, as having reliable confidence
bounds is essential for making high-stakes decisions. In this work, we aim to tackle this problem by
providing non-asymptotic confidence intervals of the expected value of the target policy. Our method
allows us to rigorously quantify the uncertainty of the prediction and hence avoid the dangerous case
of being overconfident in making costly and/or irreversible decisions.

However, off-policy evaluation per se has remained a key technical challenge in the literature (e.g.,
Precup, 2000; Thomas & Brunskill, [2016; Jiang & Li, 2016; |Liu et al., 2018al)), let alone gaining
rigorous confidence estimation of it. This is especially true when 1) the underlying RL problem is
long or infinite horizon, and 2) the data is collected under arbitrary and unknown algorithms (a.k.a.
behavior-agnostic). As a consequence, the collected data can exhibit arbitrary dependency structure,
which makes constructing rigorous non-asymptotic confidence bounds particularly challenging.
Traditionally, the only approach to provide non-asymptotic confidence bounds in OPE is to combine
importance sampling (IS) with concentration inequalities (e.g., [Thomas et al. 2015azb)), which,
however, tends to degenerate for long/infinite horizon problems (Liu et al., |2018a). Furthermore,
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neither can this approach be applied to the behavior-agnostic settings, nor can it effectively handle
the complicated time dependency structure inside individual trajectories. Instead, it requires to use a
large number of independently collected trajectories drawn under known policies.

In this work, we provide a practical approach for Behavior-agnostic, Off-policy, Infinite-horizon,
Non-asymptotic, Confidence intervals based on arbitrarily Dependent data (BONDIC). Our method
is motivated by a recently proposed optimization-based (or variational) approach to estimating OPE
confidence bounds (Feng et al.,[2020), which leverages a tail bound of kernel Bellman statistics (Feng
et al., 2019). Our approach achieves a new bound that is both an order-of-magnitude tighter and
computationally efficient than that of |[Feng et al.|(2020). Our improvements are based on two pillars
1) developing a new primal-dual perspective on the non-asymptotic OPE confidence bounds, which is
connected to a body of recent works on infinite-horizon value estimation (Liu et al., [2018a; Nachum
et al., 2019a; [Tang et al.,|2020a; Mousavi et al., [2020); and 2) offering a new tight concentration
inequality on the kernel Bellman statistics that applies to behavior-agnostic off-policy data with
arbitrary dependency between transition pairs. Empirically, we demonstrate that our method can
provide reliable and tight bounds on a variety of well-established benchmarks.

Related Work Besides the aforementioned approach based on the combination of IS and concen-
tration inequalities (e.g., Thomas et al., 2015a)), bootstrapping methods have also been widely used in
oft-policy estimation (e.g.,White & Whitel, 2010; |Hanna et al.,[2017; Kostrikov & Nachum, [2020).
But the latter is limited to asymptotic bounds. Alternatively, Bayesian methods (e.g. [Engel et al.|
2005; |Ghavamzadeh et al.,|2016a) offers a different way to estimate the uncertainty in RL, but fails to
guarantee frequentist coverage. In addition, Distributed RL (Bellemare et al.,|2017) seeks to quantify
the intrinsic uncertainties inside the Markov decision process, which is orthogonal to the estimation
of uncertainty that we consider.

Our work is built upon the recent advances in behavior-agnostic infinite-horizon OPE, including
Liu et al.| (2018a); Feng et al.| (2019); Tang et al.| (2020a); [Mousavi et al. (2020), as well as the
DICE-family (e.g., Nachum et al.,2019a; Zhang et al., 2020a} |Yang et al., 2020b)). In particular, our
method can be viewed as extending the minimax framework of the infinite-horizon OPE in the infinite
data region by Tang et al.[(2020a); |Uehara et al.| (2020); Jiang & Huang| (2020) to the non-asymptotic
finite sample region.

Outline For the rest of the paper, we start with the problem statement in Section[2], and an overview
on the two dual approaches to infinite-horizon OPE that are tightly connected to our method in
Section[3] We then present our main approach in Sectiond]and perform empirical studies in Section[3]
The proof and an abundance of additional discussions can be found in Appendix.

2 BACKGROUND, DATA ASSUMPTION, PROBLEM SETTING

Consider an agent acting in an unknown environment. At each time step ¢, the agent observes the
current state s, in a state space S, takes an action a; ~ 7(- | s¢) in an action space A according to
a given policy m; then, the agent receives a reward r; and the state transits to s; = $¢41, following
an unknown transition/reward distribution (r, s;11) ~ P(- | s¢, at). Assume the initial state sq is
drawn from an known initial distribution Dy. Let v € (0, 1) be a discount factor. In this setting, the

expected reward of 7 is defined as J, := E [ZZ;O yery | sg ~ DO} , which is the expected total

discounted rewards when we execute 7 starting from Dy for 7" steps. In this work, we consider the
infinite-horizon case with T' — +oo.

Our goal is to provide an interval estimation of J, for a general and challenging setting with
significantly released constraints on the data. In particular, we assume the data is behavior-agnostic
and off-policy, which means that the data can be collected from multiple experiments, each of which
can execute a mix of arbitrary, unknown policies, or even follow a non-fixed policy. More concretely,
suppose that the model P is unknown, and we have a set of transition pairs D,,L = (84,04, T3, S5
collected from previous experiments in a sequential order, such that for each data point 4, the (r;, s;)
is drawn from the model P(- | s;, a;), while (s;, a;) is generated with an arbitrary black box given
the previous data points. We formalize both the data assumption and goal as below.
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Assumption 2.1 (Data Assumption). Assume the data D, = (Siyai, 75 ,As;);;l is drawn from an ar-
bitrary joint distribution, such that for eachi = 1,...,n, conditional on D<; := (sj,a;,7j,5%)j<iU
(84, a;), the subsequent local reward and next state (r;, s;) are drawn from P(- | s;, a;).

Goal  Given a confidence level 6 € (0, 1), we want to construct an interval [j = J *] C R based on
the data D,,, such that Pr(J, € [J~,J%]) > 1— 6, where Pr(-) is w.r.t. the randomness of the data.

The partial ordering on the data points is introduced to accommodate the case that s;4; equals s;
for some j < 4. The data assumption only requires that (r;, s;) is generated from P(- | s;, a;), and
imposes no constraints on how (s;, a;) is generated. This provides great flexibility in terms of the data
collection process. In particular, we do not require (s;, a;)_; to be independent as always assumed
in recent works (Liu et al., 2018a; Mousavi et al.,[2020).

A crucial fact is that our data assumption actually implies a martingale structure on the empirical
Bellman residual operator of the Q-function, As we will show in Section this enables us to derive
a key concentration inequality underpinning our non-asymptotic confidence bounds.

Here, we summarize a few notations that will simplify the presentation in the rest of work. First of
all, we append each (s;, a;, r;, s;) with an action a} ~ 7 (- | s}) following s;. This can be done for
free as long as m is given (See the Remark in Section[3). Also, we write x; = (s;,a;), } = (s}, a}),
and y; = (x},r;) = (s}, al,r;). Correspondingly, define X = S x A to be the state-action space and
Y =X xR.Denote P.(y | x) = P(s',r | z)m(a’ | s’). In this way, the observed data can be written
as pairs of {x;,y;}"_,, and Assumption is equivalent to saying that y; ~ P(- | z;) given D,
which is similar to a supervised learning setting. We equalize the data D,, with its empirical measure
D, = 31", 8s,.4:/n, Where § is the Delta measure.

3 TWO DUAL APPROACHES TO INFINITE-HORIZON OFF-POLICY ESTIMATION

The deficiency of the traditional IS methods on long-/infinite-horizon RL problems (a.k.a. the curse
of horizon (Liu et al.}2018a))) has motivated a line of work on developing efficient infinite-horizon
value estimation (e.g.,[Liu et al., 2018a} |[Feng et al., 2019; |[Nachum et al., 2019aj |[Zhang et al., 2020aj
Mousavi et al., [2020; Tang et al., 2020a). The main idea is to transform the value estimation problem
into estimating either the Q-function or the visitation distribution (or its related density ratio) of the
policy 7. This section introduces and reinterprets these two tightly connected methods, which serves
to lay out a foundation for our main confidence bounds from a primal and dual perspective.

Given a policy m, its Q-function is defined as ¢ (z) = E [>_,2, 77t | o = x|, where the expecta-
tion is taken when we execute 7 initialized from a fixed state-action pair (sg, ap) = o = . Let D 4
be the distribution of (xt., yt.) = (s, at, sg, ay,ry) when execut(i)gg policy m starting from sq ~ Dy for
¢ steps. The visitation distribution of r is defined as D = Y-, 7D ;. Note that D integrates to
1/(1 — ~), while we treat it as a probability measure in the notation.

The expected reward J.can be expressed using either ¢, or D, as follows:

J. = E,

Z Vtrt‘| - ETND# [T] - EINDw,o [Qﬂ' (:E)], (1)
t=0

where r ~ D, (resp. z ~ Dy o) denotes sampling from the r-(resp. z-) marginal distribution of D
(resp. D). Eq. (I) plays a key role in the infinite-horizon value estimation by transforming the
estimation of .J. into estimating either ¢, or D.

Value Estimation via Q Function Because D, o(xz) = Do(s)m(als) is known, we can estimate
Jr by Exp,, o [¢()] with any estimation § of the true Q-function ¢ ; the expectation under z ~ Dy o
can be estimated to any accuracy with Monte Carlo. To estimate ¢, we consider the empirical and
expected Bellman residual operator:

Rq(z,y) = q(x) — yq(a’) —, Rrq(x) =Eyp, (|2) [fitJ(x, y)] : (2)

It is well-known that g is the unique solution of the Bellman equation Rq = 0. Since y; ~ P (-|x;)
for each data point in D,,, if ¢ = ¢, then Rq(x;,y;), 7 = 1,. .., n are all zero-mean random variables.
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Let w be any function from X to R, then > . Rq(;, yi)w(x;) also has zero mean. This motivates the
following functional Bellman loss (Feng et al.,2019;[2020; Xie & Jiang, [2020),

Lw(g; Dy) = sg/)v{ ZRq iy Yi)w z)}, 3)
where WV is a set of functions w: X — R. To ensure that the sup is finite, WV is typically set to be an
unit ball of some normed function space W,, such that W = {w € W,,: [lw|,,, < 1}. Fengetal.
(2019) considers the simple case when W is taken to be the unit ball K of the reproducing kernel
Hilbert space (RKHS) with a positive definite kernel k: X x X — R, in which case the loss has a
simple closed form solution:

. 1 <. - .
Li(q; Dn) = 3 > Ra(wi, yi)k(zi, 7;)Ra(z;, y5). “4)
ij=1
Note that the RHS of Eq. (@) is the square root of the kernel Bellman V-statistics in [Feng et al.

(2019). Feng et al.|(2019) showed that, when the support of data distribution D,L covers the whole
space (which may require an infinite data size) and k is an integrally strictly positive definite kernel,

Lk (g; D,) = 0iff ¢ = g. Therefore, one can estimate ¢, by minimizing Lx (g, Dn)

Remark The empirical Bellman residual operator R can be extended to Rq(z,y) = q(z) — r —
YL S0 a(s', a)), where {aj}™ arei.i.d. drawn from 7(-|s). As m increases, this gives a lower

variance estimation of Rq. If m = +o0, we have Rq(z, y) = ¢(x) —r — VEo on(- | sy 1a(s',a)],
which coincides with the operator used in the expected SARSA (Sutton & Barto, |1998)). In fact,
without any modification, all results in this work can be applied to Rgq for any m.

Value Estimation via Visitation Distribution Another way to estimate .J. in Eq. () is to approx-
imate D, with a weighted empirical measure of the data (Liu et al.,|2018a; Nachum et al., 2019aj,
Mousavi et al., 2020; Zhang et al.,[2020a). The key idea is to assign an importance weight w(z;) to

each data point z; in D,,. We can choose the function w: X — R properly such that D, and hence

J can be approximated by the w-weighted empirical measure of D,, as follows:

A 1 - 1
Je = J, = IE)Dﬁ [r] = - Zw(a:i)ri, D, = DY .= - Zw(azl)émy (5)
i=1 i=1

Intuitively, w can be viewed as the density ratio between D, and D... although the empirical measure
D,, may not have well-defined density. |[Liu et al. (2018a)); [Mousavi et al.|(2020) proposed to estimate

w by minimizing a discrepancy measure between D% and D,. To see this, note that D = D if and
only if A(D, ¢) = 0 for any function ¢, where

A(D, q) = Ep[yq(z') - ¢(x)] — Eo, [vq(z’) — q(x)]

= Ep[yq(«) — q(2)] + Ep, , [¢(x)], (6)
using the fact that Ep_[vq(2") — q(2)] = —Ep, ,[¢(x)] (Theorem 1, |Liu et al., 2018a). Also note
that the RHS of Eq. (6)) can be practically calculated given any D and ¢ without knowing D. Let Q
be a set of functions ¢: X — R. One can define the following loss for w:

Io(w; D) = sup {A(D?{,q)} : (7)
q

Similar to Lyy(g; D,,), when Q is a ball in RKHS, Io(w; D,) also has a bilinear closed form
analogous to Eq. (@); see Mousavi et al.|(2020) and Appendix E As we show in Section Io(w; Dy)
and Lyy(q; Dy,) are connected to the primal and dual views of our confidence bounds, respectively.

4 MAIN APPROACH

Let Q be a large enough function set including the true Q-function ¢, that is, ¢, € Q. Following
Feng et al.|(2020), a confidence interval [Jé,wv ngw] of J, can be constructed as follows:

jg,w = sup {ED,,O[(]] s.t. Lwl(qg; f)n) < gn}, (8)
qeQ



Published as a conference paper at ICLR 2021

and .J 0.y 18 defined in a similar way by replacing sup on ¢ € Q with inf.

The idea here is to seek the extreme ¢ function with the largest (resp. smallest) expected values in set

F:=0n{q: Li(g; Dn) < &, }. Therefore, Eq. (8) would be a 1 — § confidence interval if ¢, is
included in F with at least probability 1 — §, which is ensured when ¢, € Q and

Pr(Lw(gr; Dn) <en) >1-34. ©)
Feng et al.|(2020) showed that in the RKHS case when W = K, Eq. (9) can be achieved with
—1 [log(1/6 1
S P ( og</>+>, (10)
n n n

when 7 is an even number, where ¢, x = sup, , R (2, y)2k(z, ). This was proved using Hoeffd-
ing’s inequality for U-statistics (Hoeffding], 1963) To solve Eq. (§) efficiently, [Feng et al|(2020) took
@ to be a ball in RKHS with random feature approximation. Unfortunately, this method as described
by Eq. ()-(I0) has two major disadvantages:

1) Bound Needs to Be Tightened (Section The bound of &, = O(n~'/*) in Eq. is
sub-optimal in rate. In Section we improve it by an £, = O(n~'/?) bound under the mild
Assumption which gets rid of the independence requirement between the transition pairs. Our
tightened bound is achieved by firstly noting a Martingale structure on the empirical Bellman operator
under Assumption [2.1] and then applying an inequality in [Pinelis| (1992).

2) Dependence on Global Optimization (Section The bound in Eq. (§) is guaranteed to be a
1 — 4 confidence bound only when the maximization in Eq. (8) is solved to global optimality. With
a large n, this leads to a high computational cost, even when choosing Q as the RKHS. [Feng et al.
(2020) solved Eq. (8) approximately using a random feature technique, but this method suffers from
a gap between the theory and practice. In Section[4.2] we address this problem by presenting a dual
form of Eq. (8], which sidesteps solving the challenging global optimization in Eq. (). Moreover,
the dual form enables us to better analyze the tightness of the confidence interval and issues regarding
the choices of Q and W.

4.1 A TiIGHTER CONCENTRATION INEQUALITY

In this section, we explain our method to improve the bound in Eq. (I0) by giving a tighter concen-
tration inequality for the kernel Bellman loss in Eq. (@). We introduce the following semi-expected
kernel Bellman loss:

1 n
3 Z Rq(z;)k(zi, zj)Req(z)), (11)
=1

Li(g; D) =

in which we replace the empirical Bellman residual operator f{q in Eq. (3) with its expected counter-
part R ¢, but still take the empirical average over {z;}? , in D,.. For a more general function set
W, we can similarly define L3,,(g; Dn) by replacing Rg with R.¢ in Eq. (). Obviously, we have
Ly (g; If)n) = 0 when g = ¢,.

Theorem 4.1|below shows that Li(q; D,,) concentrates around L (¢; D,,) with an O(n~1/2) error
under Assumption[2.1] At a first glance, it may seem surprising that the concentration bound is able
to hold even without any independence assumption between {x; }. An easy way to make sense of this
is by recognizing that the randomness in y; conditional on z; is aggregated through averaging, even
when {z;} are deterministic. As Assumption [2.1|does not impose any (weak) independence between
{2;}, we cannot establish that Ly (¢; D,,) concentrates around its mean Ep [Lx(g; Dn)] (which is
a full expected kernel bellman loss), without introducing further assumptions

Theorem 4.1. Assume K is the unit ball of RKHS with a positive definite kernel k(-,-). Let cq f, :=
sup,exv yey(Ra(z,y) — Rrq(x))?k(z, ) < 0. UnderAssumptionfor any 6 € (0,1), with at
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least probability 1 — 6, we have

* A 2¢, 1 log(2/6
LK(Q? Dn) _LIC(Q§ Dn) q,k g( / )

< ) ek DSE0) (12)

- n

In particular, when q = ¢, we have c,_ j, = Supwly(flqﬂ (2,9))%k(x,2), and

Lic(gn; D) < \/M. (13)

Intuitively, to see why we can expect an O(n~'/2) bound, note that Ly (¢, D,,) consists of the square
root of the product of two Rgq terms, each of which contributes an O(n~'/2) error w.r.t. Rq.

Technically, the proof is based on a key observation: Assumption|2.1|ensures that Z; := Rq(xi, Yi) —
R,q(z;), i = 1,...,n forms a martingale difference sequence w.r.t. {D.;: Vi = 1,...,n}, in
the sense that E[Z; | f)<i] = 0, Vi. See Appendix E]for details. The proof also leverages a special
property of RKHS and applies a Hoeffding-like inequality on the Hilbert spaces as in Pinelis|(1992)
(see Appendix [B)). For other more general function sets W, we establish in Appendix [E|a similar
bound by using Rademacher complexity, although it yields a less tight bound than Eq. (I2) when
W =K.

4.2 DUAL CONFIDENCE BOUNDS

We derive a dual form of Eq. (8) that sidesteps the need for solving the challenging global optimization

in Eq. (). To do so, let us plug the definition of Lyy(g; D,,) into Eq. (B) and introduce a Lagrange
multiplier:

. 1 & R
+ _ . .
Jow = Sgg hgﬁ, /{gfo Ep, ,[q] — A (n ; h(z:)Rq(wi, yi) — €n> (14)
1 n
=sup inf JE - = Ra(z; n ; 15
Zggwlenwo{ Drold] =~ ;w(w IRy () + IIwIIWD} (15)

where we use w(x) = Mh(x). Exchanging the order of min/max and some further derivation yields
the following main result.

Theorem 4.2. 1) Let VW be the unit ball of a normed function space WW,. We have

TEw < F&(w) = Epy[r] + To(w; D) +en lwllyy, , YweW,, 06
JE,W > Fé(w) = ED% [r] — I-o(w; Ijn) —€n Hw||WU , YweWw,,

where —Q = {—q: q € Q} and hence I_g(w; D,,) = Ig(w; Dy,) if Q = —Q. Further, we have
J&W = inf,ew, Fg(w) and Jg \y = sup,ew, Fg (LS) if Q is convex and there exists a q € Q

that satisfies the strict feasibility condition that Ly (q; D,) < &,.

1l) For D, and § € (0,1), assume W, and ¢, € R satisfy Eq. Q) (e.g., via Theorem4.1). Then
for any function set Q with q, € Q, and any function wy,w_ € W, (the choice of Q, w4, w_ can

depend on D,, arbitrarily), we have

Pr (J7r € [Fé(w,), Fg(m)}) >1-4. (17)

Theorem transforms the original bound in Eq. (§)), framed in terms of ¢ and Ly (gq; I5n), into
a form that involves the density-ratio w and the related loss Ig(w; D,,). The bounds in Eq. (T6)
can be interpreted as assigning an error bar around the w-based estimator J,, = Eg,, [r] in Eq. (8),

with the error bar of I1o(w; Dy) + &n [|w]y, - Specifically, the first term /1 o(w; Dy,,) measures

the discrepancy between D‘;{ and D, as discussed in Eq. (7), whereas the second term captures the
randomness in the empirical Bellman residual operator Rg;.
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Compared with Eq. (§), the global maximization on ¢ € Q is now transformed inside the Jo (w; bn)
term, which yields a simple closed form solution in the RKHS case (see Appendix [F). In practice, we
can optimize w4 and w_ to obtain the tightest possible bound (and hence recover the primal bound)
by minimizing/maximizing F5 (w) and FQ_ (w), but it is not necessary to solve the optimization to
global optimality. When W, is an RKHS, by the standard finite representer theorem (Scholkopf &
Smola, [2018)), the optimization on w reduces to a finite dimensional optimization, which can be sped
up with any favourable approximation techniques. We elaborate on this in Appendix D}

Length of the Confidence Interval The form in Eq. (I6) also makes it much easier to analyze the
tightness of the confidence interval. Suppose w = w; = w_ and Q = —Q, the length of the optimal
confidence interval is

1ength([jé7)/\)7 jg,w]) = wle% {2IQ(M7 DYI) + 25n ||w||WO }

Given ¢,, is O(n™1/2), we can make the overall length of the optimal confidence interval also
O(n~'/?), as long as W, is rich enough to include a good density ratio estimator w* that satisfies
Io(w*; D,,) = O(n~'/?) and has a bounded norm o™ llyy, -

We can expect to achieve Io(w*; D,) = O(n~/2), when (1) Q has an O(n~'/2) sequential
Rademacher complexity (Rakhlin et al.,[2015) (e.g., a finite ball in RKHS); and (2) Dn is collected
following a Markov chain with strong mixing condition and weakly converges to some limit distribu-
tion Do, whose support is X', and therefore we can define w* as the density ratio between D, and
D Refer to Appendix |C|for more discussions. Indeed, our experiments show that the lengths of
practically constructed confidence intervals do tend to decay with an O(n~1/2) rate.

Choice of W and Q To ensure the concentration inequality in Theorem[4.1]is valid, the choice of
W, cannot depend on the data D,,. Therefore, we should use a separate holdout data to construct a
data-dependent W,,. In contrast, the choice of Q can depend on the data D,, arbitrarily, since it is a
part of the optimization bound Eq. (§) but not in the tail bound Eq. (9). In this light, one can construct
the best possible Q by exploiting the data information in the most favourable way. For example,
we can construct an estimator of § = ¢, based on any state-of-the-art method (e.g., Q-learning or
model-based methods), and set Q to be a ball centering around ¢ such that ¢, — ¢ € Q. This enables
post-hoc analysis based on prior information on ¢, as suggested in|Feng et al.| (2020).

Mis-specification of Q and Oracle Upper/Lower Estimates Our result relies on the assumption
that g, € Q. However, as with other statistical estimation problems, there exists no provably way to
empirically verify the correctness of model assumptions such as ¢, € Q. Because empirical data only
reveals the information of the unknown function (in our case ¢, ) on a finite number data points, but no
conclusion can be made on the unseeing data points without imposing certain smoothness assumption.

Typically, what we can do is the opposite: reject ¢, € Q when the Bellman loss Lyy(gq; D,,) of all ¢
in Q is larger than the threshold ¢,,.

We highlight that, even without verifying ¢, € Q, our method can still be viewed as a confidence

interval of a best possible (oracle) upper and lower estimation given the data D, plus the assumption
that g, € Q, defined as

jg* = sup {EDW.U[q] st Rg(es,y) = Raa(ziy:), Vi=1,.. .,n} . (18)
’ qeQ '

In fact, it is impossible to derive empirical upper bounds lower than J 57*, as there is no way to

distinguish ¢ and ¢ if Rq(z;,y;) = Rgx (4, ;) for all 4. But our interval [Jg ., jg | provides a

1 — ¢ confidence outer bound of [jé*, Jg*] once Eq. (9) holds, regardless if ¢, € Q holds or not.

Hence, it is of independent interest to further explore the dual form of Eq. (I8), which is another
starting point for deriving our bound. We have more discussion in Appendix [G]

Lastly, we argue that it is important to include the Q in the bound. Proposition in Appendix
shows that removing the ¢ € Q constraint in Eq. would lead to an infinite upper bound,
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Figure 1: Results on Inverted-Pendulum. (a) The confidence interval (significance level § = 0.1) of our method
(green) and that of |[Feng et al.| (2020) (blue) when varying the data size n. (b) The length of the confidence
intervals (§ = 0.1) of our method scaling with the data size n. (c) The confidence intervals when we vary the
significance level § (data size n = 5000). (d) The significance level ¢ vs. the empirical failure rate b of capturing
the true expected reward by our confidence intervals (data size n = 5000). We average over 50 random trials for
each experiment.

unless the {s;,s;}" ; from D,, almost surely covers the whole state space S in the sense that
Proop,(s € {si,si}iy) =1

5 EXPERIMENTS

We compare our method with a variety of existing algorithms for obtaining asymptotic and non-
asymptotic bounds on a number of benchmarks. We find our method can provide confidence interval
that correctly covers the true expected reward with probability larger than the specified success
probability 1 — § (and is hence safe) across the multiple examples we tested. In comparison, the
non-asymptotic bounds based on IS provide much wider confidence intervals. On the other hand, the
asymptotic methods, such as bootstrap, despite giving tighter intervals, often fail to capture the true
values with the given probability in practice.

Environments and Dataset Construction We test our method on three environments: Inverted-
Pendulum and CartPole from OpenAl Gym (Brockman et al.,[2016), and a Type-1 Diabetes medical
treatment simulatorﬂ We follow a similar procedure as [Feng et al.|(2020)) to construct the behavior
and target policies. more details on environments and data collection procedure are included in

Appendix

Algorithm Settings We test the dual bound described in our paper. Throughout the experiment,
we always set W = IC, the unit ball of the RKHS with positive definite kernel k, and set Q = rQI@,
the ball of radius r¢o in the RKHS with another kernel k. We take both kernels to be Gaussian RBF
kernel and choose r¢ and the bandwidths of £ and k using the procedure in Appendix We use a
fast approximation method to optimize w in F, 5 (w) and Fg (w) as shown in Appendix D} Once w is
found, we evaluate the bound in Eq. (I6) exactly to ensure that the theoretical guarantee holds.

Baseline Algorithms We compare our method with four existing baselines, including the 1S-based
non-asymptotic bound using empirical Bernstein inequality by Thomas et al.|(2015b)), the IS-based
bootstrap bound of [Thomas| (2015)), the bootstrap bound based on fitted Q evaluation (FQE) by
Kostrikov & Nachum|(2020)), and the bound in |[Feng et al.| (2020) which is equivalent to the primal
bound in (8) but with looser concentration inequality (they use a e, = O(n~'/*) threshold).

Results Figure|I|shows our method obtains much tighter bounds than |[Feng et al. (2020), which
is because we use a much tighter concentration inequality, even the dual bound that we use can
be slightly looser than the primal bound used in [Feng et al.|(2020). Our method is also more
computationally efficient than that of [Feng et al.| (2020) because the dual bound can be tightened

! https://github.com/jxx 123/simglucose.
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Figure 2: Results on different environments when we use a significance level of § = 0.1. The colored bars
represent the confidence intervals of different methods (averaged over 50 random trials); the black error bar
represents the stand derivation of the end points of the intervals over the 50 random trials.

approximately while the primal bound requires to solve a global optimization problem. Figure|[T](b)
shows that we provide increasingly tight bounds as the data size n increases, and the length of the
interval decays with an O(n~'/2) rate approximately. Figure (c) shows that when we increase the
significance level 4, our bounds become tighter while still capturing the ground truth. Figure[T](d)
shows the percentage of times that the interval fails to capture the true value in a total of 100 random
trials (denoted as 3) as we vary 6. We can see that 4 remains close to zero even when § is large,
suggesting that our bound is very conservative. Part of the reason is that the bound is constructed by
considering the worse case and we used a conservative choice of the radius g and coefficient ¢,

in Eq. (T3) (See Appendix [H.2).

In Figure 2] we compare different algorithms on more examples with § = 0.1. We can again see that
our method provides tight and conservative interval that always captures the true value. Although
FQE (Bootstrap) yields tighter intervals than our method, it fail to capture the ground truth much
more often than the promised § = 0.1 (e.g., it fails in all the random trials in Figure (a)).

We conduct more ablation studies on different hyper-parameter and data collecting procedure. See
Appendix and [H.3] for more details.

6 CONCLUSION

We develop a dual approach to construct high confidence bounds for off-policy evaluation with an
improved rate over [Feng et al.| (2020). Our method can handle dependent data, and does not require a
global optimization to get a valid bound. Empirical results demonstrate that our bounds is tight and
valid compared with a range of existing baseline. Future directions include leveraging our bounds for
policy optimization and safe exploration.

REFERENCES

Sylvain Arlot, Gilles Blanchard, Etienne Roquain, et al. Some nonasymptotic results on resampling
in high dimension, I: confidence regions. The Annals of Statistics, 38(1):51-82, 2010.

Kavosh Asadi, Evan Cater, Dipendra Misra, and Michael L Littman. Equivalence between wasserstein
and value-aware loss for model-based reinforcement learning. arXiv preprint arXiv:1806.01265,
2018.

Marc G Bellemare, Will Dabney, and Rémi Munos. A distributional perspective on reinforcement
learning. In International Conference on Machine Learning, pp. 449-458, 2017.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.



Published as a conference paper at ICLR 2021

Bo Dai, Ofir Nachum, Yinlam Chow, Lihong Li, Csaba Szepesvari, and Dale Schuurmans. Coindice:

Off-policy confidence interval estimation. In Advances in Neural Information Processing Systems,
2020.

Yaqi Duan, Zeyu Jia, and Mengdi Wang. Minimax-optimal off-policy evaluation with linear function
approximation. In International Conference on Machine Learning, 2020.

Yaakov Engel, Shie Mannor, and Ron Meir. Reinforcement learning with Gaussian processes. In
Proceedings of the 22nd international conference on Machine learning, pp. 201-208, 2005.

Yihao Feng, Lihong Li, and Qiang Liu. A kernel loss for solving the Bellman equation. In Advances
in Neural Information Processing Systems, pp. 15456-15467, 2019.

Yihao Feng, Tongzheng Ren, Ziyang Tang, and Qiang Liu. Accountable off-policy evaluation with
kernel Bellman statistics. In International Conference on Machine Learning, 2020.

Raphael Fonteneau, Susan A. Murphy, Louis Wehenkel, and Damien Ernst. Batch mode reinforcement
learning based on the synthesis of artificial trajectories. Annals of Operations Research, 208(1):
383-416, 2013.

Mohammad Ghavamzadeh, Shie Mannor, Joelle Pineau, and Aviv Tamar. Bayesian reinforcement
learning: A survey. arXiv preprint arXiv:1609.04436, 2016a.

Mohammad Ghavamzadeh, Shie Mannor, Joelle Pineau, and Aviv Tamar. Bayesian reinforcement
learning: A survey. arXiv preprint arXiv:1609.04436, 2016b.

Josiah P Hanna, Peter Stone, and Scott Niekum. Bootstrapping with models: Confidence intervals for
off-policy evaluation. In Thirty-First AAAI Conference on Artificial Intelligence, 2017.

Botao Hao, Yaqi Duan, Hao Lu, Csaba Szepesvari, Mengdi Wang, et al. Bootstrapping statistical
inference for off-policy evaluation. arXiv preprint arXiv:2102.03607, 2021.

Wassily Hoeffding. Probability inequalities for sums of bounded random variables. Journal of the
American Statistical Association, 58(301):13-30, 1963.

Nan Jiang and Jiawei Huang. Minimax confidence interval for off-policy evaluation and policy
optimization. In Advances in Neural Information Processing Systems, 2020.

Nan Jiang and Lihong Li. Doubly robust off-policy evaluation for reinforcement learning. In
Proceedings of the 23rd International Conference on Machine Learning, pp. 652—661, 2016.

Ilya Kostrikov and Ofir Nachum. Statistical bootstrapping for uncertainty estimation in off-policy
evaluation. arXiv preprint arXiv:2007.13609, 2020.

Soumendra Nath Lahiri. Resampling methods for dependent data. Springer Science & Business
Media, 2013.

Nevena Lazic, Dong Yin, Mehrdad Farajtabar, Nir Levine, Dilan Gorur, Chris Harris, and Dale
Schuurmans. A maximum-entropy approach to off-policy evaluation in average-reward MDPs. In
Advances in Neural Information Processing Systems, 2020.

Qiang Liu, Lihong Li, Ziyang Tang, and Dengyong Zhou. Breaking the curse of horizon: Infinite-
horizon off-policy estimation. In Advances in Neural Information Processing Systems, pp. 5356—
5366, 2018a.

Yao Liu, Omer Gottesman, Aniruddh Raghu, Matthieu Komorowski, Aldo A. Faisal, Finale Doshi-
Velez, and Emma Brunskill. Representation balancing MDPs for off-policy policy evaluation. In
Advances in Neural Information Processing Systems 31 (NeurlPS), pp. 2649-2658, 2018b.

Yao Liu, Pierre-Luc Bacon, and Emma Brunskill. Understanding the curse of horizon in off-policy
evaluation via conditional importance sampling. In International Conference on Machine Learning,
2020.

Ali Mousavi, Lihong Li, Qiang Liu, and Denny Zhou. Black-box off-policy estimation for infinite-
horizon reinforcement learning. In International Conference on Learning Representations, 2020.

10



Published as a conference paper at ICLR 2021

Susan A. Murphy, Mark van der Laan, and James M. Robins. Marginal mean models for dynamic
regimes. Journal of the American Statistical Association, 96(456):1410-1423, 2001.

Ofir Nachum, Yinlam Chow, Bo Dai, and Lihong Li. Dualdice: Behavior-agnostic estimation of
discounted stationary distribution corrections. In Advances in Neural Information Processing
Systems, pp. 2318-2328, 2019a.

Ofir Nachum, Bo Dai, Ilya Kostrikov, Yinlam Chow, Lihong Li, and Dale Schuurmans. Algaedice:
Policy gradient from arbitrary experience. arXiv preprint arXiv:1912.02074, 2019b.

Yurii Nesterov. Introductory lectures on convex optimization: A basic course, volume 87. Springer
Science & Business Media, 2013.

Daniel Paulin. Concentration inequalities for markov chains by marton couplings and spectral
methods. Electron. J. Probab, 20(79):1-32, 2015.

losif Pinelis. An approach to inequalities for the distributions of infinite-dimensional martingales. In
Probability in Banach Spaces, 8: Proceedings of the Eighth International Conference, pp. 128—134.
Springer, 1992.

Doina Precup. Eligibility traces for off-policy policy evaluation. Computer Science Department
Faculty Publication Series, pp. 80, 2000.

Doina Precup. Temporal abstraction in reinforcement learning. ProQuest Dissertations and Theses,
2001.

Doina Precup, Richard S. Sutton, and Satinder P. Singh. Eligibility traces for off-policy policy
evaluation. In Proceedings of the 17th International Conference on Machine Learning, pp. 759—
766, 2000.

Alexander Rakhlin, Karthik Sridharan, and Ambuj Tewari. Sequential complexities and uniform
martingale laws of large numbers. Probability Theory and Related Fields, 161(1-2):111-153,
2015.

Lorenzo Rosasco, Mikhail Belkin, and Ernesto De Vito. On learning with integral operators. Journal
of Machine Learning Research, 11(2), 2010.

Bernhard Scholkopf and Alexander J Smola. Learning with kernels: support vector machines,
regularization, optimization, and beyond. Adaptive Computation and Machine Learning series,
2018.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Alex Smola, Arthur Gretton, Le Song, and Bernhard Scholkopf. A hilbert space embedding for
distributions. In Algorithmic learning theory, pp. 13-31. Springer, 2007.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. MIT Press,
Cambridge, MA, March 1998. ISBN 0-262-19398-1.

Ziyang Tang, Yihao Feng, Lihong Li, Dengyong Zhou, and Qiang Liu. Doubly robust bias reduction
in infinite horizon off-policy estimation. In International Conference on Learning Representations
(ICLR), 2020a.

Ziyang Tang, Yihao Feng, Na Zhang, Jian Peng, and Qiang Liu. Off-policy interval estimation with
lipschitz value iteration. In Advances in Neural Information Processing Systems, 2020b.

Philip S Thomas. Safe reinforcement learning. PhD thesis, University of Massachusetts, 2015.

Philip S. Thomas and Emma Brunskill. Data-efficient off-policy policy evaluation for reinforcement
learning. In Proceedings of the 33rd International Conference on Machine Learning, pp. 2139—
2148, 2016.

11



Published as a conference paper at ICLR 2021

Philip S. Thomas, Georgios Theocharous, and Mohammad Ghavamzadeh. High confidence policy
improvement. In Proceedings of the 32nd International Conference on Machine Learning, pp.
2380-2388, 2015a.

Philip S Thomas, Georgios Theocharous, and Mohammad Ghavamzadeh. High-confidence off-policy
evaluation. In Twenty-Ninth AAAI Conference on Artificial Intelligence, 2015b.

Masatoshi Uehara, Jiawei Huang, and Nan Jiang. Minimax weight and g-function learning for
off-policy evaluation. Proceedings of the 37th International Conference on Machine Learning,
2020.

Junfeng Wen, Bo Dai, Lihong Li, and Dale Schuurmans. Batch stationary distribution estimation. In
International Conference on Machine Learning, 2020.

Martha White and Adam White. Interval estimation for reinforcement-learning algorithms in
continuous-state domains. In Advances in Neural Information Processing Systems, pp. 2433—
2441, 2010.

Tengyang Xie and Nan Jiang. Q* approximation schemes for batch reinforcement learning: A
theoretical comparison. In Conference on Uncertainty in Artificial Intelligence (UAI), 2020.

Tengyang Xie, Yifei Ma, and Yu-Xiang Wang. Towards optimal off-policy evaluation for rein-
forcement learning with marginalized importance sampling. In Advances in Neural Information
Processing Systems, pp. 9668-9678, 2019.

Mengjiao Yang, Bo Dai, Ofir Nachum, George Tucker, and Dale Schuurmans. Offline policy selection
under uncertainty. arXiv preprint arXiv:2012.06919, 2020a.

Mengjiao Yang, Ofir Nachum, Bo Dai, Lihong Li, and Dale Schuurmans. Off-policy evaluation via
the regularized Lagrangian. In Advances in Neural Information Processing Systems, 2020b.

Ming Yin and Yu-Xiang Wang. Asymptotically efficient off-policy evaluation for tabular reinforce-
ment learning. In Proceedings of the International Conference on Artificial Intelligence and
Statistics (AISTATS), 2020.

Ming Yin, Yu Bai, and Yu-Xiang Wang. Near optimal provable uniform convergence in off-policy
evaluation for reinforcement learning. arXiv preprint arXiv:2007.03760, 2020.

Ruiyi Zhang, Bo Dai, Lihong Li, and Dale Schuurmans. Gendice: Generalized offline estimation of
stationary values. In International Conference on Learning Representations, 2020a.

Shangtong Zhang, Bo Liu, and Shimon Whiteson. Gradientdice: Rethinking generalized offline
estimation of stationary values. In International Conference on Machine Learning, 2020b.

12



Published as a conference paper at ICLR 2021

A PROOF OF THE DUAL BOUND IN THEOREM [4.2]

Proof. Introducing a Lagrange multiplier, the bound in (8) is equivalent to
o ) B 1 -
JQA,W - I(?Eaé( Iglzll(;l {EDW,O [Q] A (E%a{/)\}( n Z h Tq RQ(l’u yz> n) }

:mgmmw{E ddl - A( R ) )}

. 1 n .
= max min {]EDW,O[Q] - Zw(mi)Rq(Jsi,yi) +en |wwo} ,

qeEQ weW, £
i=1

where we use w = Ah(z), such that A is replaced by ||wl|,y, . Define

n

~ 1 ~
M(q, w; D,) =Ep, olq] — =Y w(z:i)Ra(wi,y:) + n @l

ni 1
=Epo [r] + AD5, 9) +en |wly, -

Then we have

M(q, w; D + max A(D%, q) + en
aneax (¢, w; D) = [T] aneaé{ ( q) HWHWO
= ED% [T] + IQ(W; Dn) +é€n ||w||W0
= FJ ().
Therefore,
- M(q, w; D,
o = max iy Mg wx Da)
< min max M (g, w; Dn)
wEW, qEQ
= F+
Joln Folw).

The lower bound follows analogously. The strong duality holds when the Slater’s condition is satisfied
(Nesterov] [2013), which amounts to saying that the primal problem in (8) is convex and strictly
feasible; this requires that Q is convex and there exists at least one solution ¢ € Q that satisfy that

constraint strictly, that is, Ly (g; Ijn) < &p; note that the objective function Q is linear on ¢ and the

constraint function Ly (g; If)n) is always convex on ¢ (since it is the sup a set of linear functions on
q following (3)).

O

B PROOF OF CONCENTRATION BOUND IN THEOREM [4_1]

Our proof require the following Hoeffding inequality on Hilbert spaces by |Pinelis| (Theorem 3, [1992);
see also Section 2.4 of [Rosasco et al.| (2010j).

Lemma B.1. (Theorem 3, |Pinelis| |1992) Let H be a Hilbert space and { f;}?_, is a Martingale
sequence in H that satisfies sup; || fi||l;, < o almost surely. We have for any € > 0,

1 « ne?
P — o < -— .
r( anz _e)_?exp( 202)
i=1 H
Therefore, with probability at least 1 — §, we have H% S fi HH <4/ w.
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Lemma B.2. Ler k(z, ") be a positive definite kernel whose RKHS is Hy,. Define

£i() = Ra(@i, i)k (i, ) — Req(a) (s, ).
Assume Assumptlonnholds then { f;}1'_, is a Martingale difference sequence in Hy w.rt. T; :=
(xj,y5)j<i U (2 ) That is, E[fix1(-) | T<Z} = 0. In addition,

1 n
ot
=1 Hp

and ||fz||§.[,€ <cgrforVi=1,....n

- % En: (ﬁq(xi’y") - R“q(xi)) ki, x5) (R‘I(%‘»yj) - Rﬂ](%‘)) ;
ij=1

Proof of Theorem Following Lemma [B.1)and Lemma[B.2] since {f;}/, is a Martingale differ-
ence sequence in Hy with [| fi|l,, < cq, almost surely, we have with probability at least 1 — 4,

LS (Ratoru) — Roae)) ko) (Ra(eye ) ~ Rua(a)) = Zfz < M
ij=1
Usinjg Lemma below, we have
[ Lc(a: D) — Lias Bu) Zfz < Zour B2/0).
This completes the proof. O

Lemma B.3. Assume k(x,z') is a positive definite kernel. We have

Lic(g; Dn) — Lic(q; Dy) ’ < % Z (f{q(wi,yi) - Rﬂq(wi)) k(zi, x;) (fiCJ(iCM/j) - qu(%‘)) :

ij=1

Proof. Define
g() = %Zf{Q(xwyz)k(xﬂ ) g() = %ZRWQ(mi)k(xia )

Then we have

Zf{ q(xi, yi)k(xi, ;) Ra(;, ;) = Li(g; Dn),

~112
19113,

lgll7,, ; Z Rq(zi)k(zi, 2;)Rrq(z;) = Lic(q; Dy),

ij=1
R 1 =~ /a .
13- 9li3, = =5 > (Ra(@i. ) — Raq(w)) k(i 2;) (Ra(e; ) — Rea(ay) -
ij=1

The result then follows the triangle inequality ]||g||Hk - ||g||Hk| <11g = 9glly, - O

B.1 CALCULATION OF ¢,

The practical calculation of the coefficient ¢, 1 in the concentration inequality was discussed inFeng
et al.| (2020), which we include here for completeness.

Lemma B.4. (Feng et al.|(2020) Lemma 3.1) Assume the reward function and kernel function is
bounded with sup,, |r(x)| < Tmax and sup,, ., |k(z,2")| < Knax, we have:
® 4Kn1axrmax
Coup = SUp (Rgn(2,9))*k(z,2) < —0
TEX YEY (1—7)?

In practice, we get access to K ,,x from the kernel function that we choose (e.g., Kyyax = 1 for RBF
kernels), and 7,5 from the knowledge on the environment.
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C MORE ON THE TIGHTNESS OF THE CONFIDENCE INTERVAL

The benefit of having both upper and lower bounds is that we can empirically access the tightness of

the bound by checking the length of the interval [Fg (w_), Fg (w4 )]. However, from the theoretical
perspective, it is desirable to know a priori that the length of the interval will decrease with a fast rate
as the data size n increases. We now show that this is the case if W, is chosen to be sufficiently rich

so that it includes a w € W, such that Iﬁf;j ~ D,.

Theorem C.1. Assume W, is sufficiently rich to include a “good” w* in W, with If);‘; ~ D, in that

sup |Eg,, {Rq(a:; x, r)} —Ep,_ {Rq(a:; x, r)} ‘ < i, (19)

ge! 7" n
where ¢ and o are two positive coefficients. Then we have

N . c

max{Jaw —Jr, Jr— Jé,W} S 5 Tén wllyy, -
Assumption (T9) holds if D,, is collected following a Markov chain with certain strong mixing
condition and weakly converges to some limit discussion D, whose support is X', for which we can
define w*(x) = D (2)/Doo(z). In this case, if Q is a finite ball in RKHS, then we can achieve (T9)
with o = 1/2, and yields the overall bound of rate O(n~'/2). For more general function classes,

o depends on the martingale Rademacher complexity of function set RQ = {Rg(z,y): ¢ € Q}
Rakhlin et al.|(2015). In our empirical reults, we observe that the gap of the practically constructed
bounds tend to follow the O(n~'/2) rate.

Proof. Note that
Jrr = ED, [T] = EDr [T]a

and

To(w; D) = sup {Es, ba(e') — a(@)] ~ Eo, ba(e) — a(a)]} .

Because w* € W, we have
Hyo—Jn < FS(W") = Jr
= Eﬁ;’; [r] —Ep_[r] + Ig(wx; Dn) +en ||w*||W0

= sgg {]Eﬁii {Rq(x,y)} —Ep, {RQ(LQ)} } +en Wy,

c
< Ztenlwlhy,

The case of lower bound follows similarly. O

D OPTIMIZATION ON W,

Consider the optimization of w in W,

2¢q, 1 log(2/6)
n

. 1 & .
Fd(w) = EZW(%) + Io(w; Dp) + [lwllyy, (20)
i=1

Assume W, is the RKHS of kernel k(x, ), that is, VW, = Hj. By the finite representer theorem of
RKHS (Smola et al.,|2007). the optimization of w in RKHS Hj, can be reduced to a finite dimensional
optimization problem. Specifically, the optimal solution of can be written into a form of
w(z) =31 k(x, z;)a; with HwH?{k =1 =1 k(zi, 2)aia; for some vector o := [a;]7, € R™
Write K = [k(z;,;)];';,—; and 7 = [r;]_;. The optimization of w reduces to a finite dimensional
optimization on o:

L . 2, xlog(2/6
min LrT Ko+ Io(Kas D) + VaKay | ek 1082/9)

acR™ 1 n
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where

A 1 .

Io(Ka; D,) = max {IEDW olal + (Tq)TKa} ,
q€Q ' n

and Tq = [yq(z}) — q(z;)]7,. When Q is RKHS, we can calculate Io(Ka; D,,) using in

section[H

This computation can be still expensive when n is large. Fortunately, our confidence bound holds
for any w; better w only gives tighter bounds, but it is not necessary to find the global optimal w.
Therefore, one can use any approximation algorithm to find w, which provides a trade-off of tightness
and computational cost. We discuss two methods:

1) Approximating o The length of « can be too large when n is large. To address this, we assume
a; = g(x;, 6), where g is any parametric function (such as a neural network) with parameter § which
can be much lower dimensional than a.. We can then optimize 6 with stochastic gradient descent, by
approximating all the data averaging % >, () with averages over small mini-batches; this would
introduce biases in gradient estimation, but it is not an issue when the goal is only to get a reasonable
approximation.

2) Replacing kernel £ Assume the kernel & yields a random feature expansion: k(z,z) =
Eg~r[o(x, B)p(Z, B)], where ¢(z, ) is a feature map with parameter § and 7 is a distribution
of 5. We draw {5, }7 i.i.d. from 7, where m is taken to be much smaller than n. We replace k with

k(z,z) = L St oz, Bi)o(z, B;) and Hy, with H;,, That is, we consider to solve

T m

2c, 7 log(2/9)

R ) R 1 « .
JES,W = min Fg(w) == Zriw(mi) + Ig(w; D) + Hw””;; -

eH;,
wETR i=1

It is known that any function w in H;, can be represented as w(z) = = > w;¢(z, B;), for

some w = [w;]"; € R™ and satisfies ||w||§_1k = L 3" w?. In this way, the problem reduces
to optimizing an m-dimensional vector w, which can be solved by standard convex optimization
techniques.

E CONCENTRATION INEQUALITIES OF GENERAL FUNCTIONAL BELLMAN
LOSSES

When K is a general function set, one can still obtain a general concentration bound using Rader-
macher complexity. Define Rg o W := {h(z,y) = Rq(z,y)w(z): w € W}. Using the standard
derivation in Radermacher complexity theory in conjunction with Martingale theory (Rakhlin et al.|
2015)), we have

sup {:L > (Ry(wi,yi) — Rw‘](l'i))w(l'i)} < 2Rad(Rgo W) + 1] 2al082/0).

n
weW i1

where Rad(f{q o K) is the sequential Radermacher complexity as defined in (Rakhlin et al., [2015).
A triangle inequality yields

| Lu(a: Du) ~ Lu(a: D) | < sup {i S Raliy:) - Rﬂqm))wm)}
we i=1

Therefore,

- - N 2¢qlog(2/6

| Loola: Bu) ~ Luw(a: D) | < 2Rad(Rgo W) + 1/ 2428/ e
where ¢,y = sup,,cyy supmwy(f{q(aﬂ, y) — Rrq(z))?w(x)%. When W equals the unit ball K of the
RKHS related to kernel &k, we have ¢, = c4,v, and hence this bound is strictly worse than the
bound in Theorem 4.
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~

F CLOSED FORM OF Ig(w; D,,) WHEN Q 1S RKHS

Similar to L (g; f)n), when Q is taken to be the unit ball K of the RKHS of a positive definite kernel

k(z,z), can be expressed into a bilinear closed form shown in Mousavi et al.[(2020):
Io(w; D)2 =A—-2B+C, (22)
where
A =E(32)Dy 0xDs o [K(@, T)]

B=E(, 01550, , | T2k, 7)

C =By 1 bt | TET2k(, 7)),
were T, f(z) = vf(2') — f(x); in T2TZk(x, z), we apply TZ and T2 in a sequential order by
treating £ as a function of Z and then of z.

G MORE ON THE ORACLE BOUND AND ITS DUAL FORM

The oracle bound (18)) provides another starting point for deriving optimization-based confidence
bounds. We derive its due form here. Using Lagrangian multiplier, the optimization in (T8) can be
rewritten into

Jh = in M(q,w; D,), 23
0. = maxmin (q,w ) (23)

~ 1 ~ ~
where M. (q,wi D) = Ep, ,[q] = = " w(@) (Ra(wi,yi) — Ran(wi,9))
i=1
where w now serves as the Lagrangian multiplier. By the weak duality, we have

T4 < F§ (@) i=Bp,[r] + Io(w; Dn) + R(w, ¢x), V.

known unknown

and
n

R(w,4x) = "l Rap ).

The derivation follows similarly for the lower bound. So for any w € W,,, we have [JE*7 jér*} C
[Fg.(w), Fg ()]

Here the first two terms of Fg . (w) can be empirically estimated (it is the same as the first two terms

of (T6)), but the third term R(w, ¢, ) depends on the unknown ¢, and hence need to be further upper
bounded.

Our method can be viewed as constraining w in W, which is assumed to be the unit ball of W, and
applying a worst case bound:

F3 ., (w) = Epu[r] + To(w; Dn) + R(w, gx), Vw €W,
< Epo[r] + To(w; Dn) + wllyy, sup R(h, ¢z), Vw €W,
hew

< Epy[r] + To(w; Dn) + [[wllyy, Lw(ge;Dn), Vo € W,

w.p.1—0 R
< Epulr] 4+ Io(w; D) +ellwlyy, , YweW,

= F ().

where the last step applies the high probability bound that Pr(Lyy (¢x, D) < €) > 1 — 4. Similar
derivation on the lower bound counterpart gives

Pr ([Fé*(w), ﬁg*(w)] c {Fg_(w),ﬁg(w)}) >1-6.

Therefore, our confidence bound [Fé (w), Fg (w)] is a 1 — § confidence outer bound of the oracle

bound [Jg., J5.] C [Fg.(w), B, ().

17



Published as a conference paper at ICLR 2021

Introducing Q is necessarily Our method does not require any independence assumption between

the transition pairs, the trade-off is that that we have to assume that ¢, falls into a function set

@ that imposes certain smoothness assumption. This is necessary because the data only provide

information regarding ¢, on a finite number of points, and g, can be arbitrarily non-smooth outside of

the data points, and hence no reasonable upper/lower bound can be obtained without any smoothness

condition that extend the information on the data points to other points in the domain.

Proposition G.1. Unless Pry.p, (s ¢ {si,s;}j—1) = 0, for any u € R, there exists a function

q: S x A — R, such that
ED,\-,o[q] =u, Rq(xzayl) = RC]w(lﬁi,yi)a Vi = 17 sy T

Proof. Let Qpun be the set of functions that are zero on {s;, s;}™_,, that is,
Ol ={9: Sx A—R: g(s,a) =0, Vs € {s;,s,}l"1, ac A}

Then we have

Rw(%*'g)(l“uyi) ZanTr(l“i,yi)’ Vi=1,...,n.
and

Ep, o[¢x + 9] = Ep, 0l¢x] + Ep. ,[9] = J= + Eo, ,[g]-
Taking g(s,a) = 2I(s & {s;, s;}"_,), where z is any real number. Then we have

Ep, o[gr + 9] = Jr + 2Prenn, o (s & {si, 5i}i0)-

Because Pryp, (s & {54, 5;}i=1). # 0, we can take z to be arbitrary value to make Ep_ ,[¢~ + g]

to take arbitrary value.
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Figure 3: Ablation study on the radius 7 of the function class Q. The default collecting procedure
uses a horizon length of H = 50. The discounted factor is v = 0.95 by default.

H ABLATION STUDY AND EXPERIMENTAL DETAILS

H.1 EXPERIMENTAL DETAILS

Environments and Dataset Construction We test our method on three environments: Inverted-
Pendulum and CartPole from OpenAl Gym (Brockman et al., 2016), and a Type-1 Diabetes
medical treatment simulator. For Inverted-Pendulum we discretize the action space to be
{-1,-0.3,-0.2,0,0.2,0.3,1}. The action space of CartPole and the medical treatment simulator
are both discrete.

Policy Construction We follow a similar setup as [Feng et al.| (2020) to construct behavior and
target policies. For all of the environments, we constraint our policy class to be a softmax policy and
use PPO (Schulman et al.,[2017)) to train a good policy 7, and we use different temperatures of the
softmax policy to construct the target and behavior policies (we set the temperature 7 = 0.1 for target
policy and 7 = 1 to get the behavior policy, and in this way the target policy is more deterministic
than the behavior policy). We consider other choices of behavior policies in Section [H.3]

For horizon lengths, We fix v = 0.95 and set horizon length I = 50 for Inverted-Pendulum,
H = 100 for CartPole, and H = 50 for Diabetes simulator.

Algorithm Settings We test the bound in Eq.(T6)-(I7). Throughout the experiment, we always set
W = K, a unit ball of RKHS with kernel &(-, -). We set Q = oK, the zero-centered ball of radius
ro in an RKHS with kernel k(-, -). We take both % and k to be Gaussian RBF kernel. The bandwidth

of k and k are selected to make sure the function Bellman loss is not large on a validation set. The
radius is selected to be sufficiently large to ensure that g, is included in Q. To ensure a sufficiently
large radius, we use the data to approximate a ¢ so that its functional Bellman loss is small than
€n. Then we set 7o = 10 * |||/ ¢. We optimize w using the random feature approximation method
described in Appendix D} Once w, and w_ are found, we evaluate the bound in Eq. (I6) exactly, to
ensure the theoretical guarantee holds.

H.2 SENSITIVITY TO HYPER-PARAMETERS

We investigate the sensitivity of our algorithm to the choice of hyper-parameters. The hyper-parameter
mainly depends on how we choose our function class Q and W.

Radius of @ Recall that we choose Q to be a ball in RKHS with radius rg, that is,
Q=roKk={rof: feK},

where K is the unit ball of the RKHS with kernel k. Ideally, we want to ensure that 7o > ||¢.|| ¢ so
that g, € O.
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Figure 4: Ablation studies on Inverted-Pendulum. We change the temperature 7 of the behavior policies in (a),
and change the bandwidth of the kernel k of W, and the kernel k of Q (denoted by Ay, in (b)).

Since it is hard to analyze the behavior of the algorithm when g, is unknown, we consider a synthetic
environment where the true g, is known. This is done by explicitly specifying a g, inside K and then
infer the corresponding deterministic reward function r(z) by inverting the Bellman equation:

(@) = gu() — YEpap, (o) g« (2")].

Here r is a deterministic function, instead of a random variable, with an abuse of notation. In this
way, we can get access to the true RKHS norm of g,:

p* = llg-llg -

For simplicity, we set both the state space S and action space A to be R and set a Gaussian policy
m(als) o exp(f(s,a)/T), where T is a positive temperature parameter. We set 7 = 0.1 as target
policy and 7 = 1 as behavior policy.

Figure 3| shows the results as we set g to be p*, 10p* and 100p*, respectively. We can see that the
tightness of the bound is affected significantly by the radius when the number n of samples is very
small. However, as the number n of samples grow (e.g., n > 2 x 102 in our experiment), the length
of the bounds become less sensitive to the changing of the predefined norm of Q.

Similarity Between Behavior Policy and Target Policy We study the performance of changing
temperature of the behavior policy. We test on Inverted-Pendulum environment as previous described.
Not surprisingly, we can see that the closer the behavior policy to the target policy (with temperature
7 = 0.1), the tighter our confidence interval will be, which is observed in Figure Eka).

Bandwidth of RBF kernels We study the results as we change the bandwidth in kernel k£ and k
for W and Q, respectively. Figure [b) shows the length of the confidence interval when we use
different bandwidth pairs in the Inverted-Pendulum environment. We can see that we get relatively
tight confidence bounds as long as we set the bandwidth in a reasonable region (e.g., we set the
bandwidth of % in [0.1,0.5], the bandwidth of % in [0.5, 3)).

H.3 SENSITIVITY TO THE DATA COLLECTION PROCEDURE

We investigate the sensitivity of our method as we use different behavior policies to collect the dataset
D,.

Varying Behavior Policies
the following cases:

We study the effect of using different behavior policies. We consider

1. Data is collected from a single behavior policy of form 7, = am + (1 — a)m, where 7 is
the target policy and 7y is another policy. We construct 7 and 7 to be Gaussian policies of
form 7(a|s) x exp(f(s,a)/T) with different temperature 7, where temperature for target
policy is 7 = 0.1 and temperature for g is 7 = 1.
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Figure 5: Ablation studies on the data collection procedure, as we (a) change the behavior policies, and (b)-(c)
change the trajectory lengths. The other settings are the same as that in Figure 3]

2. The dataset D,, is the combination of the data collected from multiple behavior policies of
form 7, defined as above, with o € {0.0,0.2,0.4,0.6,0.8}.

We show in Figure [5a) that the length of the confidence intervals by our method as we vary the
number n of transition pairs and the mixture rate o. We can see that the length of the interval decays
with the sample size n for all mixture rate «. Larger o yields better performance because the behavior
policies are closer to the target policy.

Varying Trajectory Length 7" in D, As we collect D,,, we can either have a small number of
long trajectories, or a larger number of short trajectories. In Figure[5{b)-(c), we vary the length 7" of

the trajectories as we collect D,., while fixing the total number n of transition pairs. In this way, the

number of trajectories in each D,, would be m = n /T. We can see that the trajectory length does not
impact the results significantly, especially when the length is reasonably large (e.g., T' > 20).
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I MORE RELATED WORKS
We give a more detailed overview of different approaches for uncertainty estimation in OPE.

Finite-Horizon Importance Sampling (IS) Assume the data is collected by rolling out a known
behavior policy my up to a trajectory length 7', then we can estimate the finite horizon reward
by changing E, p[-] to E, p[] with importance sampling(e.g., Precup et al., |2000; Precupl 2001}
Thomas et al.,|2015ab). Taking the trajectory-wise importance sampling as an example, assume we
collect a set of independent trajectories 7; := {s%,a},7i} ', = 1,...,m up to a trajectory length
T by unrolling a known behavior policy mg. When T is large, we can estimate .J, by a weighted
averaging:

m T-1 T-1

. 1 ) )
JS = =N "w(n)J(r), where win) =[] —~=%, Jm)=) A, (24
s Ui 2.

One can construct non-asymptotic confidence bounds based on Js using variants of concentration
inequalities (Thomas| 2015; [Thomas et al.| 2015b)). Unfortunately, a key problem with this IS
estimator is that the importance weight w(7;) is a product of the density ratios over time, and hence
tends to cause an explosion in variance when the trajectory length 7 is large. Although improvement
can be made by using per-step and self-normalized weights (Precup, [2001), or control variates (Jiang
& Li1,12016; Thomas & Brunskill, 2016), the curse of horizon remains to be a key issue to the classical
IS-based estimators (Liu et al., [2018al).

Moreover, due to the time dependency between the transition pairs inside each trajectory, the non-
asymptotic concentration bounds can only be applied on the trajectory level and hence decay with
the number m of independent trajectories in an O(1/+/m) rate, though m can be small in practice.
We could in principle apply the concentration inequalities of Markov chains (e.g., Paulin, [2015)) to
the time-dependent transition pairs, but such inequalities require to have an upper bound of certain
mixing coefficient of the Markov chain, which is unknown and hard to construct empirically. Our
work addresses these limitations by constructing a non-asymptotic bound that decay with the number
n = mT of transitions pairs, while without requiring known behavior policies and independent
trajectories.

Infinite-Horizon, Behavior-Agnostic OPE Our work is closely related to the recent advances in
infinite-horizon and behavior-agnostic OPE, including, for example, |Liu et al.| (2018a); Feng et al.
(2019); Tang et al.|(2020a)); Mousavi et al.| (2020); |[Liu et al.| (2020); Yang et al.| (2020b); [Xie et al.
(2019); |Yin & Wang (2020), as well as the DICE-family (e.g., Nachum et al.,|2019a3bj |Zhang et al.,
2020a; |Wen et al., 2020; Zhang et al.,[2020b). These methods are based on either estimating the value
function, or the stationary visitation distribution, which is shown to form a primal-dual relation (Tang
et al.,[2020a; |Uehara et al., 2020; Jiang & Huang, [2020) that we elaborate in depth in Section

Besides|Feng et al.| (2020) which directly motivated this work, there has been a recent surge of interest
in interval estimation under infinite-horizon OPE (e.g.,|Liu et al.,2018b} Jiang & Huang| [2020; [Duan
et al., 2020; |Dai et al., 2020; Feng et al., 2020; [Tang et al., 2020b; |Yin et al., [2020; |Lazic et al.,
2020). For example, Dai et al.| (2020)) develop an asymptotic confidence bound (CoinDice) for DICE
estimators with an i.i.d assumption on the off-policy data;|(Duan et al.|(2020) provide a data dependent
confidence bounds based on Fitted Q iteration (FQI) using linear function approximation when the
off-policy data consists of a set of independent trajectories; Jiang & Huang| (2020) provide a minimax
method closely related to our method but do not provide analysis for data error; [Tang et al.| (2020b)
propose a fixed point algorithm for constructing deterministic intervals of the true value function
when the reward and transition models are deterministic and the true value function has a bounded
Lipschitz norm.

Model-Based Methods Since the model P is the only unknown variable, we can construct an
estimator P of P using maximum likelihood estimation or other methods, and plug it into Eq. (T)
to obtain a plug-in estimator J = J.. p- This yields the model-based approach to OPE (e.g., Jiang
& L1, 2016; [Liu et al.,|2018b). One can also estimate the uncertainty in Jﬂg by propagating the

uncertatinty in P (e.g.,|Asadi et al.,2018; Duan et al., 2020), but it is hard to obtain non-asymptotic
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and computationally efficient bounds unless P is assumed to be simple linear models. In general,
estimating the whole model P can be an unnecessarily complicated problem as an intermediate step
of the possibly simpler problem of estimating J p.

Bootstrapping, Bayes, Distributional RL.  As a general approach of uncertainty estimation, boot-
strapping has been used in interval estimation in RL in various ways (e.g., White & White, 2010;
Hanna et al.|, 2017 [Kostrikov & Nachum, [2020; Hao et al., 2021). Bootstrapping is simple and
highly flexible, and can be applied to time-dependent data (as appeared in RL) using variants of block
bootstrapping methods (e.g., Lahiri, 2013; White & Whitel |2010). However, bootstrapping typically
only provides asymptotic guarantees; although non-asymptotic bounds of bootstrap exist (e.g., Arlot
et al.|[2010), they are sophistic and difficult to use in practice and would require to know the mixing
condition for the dependent data. Moreover, bootstrapping is time consuming since it requires to
repeat the whole off-policy evaluation pipeline on a large number of resampled data.

Bayesian methods (e.g., [Engel et al.| 2005; |(Ghavamzadeh et al., 2016b; [Yang et al., [2020a) offer
another general approach to uncertainty estimation in RL, but require to use approximate inference
algorithms and do not come with non-asymptotic frequentist guarantees. In addition, distributional
RL (e.g., Bellemare et al., [2017) seeks to quantify the intrinsic uncertainties inside the Markov
decision process, which is orthogonal to the epistemic uncertainty that we consider in off-policy
evaluation.
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