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ABSTRACT

Iterative step-by-step computation is beneficial for multi-step reasoning scenarios
wherein individual operations need to be computed, stored and recalled dynami-
cally (e.g. when computing the query “determine color of pen to left of the child
in red t-shirt sitting at the white table”). Conversely, parallel computation is bene-
ficial for executing operations that are mutually-independent and can be executed
simultaneously and not necessarily sequentially (e.g. when counting individual
colors for the query: “determine the maximally occuring color amongst all t-
shirts”). Accordingly, in this work, we introduce a novel fully neural iterative
and parallel reasoning mechanism (IPRM) that combines the benefits of iterative
computation with the ability to perform distinct operations simultaneously. Our
experiments on various visual question answering and reasoning benchmarks in-
dicate that IPRM exhibits stronger reasoning capabilities and generalization than
existing recurrent as well as transformer-based reasoning and vision-language in-
teraction mechanisms while requiring lesser parameters and computation steps.
Notably, IPRM achieves state-of-the-art zero-shot performance on the challeng-
ing CLEVR-Humans dataset and outperforms prior task-specific methods for the
NLVR and CLEVR-CoGen benchmarks. Further, IPRM’s computation can be
visualized across reasoning steps aiding interpretability and diagnosis of its rea-
soning and outputs.

1 INTRODUCTION

Visual reasoning and question answering (VQA) at its core requires a model to identify relevant
visual operations and accordingly execute and compose their results to make an inference. Iterative
computation, wherein individual operations are identified and composed in a step-by-step manner
has been shown to be an effective visual reasoning mechanism (Hudson & Manning, 2018; Chen
et al., 2018; Vaishnav & Serre, 2022). Notably, the MAC architecture (Hudson & Manning, 2018)
captures this computation through a recurrently operated memory-attention-and-control cell, and
demonstrates impressive performance and interpretability on the CLEVR (Johnson et al., 2017a)
VQA dataset. However, iterative computation while effective, is not necessarily always optimal. For
example, a model that only performs iterative reasoning may end up learning more complex or overly
task-tuned reasoning procedures than is required, which might lead to it having poor generalization
or adaptation to unseen scenarios and newer tasks.

In many scenarios, the entailed intermediate visual operations are mutually independent and it can
be more optimal, from both an efficiency and efficacy perspective, to compute them simultaneously
instead of iteratively. For example, consider the the first scenario shown in fig. 1. When executing
the language phrase “maximum occuring shape” (i.e. “what shape appears the most”), a purely
iterative method would: (i) compute the count of each shape (each of which itself could take multi-
ple iterations), (ii) then update and maintain the counts in memory (without forgetting count of all
previous shapes), and (iii) finally, recall each shape’s count to compute the “maximum” 1. Besides
taking more reasoning steps than optimal, such computation also increases the demand for informa-
tion retention and recall in memory, which in this scenario could scale by the number of shapes to
be counted.

1Assuming that the “maximum” operation is applied only after the counts of all shapes have been computed.
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What is the color of the small object in front of the
green object with the maximum occurring shape?

Are both the ball to the right of the other balls
and the black helmet made of plastic?

Both images have atleast two pairs having same shape
and only one image has three different shapes

Figure 1: Reasoning scenarios (CLEVR-Humans (Johnson et al., 2017b), GQA (Hudson & Man-
ning, 2019b) and NLVR (Suhr et al., 2017)) wherein combination of iterative (step-by-step) com-
putation (blue phrases in image) and parallel computation of mutually-independent operations
(orange phrases in image) can be more effective than either of them individually.

An alternative mechanism is to parallelly (simultaneously) compute the counts of each shape since
these computations are mutually independent. Thereafter, the computed results can be compared
to evaluate the “maximum” operation. The same mechanism could also be beneficial for the other
two scenarios illustrated in fig. 1. “Are x and y both made of plastic” could involve simultane-
ous execution of “x made of plastic” and “y made of plastic”, followed by “and” composition.
Meanwhile, for scenario 3, the condition 1 (“both images have atleast..”) of ‘and’ is independent of
condition 2 (“only one image..”) and thus could be computed for each image simultaneously (instead
of processing each condition and image in separate steps).

Parallel computation can be realized in conventional transformer-based attention mechanisms
(Vaswani et al., 2017). Specifically, these mechanisms involve multiple query tokens simultane-
ously attending to key-value tokens which effectively capture multiple query-key interactions in a
single parallel computation. However, transformer-based attention does not explicitly incorporate
iterative compositional computation which, as mentioned before, can be useful for composing in-
termediate operations. Hence, while transformer mechanisms may effectively compute the result
of “maximum occuring shape” in fig.1, they would potentially struggle to integrate the result with
further operations such as “green object with ..”, “small object in front of green ..”, and “color of ..”
that need to be computed step-by-step to answer the question. This capability could be effectively
achieved by combining iterative computation with parallel computation.

Based on the above insights, we seek to develop a neural reasoning architecture that combines step-
by-step iterative computation with the the ability to perform multiple independent operations simul-
taneously. Considering scenario 1 again, the architecture would ideally first perform “maximum
occurring shape” by executing multiple distinct “count” queries for each shape and storing these re-
sults in memory. In its next reasoning step, it would perform the “maximum” operation by recalling
its prior results and composing them conditionally. Thereafter, over subsequent reasoning steps, it
would perform necessary composition for ‘‘green object..”, “small object in front..” and “color of..”
to finally determine the answer. Further, for each computation step, it would also highlight which
operations it executes and accordingly where it looks visually.

We accordingly design a novel iterative and parallel reasoning mechanism (IPRM) which models
memory as a set of latent operation states, keyed to which are result states. Given visual and lan-
guage features as inputs, IPRM performs the following iterative computation. First, it forms a set
of new latent operations by retrieving information from the input language features, conditioned on
its current operation states. Then, it “executes” these latent operations by retrieving relevant visual
information conditioned on both the operations and current result states. Finally, it integrates these
new latent operations (and their results) into memory by dynamically composing the operations with
other simultaneous operations as well as prior operation states. This strategy effectively enables us
to take advantage of both parallel and iterative computations and helps improve the performance
across various visual reasoning tasks using a single reasoning mechanism. These include composi-
tional visual question answering (using GQA (Hudson & Manning, 2019b) and CLEVR), reason-
ing generalization to new language forms (CLEVR-Humans), language-grounded visual reasoning
(NLVR) and compositional reasoning generalization (CLEVR-CoGen (Johnson et al., 2017a)).
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Contributions: (i) We introduce a novel iterative- and parallel-reasoning mechanism by drawing in-
sights from the benefits and limitations of both purely iterative reasoning and purely parallel compu-
tation. (ii) We demonstrate that our mechanism outperforms existing reasoning and vision-language
interaction mechanisms on multiple benchmarks while requiring fewer parameters and computation
steps. (iii) Our mechanism exhibits strong generalization on unseen reasoning scenarios and bet-
ter transfer to new reasoning tasks, notably achieving state-of-the-art zero-shot performance on the
CLEVR-Humans benchmark.

2 ITERATIVE AND PARALLEL REASONING MODULE (IPRM)

Our proposed iterative- and parallel-reasoning mechanism (IPRM) is a fully-differentiable neural
architecture. Given visual features XV ∈ RNV ×DV and language or task-description features XL ∈
RNL×DL , IPRM outputs a “reasoning result” ys ∈ RDm and, optionally, a set of “reasoning result
tokens” YR ∈ RNm×Dm . As previously mentioned, IPRM operates iteratively for T reasoning
steps and internally, maintains an explicit memory M : {Mop,Mres}. The memory is modelled as
a set of “operation states” Mop ∈ RNm×Dm , keyed to which are “result states” Mres ∈ RNm×Dm

as shown in fig. 3. Here, Nm denotes the number of parallel operations to be computed while Dm

denotes the mechanism’s internal feature dimension. On a high level, at each reasoning step (denoted
by t ∈ {1, · · · , T}), IPRM performs the following computations:

1. First, conditioned on its existing operation states Mop,t, it retrieves relevant information
from XL to form a new set of latent operations Zop,t ∈ RNm×Dm . We term this computa-
tion as “Operation Formation”.

Zop,t = Operation Formation(XL;Mop,t) (1)

2. Then, conditioned on Zop,t and its existing results state Mres,t, it retrieves relevant in-
formation from XV which represent a new set of latent results Zres,t ∈ RNm×Dm corre-
sponding to Zop,t. We term this computation as “Operation Execution”.

Zres,t = Operation Execution(XV; [Zop,t,Mres,t]) (2)

3. Finally, each operation Zop k,t (where k ∈ {1..Nm}), is composed with other operations
in Zop k,t as well as prior operation states Mop[t−W:t] within a lookback-window W . The
corresponding result Zres k,t is similarly combined with other results Zop,t and prior result
states Mres[(t−W):t]. We term this computation as “Operation Composition”

Mt+1 = Operation Composition({Zop,t,Zres,t},M[(t−W):t]) (3)

As shown in eq. 3, this output is the new memory state Mt+1 : {Mop,t+1,Mres,t+1}.

The overall computation flow is illustrated in fig. 3, and we provide specific details and intuitions
behind these computations in the following sub-sections.

2.1 OPERATION FORMATION

The “operation formation” stage conceptually models a reasoner that based on its prior set of op-
erations, decides what language features to retrieve in order to form the next set of relevant opera-
tions. This can be effectively implemented through conventional attention mechanisms. Specifically,
the cumulative set of prior operations (maintained in Mop,t) can be projected to form the ‘query’
QL,t ∈ RNm×Dm representing “what features to look for”. The language features XL can be pro-
jected to form the ‘key’ KL ∈ RNL×Dm and ‘value’ VL ∈ RNL×Dm . Finally, the new set of
latent operations Zop,t can be retrieved by computing attention(QL,KL,VL). These steps are
formally represented below:

QL,t = WL,q2(lang nonlin(WL,q1(Mop,t))) (4)
KL,VL = WL,k(XL),WL,v(XL) (5)

Zop,t = attention(QL,t,KL,VL) (6)
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Figure 3: IPRM’s computation flow diagram. First, a new set of K-parallel latent operations Zop

are retrieved from language features XL conditioned on prior operation states Mop. Then, visual
features XV are queried conditioned on both Zop and prior result states results Mres, to form the
new results Zres. Finally, both Zres and Zop are passed to the Operation Composition Unit (see
sec. 3), the output of which becomes the new memory state M.

Here, WL,q2 ∈ RDm×Dm , WL,q1 ∈ RDm×Dm , WL,k ∈ RDm×Dl and WL,v ∈ RDm×Dl . We
set lang nonlin to GELU for transformer-based language backbones and Tanh for LSTM-based
backbones. Note that since KL and VL are not computation-step dependent, they are computed
only once, and only if the input language backbone features are of a different dimension than the
internal dimension Dm. Regarding attention computation, as shown in eq. 7, it can be implemented
as dot-product attention or linear-modulated attention (with appropriate broadcasting and projection
weight Wa ∈ RDk×1).

attention(Q,K, V ) =

{
softmax

(
QKT

√
dk

)
V if dot product attention

softmax(Wa(Q⊙K))V if modulated attention
(7)

2.2 OPERATION EXECUTION

In the “operation execution” stage, the reasoner determines what visual features need to be re-
trieved depending on both the newly formed operations and existing result states. To model the
constituent visual attention mechanism, we draw insights from existing recurrent visual reasoning
methods (Hudson & Manning, 2018; Vaishnav & Serre, 2022) that incorporate feature modulation
for memory-guided attention. Specifically, in our formulation, we first retrieve a set of feature
modulation weights SV,t ∈ RNm×Dm/r through a joint projection of the new operations Zop,t

and prior results Mres,t as shown in eq. 8. Here, r is a feature reduction ratio (Hu et al., 2018),
SV,t is then applied dimension wise to a projection of XV to retrieve an intermediate attention key
K′

V,t ∈ RNm×Nk×Dm/r. The final attention key KV,t is then obtained through a joint multi-layer-
projection of K′

V,t and the previously projected representation of XV as shown in eq. 10. Finally,
the attention query and value are formed through separate projections of Zop,t and XV respectively.
These are then fed together with KV,t to the attention function to retrieve the new operation results
Zres,t as shown in eq. 12. Intuitively, the overall process allows for both prior results and the new
set of operations to jointly guide visual attention.

SV,t = WV,s([WV,op(Zop,t),WV,res(Mres,t)]) (8)

K′
V,t = SV,t ⊙WV,k1(XV) (9)

KV,t = WV,k3(vis nonlin(WV,k2([WV,k1(XV),K′
V,t]))) (10)

QV,t,VV,t = WV,q(Zop,t),WV,v(XV) (11)
Zres,t = attention(QV,t,KV,t,VV,t) (12)

Here, WV,op ∈ RDm/r×Dm , WV,res ∈ RDm/r×Dm , WV,s ∈ RDm/r×2Dm/r, WV,k1 ∈
RDm/r×Dv , WV,k2 ∈ RDm/r×2Dm/r, WV,k3 ∈ RDm/r×Dm/r, WV,q ∈ RDm/r×Dm and
WV,v ∈ RDm×Dv . We set vis nonlin to GELU for transformer visual backbones and ELU
for convolutional backbones.
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Figure 2: The Operation
Composition Unit where op-
erations and their results are
composed together to form
the new memory state Mt+1.

Finally, in the “operation composition” stage, the reasoner first in-
tegrates the executed operations Zop,t and their results Zres,t into
the existing memory state Mt through a simple recurrent update as
shown in eq. 13 and 14. Then, it dynamically composes individual
operation states M′

op,t+1 with other operation states in M′
op,t+1

and also prior operation states in Mop,t−W:t where W is an atten-
tion look-back window. This composition is achieved through com-
puting inter-operation attention. Specifically, M′

op,t+1 is projected
to obtain a set of queries Qop,t, while the token-wise concatena-
tion of M′

op,t+1 and Mop,t−w:t are projected to obtain the opera-
tion attention keys Kop,t and values Vop,t. A second set of values
Vres,t are also formed through projection of respective result states
as shown in eq. 18. Further, an identity attention mask INm is used
to ensure that operations in Qop,t, can only attend to other opera-
tions and not themselves. This is done to enable a higher degree of
operation composition. As shown in eq. 19, Qop,t, Kop,t, Vop,t

and INm are passed to the attention operation, which outputs an
intermediate representation M′′

op,t+1 and the softmaxed-attention
weights Aop,t. M′′

op,t+1 is subsequently added to a projection of
M′

op,t+1 to effectively combine attended operation states with the
original operation states, and thereby form the next memory oper-
ation state Mop,t+1. Finally, the next result states are obtained by
applying Aop,t on Vres,t and then adding a projection of M′

res,t+1
as shown in eq. 21. Note Aop,t is specifically utilized to ensure that
results are composed based on attentions between operation states.

M′
op,t+1 = Wop,U(Zop,t) +Wop,H(Mop,t) (13)

M′
res,t+1 = Wres,U(Zres,t) +Wres,H(Mres,t) (14)

Qop,t = Wop,q(M
′
op,t+1) (15)

Kop,t = Wop,k([M
′
op,t+1,Mop,t−W:t]) (token-wise concat)

(16)

Vop,t = Wop,v([M
′
op,t+1,Mop,t−W:t]) (token-wise concat)

(17)

Vres,t = Wres,v([M
′
res,t+1,Mres,t−W:t]) (token-wise concat)

(18)

M′′
op,t+1,Aop,t = attention(Qop,t,Kop,t,Vop,t,mask=INm)

(19)

Mop,t+1 = M′′
op,t+1 +Wop,u2(M

′
op,t+1) (20)

Mres,t+1 = Aop,t(Vres,t) +Wres,v2(M
′
res,t+1) (21)

Here, all the mentioned weights W.. ∈ RDm×Dm . INm in eq. 19 is an identity matrix which is
concatenated with zeros for the window tokens if window length w > 0. The operation composition
unit is illustrated in fig. 2.

2.4 OBTAINING REASONING SUMMARY REPRESENTATION

As mentioned before, our proposed mechanism outputs a set of “reasoning result tokens” YR and
a “reasoning result” ys. YR is simply equivalent to the last memory result states Mres,T+1. To
obtain ys, we perform attention on the last operation states Mop,T+1 by utilizing a summary rep-
resentation ls ∈ RDl of XL as the attention-query. We set ls to be the first language token in case
of transformer-based language backbones and as the last hidden state in case of LSTM-based lan-
guage backbones. As shown in eq. 22, ls is projected to obtain a single-token attention query pq
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while Mop,T+1 is projected to obtain the attention keys Pk. The attention value is simply the re-
sult states Mres,T+1, and the output of the attention function is the “reasoning result”. Intuitively,
this computation corresponds to the reasoner deciding which final operation states in Mop,T+1 are
most relevant to the summary of the input language or task-description XL, based on which the
corresponding result states Mres,T+1 are weighted and retrieved.

pq,Pk = Wpq,q(ls),Wpk,k(Mop,T+1) (22)
ys = attention(pq,Pk,Mres,T+1) (23)

(24)

Here, Wpq,q ∈ RDm×Dl and Wpk,k ∈ RDm×Dm .

2.5 REASONING MECHANISM APPLICABILITY AND BENEFITS

Our proposed iterative and parallel reasoning mechanism is weight-tied which means it does not in-
volve computation-step specific parameters. Hence, its computation steps and attention-window can
be varied during inference or when transferring models across tasks of different reasoning complex-
ities. Further, as IPRM is end-to-end trainable, it can directly learn to flexibly optimize how many
parallel and iterative computations are performed, and the degree to which each contributes to the
final reasoning output. For example, on tasks that require a higher degree of step-by-step processing,
IPRM can learn to utilize more iterative computations. On the other hand, for tasks that require many
simultaneous computations, IPRM can optimize to perform more parallel computations. Addition-
ally, the presence of both computation modes reduces the chances of overly task-specific tuning of
the reasoning process, and aids the learning of relatively more general reasoning procedures. This
helps improve generalization to unseen reasoning scenarios and transfer to newer reasoning tasks.

Finally, while we study and propose IPRM in the context of visual reasoning, we note that it can be
interpreted as a general reasoning process applicable for reasoning tasks beyond visual reasoning.
Simply, its inputs XL can be generally interpreted as a reasoning task specification (e.g. question,
task details, entailment statement) while XV can be interpreted as the reasoning stimuli (e.g. images,
embodied scenes, language documents, etc). The reasoning process can then operate iteratively and
parallelly as described above to obtain the reasoning outputs ys and YR.

3 EXPERIMENTS

We evaluate IPRM on five standard benchmarks: GQA (Hudson & Manning, 2019b) and CLEVR
(Johnson et al., 2017a) for compositional visual question-answering, CLEVR-Humans (Johnson
et al., 2017b) for assessing reasoning generalizability on free-form questions, NLVR (Suhr et al.,
2017) for language grounded visual reasoning and CLEVR-CoGen (Johnson et al., 2017a) for
assessing compositional generalization. We adopt three prominent visual reasoning and vision-
language interaction mechanisms as baselines. These are: i) Cross-Attention (wherein language
operates as the query to key-and-value visual features) as used in BLIP (Li et al., 2022; 2023) and
Flamingo (Alayrac et al., 2022), ii) Concat-Attention (wherein language and visual tokens are con-
catenated and fed through transformer blocks) as used in VILT (Kim et al., 2021) and MDETR
(Kamath et al., 2021), and iii) MAC (Hudson & Manning, 2018) – a prominent recurrent memory
attention block for visual reasoning. For Cross-Attention and Concat-Attention, we stack multiple
layers together for sequential computation, while for MAC we operate it recurrently for a predefined
number of steps. Experiment and model implementation details are available in appendix. We also
report comparison against benchmark-specific state-of-the-arts in appendix table . 5). Source code
for experiments and visualization and pretrained models will be made publicly available via Github.

3.1 COMPOSITIONAL VISUAL QUESTION ANSWERING

We first perform analysis on the GQA and CLEVR datasets. These datasets were specifically chosen
as they comprise questions that require multi-step compositional reasoning and can serve as useful
tests for compositional reasoning capabilities. On both CLEVR and GQA, we perform experiments
with MAC, 2-layer Cross-Att, 4-layer Cross-Att, 2-layer Cross-Att blocks and 4-layer Cross-Att
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Table 1: Compositional Visual Question Answering (GQA and CLEVR). The indicated parameter
count is only for the respective reasoning mechanism and the vision and language backbones are
kept the same for fair comparison.

Mechanism Param. GQA-TestDev CLEVROvr. Query Verify Logic Choose Compare
MAC 5.8M 57.6 44.9 78.2 68.7 74.0 59.4 98.9
Cross-Att (4L) 16.8M 58.8 44.9 79.8 72.5 76.4 64.1 97.3
Concat-Att (4L) 12.6M 59.0 45.0 81.1 71.8 76.9 64.0 98.0
Cross-Att (2L) 8.4M 58.0 43.9 79.2 70.4 77.5 62.9 96.6
Concat-Att (2L) 6.3M 57.7 43.8 79.8 70.0 76.9 60.3 97.1
IPRM 4.4M 59.3 44.9 81.6 73.9 77.1 63.2 98.5
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Figure 4: CLEVR accuracy vs functional pro-
gram length (a proxy for question complexity).

Table 2: Performance on CLEVR-Humans and
NLVR. IPRM exhibits strong zero-shot general-
ization on CLEVR-H and achieves state of the
art on NLVRv1 when finetuned from CLEVR-
Humans.

Mechanism CLEVR-Hmn NLVRv1
- ZS FT Scrth FT
FILM 56.6 75.9 61.2 -
MACa 58.7 78.9 59.4 69.9
Cross-Att 58.8 76.1 58.3 59.1
Concat-Att 59.3 78.7 57.4 65.0
IPRM 60.4 80.3 63.0 73.3

arefer to appendix regarding issues in reproducing
MAC’s reported performance on CLEVR-Humans

blocks. The number of heads for transformer blocks is set to 8. For MAC, on GQA we use a
4-step network (the optimal setting as per (Hudson & Manning, 2019b)), while for CLEVR, we
use a 12-step network (as in Hudson & Manning (2018)). For IPRM, on GQA, we set the parallel
operations to 6, iterations to 4 and window length to 2, and for CLEVR, were set them to 6 and 9
respectively. All mechanisms have dimension of 512 and recieve the same lang. and vis. inputs for
fair comparison.

As shown in table 1, on GQA, IPRM achieves the highest performance of 59.3% while having only
4.4M parameters. Both 4-layer cross attention and 4-layer concat attention reach around 59.0%;
however, they have substantially higher number of parameters (about 3.8x more for cross-att and
2.86x for concat-att). The 2-layer cross- and concat-attention have more than 1.3% lower pefor-
mance than IPRM while still requiring 1.4x to 1.9x more parameters. This suggests that pure feed-
forward parallel computation as in cross- and concat-att may require substantially higher parameters
than a mechanism such as IPRM that integrates both parallel and iterative computation. On the other
hand, MAC has a comparatively lower performance of 57.6% even though it has a higher number
of computation steps than IPRM, and marginally higher number of parameters. This suggests that
a pure iterative reasoning mechanism may not be able to effectively capture or maintain necessary
vision-language interactions to answer the question.

The breakdown of performance by question type provides further insights into different capabilities
of each reasoning mechanism. All mechanisms achieve similar performance on the “Query” ques-
tions. For “Verify” (where a condition has to be checked as yes/no) and “Logic” (where conditions
have to be composed logically), IPRM does better than other mechanisms, notably having a 5.2%
better performance than MAC for “Logic” questions. This suggests that perhaps the parallel opera-
tions of IPRM enable it to better retain and compose features in order to process “Logic” or “Verify”
based questions. For “Choose” and “Compare”, the both cross- and concat-attention mechanisms
perform better than IPRM and MAC suggesting that transformer-based parallel computation may
be more beneficial for such selection or comparison based questions. However, note that IPRM is
about 0.4% and 0.9% lesser in these categories than the best model; in comparison, MAC is 3.5%
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and 4.7% lesser. This again suggests that the parallel operation in IPRM is able to help it capture
these reasoning capabilities to a decent degree.

On CLEVR, MAC obtains the best result of 98.9%, while IPRM achieves 98.5% and the best
transformer-attention reaches 98.0%. These suggest that MAC’s 12-step iterative computation al-
lows it to better perform compositional reasoning for the entailed scenarios. To analyze how mech-
anisms perform over varying question complexities, we plotted their performance against the anno-
tated functional program length in CLEVR (used as a proxy for question complexity). As shown in
fig. 4, both MAC and IPRM perform consistently decently across both short- and long-functional
program lengths. However, the Concat-Att mechanism’s performance sharply drop after program
length of 15, suggesting that the lack of iterative reasoning limits its abilities to process questions
with multiple intermediate steps.

3.2 REASONING GENERALIZABILITY, TASK TRANSFER AND COMPOSITIONAL
GENERALIZATION

In this experiment, we studied how well models generalize to new reasoning scenarios and their ca-
pabilities to transfer to different tasks. For this, we considered CLEVR-Humans wherein questions
are free-form human generated. We also considered NLVR for language grounded visual reasoning
and FILM (Perez et al., 2018) – a prominent visual reasoning mechanism. As shown in table. 2,
we find that a IPRM model trained on CLEVR when tested zero-shot on CLEVR-Humans achieves
60.4%, which is better than the other mechanisms (particularly 1.7% more than MAC) as well as
prior state of the arts (59.9% by MDETR (Kamath et al., 2021) – which uses auxiliary phrase-
localization pretraining with a finetuned vision encoder and larger Roberta language backbone). In
comparison, MAC had lower performance than both cross- and concat-att mechanisms (of 4Layers),
even though it reached state-of-the-art on CLEVR. This suggests that MAC’s iterative processing
mechanism may over-tune to CLEVR’s training distribution, and thereby achieve lower generaliza-
tion on CLEVR-Humans. We also tested when models were finetuned on CLEVR-Humans, and
found IPRM achieves 80.3% performance, again better than baselines.

For NLVR, we tested models that were trained from scratch and also finetuned (initialized with
their best CLEVR-Humans checkpoints). Note, that NLVR is a distinct task from CLEVR and re-
quires models to output True/False given a statement about three images. As shown in the same
table, we found IPRM exhibits much stronger performance than baselines, both when trained from
scratch and when finetuned. It particularly does 3.6% and 3.4% better than MAC, and obtains a per-
formance of 73.3% when finetuned outperforming the previous state-of-the-art CNN-BiATT which
achieves 66.1%. This shows that IPRM exhibits strong task transfer abilities. We also find that both
Cross-and Concat-Att mechanisms perform poorly in comparison to IPRM and MAC suggesting the
importance of iterative computation in language-grounded visual reasoning.

Finally, we also tested models on the CLEVR-CoGen dataset wherein in condition A (condA),
shapes have a particular set of colors, while in condition B (condB), the shapes each have a distinct
set of colors (e.g. red cube, blue sphere in condA; red sphere, blue cube in condB). This tests the
ability of models to perform disentangled feature learning and learn primitive concepts separately.
As shown in table 3, we find that Cross-Att achieves the best performance of 78.8% when trained
in condA and tested on condB with IPRM close behind at 78.4%. Meanwhile, while MAC has a
high performance of 98.5% on condA, it has poor performance on condB (2.5% lesser than IPRM).
This suggests that MAC may have to learn feature conjunctions due to purely iterative reasoning
whereas parallel mechanisms may process features separately. When all models are then finetuned
on condB, we find IPRM obtains performance of 95.1% on condA and 97.0% on condB while the
cross-attention mechanism fails to retain information from its original training.

3.3 ABLATIVE ANALYSIS AND COMPUTATION VISUALIZATION

In table 4, we perform ablations to study components of our mechanism. First, we study the impact
of varying number of parallel operations M and computation steps T. We find that both (M=6, T=9)
and (M=9 and T=6) perform the best, and that increasing M beyond 6 does not seem to benefit. We
also see the impact of window size and find that a window size of 2 works best. Finally, we study the
impact of removing the memory composition unit, and find drops of 6.2% on CLEVR and 3.6% on
NLVR. However, on GQA the drop is relatively less (2.1%) possibly as it requires less composition.
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Table 3: Performance on CLEVR-CoGen

Mechanism Trn Cond. A FT Cond. B
- Val A Val B Val A Val B
FILM 98.3 75.6 80.8 96.9
MAC 98.5 75.9 94.2 97.2
Cross-Att 97.4 78.8 92.8 95.6
Concat-Att 98.0 77.7 88.6 96.7
IPRM 98.3 78.4 95.1 97.0

Table 4: Ablations

M T
3 6 9

3 98.1 98.1 98.4
6 97.2 98.5 98.5
9 97.8 98.6 98.5

Window Size
0 1 2 3

98.2 98.2 98.5 98.3
Memory Composition Unit

CLEVR GQA NLVR
without 92.3 57.1 59.4

We provide step-by-step reasoning of our model in A.1. Across the time steps, each parallel op-
eration in the model seems to capture different aspects of language and relevant visual locations.
In the initial few computation steps, the model appears to be computing the operation for ‘‘maxi-
mally occurring color” and in the final step, finds the correct shape and makes the prediction. The
visualization framework will be provided in source code.

4 RELATED WORK

Visual reasoning and vision-language models and interaction mechanisms. Multiple prior works
have looked into the development of more effective visual reasoning mechanisms (Johnson et al.,
2017b; Mascharka et al., 2018; Andreas et al., 2016). Prominent works include FILM (Perez
et al., 2018), Neural State Machine(Hudson & Manning, 2019a), MAC (Hudson & Manning, 2018),
Neuro-Symbolic-Concept Learner(Mao et al., 2019) and GAMR (Vaishnav & Serre, 2022). In con-
trast to these works that show applicability of models for particular tasks, our work explores a more
general direction of integrating parallel and iterative computation in a reasoning framework that we
show to be suitable for multiple visual reasoning tasks. More recently, vision-language models use
transformer-based mechanisms showing impressive reasoning capabilities at scale. Notable exam-
ples include MDETR (Kamath et al., 2021), BLIP (Li et al., 2022; 2023), Flamingo (Alayrac et al.,
2022) and OFA (Wang et al., 2022). We believe our work is complimentary to these developments,
as it contributes an alternative and possibly more effective mechanism to the traditional cross and
concat-attention methods, and could be effectively integrated with these models.

Memory and recurrence-augmented transformers. Multiple works have identified the limitations
of purely feedforward computation as realized in transformers and worked in encoding recurrence
(Hutchins et al., 2022; Huang et al., 2022; Dehghani et al., 2018) and memory-augmented compu-
tation (Wu et al., 2022; Bulatov et al., 2022). For example, the Recurrent Memory Transformer
(Bulatov et al., 2022) introduces memory and recurrent computation to improve language modelling
capabilities at smaller scales, while MemViT(Wu et al., 2022) introduces a cache-based memory to
effectively retain prior context for long-video tasks at smaller scales. While these methods show the
benefit of recurrent and memory-augmented computation across different tasks, our work focuses on
the integration of memory and iterative computation in the context of visual reasoning, to develop a
more powerful iterative and parallel reasoning mechanism.

5 CONCLUSION

We propose a novel mechanism for visual reasoning tasks that combines the benefits of both iterative
and parallel computation. Our lightweight mechanism exhibits stronger reasoning capabilities and
generalization than existing recurrent as well as transformer-based reasoning and vision-language
interaction mechanisms while requiring less number of parameters and computation steps. Combin-
ing parallel and iterative computations obtains state-of-the-art zero-shot performance on question
answering in unseen scenarios (Clever-Humans) and visually grounded natural language questions
(NLVRv1). The reasoning steps of our proposed mechanism can be visualized step-by-step which
aids interpretability and understanding.
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REPRODUCIBILITY STATEMENT

Source code and pre-trained models will be released publicly via Github upon acceptance. We have
used three random seeds and whenever possible we have repeated the experiments at least three
times to enhance the reproducibility.

ETHICS STATEMENT

The real-world datasets used for visual reasoning may be biased based on their collection and anno-
tation. These biases may be exhibited in the learned reasoning models as well.
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A APPENDIX

Table 5: Collated results across benchmarks and comparisons with state of the arts. *NSM(Hudson
& Manning, 2019a) uses scene graph supervision. ▼ NS-VQA(Yi et al., 2018) and TbDNet
(Mascharka et al., 2018) use predefined dataset-specific (CLEVR) programs or modules. ■

MDETR(Kamath et al., 2021) performs auxiliary phrase-localization pretraining with a finetuned
vision encoder and Roberta (Liu et al., 2019) language backbone.

Module Param. GQA CLEVR CLEVR-Hmn NLVR CoGen-Tr-A CoGen-FT-B
- - testdv - ZS FT Scrtch Hmn-FT Set A Set B Set A Set B
Cross-Att (4L) 16.8M 58.8 97.3 58.8 76.1 58.3 59.1 97.4 78.8 92.8 95.6
Concat-Att (4L) 12.6M 59.0 98.0 59.3 78.7 57.4 65.0 98.0 77.7 88.6 96.7
Cross-Att (2L) 8.4M 58.0 96.6 58.2 75.1 - - - - - -
Concat-Att (2L) 6.3M 57.7 97.1 57.8 76.6 - - - - - -
FILM (Perez et al., 2018) 3.3M - 97.7 56.6 75.9 61.2 - 98.3 75.6 80.8 96.9
MAC (Hudson & Manning, 2018) 5.8M 57.6 98.9 58.7 78.9 59.4 69.9 98.5 75.9 94.2 97.2
Benchmark-SOA - 61.6* 99.8▼ 59.9■ 81.7■ 66.1 - 99.8■ 76.7■ 96.9▼ 96.3▼
IPRM 4.4M 59.3 98.5 60.4 80.3 63.9 73.3 98.3 78.4 95.1 97.0

A.1 FULL COMPUTATION VISUALIZATIONS

B IMPLEMENTATION DETAILS

CLEVR: For fair comparison with existing methods, we used pre-extracted ResNet101 features of
1024x14x14 with additional 2d positional embeddings. We utilized an LSTM backbone to process
language inputs and the embedding layer and tokenizer were initialized with a BERT embedding
layer. All models were trained for 30 epochs for CLEVR and CLEVR-Cogen and checked for
convergence. For CLEVR-Humans, models were finetuned from their CLEVR checkpoint for 40
epoch. We utilized a learning rate of 1e-4 and Adam optimizer Kingma & Ba (2014). For trans-
former models, warmup was done on the first epoch starting from 0.0. Additionally, we found the
best configuration of transformer models were 8 heads which we used for our experiments.

GQA: We used pre-extracted object proposal features from VinVL Zhang et al. (2021), and for
each input integrated bounding box features and object label predictions along with the original
bounding box features to form a joint visual representation. All models were trained for 25 epochs,
and checked for convergence.

NLVRv1: Similar to CLEVR, we pre-extracted frozen ResNet101 features for each image (an
NLVR image contains 3 images together in 1 file – these were split into 3 different files). A unique
position embedding for each image was added when inputting 3 images to the model. Models were
trained for 40 epochs for scratch and finetuned condition.

C REPRODUCING MAC PERFORMANCE ON CLEVR-HUMANS

Our reproduced MAC performance on CLEVR-Humans finetuning is 78.9%, which is lesser than
MAC’s reported performance of 81.5%. We tried multiple runs to see if better results are obtained
but were unable to do so. Further, we note that similar issues have been reported in MAC’s official
codebase (https://github.com/stanfordnlp/mac-network/issues/30) where another reproduced perfor-
mance is 76.6%.
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Original image

(a) Step 1

(b) Step 2

(c) Step 3

(c) Step 5

Figure 5: Step-by-step visualization of reasoning in IPRM. The question is: ”What shape is behind
the large cylinder with the maximum occuring color?” and prediction is Cylinder
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