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ABSTRACT

This paper presents a systematic study of multi-objective online learning. We first
formulate the framework of Multi-Objective Online Convex Optimization, which
encompasses a novel multi-objective regret. This regret is built upon a sequence-
wise extension of the commonly used discrepancy metric Pareto suboptimality
gap in zero-order multi-objective bandits. We then derive an equivalent form of
the regret, making it amenable to be optimized via first-order iterative methods.
To motivate the algorithm design, we give an explicit example in which equipping
OMD with the vanilla min-norm solver for gradient composition will incur a linear
regret, which shows that merely regularizing the iterates, as in single-objective
online learning, is not enough to guarantee sublinear regrets in the multi-objective
setting. To resolve this issue, we propose a novel min-regularized-norm solver that
regularizes the composite weights. Combining min-regularized-norm with OMD
results in the Doubly Regularized Online Mirror Multiple Descent algorithm. We
further derive the multi-objective regret bound for the proposed algorithm, which
matches the optimal bound in the single-objective setting. Extensive experiments
on several real-world datasets verify the effectiveness of the proposed algorithm.

1 INTRODUCTION

Traditional optimization methods for machine learning are usually designed to optimize a single
objective. However, in many real-world applications, we are often required to optimize multiple
correlated objectives concurrently. For example, in autonomous driving (Huang et al., 2019; Lu
et al., 2019b), self-driving vehicles need to solve multiple tasks such as self-localization and object
identification at the same time. In online advertising (Ma et al., 2018a;b), advertising systems need
to decide on the exposure of items to different users to maximize both the Click-Through Rate (CTR)
and the Post-Click Conversion Rate (CVR). In most multi-objective scenarios, the objectives may
conflict with each other (Kendall et al., 2018). Hence, there may not exist any single solution that
can optimize all the objectives simultaneously. For example, merely optimizing CTR or CVR will
degrade the performance of the other (Ma et al., 2018a;b).

Multi-objective optimization (MOO) (Marler & Arora, 2004; Deb, 2014) is concerned with opti-
mizing multiple conflicting objectives simultaneously. It seeks Pareto optimality, where no sin-
gle objective can be improved without hurting the performance of others. Many different meth-
ods for MOO have been proposed, including evolutionary methods (Murata et al., 1995; Zitzler &
Thiele, 1999), scalarization methods (Fliege & Svaiter, 2000), and gradient-based iterative methods
(Désidéri, 2012). Recently, the Multiple Gradient Descent Algorithm (MGDA) and its variants have
been introduced to the training of multi-task deep neural networks and achieved great empirical
success (Sener & Koltun, 2018), making them regain a significant amount of research interest (Lin
et al., 2019; Yu et al., 2020; Liu et al., 2021). These methods compute a composite gradient based on
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the gradient information of all the individual objectives and then apply the composite gradient to up-
date the model parameters. The composite weights are determined by a min-norm solver (Désidéri,
2012) which yields a common descent direction of all the objectives.

However, compared to the increasingly wide application prospect, the gradient-based iterative algo-
rithms are relatively understudied, especially in the online learning setting. Multi-objective online
learning is of essential importance for reasons in two folds. First, due to the data explosion in many
real-world scenarios such as web applications, making in-time predictions requires performing on-
line learning. Second, the theoretical investigation of multi-objective online learning will lay a solid
foundation for the design of new optimizers for multi-task deep learning. This is analogous to the
single-objective setting, where nearly all the optimizers for training DNNs are initially analyzed in
the online setting, such as AdaGrad (Duchi et al., 2011), Adam (Kingma & Ba, 2015), and AMS-
Grad (Reddi et al., 2018).

In this paper, we give a systematic study of multi-objective online learning. To begin with, we
formulate the framework of Multi-Objective Online Convex Optimization (MO-OCO). One major
challenge in deriving MO-OCO is the lack of a proper regret definition. In the multi-objective set-
ting, in general, no single decision can optimize all the objectives simultaneously. Thus, to devise
the multi-objective regret, we need to first extend the single fixed comparator used in the single-
objective regret, i.e., the fixed optimal decision, to the entire Pareto optimal set. Then we need an
appropriate discrepancy metric to evaluate the gap between vector-valued losses. Intuitively, the
Pareto suboptimality gap (PSG) metric, which is frequently used in zero-order multi-objective ban-
dits (Turgay et al., 2018; Lu et al., 2019a), is a very promising candidate. PSG can yield scalarized
measurements from any vector-valued loss to a given comparator set. However, we find that vanilla
PSG is unsuitable for our setting since it always yields non-negative values and may be too loose.
In a concrete example, we show that the naive PSG-based regret RI(T ) can even be linear w.r.t. T
when the decisions are already optimal, which disqualifies it as a regret metric. To overcome the
failure of vanilla PSG, we propose its sequence-wise variant termed S-PSG, which measures the
suboptimality of the whole decision sequence to the Pareto optimal set of the cumulative loss func-
tion. Optimizing the resulting regret RII(T ) will drive the cumulative loss to approach the Pareto
front. However, as a zero-order metric motivated geometrically, designing appropriate first-order
algorithms to directly optimize it is too difficult. To resolve the issue, we derive a more intuitive
equivalent form of RII(T ) via a highly non-trivial transformation.

Based on the MO-OCO framework, we develop a novel multi-objective online algorithm termed
Doubly Regularized Online Mirror Multiple Descent. The key module of the algorithm is the gradi-
ent composition scheme, which calculates a composite gradient in the form of a convex combination
of the gradients of all objectives. Intuitively, the most direct way to determine the composite weights
is to apply the min-norm solver (Désidéri, 2012) commonly used in offline multi-objective optimiza-
tion. However, directly applying min-norm is not workable in the online setting. Specifically, the
composite weights in min-norm are merely determined by the gradients at the current round. In the
online setting, since the gradients are adversarial, they may result in undesired composite weights,
which further produce a composite gradient that reversely optimizes the loss. To rigorously verify
this point, we give an example where equipping OMD with vanilla min-norm incurs a linear regret,
showing that only regularizing the iterate, as in OMD, is not enough to guarantee sublinear regrets
in our setting. To fix the issue, we devise a novel min-regularized-norm solver with an explicit
regularization on composite weights. Equipping it with OMD results in our proposed algorithm.

In theory, we derive a regret bound of O(
√
T ) for DR-OMMD, which matches the optimal bound

in the single-objective setting (Hazan et al., 2016) and is tight w.r.t. the number of objectives. Our
analysis also shows that DR-OMMD attains a smaller regret bound than that of linearization with
fixed composite weights. We show that, in the two-objective setting with linear losses, the margin
between the regret bounds depends on the difference between the composite weights yielded by the
two algorithms and the difference between the gradients of the two underlying objectives.

To evaluate the effectiveness of DR-OMMD, we conduct extensive experiments on several large-
scale real-world datasets. We first realize adaptive regularization via multi-objective optimization,
and find that adaptive regularization with DR-OMMD significantly outperforms fixed regularization
with linearization, which verifies the effectiveness of DR-OMMD over linearization in the convex
setting. Then we apply DR-OMMD to deep online multi-task learning. The results show that DR-
OMMD is also effective in the non-convex setting.
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2 PRELIMINARIES

In this section, we briefly review the necessary background knowledge of two related fields.

2.1 MULTI-OBJECTIVE OPTIMIZATION

Multiple-objective optimization (MOO) is concerned with solving the problems of optimizing
multiple objectives simultaneously (Fliege & Svaiter, 2000; Deb, 2014). In general, since different
objectives may conflict with each other, there is no single solution that can optimize all the objectives
at the same time, hence the conventional concept of optimality used in the single-objective setting
is no longer suitable. Instead, MOO seeks to achieve Pareto optimality. In the following, we give
the relevant definitions more formally. We use a vector-valued loss F = (f1, . . . , fm) to denote the
objectives, where m ≥ 2 and f i : X → R, i ∈ {1, . . . ,m}, X ⊂ R, is the i-th loss function.
Definition 1 (Pareto optimality). (a) For any two solutions x,x′ ∈ X , we say that x dominates
x′, denoted as x ≺ x′ or x′ ≻ x, if f i(x) ≤ f i(x′) for all i, and there exists one i such that
f i(x) < f i(x′); otherwise, we say that x does not dominate x′, denoted as x ⊀ x′ or x′ ⊁ x.
(b) A solution x∗ ∈ X is called Pareto optimal if it is not dominated by any other solution in X .

Note that there may exist multiple Pareto optimal solutions. For example, it is easy to show that the
optimizer of any single objective, i.e., x∗

i ∈ argminx∈X f i(x), i ∈ {1, . . . ,m}, is Pareto optimal.
Different Pareto optimal solutions reflect different trade-offs among the objectives (Lin et al., 2019).
Definition 2 (Pareto front). (a) All Pareto optimal solutions form the Pareto set PX (F ).
(b) The image of PX (F ) constitutes the Pareto front, denoted as P(H) = {F (x) | x ∈ PX (F )}.

Now that we have established the notion of optimality in MOO, we proceed to introduce the metrics
that measure the discrepancy of an arbitrary solution x ∈ X from being optimal. Recall that, in the
single-objective setting with merely one loss function f : Z → R, for any z ∈ Z , the loss difference
f(z) − minz′′∈Z f(z′′) is directly qualified for the discrepancy measure. However, in MOO with
more than one loss, for any x ∈ X , the loss difference F (x) − F (x′′), where x′′ ∈ PX (F ), is a
vector. Intuitionally, the desired discrepancy metric shall scalarize the vector-valued loss difference
and yield 0 for any Pareto optimal solution. In general, in MOO, there are two commonly used
discrepancy metrics, i.e., Pareto suboptimality gap (PSG) (Turgay et al., 2018) and Hypervolume
(HV) (Bradstreet, 2011). As HV is a complex volume-based metric, it is more difficult to optimize
via gradient-based algorithms (Zhang & Golovin, 2020). Hence in this paper, we adopt PSG, which
has already been extensively used in multi-objective bandits (Turgay et al., 2018; Lu et al., 2019a).
Definition 3 (Pareto suboptimality gap1). For any x ∈ X , the Pareto suboptimality gap to a given
comparator set Z ⊂ X , denoted as ∆(x;Z, F ), is defined as the minimal scalar ϵ ≥ 0 that needs
to be subtracted from all entries of F (x), such that F (x)− ϵ1 is not dominated by any point in Z ,
where 1 denotes the all-one vector in Rm, i.e.,

∆(x;Z, F ) = inf
ϵ≥0

ϵ, s.t. ∀x′′ ∈ Z, ∃ i ∈ {1, . . . ,m}, f i(x)− ϵ < f i(x′′).

Clearly, PSG is a distance-based discrepancy metric motivated from a purely geometric viewpoint.
In practice, the comparator set Z is often set to be the Pareto set X ∗ = PX (F ) (Turgay et al., 2018);
therein for any x ∈ K, its PSG is always non-negative and equals zero if and only if x ∈ PX (F ).

Multiple Gradient Descent Algorithm (MGDA) is an offline first-order MOO algorithm (Fliege
& Svaiter, 2000; Désidéri, 2012). At each iteration l ∈ {1, . . . , L} (L is the number of iterations), it
first computes the gradient ∇f i(xl) of each objective, then derives the composite gradient gcomp

l =∑m
i=1 λ

i
l∇f i(xl) as a convex combination of these gradients, and finally applies gcomp

l to execute a
gradient descent step to update the decision, i.e., xl+1 = xl − ηgcomp

l (η is the step size). The core
part of MGDA is the module that determines the composite weights λl = (λ1

l , . . . , λ
m
l ), given by

λl = argmin
λl∈Sm

∥
∑m

i=1
λi
l∇f i(xl)∥22,

where Sm = {λ ∈ Rm |
∑m

i=1 λ
i = 1, λi ≥ 0, i ∈ {1, . . . ,m}} is the probabilistic simplex in

Rm. This is a min-norm solver, which finds the weights in the simplex that yield the minimum L2-
norm of the composite gradient. Thus MGDA is also called the min-norm method. Previous works

1Our definition looks a bit different from (Turgay et al., 2018). In Appendix B, we show they are equivalent.
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(Désidéri, 2012; Sener & Koltun, 2018) showed that when all f i are convex functions, MGDA is
guaranteed to decrease all the objectives simultaneously until it reaches a Pareto optimal decision.

2.2 ONLINE CONVEX OPTIMIZATION

Online Convex Optimization (OCO) (Zinkevich, 2003; Hazan et al., 2016) is the most commonly
adopted framework for designing online learning algorithms. It can be viewed as a structured re-
peated game between a learner and an adversary. At each round t ∈ {1, . . . , T}, the learner is
required to generate a decision xt from a convex compact set X ⊂ Rn. Then the adversary replies
the learner with a convex function ft : X → R and the learner suffers the loss ft(xt). The goal of
the learner is to minimize the regret with respect to the best fixed decision in hindsight, i.e.,

R(T ) =
∑T

t=1
ft(xt)− min

x∗∈X

∑T

t=1
ft(x

∗).

A meaningful regret is required to be sublinear in T , i.e., limT→∞ R(T )/T = 0, which implies that
when T is large enough, the learner can perform as well as the best fixed decision in hindsight.

Online Mirror Descent (OMD) (Hazan et al., 2016) is a classic first-order online learning algo-
rithm. At each round t ∈ {1, . . . , T}, OMD yields its decision via

xt+1 = argmin
x∈X

η⟨∇ft(xt),x⟩+BR(x,xt),

where η is the step size, R : X → R is the regularization function, and BR(x,x
′) = R(x)−R(x′)−

⟨∇R(x′),x − x′⟩ is the Bregman divergence induced by R. As a meta-algorithm, by instantiating
different regularization functions, OMD can induce two important algorithms, i.e., Online Gradient
Descent (Zinkevich, 2003) and Online Exponentiated Gradient (Hazan et al., 2016).

3 MULTI-OBJECTIVE ONLINE CONVEX OPTIMIZATION

In this section, we formally formulate the MO-OCO framework.

Framework overview. Analogously to single-objective OCO, MO-OCO can be viewed as a re-
peated game between an online learner and the adversarial environment. The main difference is
that in MO-OCO, the feedback is vector-valued. The general framework of MO-OCO is given as
follows. At each round t ∈ {1, . . . , T}, the learner generates a decision xt from a given convex
compact decision set X ⊂ Rn. Then the adversary replies the decision with a vector-valued loss
function Ft : X → Rm, whose i-th component f i

t : X → R is a convex function corresponding to
the i-th objective, and the learner suffers the vector-valued loss Ft(xt). The goal of the learner is to
generate a sequence of decisions {xt}Tt=1 to minimize a certain kind of multi-objective regret.

The remaining work in framework formulation is to give an appropriate regret definition, which is the
most challenging part. Recall that the single-objective regret R(T ) =

∑T
t=1 ft(xt)−

∑T
t=1 ft(x

∗)
is defined as the difference between the cumulative loss of the actual decisions {xt}Tt=1 and that of
the fixed optimal decision in hindsight x∗ ∈ argminx∈X

∑T
t=1 ft(x). When defining the multi-

objective analogy to R(T ), we encounter two issues. First, in the multi-objective setting, no single
decision can optimize all the objectives simultaneously in general, hence we cannot compare the
cumulative loss with that of any single decision. Instead, we use the the Pareto optimal set X ∗ of
the cumulative loss function

∑T
t=1 Ft, i.e., X ∗ = PX(

∑T
t=1 Ft), which naturally aligns with the

optimality concept in MOO. Second, to compare {xt}Tt=1 and X ∗ in the loss space, we need a dis-
crepancy metric to measure the gap between vector losses. Intuitively, we can adopt the commonly
used PSG metric (Turgay et al., 2018). But we find that vanilla PSG is not appropriate for OCO,
which is largely different from the bandits setting. We explicate the reason in the following.

3.1 THE NAIVE REGRET BASED ON VANILLA PSG FAILS IN MO-OCO

By definition, at each round t, the difference between the decision xt and the Pareto optimal set
can be evaluated by PSG ∆(xt;X ∗, Ft). Naturally, we can formulate the multi-objective regret by
accumulating ∆(xt;X ∗, Ft) over all rounds, i.e.,

RI(T ) :=
∑T

t=1
∆(xt;X ∗, Ft).
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Recall that the single-objective regret can also expressed as R(T ) =
∑T

t=1(ft(xt)−ft(x
∗)). Hence,

RI(T ) essentially extends the scalar discrepancy ft(xt)− ft(x
∗) to the PSG metric ∆(xt;X ∗, Ft).

However, these two discrepancy metrics have a major difference, i.e., ft(xt) − ft(x
∗) can be neg-

ative, whereas ∆(xt;X ∗, Ft) is always non-negative. In previous bandits settings (Turgay et al.,
2018), the discrepancy is intrinsically non-negative, since the comparator set is exactly the Pareto
optimal set of the evaluated loss function. However, the non-negative property of PSG can be prob-
lematic in our setting, where the comparator set X ∗ is the Pareto set of the cumulative loss function,
rather than the instantaneous loss Ft that is used for evaluation. Specifically, at some round t, the de-
cision xt may Pareto dominate all points in X ∗ w.r.t. Ft, which corresponds to the single-objective
setting where it is possible that ft(xt) < ft(x

∗) at some specific round. In this case, we would
expect the discrepancy metric at this round to be negative. However, PSG can only yield 0 in this
case, making the regret much looser than we expect. In the following, we provide an example in
which the naive regret RI(T ) is linear w.r.t. T even when the decisions xt are already optimal.

Problem instance. Set X = [−2, 2]. Let the loss function be identical among all objectives, i.e.,
f1
t (x) = ... = fm

t (x), and alternate between x and −x. Suppose the time horizon T is an even
number, then the Pareto optimal set X ∗ = X . Now consider the decisions xt = 1, t ∈ {1, ..., T}. In
this case, it can easily be checked that the single-objective regret of each objective is zero, indicating
that these decisions are optimal for each objective. To calculate RI(T ), notice that when all the
objectives are identical, PSG reduces to ∆(xt;X ∗, f1

t ) = supx∗∈X max{f1
t (xt) − f1

t (x
∗), 0} at

each round t. Hence, in this case we have RI(T ) =
∑

1≤k≤T/2(supx∗∈[−2,2] max{1 − x∗, 0} +

supx∗∈[−2,2] max{x∗ − 1, 0}) = 3T , which is linear w.r.t. T . Therefore, RI(T ) is too loose to
measure the suboptimality of decisions, which is unqualified as a regret metric.

3.2 THE ALTERNATIVE REGRET BASED ON SEQUENCE-WISE PSG

In light of the failure of the naive regret, we need to modify the discrepancy metric in our setting.
Recall that the single-objective regret can be interpreted as the gap between the actual cumulative
loss

∑T
t=1 ft(xt) and its optimal value minx∈X

∑T
t=1 ft(x). In analogy, we can measure the gap

between
∑T

t=1 Ft(xt) and the Pareto front P∗ = PX (
∑T

t=1 Ft). However, vanilla PSG is a point-
wise metric, i.e., it can only measure the suboptimality of a decision point. To evaluate the decision
sequence {xt}Tt=1, we modify its definition and propose a sequence-wise variant of PSG.
Definition 4 (Sequence-wise PSG). For any decision sequence {xt}Tt=1, the sequence-wise PSG
(S-PSG) to a given comparator set2 X ∗ w.r.t. the loss sequence {Ft}Tt=1 is defined as

∆({xt}Tt=1;X ∗, {Ft}Tt=1) = inf
ϵ≥0

ϵ, s.t. ∀x′′ ∈ X ∗,∃ i ∈ {1, . . . ,m},
T∑

t=1

f i
t (xt)−ϵ <

T∑
t=1

f i
t (x

′′).

Since X ∗ is the Pareto set of
∑T

t=1 Ft, S-PSG measures the discrepancy from the cumulative loss
of the decision sequence to the Pareto front P∗. Now the regret can be directly given as

RII(T ) := ∆({xt}Tt=1;X ∗, {Ft}Tt=1).

RII(T ) has a clear physical meaning that optimizing it will impose the cumulative loss to be close
to the Pareto front P∗. However, since PSG (or S-PSG) is a zero-order metric motivated in a purely
geometric sense, i.e., its calculation needs to solve a constrained optimization problem with an
unknown boundary {Ft(x

′′) | x′′ ∈ X ∗}, it is difficult to design a first-order algorithm to optimize
PSG-based regrets, not to mention the analysis. To resolve this issue, we derive an equivalent form
via highly non-trivial transformations, which is more intuitive than its original form.
Proposition 1. The multi-objective regret RII(T ) based on S-PSG has an equivalent form, i.e.,

RII(T ) = max
{

sup
x∗∈X∗

inf
λ∗∈Sm

∑T

t=1
λ∗⊤(Ft(xt)− Ft(x

∗)), 0
}
.

Remark. (i) The above form is closely related to the single-objective regret R(T ). Specifically,
when m = 1, we can prove that RII(T ) = max{

∑T
t=1 Ft(xt) − minx∗∈X∗

∑T
t=1 Ft(x

∗), 0} =

2It is equivalent to use either X ∗ or X as the comparator set. See Appendix C for the detailed proof.
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Algorithm 1 Doubly Regularized Online Mirror Multiple Descent (DR-OMMD)
1: Input: Convex set X , time horizon T , regularization parameter αt, learning rate ηt, regulariza-

tion function R, user preference λ0.
2: Initialize: x1 ∈ X .
3: for t = 1, . . . , T do
4: Predict xt and receive a loss function Ft : X → Rm.
5: Compute the multiple gradients ∇Ft(xt) = [∇f1

t (xt), . . . ,∇fm
t (xt)] ∈ Rn×m.

6: Determine the weights for the gradient composition via min-regularized-norm
λt = argmin

λ∈Sm

∥∇Ft(xt)λ∥22 + αt∥λ− λ0∥1.

7: Compute the composite gradient gt = ∇Ft(xt)λt.
8: Perform online mirror descent using gt

xt+1 = argmin
x∈X

ηt⟨gt,x⟩+BR(x,xt).

9: end for

max{R(T ), 0}. Note that in the regret analysis, we are more interested in the case of R(T ) ≥ 0
(where RII(T ) = R(T )), since when R(T ) < 0, it is naturally bounded by any sublinear regret
bound. Hence, RII(T ) is essentially aligned with R(T ) in the single-objective setting.
(ii) At its first glance, RII(T ) can be optimized via linearization with fixed weights λ0 ∈ Sm, or al-
ternatively, optimizing a single objective i ∈ {1, ...,m}. We remark that this is not a problem of our
regret definition, but an intrinsic requirement of Pareto optimality. Specifically, Pareto optimality
characterizes the status where no objective can be improved without hurting others. Hence merely
optimizing a single objective naturally achieves Pareto optimality. Please refer to Proposition 8 in
(Emmerich & Deutz, 2018) for the rigorous proof. As a general performance metric, our regret
should incorporate this special case. Later, we will design a novel algorithm based on the concept
of common descent, which outperforms linearization in both theory and experiment.

4 DOUBLY REGULARIZED ONLINE MIRROR MULTIPLE DESCENT

In this section, we present the Doubly Robust Online Mirror Multiple Descent (DR-OMMD) algo-
rithm, the protocol of which is given in Algorithm 1. At each round t, the learner first computes
the gradient of the loss regarding each objective, then determines the composite weights of all these
gradients, and finally applies the composite gradient to the online mirror descent step.

4.1 VANILLA MIN-NORM MAY INCUR LINEAR REGRETS

The core module of DR-OMMD is the composition of gradients. For simplicity, denote the gradients
at round t in a matrix form ∇Ft(xt) = [∇f1

t (xt), . . . ,∇fm
t (xt)] ∈ Rn×m. Then the composite

gradient is gt = ∇Ft(xt)λt, where λt is the composite weights. As illustrated in the preliminary, in
the offline setting, the min-norm method (Désidéri, 2012; Sener & Koltun, 2018) is a classic method
to determine the composite weights, which produces a common descent direction that can descend
all the losses simultaneously. Thus, it is tempting to consider applying it to the online setting.

However, directly applying min-norm to the online setting is not workable, which may even incur
linear regrets. In vanilla min-norm, the composite weights λt are determined solely by the gradients
∇Ft(xt) at the current round t, which are very sensitive to the instantaneous loss Ft. In the online
setting, the losses at each round can be adversarially chosen, and thus the corresponding gradients
can be adversarial. These adversarial gradients may result in undesired composite weights, which
may further produce a composite gradient that even deteriorates the next prediction. In the following,
we provide an example in which min-norm incurs a linear regret. We extend OMD (Hazan et al.,
2016) to the multi-objective setting, where the composite weights are directly yielded by min-norm.

Problem instance. We consider a two-objective problem. The decision domain is X = {(u, v) |
u+ v ≤ 1

2 , v − u ≤ 1
2 , v ≥ 0} and the loss function at each round is

Ft(x) =

{
(∥x− a∥2, ∥x− b∥2), t = 2k − 1, k = 1, 2, ...;

(∥x− b∥2, ∥x− c∥2), t = 2k, k = 1, 2, ...,

6
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where a = (−2,−1), b = (0, 1), c = (2,−1). For simplicity, we first analyze the case where the
total time horizon T is an even number. Then we can compute the Pareto set of the cumulative loss∑T

t=1 Ft, i.e., X ∗ = {(u, 0) | − 1
2 ≤ u ≤ 1

2}, which locates at the x-axis. For conciseness of
analysis, we instantiate OMD with L2-regularization, which results in the simple OGD algorithm
(McMahan, 2011). We start at an arbitrary point x1 = (u1, v1) ∈ X satisfying v1 > 0. At each
round t, suppose the decision xt = (ut, vt), then the gradient of each objective w.r.t. xt takes

g1
t =

{
(2ut + 4, 2vt + 2), t = 2k − 1;

(2ut, 2vt − 2), t = 2k.
g2
t =

{
(2ut, 2vt − 2), t = 2k − 1;

(2ut − 4, 2vt + 2), t = 2k.

Since 0 ≤ vt ≤ 1
2 , we observe that the second entry of either gradient alternates between positive

and negative. By using min-norm, the composite weights λt can be computed as

λt =

{
((1− ut − vt)/4, (3 + ut + vt)/4), t = 2k − 1;

((3− ut + vt)/4, (1 + ut − vt)/4), t = 2k.

We observe that both entries of composite weights alternative between above 1
2 and below 1

2 , and
∥λt+1 − λt∥1 ≥ 1. Recall that ∥λt∥1 = 1, hence the composite weights at two consecutive rounds
change radically. The resulting composite gradient takes

gcomp
t =

{
(ut − vt + 1, −ut + vt − 1), t = 2k − 1;

(−ut − vt − 1, −ut − vt − 1), t = 2k.

The fluctuating composite weights mix with the positive and negative second entries of gradients,
making the second entry of gcomp

t always negative, i.e., −ut + vt − 1 < 0 and −ut − vt − 1 < 0.
Hence gcomp

t always drives xt away from the Pareto set X ∗ that coincides with the x-axis. This
essentially reversely optimizes the loss, hence increasing the regret. In fact, we can prove that it
even incurs a linear regret. Due to the lack of space, we leave the proof of linear regret when T is an
odd number in Appendix H. The above results of the problem instance are summarized as follows.

Proposition 2. For OMD equipped with vanilla min-norm, there exists a multi-objective online
convex optimization problem, in which the resulting algorithm incurs a linear regret.

Remark. Stability is a basic requirement to ensure meaningful regrets in online learning (McMa-
han, 2017). In the single-objective setting, directly regularizing the iterate xt (e.g., OMD) is enough.
However, as shown in the above analysis, merely regularizing xt is not enough to attain sublinear
regrets in the multi-objective setting, since there is another source of instability, i.e., the composite
weights, that affects the direction of composite gradients. Therefore, in multi-objective online learn-
ing, besides regularizing the iterates, we also need to explicitly regularize the composite weights.

4.2 THE ALGORITHM

Enlightened by the design of regularization in FTRL (McMahan, 2017), we consider the regularizer
r(λ,λ0), where λ0 is the pre-defined composite weights that may reflect the user preference. This
results in a new solver called min-regularized-norm, i.e.,

λt = argmin
λ∈Sm

∥∇Ft(xt)λ∥22 + αt r(λ,λ0),

where αt is the regularization strength. Equipping OMD with the new solver, we derive the proposed
algorithm. Note that beyond the regularization on the iterate xt that is intrinsic in online learning,
there is another regularization on the composite weights λt in min-regularized-norm. Both regu-
larizations are fundamental, and they together ensure stability in the multi-objective online setting.
Hence we call the algorithm Doubly Regularized Online Mirror Multiple Descent (DR-OMMD).

In principle, r can take various forms such as L1-norm, L2-norm, etc. Here we adopt L1-norm
since it aligns well with the simplex constraint of λ. Min-regularized-norm can be computed very
efficiently. When m = 2, it has a closed-form solution. Specifically, suppose the gradients at round t
are g1

t and g2
t . Set γL = (g⊤

2 (g2−g1)−αt)/∥g2−g1∥2 and γR = (g⊤
2 (g2−g1)+αt)/∥g2−g1∥2.

Given any λ0 = (γ0, 1− γ0) ∈ S2, we can compute the composite weights λt as (γt, 1− γt) where

γt = max{min{γ′′
t , 1}, 0}, where γ′′

t = max{min{γ0, γR}, γL}.
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When m > 2, since the constraint Sm is a simplex, we can introduce a Frank-Wolfe solver (Jaggi,
2013) (see detailed protocol in Appendix E.1). We also discuss the L2-norm case in Appendix E.2.

Compared to vanilla min-norm, the composite weights in min-regularized-norm are not fully deter-
mined by the adversarial gradients. The resulting relative stability of composite weights makes the
composite gradients more robust to the adversarial environment. In the following, we give a general
analysis and prove that DR-OMMD indeed guarantees sublinear regrets.

4.3 THEORETICAL ANALYSIS

Our analysis is based on two conventional assumptions (Jadbabaie et al., 2015; Hazan et al., 2016).
Assumption 1. The regularization function R is 1-strongly convex. In addition, the Bregman diver-
gence is γ-Lipschitz continuous, i.e., BR(x, z)−BR(y, z) ≤ γ∥x−y∥,∀x,y, z ∈ domR, where
domR is the domain of R and satisfies X ⊂ domR ⊂ Rn.
Assumption 2. There exists some finite G > 0 such that for each i ∈ {1, . . . ,m}, the i-th loss
f i
t at each round t ∈ {1, . . . , T} is differentiable and G-Lipschitz continuous w.r.t. ∥ · ∥2, i.e.,
|f i

t (x)− f i
t (x

′)| ≤ G∥x− x′∥2. Note that in the convex setting, this assumption leads to bounded
gradients, i.e., ∥∇f i

t (x)∥2 ≤ G for any t ∈ {1, . . . , T}, i ∈ {1, . . . ,m},x ∈ X .
Theorem 1. Suppose the diameter of X is D. Assume Ft is bounded, i.e., |f i

t (x)| ≤ F,∀x ∈ X , t ∈
{1, . . . , T}, i ∈ {1, . . . ,m}. For any λ0 ∈ Sm, DR-OMMD attains

R(T ) ≤ γD

ηT
+
∑T

t=1

ηt
2
(∥∇Ft(xt)λt∥22 +

4F

ηt
∥λt − λ0∥1).

Remark. When ηt =
√
2γD

G
√
T

or
√
2γD

G
√
t

, αt =
4F
ηt

, the bound attains O(
√
T ). It matches the optimal

single-objective bound w.r.t. T (Hazan et al., 2016) and is tight w.r.t. m (justified in Appendix F.2).

Comparison with linearization. Linearization with fixed weights λ0 ∈ Sm essentially optimizes
the scalar loss λ⊤

0 Ft with gradient gt = ∇Ft(xt)λ0. From OMD’s tight bound (Theorem 6.8 in
(Orabona, 2019)), we can derive a bound γD

ηT
+
∑T

t=1
ηt

2 ∥∇Ft(xt)λ0∥22 for linearization. In compar-

ison, when αt =
4F
ηt

, DR-OMMD attains a regret bound γD
ηT

+
∑T

t=1
ηt

2 minλ∈Sm{∥∇Ft(xt)λ∥22+
αt∥λ−λ0∥1}, which is smaller than that of linearization. Note that although the bound of lineariza-
tion refers to single-objective regret R(T ), the comparison is reasonable due to the consistency of
the two regret metrics, i.e., RII(T ) = max{R(T ), 0} when m = 1, as proved in Proposition 1.
In the following, we further investigate the margin in the two-objective setting with linear losses.
Suppose the loss functions are f1

t (x) = x⊤g1
t and f2

t (x) = x⊤g2
t for some vectors g1

t , g
2
t ∈ Rn at

each round. Then we can show that the margin is at least (see Appendix F.3 for the detailed proof)

M ≥
∑T

t=1

ηt
4
∥λt − λ0∥22 · ∥g1

t − g2
t ∥22,

which indicates the benefit of DR-OMMD. Specifically, while linearization requires adequate λ0,
DR-OMMD selects more proper λt adaptively; the advantange is more obvious as the gradients of
different objectives vary wildly. This matches our intuition that linearization suffers from conflict
gradients (Yu et al., 2020), while DR-OMMD can alleviate the conflict by pursuing common descent.

5 EXPERIMENTS

In this section, we conduct experiments to compare DR-OMMD with two baselines: (i) linearization
performs single-objective online learning on scalar losses λ⊤

0 Ft with pre-defined fixed λ0 ∈ Sm;
(ii) min-norm equips OMD with vanilla min-norm (Désidéri, 2012) for gradient composition.

5.1 CONVEX EXPERIMENTS: ADAPTIVE REGULARIZATION

Many real-world online scenarios adopt regularization to avoid overfitting. A standard scheme is to
add a term r(x) to the loss ft(x) at each round and optimize the regularized loss ft(x) + σr(x)
(McMahan, 2011), where σ is a pre-defined fixed hyperparameter. The formalism of multi-objective
online learning provides a novel way of regularization. As r(x) measures model complexity, it can
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Figure 1: Results to verify the effectiveness of
adaptive regularization on protein. (a) Perfor-
mance of DR-OMMD and linearization under
varying λ0 = (λ1

0, 1−λ1
0). (b) Performance us-

ing the optimal weights λ0 = (0.1, 0.9).
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Figure 2: Results to verify the effectiveness of
DR-OMMD in the non-convex setting. The two
plots show the performance of DR-OMMD and
various baselines on both tasks (Task L and Task
R) of MultiMNIST.

be regarded as the second objective alongside the primary goal ft(x). We can augment the loss to
Ft(x) = (ft(x), r(x)) and thereby cast regularized online learning into a two-objective problem.
Compared to the standard scheme, our approach chooses σt = λ2

t/λ
1
t in an adaptive way.

We use two large-scale online benchmark datasets. (i) protein is a bioinformatics dataset for protein
type classification (Wang, 2002), which has 17 thousand instances with 357 features. (ii) covtype
is a biological dataset collected from a non-stationary environment for forest cover type prediction
(Blackard & Dean, 1999), which has 50 thousand instances with 54 features. We set the logistic
classification loss as the first objective, and the squared L2-norm of model parameters as the second
objective. Since the ultimate goal of regularization is to lift predictive performance, we measure the
average loss, i.e.,

∑
t≤T lt(xt)/T , where lt(xt) is the classification loss at round t.

We adopt a L2-norm ball centered at the origin with diameter K = 100 as the decision set. The
learning rates are decided by a grid search over {0.1, 0.2, . . . , 3.0}. For DR-OMMD, the parameter
αt is simply set as 0.1. For fixed regularization, the strength σ = (1−λ1

0)/λ
1
0 is determined by some

λ1
0 ∈ [0, 1], which is exactly linearization with weights λ0 = (λ1

0, 1− λ1
0). We run both algorithms

with varying λ1
0 ∈ {0, 0.1, ..., 1}. In Figure 1, we plot (a) their final performance w.r.t. the choice

of λ0 and (b) their learning curves with desirable λ0 (e.g., (0.1, 0.9) on protein). Other results are
deferred to the appendix due to the lack of space. The results show that DR-OMMD consistently
outperforms fixed regularization; the gap becomes more significant when λ0 is not properly set.

5.2 NON-CONVEX EXPERIMENTS: DEEP MULTI-TASK LEARNING

We use MultiMNIST (Sabour et al., 2017), which is a multi-task version of the MNIST dataset for
image classification and commonly used in deep multi-task learning (Sener & Koltun, 2018; Lin
et al., 2019). In MultiMNIST, each sample is composed of a random digit image from MNIST at the
top-left and another image at the bottom-right. The goal is to classify the digit at the top-left (task
L) and that at the bottom-right (task R) at the same time.

We follow (Sener & Koltun, 2018)’s setup with LeNet. Learning rates in all methods are selected
via grid search over {0.0001, 0.001, 0.01, 0.1}. For linearization, we examine different weights
(0.25, 0.75), (0.5, 0.5), and (0.75, 0.25). For DR-OMMD, αt is set according to Theorem 1, and
the initial weights are simply set as λ0 = (0.5, 0.5). Note that in the online setting, samples arrive in
a sequential manner, which is different from offline experiments where sample batches are randomly
sampled from the training set. Figure 2 compares the average cumulative loss of all the examined
methods. We also measure two conventional metrics in offline experiments, i.e., the training loss
and test loss (Reddi et al., 2018); the results are similar and deferred to the appendix due to the lack
of space. The results show that DR-OMMD outperforms counterpart algorithms using min-norm or
linearization in all metrics on both tasks, validating its effectiveness in the non-convex setting.

6 CONCLUSIONS

In this paper, we give a systematic study of multi-objective online learning, encompassing a novel
framework, a new algorithm, and corresponding non-trivial theoretical analysis. We believe that this
work paves the way for future research on more advanced multi-objective optimization algorithms,
which may inspire the design of new optimizers for multi-task deep learning.
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APPENDIX

The appendix is organized as follows. Appendix A reviews related work. Appendix B validates the
correctness of our definition of PSG. Appendix C discusses the domain of the comparator in S-PSG,
indicating that it makes no difference whether the comparator is selected from the Pareto optimal
set or from the whole domain. Appendix D provides the detailed derivation of the equivalent form
of RII(T ). Appendix E discusses how to efficiently compute the composition weights for the min-
regularized-norm solver. Appendix F discusses the order of DR-OMMD’s regret bound with fixed
or adaptive learning rate, shows the tightness of the derived bound, and provides more details on the
regret comparison between DR-OMMD and linearization. Appendix G supplements more details
in the experimental setup and empirical results. Appendix H and I provide detailed proofs of the
remaining theoretical claims in the main paper. Finally, Appendix J supplements regret analysis of
DR-OMMD in the strongly convex setting.

A RELATED WORK

In this section, we review previous work in some related fields, i.e., online learning, multi-objective
optimization, multi-objective multi-armed bandits, and multi-objective Bayesian optimization.

A.1 ONLINE LEARNING

Online learning arms to make sequential predictions for streaming data. Please refer to the introduc-
tion books (Hazan et al., 2016; Orabona, 2019) for more background knowledges.

Most of the previous works on online learning are conducted in the single-objective setting. As far
as we are concerned, there are only two lines of work concerning multi-objective learning. The
first line of works provides a multi-objective perspective of the prediction-with-expert-advice (PEA)
problem (Koolen, 2013; Koolen & Van Erven, 2015). Specifically, they view each individual expert
as a multi-objective criterion, and characterize the Pareto optimal trade-offs among different experts.
These works have two main distinctions from our proposed MO-OCO. First, they are still built upon
the original PEA problem where the payoff of each expert (or decision) is a scalar, while we focus
on vectoral payoffs. Second, their framework is restricted to an absolute loss game, whereas our
framework is general and can be applied to any coordinate-wise convex loss functions.

The second line of work studies online learning with vectoral payoffs via Blackwell approachability
(Blackwell, 1956; Mannor et al., 2014; Abernethy et al., 2011). In their framework, the learner is
given a target set T ⊂ Rm and its goal is to generate decisions {xt}Tt=1 to minimize the distance be-
tween the average loss

∑T
t=1 lt(xt)/T and the target set T . There are two major differences between

Blackwell approachability and our proposed MO-OCO: previous works on Blackwell approachabil-
ity are zero-order methods and the target set T is often known beforehand (also see the discussion
in (Busa-Fekete et al., 2017)), while in MO-OCO we intend to develop a first-order method to reach
the unknown Pareto front.

A.2 MULTI-OBJECTIVE OPTIMIZATION

Multi-objective optimization aims to optimize multiple objectives concurrently. Most of the previ-
ous works on multi-objective optimization are conducted in the offline setting, including the batch
optimization setting (Désidéri, 2012; Liu et al., 2021) and the stochastic optimization setting (Sener
& Koltun, 2018; Lin et al., 2019; Yu et al., 2020; Chen et al., 2020; Javaloy & Valera, 2021). These
methods are based on gradient composition, and have shown very promising results in multi-task
learning applications.

Despite the existence of previous works on multi-objective optimization, as the first work of multi-
objective optimization in the OCO setting, our work is largely different from them in three aspects.
First, we contribute the first formal framework of multi-objective online convex optimization. In par-
ticular, our framework is based on a novel equivalent transformation of the PSG metric, which is in-
trinsically different from previous offline optimization frameworks. Second, we provide a showcase
in which a commonly used method in the offline setting, namely min-norm (Désidéri, 2012; Sener &
Koltun, 2018), fail to attain sublinear regret in online setting. Our proposed min-regularized-norm
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is a novel design when tailoring offline methods to the online setting. Third, the regret analysis of
multi-objective online learning is intrinsically different from the convergence analysis in the offline
setting (Yu et al., 2020).

A.3 MULTI-OBJECTIVE MULTI-ARMED BANDITS

Another branch of related works study multi-objective optimization in the multi-armed bandits set-
ting (Busa-Fekete et al., 2017; Tekin & Turğay, 2018; Turgay et al., 2018; Lu et al., 2019a; Degenne
et al., 2019). Among these works, the most relevant one to ours is (Turgay et al., 2018), which
introduces the Pareto suboptimality gap (PSG) metric to characterize the multi-objective regret in
the bandits setting, and proposes a zero-order zooming algorithm to minimize the regret.

In this work, our regret definition also utilizes the PSG metric (Turgay et al., 2018). However, as
the first study of multi-objective optimization in the OCO setting, our work is intrinsically different
from these previous works in the following aspects. First, as PSG is a zero-order metric, we perform
a novel equivalent transformation, making it amenable to the OCO setting. Second, our proposed al-
gorithm is a first-order multiple gradient algorithm, whose design principles are completely distinct
from zero-order algorithms. For example, the concept of the stability of composite weights does not
even exist in the design of previous zero-order methods for multi-objective bandits (Turgay et al.,
2018; Lu et al., 2019a). Third, the regret analysis of MO-OCO is intrinsically different from that in
the bandits setting.

A.4 MULTI-OBJECTIVE BAYESIAN OPTIMIZATION

The final area related to our work is multi-objective Bayesian optimization (Zhang & Golovin, 2020;
Konakovic Lukovic et al., 2020; Chowdhury & Gopalan, 2021; Maddox et al., 2021; Daulton et al.,
2022), which studies Bayesian optimization with vector-valued feedback. There are two branches
of works in this area, using different notions of regret. The first branch is based on scalarization,
which adopts the expectation of the gap between scalarized losses over some given distribution
(Chowdhury & Gopalan, 2021) as the regret. In this approach, the distribution of scalarization can
be understood as a set of preference, which needs to be known beforehand. The second branch is
based on Pareto optimality (Zhang & Golovin, 2020), which uses hypervolume as the discrepancy
metric and adopt the gap between the true Pareto front and the estimated Pareto front as the regret.

As the first work on multi-objective optimization in the OCO setting, our work is largely different
from these works in the following aspects. First, the regret definitions are different. Specifically,
compared to the first branch based on scalarization, our regret definition is purely motivated by
Pareto optimality, which does not need any preference in advance; compared to the second branch
using hypervolume, we note that hypervolume is mainly used for Pareto front approximation, which
is unsuitable to our adversarial setting where the goal is to impose the cumulative loss to reach the
Pareto front. Second, multi-objective Bayesian optimization is conducted in a stochastic setting,
which typically assumes that the losses follow some Gaussian distribution, whereas our work is
conducted in the adversarial setting where the losses can be generated arbitrarily.

B AN EQUIVALENT DEFINITION OF PSG

Recall that in Definition 3, we formulate the PSG metric as a constrained optimization problem. We
note that, since the PSG metric is based on the notion of “non-dominance” (Turgay et al., 2018), its
most direct form is actually

∆′(x;K∗, F ) = inf
ϵ≥0

ϵ,

s.t. ∀x′′ ∈ K∗,∃i ∈ {1, . . . ,m}, f i(x)− ϵ < f i(x′′)

or ∀i ∈ {1, . . . ,m}, f i(x)− ϵ = f i(x′′).

At the first glance, the above definition seems to be quite different from Definition 3, since it has
an extra condition “∀i ∈ {1, . . . ,m}, f i(x) − ϵ = f i(x′′)”. In the following, we prove that both
definitions actually yield the same value due to the infimum operation on ϵ.

Specifically, for any possible pair (x,K∗, F ), we denote ∆′(x;K∗, F ) = ϵ′0 and ∆(x;K∗, F ) = ϵ0.
By comparing the constraints of both definitions, it is obvious that ϵ0 must satisfy the constraint
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of ∆′(x;K∗, F ), hence the infimum operation guarantees that ϵ′0 ≤ ϵ0. It remains to prove that
ϵ′0 ≥ ϵ0. To this end, we only need to show that ϵ′0 + ξ satisfies the constraint of ∆(x;K∗, F )
for any ξ > 0. Consider an arbitrary x′′ ∈ K∗. From the definition of ∆′(x;K∗, F ), we know
that either ∃i ∈ {1, . . . ,m}, f i(x) − ϵ′0 < f i(x′′) or ∀i ∈ {1, . . . ,m}, f i(x) − ϵ′0 = f i(x′′).
Whichever condition holds, we must have ∃i ∈ {1, . . . ,m}, f i(x)−ϵ′0−ξ < f i(x′′) for any ξ > 0.
Since it holds for any x′′ ∈ K∗, ϵ′0 + ξ lies in the feasible region of ∆(x;K∗, F ), hence we have
ϵ0 ≤ ϵ′0 + ξ,∀ξ > 0 and thus ϵ0 ≤ ϵ′0. In summary, we have ∆′(x;K∗, F ) = ∆(x;K∗, F ) for any
pair (x,K∗, F ).

C DISCUSSION ON THE DOMAIN OF THE COMPARATOR IN S-PSG

Recall that in Definition 4, the comparator x′ in S-PSG is selected from the Pareto optimal set X ∗

of the cumulative loss
∑T

t=1 Ft. This actually stems from the original definition of PSG (Turgay
et al., 2018), which uses the Pareto optimal set as the comparator set. In fact, comparing with
Pareto optimal decisions in X ∗ is already enough to measure the suboptimality of any decision
sequence {xt}Tt=1. The reason is that, for any non-optimal decision x′ ∈ X − X ∗, there must
exist some Pareto optimal decision x′′ ∈ X ∗ that dominates x′, hence the suboptimality metric
does not need to compare with this non-optimal decision x′. In other words, even if we extend
the comparator set in S-PSG to the whole domain X , the modified form will be equivalent to the
original form based on the Pareto optimal set X ∗. In the following, we strictly prove this equivalence
∆({xt}Tt=1;X , {Ft}Tt=1) = ∆({xt}Tt=1;X ∗, {Ft}Tt=1).

Specifically, we modify the definition of S-PSG and let the comparator domain X ′ be any subset of
the decision domain X , i.e.,

∆({xt}Tt=1;X ′, {Ft}Tt=1) = inf
ϵ≥0

ϵ, s.t. ∀x′′ ∈ X ′,∃i ∈ {1, . . . ,m},
T∑

t=1

f i
t (xt)− ϵ <

T∑
t=1

f i
t (x

′′).

Then the modified regret based on the whole domain X takes R′
II(T ) = ∆({xt}Tt=1;X , {Ft}Tt=1).

Now we begin to prove the equivalence ∆({xt}Tt=1;X , {Ft}Tt=1) = ∆({xt}Tt=1;X ∗, {Ft}Tt=1). For
any X ′ ⊂ X , let E(X ′) denote the constraint of ∆({xt}Tt=1;X ′, {Ft}Tt=1), i.e.,

E(X ′) = {ϵ ≥ 0 | ∀x′′ ∈ X ′,∃i ∈ {1, . . . ,m},
T∑

t=1

f i
t (xt)− ϵ <

T∑
t=1

f i
t (x

′′)},

then ∆({xt}Tt=1;X ′, {Ft}Tt=1) = inf E(X ′). Hence, we just need to prove inf E(X ) = inf E(X ∗).

On the one hand, since X ∗ ⊂ X , from the above definition of S-PSG, it is easy to check that for any
ϵ ∈ E(X ), it must satisfy ϵ ∈ E(X ∗). Hence, we have E(X ) ⊂ E(X ∗).

On the other hand, given any ϵ ∈ E(X ∗), we now check that ϵ ∈ E(X ). To this end, we con-
sider an arbitrary point x′′ ∈ X in two cases. (i) If x′′ ∈ X ∗, since ϵ ∈ E(X ∗), we naturally
have

∑T
t=1 f

i0
t (xt) − ϵ <

∑T
t=1 f

i0
t (x′′) for some i0. (ii) If x′′ /∈ X ∗, since X ∗ is the Pareto

optimal set of
∑T

t=1 Ft, there must exist some Pareto optimal decision x̂ ∈ X ∗ that dominates x′′

w.r.t.
∑T

t=1 Ft, which means that
∑T

t=1 f
i
t (x̂) ≤

∑T
t=1 f

i
t (x

′′) for all i ∈ {1, ...,m}. Notice that
ϵ ∈ E(X ∗) gives

∑T
t=1 f

i0
t (xt) − ϵ <

∑T
t=1 f

i0
t (x̂) for some i0, hence in this case we also have∑T

t=1 f
i0
t (xt)− ϵ <

∑T
t=1 f

i0
t (x′′). Combining the above two cases, we prove that ϵ ∈ E(X ), and

consequently E(X ∗) ⊂ E(X ).

In summary, we have E(X ) = E(X ∗), hence ∆({xt}Tt=1;X , {Ft}Tt=1) = inf E(X ) = inf E(X ∗) =
∆({xt}Tt=1;X ∗, {Ft}Tt=1). Therefore, it makes no difference whether the comparator in RII(T ) is
generated from the Pareto optimal set X ∗ or from the whole domain X .

D DERIVATION OF THE EQUIVALENT MULTI-OBJECTIVE REGRET FORM

In this section, We strictly derive the equivalent form of RII(T ) in Proposition 1, which is highly
non-trivial and forms the basis of the subsequent algorithm design and theoretical analysis.
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Proof of Proposition 1. Recall that the PSG metric used in RII(T ) is an extension of vanilla PSG
to leverage any decision sequence. To motivate the analysis, we first investigate vanilla PSG
∆(x;X ∗, F ) that deals with a single decision x, and derive a useful lemma as follows.

Lemma 1. Vanilla PSG has an equivalent form, i.e.,

∆(x;X ∗, F ) = sup
x∗∈X∗

inf
λ∈Sm

λ⊤(F (x)− F (x))+,

where for any vector l = (l1, ..., lm) ∈ Rm, the truncation (l)+ produces a vector whose i-th entry
equals to max{li, 0} for all i ∈ {1, ...,m}.

Proof. In the definition of PSG, the evaluated decision x is compared to all Pareto optimal points
x′ ∈ X ∗. For any fixed comparator x′ ∈ X ∗, we define the pair-wise suboptimality gap w.r.t. F
between decisions x and x′ as follows

δ(x;x′, F ) = inf
ϵ≥0

{ϵ | F (x)− ϵ1 ⊁ F (x′)}.

Hence, PSG can be expressed as

∆(x;X ∗, F ) = sup
x′∈X∗

δ(x;x′, F ).

To proceed, we analyze the pair-wise gap δ(x;x′, F ). From its definition, we know that δ(x;x′, F )
measures the minimal non-negative value that needs to be subtracted from each entry of F (x) until
it is not dominated by x′. Now we consider two cases.

(i) If F (x) ⊁ F (x′), i.e., fk0(x) ≤ fk0(x′) for some k0 ∈ {1, ...,m}, nothing needs to be
subtracted from F (x) and we directly have δ(x;x′, F ) = 0.

(ii) If F (x) ≻ F (x′), we have fk(x) ≥ fk(x′) for all k ∈ {1, ...,m}, which obviously
violates the condition F (x) − ϵ1 ⊁ F (x′) when ϵ = 0. Now let us gradually increase ϵ
from zero. Notice that such a condition holds only when there there exists some k0 satisfying
fk0(x) − ϵ ≤ fk0(x′), or equivalently ϵ ≥ fk0(x) − fk0(x′). Hence, in this case, we have
δ(x;x′, F ) = mink∈{1,...,m}{fk(x)− fk(x′)}.

Combining the above two cases, we derive an equivalent form of the pair-wise suboptimality gap.
Specifically, we can easily check that the following form holds for both cases, i.e.,

δ(x;x′, F ) = min
k∈{1,...,m}

max{fk(x)− fk(x′), 0}.

To relate the above form with F , denote Um = {ek | 1 ≤ k ≤ m} as the set of all unit vector in
Rm, then we equivalently have

δ(x;x′, F ) = min
λ∈Um

λ⊤(F (x)− F (x′))+.

Now the calculation of δ(x;x′, F ) is transformed into a minimization problem over λ ∈ Um. Since
Um is a discrete set, we can apply a linear relaxation trick. Specifically, we now turn to minimize
the scalar p(λ) = λ⊤ max{F (x)−F (x′), 0} over the convex curvature of Um, which is exactly the
probability simplex Sm = {λ ∈ Rm | λ ⪰ 0, ∥λ∥1 = 1}. Note that Um contains all the vertexes
of Sm. Since infλ∈Sm p(λ) is a linear optimization problem, the minimal point λ∗ must be a vertex
of the simplex, i.e., λ∗ ∈ Um. Hence, the relaxed problem is equivalent to the original problem,
namely,

δ(x;x′, F ) = min
λ∈Um

λ⊤(F (x)− F (x′))+ = inf
λ∈Sm

λ⊤(F (x)− F (x′))+.

Taking the supremum of both sides over x′ ∈ X ∗, we prove the lemma. ■

The above lemma can be naturally extended to the sequence-wise variant S-PSG. Specifically, we
can extend the pair-wise suboptimality gap δ(x;x′, F ) to measure any decision sequence, which
now becomes

δ({xt}Tt=1;x
′, {Ft}Tt=1) = inf

ϵ≥0
{ϵ |

T∑
t=1

Ft(xt)− ϵ1 ⊁
T∑

t=1

Ft(x
′)}.
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Then S-PSG can be expressed as

∆({xt}Tt=1;X ∗, {Ft}Tt=1) = sup
x∗∈X∗

δ({xt}Tt=1;x
∗, {Ft}Tt=1).

Similar to the derivation of the above lemma, by investigating the relation between
∑T

t=1 Ft(xt)

and
∑T

t=1 Ft(x
′), we can derive an equivalent form of δ({xt}Tt=1;x

′, {Ft}Tt=1) as

δ({xt}Tt=1;x
′, {Ft}Tt=1) = min

k∈{1,...,m}
max{

T∑
t=1

fk
t (x)−

T∑
t=1

fk
t (x

′), 0},

and further

δ({xt}Tt=1;x
′, {Ft}Tt=1) = inf

λ∈Sm

λ⊤(

T∑
t=1

Ft(xt)−
T∑

t=1

Ft(x
′))+.

Hence, the S-PSG-based regret form can be expressed as

RII(T ) = sup
x∗∈X∗

inf
λ∈Sm

λ⊤(
T∑

t=1

Ft(xt)−
T∑

t=1

Ft(x
∗))+.

The max-min form of RII(T ) has a truncation operation (·)+, which brings irregularity to the regret
form. To handle the truncation operation, we utilize the following lemma:

Lemma 2. (a) For any l ∈ Rm, we have infλ∈Sm λ⊤(l)+ = max{infλ∈Sm λ⊤l, 0}.
(b) For any h : X → R, we have supx∈X max{h(x), 0} = max{supx∈X h(x), 0}.

Proof. To prove the first statement, we consider the following two cases.
(i) If l ≻ 0, then (l)+ = l. For any λ ∈ Sm, we have λ⊤(l)+ = λ⊤l > 0. Taking the infimum over
λ ∈ Sm on both sides, we have infλ⊤Sm

λ⊤(l)+ = infλ∈Sm λ⊤l ≥ 0. Moreover, from the last
equation we have max{infλ∈Sm λ⊤l, 0} = infλ∈Sm λ⊤l, which proves the statement in this case.
(ii) If l ⊁ 0, then li ≤ 0 for some i ∈ {1, ...,m}. Set ei as the i-th unit vector in Rm, then we
have e⊤i l ≤ 0. One the one hand, since ei ∈ Sm, we have infλ∈Sm

λ⊤l ≤ e⊤i l ≤ 0, and further
max{infλ∈Sm

λ⊤l, 0} = 0. On the other hand, notice that e⊤i (l)+ = 0 and λ⊤(l)+ ≥ 0 for any
λ ∈ Sm, then infλ∈Sm

λ⊤(l)+ = e⊤i (l)+ = 0. Hence, the statement also holds in this case.

To prove the second statement, we also consider two cases.
(i) If h(x0) > 0 for some x0 ∈ X , then supx∈X h(x) ≥ h(x0) > 0, and max{supx∈X h(x), 0} =
supx∈X h(x). Since we also have supx∈X max{h(x), 0} = supx∈X h(x), the statement holds in
this case.
(ii) If h(x) ≤ 0 for all x ∈ X , then supx∈X h(x) ≤ 0, and thus max{supx∈X h(x), 0} = 0.
Meanwhile, for any x ∈ X , we have max{h(x)} = 0, which validates the statement in this case.

■

From the above lemma, we directly have

RII(T ) = sup
x∗∈X∗

max{ inf
λ∈Sm

λ⊤(

T∑
t=1

Ft(xt)−
T∑

t=1

Ft(x
∗)), 0}

= max{ sup
x∗∈X∗

inf
λ∈Sm

λ⊤(

T∑
t=1

Ft(xt)−
T∑

t=1

Ft(x
∗)), 0},

which derives the desired equivalent form. ■

E CALCULATION OF MIN-REGULARIZED-NORM

In this section, we discuss how to efficiently calculate the solutions to min-regularized-norm with
L1-norm and L2-norm.
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Algorithm 2 Frank-Wolfe Solver for Min-Regularized-Norm with L1-Norm
1: Initialize: λt = (γ1

t , . . . , γ
m
t ) = ( 1

m , . . . , 1
m ).

2: Compute the matrix U = ∇Ft(xt)
⊤∇Ft(xt), i.e., Uij = ∇f i

t (xt)
⊤∇f j

t (xt),∀i, j ∈
{1, . . . ,m}.

3: repeat
4: Select an index k ∈ argmaxi∈{1,...,m}{

∑m
j=1 γ

j
tU

ij + α sgn(γi
t − γi

0)}.

5: Compute δ ∈ argmin0≤δ≤1

∥∥δ∇fk
t (xt) + (1− δ)∇Ft(xt)λt

∥∥2
2
+α∥δ(ek−λt)+λt−λ0∥1.

6: Update λt = (1− δ)λt + δek.
7: until δ ∼ 0 or Number of Iteration Limits
8: return λt.

E.1 L1-NORM

Similar to (Sener & Koltun, 2018), we first consider the setting of two objectives, namely m = 2. In
this case, for any λ = (γ, 1− γ),λ0 = (γ0, 1− γ0) ∈ S2, the L1-regularization ∥λ− λ0∥1 equals
to 2|γ − γ0|. Hence min-regularized-norm with L1-norm at round t reduces to λt = (γt, 1 − γt)
where

γt ∈ argmin
0≤γ≤1

∥γg1 + (1− γ)g2∥22 + 2α|γ − γ0|.

Interestingly, the above problem has a closed-form solution.

Proposition 3. Set γL = (g⊤
2 (g2−g1)−α)/∥g2−g1∥22, and γR = (g⊤

2 (g2−g1)+α)/∥g2−g1∥22.
Then min-regularized-norm with L1-norm produces weights λt = (γt, 1− γt) where

γt = max{min{γ′′
t , 1}, 0}, where γ′′

t = max{min{γ0, γR}, γL}.

Proof. We solve the following two quadratic sub-problems, i.e.,

min
0≤γ≤γ0

h1(γ) = ∥γg1 + (1− γ)g2∥22 + 2α(γ0 − γ),

as well as
min

γ0≤γ≤1
h2(γ) = ∥γg1 + (1− γ)g2∥22 + 2α(γ − γ0).

It can be checked that in the former sub-problem, h1 monotonously decreases on (−∞, γR] and
increases on [γR,+∞); in the latter sub-problem, h2 monotonously decreases on (−∞, γL] and
increases on [γL,+∞). Since each sub-problem has its constraint ([0, γ0] or [γ0, 1]), the solution to
the original optimization problem can then be derived by comparing the optimal values of the two
sub-problems with their constraints. Specifically, notice that γL ≤ γR and 0 ≤ γ0 ≤ 1, and we can
consider the following three cases.

(i) When 0 ≤ γ0 ≤ γL ≤ γR, then h1 monotonously decreases on [0, γ0] and its minimum on
[0, γ0] is h1(γ0). Notice that h1(γ0) = h2(γ0). For the sub-problem of h2, we further consider two
situations:
(i-a) If γL ≤ 1, then γL ∈ [γ0, 1], hence the minimum of h2 on [γ0, 1] is h2(γL). Since h2(γL) ≤
h2(γ0) = h1(γ0), the minimal point of the original problem is γL, and hence γt = γL.
(i-b) If γL > 1, then h2 monotonously decreases on [γ0, 1], and we surely have h2(1) ≤ h2(γ0) =
h1(γ0). Hence γt = 1 in this situation.
Combining the above two situations, we have γt = min{γL, 1} in this case.

(ii) When γL ≤ γR ≤ γ0 ≤ 1, then h2 monotonously increases on [γ0, 1] and its minimum on [γ0, 1]
is h2(γ0). Notice that h1(γ0) = h2(γ0). For the sub-problem of h1, similar to the first case, we also
consider two situations:
(ii-a) If γR ≥ 0, then γR ∈ [0, γ0], hence the minimum of h1 on [0, γ0] is h1(γR). Since h1(γR) ≤
h1(γ0) = h2(γ0), the minimal point of the original problem is γR, and hence γt = γR.
(ii-b) If γR < 0, then h1 monotonously increases on [0, γ0]. Hence we have h1(0) ≤ h1(γ0) =
h2(γ0). Hence the solution to the original problem γt = 0.
Combining the above two situations, we have γt = max{γR, 0} in this case.
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Algorithm 3 Frank-Wolfe Solver for Min-Regularized-Norm with L2-Norm
1: Initialize: λt = (γ1

t , . . . , γ
m
t ) = ( 1

m , . . . , 1
m ).

2: Compute the matrix U = ∇Ft(xt)
⊤∇Ft(xt), i.e., Uij = ∇f i

t (xt)
⊤∇f j

t (xt),∀i, j ∈
{1, . . . ,m}.

3: repeat
4: Select an index k ∈ argmaxi∈{1,...,m}{

∑m
j=1 γ

j
tU

ij + α(γi
t − γi

0)}.
5: Compute δ ∈ argmin0≤δ≤1 ∥δ∇fk

t (xt))+(1−δ)∇Ft(xt)λt∥22+α∥δ(ek−λt)+λt−λ0∥22,
which has an analytical form

δ = max{min{ (∇Ft(xt)λt −∇fk
t (xt))

⊤∇Ft(xt)λt + α∥ek − λt∥22
∥∇Ft(xt)λt −∇fk

t (xt)∥22 + α(ek − λt)⊤(λt − λ0)
, 1}, 0}.

6: Update λt = (1− δ)λt + δek.
7: until δ ∼ 0 or Number of Iteration Limits
8: return λt.

(iii) When γL < γ0 < γR, then h1 monotonously decreases on [0, γ0] and h2 monotonously in-
creases on [γ0, 1]. Hence each sub-problem attains its minimum at γ0, and thus γt = γ0.

Summarizing the above three cases gives

γt =


min{γL, 1}, γ0 ≤ γL;

max{γR, 0}, γ0 ≥ γR;

γ0, otherwise.

We can further rewrite the above formula into a compact form as follows, which can be checked
case-by-case.

γt = max{min{γ′′
t , 1}, 0}, where γ′′

t = max{min{γ0, γR}, γL},
This gives the closed-form solution of min-regularized-norm when m = 2. ■

Now that we have derived the closed-form solution to the min-regularized-norm solver with any two
gradients, in principle, we can apply (Sener & Koltun, 2018)’s technique to efficiently compute the
solution to the solver with more than two gradients. We provide the full procedure in Algorithm 2,
which is an extension of (Sener & Koltun, 2018). By following the exact line search technique
(Jaggi, 2013) in MGDA, we get our line search oracle as line 5 in Algorithm 2. The first term is
the same as that in MGDA, and the second term is an extra L1-regularization term related to the
design in Algorithm 1. Unlike the oracle of MGDA that has a closed-form solution by a reduction
to the case of two gradients, the extra L1-norm term makes our oracle difficult to get a closed-form
solution. The reason is that, such an extra term is the L1-norm of a m-dimension vector, hence it
can not simply reduce to the case of two gradients. To proceed, we can directly apply numerical
methods to get the solution (e.g. similar to the implementation in (Liu et al., 2021)).

E.2 L2-NORM

Recall that in min-regularized-norm, the regularization on λ can take various forms. In the following,
we discuss an alternative regularization, i.e., L2-regularization r(λ,λ0) = 1

2∥λ − λ0∥22. In the
discussion, we will show that similar to (Sener & Koltun, 2018), min-regularized-norm with L2-
norm can be computed very efficiently via the Frank-Wolfe method.

Similar to the previous discussion on L1-regularization, we first consider the setting of m = 2. In
this case, for any λ = (γ, 1− γ),λ0 = (γ0, 1− γ0) ∈ S2, the L2-regularization 1

2∥λ−λ0∥22 equals
to (γ − γ0)

2. Hence min-regularized-norm with L2-norm at round t reduces to λt = (γt, 1 − γt)
where

γt ∈ argmin
0≤γ≤1

∥γg1 + (1− γ)g2∥22 + α(γ − γ0)
2.

Since the above problem is in the quadratic form, it also has a closed-form solution. The proof is
elementary and hence omitted.
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Proposition 4. Min-regularized-norm with L2-norm produces weights λt = (γt, 1− γt) where

γt = max{min{ (g2 − g1)
⊤g2 + αγ0

∥g2 − g1∥22 + α
, 1}, 0}.

When m > 2, since λt is constrained to the probability simplex ∆m, similar to the case of L1-
regularization, we can use a Frank-Wolfe method to efficiently calculate the composition weights,
which is presented in Algorithm 3. Note that since the line search (step 2) has a closed-form solution,
its calculation cost is not high, i.e., just the same as the calculation cost of the original min-norm
solver (Sener & Koltun, 2018).

F MORE DETAILS OF THE THEORETICAL RESULTS

In this section, we first prove the remark below Theorem 1, i.e., with proper choices of ηt and αt,
DR-OMMD is guaranteed to have a sublinear regret bound in O(

√
T ). Then we show the tightness

of the above derived regret bound of DR-OMMD. Finally, we give a more detailed comparison with
linearization from the theoretical aspect.

F.1 MORE DETAILS OF THE REMARK BELOW THEOREM 1

Recall that in the remark below Theorem 1 in our main paper, we claim that with proper choice of
ηt and αt, DR-OMMD is guaranteed to attain a sublinear regret bound. We summarize this remark
into the following corollary and provide a strict proof.

Corollary 1. (i) (Fixed learning rate) When setting ηt =
√
2γD

G
√
T

and αt =
4F
ηt

, for any λ0 ∈ Sm,
DR-OMMD achieves the following multi-objective regret

R(T ) ≤ G
√

2γDT .

(ii) (Diminishing learning rate) When setting ηt =
√
2γD

G
√
t
, αt =

4F
ηt

, for any λ0 ∈ Sm, DR-OMMD
attains the following multi-objective regret

R(T ) ≤ 3

2
G
√
2γDT .

Proof. We start from the regret bound regarding λt in Theorem 1. When αt = 4F
ηt

, from the
definition of min-regularized-norm, the composite weights λt generated by DR-OMMD at each
round satisfy

λt ∈ argmin
λ∈Sm

∥∇Ft(xt)λ∥22 +
4F

ηt
∥λ− λ0∥1.

Recall that λ0 ∈ Sm. Hence, for any t ∈ {1, ..., T}, the last term of the regret bound in Theorem 1
can be bounded as

∥∇Ft(xt)λt∥22 +
4F

ηt
∥λt − λ0∥1 = min

λ∈Sm

∥∇Ft(xt)λ∥22 +
4F

ηt
∥λ− λ0∥1 ≤ ∥∇Ft(xt)λ0∥22.

From Assumption 2, each gradient gi
t is bounded as ∥gi

t∥2 ≤ G, hence ∥∇Ft(xt)λ0∥2 ≤∑m
i=1 ∥λi

0g
i
t∥2 =

∑m
i=1 λ

i
0∥gi

t∥2 ≤ G. Therefore, when αt =
4F
ηt

, we have

∥∇Ft(xt)λt∥22 +
4F

ηt
∥λt − λ0∥1 ≤ ∥∇Ft(xt)λ0∥22 ≤ G2.

Plugging it into the regret bound in Theorem 1, we have

R(T ) ≤ γD

ηT
+

ηt
2
G2T = G

√
2γDT ,

which proves the bound with the fixed optimal learning rate.

Alternatively, set ηt =
√
2γD

G
√
t

and utilize
∑T

t=1
1√
t
≤ 2

√
T , we also have

R(T ) ≤ 1

2
G
√

2γDT (1 +

T∑
t=1

1√
t
) ≤ 3

2
G
√
2γDT ,

which proves the bound with the adaptive learning rate. ■
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F.2 THE TIGHTNESS OF DR-OMMD’S BOUND

In this subsection, we show that the derived bound in Corollary 1 is tight w.r.t. m regarding any
gradient-based algorithm. Specifically, we follow the standard worst-case analysis of deriving lower
bounds and construct a special case in which any gradient-based algorithm will incur a regret in the
order of Ω(

√
T ).

Assume f1
t = f2

t = · · · = fm
t at each round t. In this case, the instantaneous gradients of all the ob-

jectives are identical, i.e., gi
t = ∇f i

t (xt) ≡ ∇f1
t (xt) = g1

t ,∀i ∈ {1, ...,m}. For any gradient-based
algorithm, since it can only utilize the gradient information of the objectives, it cannot distinguish
the objective to which a certain gradient belongs. Alternatively speaking, in this case, any multiple
gradient algorithm will treat all gradients in the same way and thus behave like a single-objective
algorithm using the single gradient g1

t . Hence, in intuition, for any gradient-based algorithm, the
worst-case bounds are at least independent of m. In particular, the worst-case bounds of gradient-
based algorithms cannot decrease as m increases; otherwise, the above case will be violated.

In the following, we provide a detailed proof of the tightness of the O(
√
T ) bound. In the above case,

since f1
t = f2

t = · · · = fm
t for any t, the cumulative losses of all the objectives are also identical,

i.e.,
∑T

t=1 f
1
t =

∑T
t=1 f

2
t = · · · =

∑T
t=1 f

m
t . Therefore, the Pareto set X ∗ of the cumulative vector

loss
∑T

t=1 Ft coincides with the optimal decision set of the cumulative loss
∑T

t=1 f
1
t of the first

objective, i.e., X ∗ = argminx∈X
∑T

t=1 f
1
t (x). Recall our definition of the multi-objective regret.

Since λ⊤Ft(x) = f1
t (x) for any λ ∈ Sm, we have

R(T ) = sup
x∗∈X∗

(

T∑
t=1

f1
t (xt)−

T∑
t=1

f1
t (x

∗)) =

T∑
t=1

f1
t (xt)− min

x∗∈X

T∑
t=1

f1
t (x

∗),

which exactly reduces to the single-objective regret RS(T ) defined by the losses {f1
t }Tt=1 of the first

objective. Hence we have R(T ) = RS(T ) in this case. Since the losses {f1
t }Tt=1 of the first objective

can be chosen adversarially, we can follow Section 3.2 in (Hazan et al., 2016) to construct a certain
sequence {f1

t }Tt=1 that admits a lower single-objective regret bound of Ω(
√
T ). Hence in this certain

case, any multiple gradient algorithm will admit a multi-objective regret R(T ) = Ω(
√
T ) w.r.t. T

and m, matching our derived regret bound for DR-OMMD in terms of both T and m.

Some readers may suspect it unreasonable that in the multi-objective setting, the derived regret
bounds do not increase as m increases. Now we explicate the rationality of such independence in
the following.

In fact, the independence of m lies in the adoption of PSG in the formulation of the regret. Recall
that, in the definition of PSG, “∃i ∈ {1, . . . ,m}” means that it just needs to pick one coordinate
i to satisfy f i

t (xt) − ϵ < f i
t (x

′′), which omits the dependency of m. We can see this point from
another perspective. Recall that in the derivation of Proposition 1, we know that the regret R(T )

has an equivalent form, namely supx∗∈X∗ infλ∗∈Sm(λ∗)⊤
∑T

t=1(Ft(xt)−Ft(x
∗)), or equivalently

supx∗∈X∗ mini∈{1,...,m}
∑T

t=1(f
i
t (xt) − f i

t (x
∗)). In particular, PSG takes a minimum operation

over all objectives, and thus it does not necessarily increase as m increases.

There is another intuitive way that can help understand the rationality of the independence of m. As
is well recognized in existing research in multi-objective optimization (Emmerich & Deutz, 2018),
the proportion of the Pareto optimal solutions (or more precisely, non-dominated solutions) in the
decision domain tends to increase rapidly as the number of objectives increases. As a consequence,
it might not be harder to reach the Pareto optimal set when m turns larger, hence intuitively, the
regret bound does not necessarily increase as m increases.

F.3 MORE DETAILS IN THE COMPARISON WITH LINEARIZATION

Recall that in the remark below Theorem 1, we show that our derived bound for DR-OMMD is
smaller than that of linearization, and discuss the margin between the two regret bounds in the two-
objective setting with linear losses. We now summarize the result in Theorem 2 in the following.
Theorem 2. Consider a two-objective optimization setting with linear losses. Suppose the loss
functions are f1

t (x) = x⊤g1
t and f2

t (x) = x⊤g2
t at each round t. For any λ0 = (γ0, 1−γ0) ∈ Sm,
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let λt = (γt, 1 − γt) denote the composite weights produced by min-regularized-norm with L1-
norm. When the regularization strength is set as αt = 4F/ηt, the margin between the regret bound
of linearization with fixed weights λ0 and that of DR-OMMD with composite weights λt is at least

M ≥
T∑

t=1

ηt
2
(γt − γ0)

2∥g1
t − g2

t ∥22.

Before proving the theorem, we remark that the two bounds are basically in the same order. Note
that this theoretical result is also very commonly seen in the offline setting, where multiple gradi-
ent algorithms often have the same (convergence) rate as linearization (Yu et al., 2020; Liu et al.,
2021). The benefit of multiple gradient algorithms is mainly due to the implementation of gradient
composition. For example, the concept of common descent (Sener & Koltun, 2018; Yu et al., 2020)
eliminates the gradient conflicting issue; the resulting algorithm achieves substantial performance
improvements compared to linearization in their experiments. In this paper, we move one step for-
ward and discuss the margin between DR-OMMD and linearization. We show that such a margin
is due to the gradient difference g1

t − g2
t and the gap between the pre-defined weights λ0 and the

adaptive weights λt. This is the best we can do for now. The regret bound comparison for m ≥ 3 is
left for future research.

Proof of Theorem 2. We first write out the regret bounds of both methods. For DR-OMMD with
αt = 4F/ηt, Theorem 1 provides the following regret bound

RDR-OMMD(T ) ≤
γD

ηT
+

T∑
t=1

ηt
2

min
λ∈Sm

{∥∇Ft(xt)λ∥22 +
4F

ηt
∥λ− λ0∥1}.

For linearization with fixed weights λ0 ∈ Sm, it can be viewed as single-objective optimization with
linearized loss λ⊤

0 Ft. Hence, we can directly borrow the tight bound of OMD (e.g., Theorem 6.8 in
(Orabona, 2019)) and derive a bound

Rlinear(T ) ≤
γD

ηT
+

T∑
t=1

ηt
2
∥∇Ft(xt)λ0∥22.

The margin between the above two bounds takes

M =

T∑
t=1

ηt
2
(∥∇Ft(xt)λ0∥22 − min

λ∈Sm

{∥∇Ft(xt)λ∥22 +
4F

ηt
∥λ− λ0∥1}),

which stems from different choices of composite weights. We investigate the margin at each round.

Lemma 3. In a two-objective setting, suppose the gradients are g1 and g2 at some specific round
t, and the corresponding gradient matrix G = [g1, g2]. For any λ0 = (γ0, 1 − γ0) ∈ Sm, let
λt = (γt, 1 − γt) denote the composite weights produced by min-regularized-norm with L1-norm,
then the following inequality holds, i.e.,

∥Gλ0∥22 − (∥Gλt∥22 + α∥λt − λ0∥1) ≥ (γ0 − γt)
2∥g2 − g1∥22.

Proof. Denote the left side of the target inequality as M(λt,λ0), then it can be simplified as

M(λt,λ0) = (Gλ0 −Gλt)
⊤(Gλ0 +Gλt)− α∥λt − λ0∥1

= (λ0 − λt)
⊤G⊤G(λ0 + λt)− α∥λt − λ0∥1

To leverage this term, we need to plug the derived composite weights λt into M(λt,λ0). Recall
that in the two-objective setting, the weight γt is given as

γt = max{min{γ′′
t , 1}, 0}, where γ′′

t = max{min{γ0, γR}, γL},

where γL = (g⊤
2 (g2 − g1)− α)/∥g2 − g1∥22 and γR = (g⊤

2 (g2 − g1) + α)/∥g2 − g1∥22. Since the
maximum and minimum operations will truncate the value of the produced weight, we now calculate
M(λt,λ0) by case. Specifically, notice that γL < γR and 0 ≤ γ0 ≤ 1, we consider the following
cases.
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Case 1: When γR < 0, we must have γL < γR < 0 ≤ γ0, which leads to γt = 0. In this case, we
have λ0 − λt = (γ0,−γ0) and λ0 + λt = (γ0, 2− γ0). Therefore, M(λt,λ0) can be computed as

M(λt,λ0) = (γ0g1 − γ0g2)
⊤(γ0g1 + (2− γ0)g2)− 2αλ0.

Also, from the condition γR < 0, we have α < g⊤
2 (g1 − g2). Since λ0 ≥ 0, plugging it into the

above inequality, we have

M(λt,λ0) ≥ (γ0g1 − γ0g2)
⊤(γ0g1 − γ0g2) = γ2

0∥g1 − g2∥22.
In this case, since γt = 0, we derive the desired inequality.

Case 2: When γL > 1, we must have γ0 ≤ 1 < γL < γR, which results in γt = 1. In this case, we
have λ0−λt = (γ0−1, 1−γ0) and λ0+λt = (γ0+1, 1−γ0). Now M(λt,λ0) can be calculated
as

M(λt,λ0) = ((γ0 − 1)g1 + (1− γ0)g2)
⊤((γ0 + 1)g1 + (1− γ0)g2)− 2α(1− γ0).

Notice that the condition γL > 1 gives α < g⊤
1 (g2 − g1). Since 1 − γ0 ≥ 0, plugging it into the

above inequality, we have

M(λt,λ0) ≥ ((γ0 − 1)g1 + (1− γ0)g2)
⊤((γ0 − 1)g1 + (1− γ0)g2) = (1− γ0)

2∥g1 − g2∥22.
In this case, since γt = 1, we derive the desired inequality.

Case 3: When 0 ≤ γL ≤ γR ≤ 1, the margin is a bit more complex since the value of λt further
depends on the relation between λ0,λL, and λR. Specifically, we consider the following cases.

(i) If 0 ≤ γL ≤ γ0 ≤ γR ≤ 1, then γt = γ0. In this case, the inequality trivially holds.

(ii) If 0 ≤ γ0 ≤ γL ≤ 1, then γt = γL. In this case, since ∥λt − λ0∥1 = 2(γL − γ0), we can
calculate M(λt,λ0) as

M(λt,λ0) = ((γ0 − γL)g1 + (γL − γ0)g2)
⊤((γ0 + γL)g1 + (2− γ0 − γL)g2)− 2α(γL − γ0)

= (γ0 − γL)((g1 − g2)
⊤((γ0 + γL)g1 + (2− γ0 − γL)g2) + 2α).

Since γt = γL = (g⊤
2 (g2−g1)−α)/∥g2−g1∥22, we have α = (g1−g2)

⊤(−γLg1+(γL− 1)g2).
Therefore, we further have
(g1 − g2)

⊤((γ0 + γL)g1 + (2− γ0 − γL)g2) + 2α = (g1 − g2)
⊤((γ0 − γL)g1 + (γL − γ0)g2)

= (g1 − g2)
⊤(γ0 − γL)(g1 − g2).

Plugging it into the above equation on M(λt,λ0), we derive

M(λt,λ0) = (γL − γ0)
2∥g1 − g2∥22

(iii) If 0 ≤ γR ≤ γ0 ≤ 1, then γt = γR. In this case, ∥λt − λ0∥1 = 2(γ0 − γR), and M(λt,λ0)
can be calculated as
M(λt,λ0) = ((γ0 − γR)g1 + (γR − γ0)g2)

⊤((γ0 + γR)g1 + (2− γ0 − γR)g2)− 2α(γ0 − γR)

= (γ0 − γR)((g1 − g2)
⊤((γ0 + γR)g1 + (2− γ0 − γR)g2)− 2α).

Since γt = (g⊤
2 (g2 − g1) + α)/∥g2 − g1∥22, we have α = (g1 − g2)

⊤(γRg1 + (1− γR)g2), then

(g1 − g2)
⊤((γ0 + γR)g1 + (2− γ0 − γR)g2)− 2α = (g1 − g2)

⊤(γ0 − γR)(g1 − g2).

Plugging it into the above equation on M(λt,λ0), we derive

M(λt,λ0) = (γR − γ0)
2∥g1 − g2∥22

Combining all of the above cases, we prove the lemma. ■

For any t ∈ {1, ..., T}, set g1 = g1
t , g2 = g2

t (i.e., G = Gt), and α = 4F
ηt

in Lemma 3, we have

∥Gtλ0∥22 − (∥Gtλt∥22 +
4F

ηt
∥λt − λ0∥1) ≥ (γt − γ0)

2∥g2
t − g1

t ∥22.

Since ∥λt−λ0∥22 = 2(γt−γ0)
2, summing the above inequality over t ∈ {1, ..., T}, we can directly

calculate the margin as

M ≥
T∑

t=1

ηt
4
∥λt − λ0∥22 · ∥g2

t − g1
t ∥22,

which proves the theorem. ■

23



Published as a conference paper at ICLR 2023

(a) Effect of Preference (b) Learning Curve
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Figure 3: Results to verify the effectiveness of adaptive regularization on covtype. (a) Performance
of DR-OMMD and linearization under varying λ0 = (λ1

0, 1−λ1
0). (b) Performance using the optimal

weights λ0 = (0.1, 0.9).
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Figure 4: More empirical results of the multi-task deep online experiments on MultiMNIST. The
plots show the average cumulative loss, training loss and test loss of DR-OMMD and various base-
lines on both tasks (task L and task R).

G MORE EXPERIMENTAL RESULTS

G.1 MORE DETAILS OF THE EXPERIMENTAL SETUP

The protein and covtype datasets used in our experiments are publicly available in (Dua & Graff,
2017). The MultiMNIST dataset is acquired by the code provided by (Sener & Koltun, 2018).

All runs are deployed on Xeon(R) E5-2699 @ 2.2GHz.

G.2 MORE RESULTS FOR ADAPTIVE REGULARIZATION

We supplement the empirical results on covtype in Figure 3, which have been omitted from our main
paper due to the lack of space. These results are consistent with the results on protein as presented
in our main paper.

G.3 MORE RESULTS FOR ONLINE DEEP MULTI-TASK LEARNING

In our main paper, due to the page limit, Figure 2 only reports the average cumulative loss of DR-
OMMD and various baselines on MultiMNIST. Here we supplement the results on the training loss
and the test loss in Figure 4. The results are consistent with the average cumulative loss, showing
superiority of DR-OMMD over linearization and MGDA in the non-convex setting.

H OMITTED PROOFS OF PROPOSITION 2 (MIN-NORM MAY INCUR LINEAR
REGRETS)

Proof. As we have described in our main paper, we consider the following two-objective optimiza-
tion problem. Decision domain is set as X = {(u, v) | u + v ≤ 1

2 , v − u ≤ 1
2 , v ≥ 0}. At each
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round t, the loss function Ft : X → R2 takes

Ft(x) =

{
(∥x− a∥22, ∥x− b∥22), t = 2k − 1, k = 1, 2, ...;

(∥x− b∥22, ∥x− c∥22), t = 2k, k = 1, 2, ...,

where a = (−2,−1), b = (0, 1), c = (2,−1). For simplicity of analysis, we first consider the case
when the total time horizon T is an even number. Then it can be checked that the cumulative loss
function takes

T∑
t=1

Ft(x) =
T

2
· (∥x− a∥22 + ∥x− b∥22, ∥x− b∥22 + ∥x− c∥22)

= T · ((u+ 1)2 + v2 + 2, (u− 1)2 + v2 + 2),

for any x = (u, v) ∈ X . Obviously the Pareto optimal set X ∗ of the cumulative loss coincides with
the line segment between (−1, 0) and (1, 0), i.e., X ∗ = {(u, v) | − 1

2 ≤ u ≤ 1
2 , v = 0} (note that

X ∗ is the intersection of the line segment and X ).

Now consider equipping OMD with vanilla min-norm, where the composite gradients are produced
by the min-norm method. Suppose the learning process starts at any x1 = (u1, v1) ∈ X such that
v1 > 0. Note that this is true if and only if x1 /∈ X ∗. Then for the iterate xt = (ut, vt) at each
round t, we can directly calculate the gradients as

g1
t =

{
2(xt − a) = (2ut + 4, 2vt + 2), t = 2k − 1;

2(xt − b) = (2ut, 2vt − 2), t = 2k.

g2
t =

{
2(xt − b) = (2ut, 2vt − 2), t = 2k − 1;

2(xt − c) = (2ut − 4, 2vt + 2), t = 2k.

The min-norm weights can be computed as λt = (γt, 1− γt) where

γt =


(xt − b)⊤(a− b)

∥a− b∥22
=

1− ut − vt
4

, t = 2k − 1;

(xt − c)⊤(b− c)

∥b− c∥22
=

3− ut + vt
4

, t = 2k.

The composite gradient

gcomp
t =

{
γt · 2(x− a) + (1− γt) · 2(x− b) = (ut − vt + 1, −ut + vt − 1), t = 2k − 1;

γt · 2(x− b) + (1− γt) · 2(x− c) = (−ut − vt − 1, −ut − vt − 1), t = 2k.

Recall that the update form of OMD takes

xt+1 = ΠX (xt − ηtg
comp
t ),

where ηt > 0 is the learning rate and ΠX is the projection operation onto X . Denote the iterate xt =
(ut, vt) at each round. Now we can investigate the relation between xt and xt+1 by considering the
following two cases:

(i) If xt − ηtg
comp
t ∈ X , then we do not need projection, and directly have xt+1 = xt − ηtg

comp
t .

(ii) If xt − ηtg
comp
t /∈ X , then we need to project xt − ηtg

comp
t back to X . Denote x′

t+1 =
xt − ηtg

comp
t . For simplicity we consider the projection based on the Euclidean distance, namely

ΠX (x) = argminx′∈X ∥x − x′∥22. Since the composite gradient is orthogonal to the boundary
on which the iterate after projection xt+1 = ΠX (x′

t+1) is located, it can be checked that xt+1

lies on the line segment linking xt and x′
t+1. Alternatively speaking, xt+1 can be expressed as

xt − η′tg
comp
t for some 0 ≤ η′t < ηt.

Combining the above two cases, we know that at each round t, there exists some η′t ∈ [0, ηt] such
that xt+1 = xt − η′tg

comp
t . Now we can analyze the relation between each entry of xt and xt+1.

Specifically, since the second entry of the composite gradient is always non-positive, namely −ut +
vt − 1 ≤ 0 and −ut − vt − 1 ≤ 0, we have vt+1 ≥ vt for any t. Moreover, since the first entry of
gcomp
t is non-negative when t = 2k− 1, namely u2k−1 − v2k−1 +1 ≥ 0, we have u2k ≤ u2k−1 for
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any k; since the first entry of gcomp
t is non-positive when t = 2k, namely −u2k − v2k − 1 ≤ 0, we

have u2k+1 ≥ u2k for any k.

Now we can go back to analyze the gap between the composite weights at any two consecutive
rounds. It is easy to verify that γ2k−1 < γ2k and γ2k > γ2k+1, hence we have

∥λ2k − λ2k−1∥1 = 2(γ2k − γ2k−1) =
2− (u2k − u2k−1) + (v2k + v2k−1)

2
≥ 1 + v1,

∥λ2k+1 − λ2k∥1 = 2(γ2k − γ2k+1) =
2− (u2k − u2k+1) + (v2k + v2k+1)

2
≥ 1 + v1.

Therefore, the composite weights λt indeed change radically at any two consecutive rounds.

The above analysis on vt also implies the failure of min-norm in this problem. Recall that any Pareto
optimal solution x∗ = (u∗, v∗) ∈ X ∗ must satisfy v∗ = 0. Suppose the initial iterate x1 = (u1, v1)
does not lie in X ∗, i.e., v1 > 0, which is almost sure for random initialization x1 ∈ X . Then we
iteratively have 0 < v1 ≤ v2 ≤ ... ≤ vT , which means that xt moves away from the Pareto set X ∗.

In the following, we strictly prove that min-norm indeed incurs a linear multi-objective regret. To
calculate R(T ), we first investigate the quantity R(x∗,λ) = λ⊤ ∑T

t=1(Ft(xt) − Ft(x
∗)) for any

fixed weights λ = (γ, 1 − γ) ∈ S2 and best fixed decision x∗ = (u∗, 0) ∈ X ∗. Specifically, recall
the form of

∑T
t=1 Ft derived above, then we have

λ⊤
T∑

t=1

Ft(x
∗) = (γ(u∗ + 1)2 + (1− γ)(u∗ − 1)2 + 2)T.

Denote the cumulative loss
∑T

t=1 Ft(xt) = (L1, L2), we now consider the loss of each objective
L1 and L2 separately. Specifically, for the first objective, we have

L1 =

T/2∑
k=1

((u2k−1 + 2)2 + u2
2k + (v2k−1 + 1)2 + (v2k − 1)2).

Since 0 < v1 ≤ v2 ≤ ... ≤ vT ≤ 1, for the term regarding vt we have
T/2∑
k=1

((v2k−1 + 1)2 + (v2k − 1)2) = (v1 + 1)2 + (vT − 1)2 +

T/2−1∑
k=1

((v2k − 1)2 + (v2k+1 + 1)2)

≥
T/2−1∑
k=1

((v2k − 1)2 + (v2k + 1)2) =

T/2−1∑
k=1

(2v22k + 2)

≥
T/2−1∑
k=1

(2v21 + 2) = (2v21 + 2)(
T

2
− 1) ≥ v21T + T − 2.

For the k-th term regarding ut, we have

(u2k−1 + 2)2 + u2
2k = (u2k−1 + 1)2 + (u2k + 1)2 + 2(u2k−1 − u2k) + 2.

Recall that we have derived u2k ≤ u2k−1, thus we have
T/2∑
k=1

(u2k−1+2)2+u2
2k ≥

T/2∑
k=1

((u2k−1+1)2+(u2k+1)2+2) ≥
T∑

t=1

(ut+1)2+T ≥ (ū+1)2T +T,

where ū = 1
T

∑T
t=1 ut and the last inequality is derived from Jensen’s inequality. In summary, for

the cumulative loss L1 of the first objective, we have

L1 ≥ (ū+ 1)2T + v21T + 2T − 2.

Similarly, we can analyze the cumulative loss L2 of the second objective

L2 =

T/2∑
k=1

(u2
2k−1 + (u2k − 2)2 + (v2k−1 − 1)2 + (v2k + 1)2).
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Since 0 < v1 ≤ v2 ≤ ... ≤ vT ≤ 1, for the term regarding vt we have
T/2∑
k=1

((v2k−1 − 1)2 + (v2k + 1)2) ≥
T/2∑
k=1

((v2k−1 − 1)2 + (v2k−1 + 1)2) ≥ v21T + T.

For the term regarding ut, we also have
T/2∑
k=1

(u2
2k−1 + (u2k − 2)2) =

T/2∑
k=1

((u2k−1 − 1)2 + (u2k − 1)2 + 2(u2k−1 − u2k) + 2)

≥
T∑

t=1

(ut − 1)2 + T ≥ (ū− 1)2T + T,

where the last inequality is derived from Jensen’s inequality. Therefore, we have

L2 ≥ (ū− 1)2T + v21T + 2T.

Combining the above inequalities, we have

R(x∗,λ) = γL1 + (1− γ)L2 − λ⊤
T∑

t=1

Ft(x
∗)

≥ γ((ū+ 1)2 − (u∗ + 1)2) + (1− γ)((ū− 1)2 − (u∗ − 1)2) + v21T − 2γ.

For any λ ∈ S2 (i.e., γ ∈ [0, 1]), set x′ = (ū, 0) ∈ X ∗, then it holds that

R(x′,λ) ≥ v21T − 2.

Equivalently, the multi-objective regret satisfies

R(T ) = sup
x∗∈X∗

inf
λ∈S2

R(x∗,λ) ≥ inf
λ∈S2

R(x′,λ) ≥ v21T − 2,

which is linear w.r.t. T for any x1 = (u1, v1) ∈ X such that v1 > 0.

We now investigate the case when T is an odd number. Since the calculation of the composite
weights λt and the composite gradient gcomp

t at each round is independent of the total time horizon
T , we still have ∥λt+1 − λt∥1 ≥ v1 + 1 for any t. Hence the first desired property also holds for
any odd T .

It remains to prove that OMD with min-norm still incurs a linear regret when T is odd. In this
case, the Pareto optimal set X ∗ does not lie in the x-axis anymore, hence it is difficult to directly
compute R(T ). However, we can still use our derived R(x∗,λ) for any even T to estimate the
regret. Specifically, set x′ = ( 1

T−1

∑T−1
t=1 ut, 0); from the above derivation with even T , for any

λ ∈ S2, we still have (note that now T − 1 is an even number)

λ⊤
T−1∑
t=1

Ft(xt)− λ⊤
T−1∑
t=1

Ft(x
′) ≥ v21T − 2.

Since for any x ∈ X , we have 0 ≤ ∥x− a∥22, ∥x− b∥22, ∥x− c∥22 ≤ 10, we have

R(x′,λ) = λ⊤
T∑

t=1

Ft(xt)− λ⊤
T∑

t=1

Ft(x
′) ≥ v21T − 12.

Furthermore, from the definition of Pareto optimality, there exists some x′′ ∈ X ∗ that Pareto domi-
nates x′ regarding the cumulative loss

∑T
t=1 Ft, namely

∑T
t=1 Ft(x

′′) ⪯
∑T

t=1 Ft(x
′). Hence

R(x′′,λ) = λ⊤
T∑

t=1

Ft(xt)− λ⊤
T∑

t=1

Ft(x
′′) ≥ R(x′,λ),

for any λ ∈ S2. Therefore, the multi-objective regret

R(T ) = sup
x∗∈X∗

inf
λ∈S2

R(x∗,λ) ≥ inf
λ∈S2

R(x′′,λ) ≥ inf
λ∈S2

R(x′,λ) ≥ v21T − 12,

which is also linear w.r.t. T for any x1 = (u1, v1) ∈ X such that v1 > 0. ■
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I OMITTED PROOFS OF THEOREM 1

Proof. We start from the definition of the multi-objective regret RII(T ) (which is abbreviated as
R(T )). Specifically, for any λ ∈ Sm and λ1 . . . ,λT ∈ Sm, it holds that

R(T ) = sup
x∗∈X∗

inf
λ∗∈Sm

T∑
t=1

λ∗⊤(Ft(xt)− Ft(x
∗)) ≤ sup

x∗∈X∗

T∑
t=1

λ⊤(Ft(xt)− Ft(x
∗))

= sup
x∗∈X∗

T∑
t=1

(
(λ− λt)

⊤Ft(xt) + λt
⊤(Ft(xt)− Ft(x

∗)) + (λt − λ)⊤Ft(x
∗)
)

≤
T∑

t=1

F∥λ− λt∥1 + sup
x∗∈X∗

T∑
t=1

λt
⊤(Ft(xt)− Ft(x

∗)) +

T∑
t=1

F∥λ− λt∥1

= 2F

T∑
t=1

∥λ− λt∥1 + sup
x∗∈X∗

T∑
t=1

λt
⊤(Ft(xt)− Ft(x

∗)).

To proceed, notice that if the composite weights λt are given beforehand instead of being calculated
via min-regularized-norm, DR-OMMD acts just like standard OMD using linearized loss λtFt.
Hence, the second term in the above regret bound can be further analyzed in a similar way as single-
objective OMD (Srebro et al., 2011; Cesa-bianchi et al., 2012). Specifically, at each round t, since
Ft is coordinate-wise convex, the linearized loss λ⊤

t Ft is also convex. Also notice that the composite
gradient gt = ∇Ft(xt)λt is exactly the gradient of λ⊤

t Ft at xt. Hence for any x∗ ∈ X ∗, we have

λ⊤
t Ft(xt)− λ⊤

t Ft(x
∗) ≤ g⊤

t (xt − x∗) = g⊤
t (xt+1 − x∗) + g⊤

t (xt − xt+1).

From the first-order optimal condition of xt+1, for any x′ ∈ X , we have

(ηt∇Ft(xt)λt +∇R(xt+1)−∇R(xt))
⊤(x′ − xt+1) ≥ 0.

Recall that gt = ∇Ft(xt)λt. We set x′ = x∗ and combine the above two inequalities, which
derives

λ⊤
t Ft(xt)− λ⊤

t Ft(x
∗) ≤ 1

ηt
(∇R(xt+1)−∇R(xt))

⊤(x∗ − xt+1) + g⊤
t (xt − xt+1).

Recall the definition of Bregman divergence BR. We can check that (also see (Beck & Teboulle,
2003))

BR(x
∗,xt)−BR(x

∗,xt+1)−BR(xt+1,xt) = (∇R(xt+1)−∇R(xt))
⊤(x∗ − xt+1).

Since R is 1-strongly convex, we have BR(xt+1,xt) ≥ ∥xt+1 − xt∥22/2. Hence

λ⊤
t Ft(xt)−λ⊤

t Ft(x
∗) ≤ 1

ηt
(BR(x

∗,xt)−BR(x
∗,xt+1)−

1

2
∥xt+1 − xt∥22) + g⊤

t (xt − xt+1).

Moreover, from the Cauchy-Schwartz inequality we have

g⊤
t (xt − xt+1) ≤

ηt
2
∥gt∥22 +

1

2ηt
∥xt − xt+1∥22.

Combining the above two inequalities, we derive

λt
⊤Ft(xt)− λt

⊤Ft(x
∗) ≤ 1

ηt
(BR(x

∗;xt)−BR(x
∗;xt+1)) +

ηt
2
∥∇Ft(xt)λt∥22,

for any x∗ ∈ X ∗. Summing it over t ∈ {1, ..., T} and utilizing BR(x
∗;xT+1) ≥ 0, we have

T∑
t=1

λt
⊤(Ft(xt)−Ft(x

∗)) ≤ 1

η1
BR(x

∗;x1)+

T∑
t=2

(
1

ηt
− 1

ηt−1
)BR(x

∗;xT )+

T∑
t=1

ηt
2
∥∇Ft(xt)λt∥22.

Since BR(x
∗;xt) ≤ γD and ηt ≤ ηt−1 for any t, we have ( 1

ηt
− 1

ηt−1
)BR(x

∗;xT ) ≤ ( 1
ηt

−
1

ηt−1
)γD. Hence we further have

T∑
t=1

λt
⊤(Ft(xt)− Ft(x

∗)) ≤ γD

ηT
+

T∑
t=1

ηt
2
∥∇Ft(xt)λt∥22.

Taking the supremum over x∗ ∈ X ∗ and plugging it back to the above regret bound, we prove the
theorem. ■
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J REGRET ANALYSIS IN THE STRONGLY CONVEX SETTING

In this section, we discuss the regret bound of DR-OMMD in the strongly convex setting, where
each loss function f i

t is H-strongly convex. Recall that most literature in this setting only considers
OGD (Zhao & Zhang, 2021; Wan et al., 2022), which is a special case of OMD that instantiates
the regularization function on the iterate x as L2-regularizer, i.e., R(x) = 1

2∥x∥
2
2. Hence, in the

following, we mainly analyze the bound of the OGD-type variant in the strongly convex setting.
Theorem 3. Assume that for any t ∈ {1, ..., T}, i ∈ {1, ...,m}, the loss function f i

t is H-strongly
convex. Set ηt = 1

Ht and R(x) = 1
2∥x∥2 in DR-OMMD, then it attains the following regret

R(T ) ≤ H

2
∥x1 − x∗∥22 +

T∑
t=1

1

2Ht
(∥∇Ft(xt)λt∥22 + 4FHt∥λt − λ0∥1).

Remark. By setting αt = 4FHt, the above bound reduces to

R(T ) ≤ H

2
∥x1 − x∗∥22 +

T∑
t=1

1

2Ht
min
λ∈Sm

{∥∇Ft(xt)λ∥22 + αt∥λ− λ0∥1}

≤ H

2
∥x1 − x∗∥22 +

T∑
t=1

∥∇Ft(xt)λ0∥22
2Ht

≤ H

2
∥x1 − x∗∥22 +

G2

2H

T∑
t=1

1

t
= O(log T ),

which aligns with the optimal regret bound O(log T ) in the single-objective strongly convex setting
(Hazan et al., 2016).

Proof. From the derivation of Theorem 1, we have

R(T ) ≤ 2F

T∑
t=1

∥λ− λt∥1 + sup
x∗∈X∗

T∑
t=1

λt
⊤(Ft(xt)− Ft(x

∗)).

Denote the composite gradient as gt = ∇Ft(xt)λt, which equals to the gradient of λtFt at xt.
Since λt ∈ Sm, λtFt is a convex combination of f1

t , ..., f
m
t , hence λtFt is also H-strongly convex.

For any x∗ ∈ X ∗, we now have

λ⊤
t Ft(xt)− λ⊤

t Ft(x
∗) ≤ g⊤

t (xt − x∗)− H

2
∥xt − x∗∥22.

We now bound the term g⊤
t (xt−x⋆). When R(x) = 1

2∥x∥
2
2, the Bregman divergence BR(x, z) =

1
2∥x − z∥22 and the OMD update reduces to OGD, i.e., xt+1 = ΠX (xt − ηtgt) (ΠX denotes the
standard projection onto X ). Plugging the above update rule into ∥xt+1 − x∗∥22, we derive

∥xt+1 − x⋆∥22 = ∥ΠX (xt − ηtgt)− x⋆∥22 ≤ ∥xt − ηtgt − x⋆∥22 ,
where the last inequality is derived from the Pythagorean theorem. Hence we have

∥xt+1 − x⋆∥22 ≤ ∥xt − x⋆∥22 + η2t ∥gt∥
2
2 − 2ηtg

⊤
t (xt − x⋆) ,

or equivalently

g⊤
t (xt − x⋆) ≤

∥xt − x⋆∥22 − ∥xt+1 − x⋆∥22
2ηt

+
ηt
2
∥gt∥22 .

Plugging it into the inequality of λt
⊤Ft(xt)− λt

⊤Ft(x
∗), we derive

λt
⊤Ft(xt)− λt

⊤Ft(x
∗) ≤

∥xt − x⋆∥22 − ∥xt+1 − x⋆∥22
2ηt

+
ηt
2
∥gt∥22 −

H

2
∥xt − x∗∥22,

for any x∗ ∈ X ∗. Summing it over t ∈ {1, ..., T}, we have
T∑

t=1

λt
⊤(Ft(xt)− Ft(x

∗))

≤ 1

2η1
∥x1 − x∗∥22 +

T∑
t=2

(
1

2ηt
− 1

2ηt−1
− H

2
)∥xt − x∗∥22 +

T∑
t=1

ηt
2
∥∇Ft(xt)λt∥22.
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When setting ηt = 1/Ht, we have

1

2ηt
− 1

2ηt−1
− H

2
=

Ht

2
− H(t− 1)

2
− H

2
= 0.

Consequently, we have

T∑
t=1

λt
⊤(Ft(xt)− Ft(x

∗)) ≤ H

2
∥x1 − x∗∥22 +

T∑
t=1

1

2Ht
∥∇Ft(xt)λt∥22.

Plugging it into the above regret form, we derive the desired regret bound. ■
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