
QUIK: Towards End-to-end 4-Bit Inference
on Generative Large Language Models

Anonymous ACL submission

Abstract
Large Language Models (LLMs) from the GPT001
family have become extremely popular, lead-002
ing to a race towards reducing their inference003
costs to allow for efficient local computation.004
However, the vast majority of existing work fo-005
cuses on weight-only quantization, which can006
reduce runtime costs in the memory-bound one-007
token-at-a-time generative setting, but does not008
address costs in compute-bound scenarios, such009
as batched inference or prompt processing. In010
this paper, we address the general quantization011
problem, where both weights and activations012
should be quantized, which leads to compu-013
tational improvements in general. We show014
that the majority of inference computations for015
large generative models can be performed with016
both weights and activations being cast to 4 bits,017
while at the same time maintaining good accu-018
racy. We achieve this via a hybrid quantization019
strategy called QUIK that compresses most of020
the weights and activations to 4-bit, while keep-021
ing a small fraction of “outlier” weights and022
activations in higher-precision. QUIK is that023
it is designed with computational efficiency in024
mind: we provide GPU kernels matching the025
QUIK format with highly-efficient layer-wise026
runtimes, which lead to practical end-to-end027
throughput improvements of up to 3.4x relative028
to FP16 execution. We provide detailed stud-029
ies for models from the OPT, LLaMA-2 and030
Falcon families, as well as a first instance of031
accurate inference using quantization plus 2:4032
sparsity. Anonymized code is available here.033

1 Introduction034

Large language models (LLMs) from the Genera-035

tive Pretrained Transformer (GPT) family (Radford036

et al., 2019) are extremely popular. One surprising037

property is the ability to quantize them, e.g., (Fran-038

tar et al., 2022; Dettmers et al., 2022; Lin et al.,039

2023; Yuan et al., 2023), enabling efficient local040

generative inference for these models, even on per-041

sonal computers. The vast majority of work on042

LLM quantization can be categorized as follows:043

• Weight-only quantization methods (Frantar et al., 044

2022; Dettmers et al., 2022; Lin et al., 2023; 045

Dettmers et al., 2023; Lin et al., 2023; Kim et al., 046

2023) that help reduce the massive memory- 047

transfer costs of LLM inference. Yet, these 048

methods do not reduce computation, and cannot 049

provide significant speedup for computationally- 050

bound settings, such as prompt processing. 051

• Joint weight-activation quantization methods, 052

which can provide computational improvements, 053

but either focus exclusively on 8-bit weights and 054

activations (8W8A) (Xiao et al., 2022; Dettmers 055

et al., 2022), or execute with large amounts of ac- 056

curacy loss relative to their uncompressed coun- 057

terparts (Yuan et al., 2023; Shao et al., 2023). 058

Thus, there is still a significant gap between 059

compressed formats supported by hardware— 060

specifically, NVIDIA GPUs natively support accel- 061

erated 4bit matrix multiplication on both the Am- 062

pere and Lovelace architectures (NVIDIA, 2023)— 063

and quantization algorithms which would allow 064

accurate inference on hardware-supported formats. 065

Contribution. In this paper, we look to bridge 066

this gap, and show that a large fraction of the com- 067

putation in modern LLMs such as OPT (Zhang 068

et al., 2022), LLaMA-2 (Touvron et al., 2023) and 069

Falcon (TII UAE, 2023) can be performed accu- 070

rately and efficiently using 4-bit activations and 071

weights (4W4A). 072

On the algorithmic side, we show significantly 073

improved results relative to prior work on joint 074

quantization of weights and activations to 4 bits, 075

via a hybrid scheme for QUantization to INT4 with 076

GPU Kernel support, called QUIK. In QUIK, ma- 077

trices are split into “base” weights and activations, 078

which are processed exclusively at 4-bit precision, 079

and a small number of “outlier” weights and activa- 080

tions, which are processed at higher precision such 081

as INT8 or FP16. Using this approach, as well as 082

additional insights into layer sensitivity, we build a 083

1

https://anonymous.4open.science/r/QUIK-Example-5CE5/README.md


�� 	�� ���
	����

���

��

���

��

��

�

���


�
��
��
��
��
��
��
�
��
��
��
��

��	���������

��	�
���������
�����������
���������	
�����������

2.61x

3.4x

2.48x speedup

Figure 1: Accuracy and speedups for QUIK at different
model sizes, on the LLaMA family of models. QUIK
achieves up to 3.4x speedup with minor accuracy degra-
dation on LLaMA-2 models.

framework which can recover accuracy within 0.3–084

0.5 perplexity points across model sizes, while exe-085

cuting a large fraction of the inference in INT4. For086

illustration, for the sensitive LLaMA2 model with087

70B parameters, we can recover accuracy within088

0.5 perplexity, while executing 70% of the linear089

layer computations in INT4, leading to 3.4x end-090

to-end speedups (see Figure 1). We consider our091

work orthogonal to KV-Cache quantization.092

On the performance side, the key feature of093

QUIK is that it can be implemented efficiently via094

GPU kernels with low runtime and memory over-095

heads relative to GPU-native INT4 matrix multipli-096

cation (MatMul). We demonstrate this via a general097

implementation leading to per-layer speedups and098

end-to-end throughput improvements relative to099

both FP16 and INT8 baselines. Specifically, we100

show that supporting a limited number of feature101

and weight outliers can have negligible overhead102

by fusing the quantization and dequantization op-103

erations into the MatMul and by mitigating their104

costs in linear layers via additional optimizations.105

Overall, QUIK leverages quantization for sig-106

nificant end-to-end speedups and memory reduc-107

tions. For example, for processing a sequence of108

2048 tokens on a commodity RTX 3090 GPU, we109

achieve end-to-end speedups between 3.1x, for the110

OPT-66B and Falcon-180B models, and 3.4x for111

LLaMA2-70B, relative to a theoretical optimum of112

≈4x. In addition, QUIK requires much less GPU113

memory, and therefore, less GPUs, relative to FP16.114

For instance, QUIK provides 3.6x memory reduc-115

tion for OPT-66B, and 3x compression for accurate116

execution of LLaMA2-70B, executing the latter in117

less than 50GB of GPU memory.118

0 1 10 100 1000
Arithmetic Intensity, FLOP/byte

1

16.3

Pe
rf

or
m

an
ce

, T
FL

O
P/

s

Memory bound
Compute bound
Input size 1

Input size 16
Input size 128

Input size 256
Input size 1024

Figure 2: Roofline analysis of a standard LLM MatMul
operation, for a matrix of size 8K x 8K, in FP32, on an
NVIDIA GPU. Markers denote the results of profiling
with different token counts (from 1 to 1024). Small
counts (1 and 16) are memory-bound, whereas larger
counts (from 128 to 1024) are compute-bound.
2 Motivation 119

Roofline Analysis. To motivate our focus on the 120

compute-bound case, we begin an analysis of the 121

basic computational operation in the context of 122

LLMs, a matrix multiplication for different num- 123

bers of tokens. We profile a linear layer of stan- 124

dard size (11K x 4K, corresponding to the MLP 125

in LLaMA-7B (Touvron et al., 2023)), using the 126

NVIDIA NSight Toolkit (NVIDIA), from a single 127

token to 16, 256 and 1024 tokens. 128

Figure 2 clearly shows that the case of few to- 129

kens (1 and 16) the operation is bound by memory 130

transfer, whereas the it becomes compute-bound 131

for token counts larger than 64-128. A realistic end- 132

to-end LLM deployment would need to consider 133

optimizing both scenarios, as the prompt process- 134

ing “prefill” case falls into the large token count 135

scenario, whereas generating one-token-at-a-time 136

falls into the former case. Moreover, running a 137

“batched” version of the single-token workload, i.e. 138

for multiple users, would again result in large token 139

counts, returning to the compute-bound case. 140

Notice that existing methods for weight-only 141

quantization (Frantar et al., 2022; Dettmers and 142

Zettlemoyer, 2022; Lin et al., 2023) only reducing 143

the amount of data which needs to be transferred 144

per operation, but still perform the computation in 145

the original precision. Thus, they do not help in 146

the compute-bound case, and in fact even slightly 147

increase the amount of computation per operation, 148

due to the de-quantization overheads. 149

Speedup Potential. Given our focus on the 150

compute-bound case, it is natural to investigate 151

the available hardware options leading to potential 152

speedups. Quantization is a natural approach given 153

that NVIDIA GPUs have native support for INT4 154

2



and INT8 data types, providing major throughput155

improvements across matrix sizes (see Figure 9 in156

Appendix A). Specifically, INT8 provides through-157

put improvements that can be slightly higher than158

2x relative to FP16, whereas INT4 almost dou-159

bles over INT8. However, to leverage these hard-160

ware operations, both layer inputs (activations) and161

layer weights must be quantized. We will there-162

fore focus on accurate post-training quantization of163

accurate pre-trained LLMs, by compressing both164

weights and activations, primarily to INT4.165

3 Method166

3.1 Background167

We focus on accelerating linear layers within Large168

Language Models (LLMs) by employing 4-bit169

quantization for both the weight matrix W and170

the input matrix X. Following the PyTorch defini-171

tion (Paszke et al., 2019), a linear layer with a bias172

vector b, can be written as XWT + b. We now173

describe the technique in detail.174

Outliers in Input Quantization. Activation ma-175

trices are notoriously hard to quantize accurately176

(Dettmers et al., 2022; Xiao et al., 2022; Yuan et al.,177

2023), mainly due to the presence of outlier fea-178

tures in these matrices, where some of the columns179

have up to 100x larger magnitudes. LLM.int8()180

(Dettmers et al., 2022) identifies and extracts the181

outlier columns of X during the forward pass and182

quantizes the rest of the elements with 8-bit. How-183

ever, LLM.int8() is not efficient at runtime due to184

the added computational cost of determining out-185

liers on-the-fly. Recently, Xiao et al. (2022) showed186

that outlier features are fixed for each layer across187

datasets, which means that we can extract outlier188

indices offline using a small calibration set.189

Weight Quantization. GPTQ (Frantar et al.,190

2022) is a weight-only quantization method which191

involves the quantization of W while retaining acti-192

vations X in FP16. GPTQ iterates over each weight193

column from left to right, quantizing all column194

elements simultaneously. Once a certain weight195

column is quantized, GPTQ adjusts the remaining196

unquantized columns, to the right, by using second-197

order information to compensate for the introduced198

quantization error in the current step. This pro-199

cess naturally accumulates the quantization errors200

towards the last columns.201

3.2 QUIK Quantization202

Overview. At a high level, QUIK works as fol-203

lows. First, note that, during the linear transforma-204

X W

W

Step 1: The outlier columns are
characterized based on the inputs.

Step 2: The
outlier columns
will be pushed
toward the end. 

        W

INT4 FP16

X

Step 3: GPTQ quantizes
the majority of the weights
using the re-ordered
Hessian matrix and
accumulates the errors in
the outlier columns.

Figure 3: Outlier-aware quantization with QUIK. Out-
lier weight columns are extracted based on outlier
columns in the input. We permute the outlier columns
toward the end of the matrix before applying GPTQ
quantization (using the re-ordered Hessian matrix) to
accumulate the quantization errors in the FP16 columns.

tion XWT, the outlier columns in X, by which 205

we mean the columns with large average values 206

defined previously, will always be multiplied by 207

certain columns in WT, as illustrated in Figure 3. 208

We leverage this observation to improve the qual- 209

ity of GPTQ quantization, in a setting where we 210

quantize (part of) the activations as well. 211

Since the outlier columns are fixed across 212

datasets, we begin by extracting the indices of the 213

outlier columns by means of a calibration set. Then, 214

we rearrange the weight columns (and their corre- 215

sponding input columns), to shift the outliers to- 216

ward the end. Finally, we perform quantization on 217

the weight columns up to the index of the outliers. 218

This circumvents quantization of these “difficult” 219

columns. It also helps GPTQ quantization by 1) 220

aggregating the quantization errors to the columns 221

we keep in FP16, and 2) removing potential weight 222

outliers from the 4bit quantization scale. 223

Sensitivity-Based Partial Quantization. Accu- 224

rately selecting outlier columns is key for QUIK. 225

Following Xiao et al. (2022); Dettmers et al. (2022), 226

we select the columns with the largest ℓ∞ norm as 227

outliers. Since finding these columns dynamically 228

at runtime is costly, we follow Xiao et al. (2022) 229

in identifying a predefined set of outliers for each 230

layer via a calibration set (see Section 4), and quan- 231

tize the weights offline. We use the same outlier 232

indices for extracting the input outlier columns dur- 233

ing the forward pass. 234

3



This approach is sufficient for accurate quanti-235

zation of models such as OPT (Zhang et al., 2022)236

(see Section 4). However, highly-accurate mas-237

sive models such as LLaMA2-70B present a fur-238

ther challenge due to their FeedForward layers,239

which involve three linear transformations along240

with element-wise multiplication, as well as the241

use of the Sigmoid Linear Unit (SiLU) activations.242

Specifically, our ℓ∞ norm analysis illustrated in243

Figure 11, suggests that the Downproj layers are244

much more sensitive to quantization. (Li et al.245

(2023) arrived at a similar observation.) Thus, we246

extend our scheme to improve accuracy by quantiz-247

ing the Downproj layers to 8 bits instead of 4, with-248

out other changes to our method. We illustrate the249

outlier selection procedure in detail in Section 4.3.250

We present a detailed analysis of our overall FLOP251

breakdown in Figure 10.252

3.3 Efficient GPU Inference253

We now provide a high-level description of how254

models in the QUIK format are executed efficiently255

on GPU. We illustrate the workflow in Figure 4256

and provide detailed pseudocode in Appendix Al-257

gorithm 1. The first and most important step in258

QUIK is splitting the input matrix of shape (#to-259

kens, #features) column-wise, so across features,260

into two sub-sets, a small “full precision” part (usu-261

ally half or bfloat16) and a large base part, which262

will be quantized (see line 2 in the pseudocode).263

The full-precision part is multiplied with the corre-264

sponding (full-precision) part of the weight matrix265

in standard fashion, while the rest goes through the266

quantized matrix multiplication pipeline.267

The quantized MatMul pipeline consists of three268

parts: 1) dynamically quantizating the activations,269

2) actually performing the MatMul of quantized270

activations and weights, and 3) dequantizing the271

result back to floating point format.272

Quantization. In general, we quantize weights273

symmetrically (only scale) per column and quan-274

tize activations asymmetrically (scale and zero) per275

token. The former is done offline, while the latter276

must be done online based on the current activation277

values. Specifically, we first scan the activations to278

determine the per-token min- and max-value, from279

which we calculate the scale and zero point (line 9).280

These are then used to turn the floating point acti-281

vations into integers, which are written out again282

as signed (hence the halfRange subtraction in line283

12) INT4 or INT8 values (see lines 10-13).284

Matrix Multiplication. The actual MatMul 285

is performed using the NVIDIA CUTLASS li- 286

brary (NVIDIA, 2023), which allows us to effec- 287

tively utilize the hardware’s INT8/INT4 tensor- 288

cores for fast low-precision calculations, while ac- 289

cumulating results in the INT32 format. 290

Dequantization. As the MatMul was carried out 291

purely with quantized INT values, we need to 292

convert back to a floating point format in order 293

to properly integrate scale and zero information. 294

Concretely, we need to multiply each output el- 295

ement oij by its corresponding input token scale 296

scaleAct and output weight scale scaleWeight 297

(line 16). Additionally, we also need to account 298

for the activation zero-point zeroAct. To do this, 299

we consider a scalar product ⟨w, x⟩ (representing a 300

single output value in our overall matmul) where a 301

constant z is added to each xi: 302

y =
∑
i

wi(xi + z) =
∑
i

wixi + z ·
∑
i

wi. (1) 303

Consequently, we must shift by z times the sum 304

over relevant weights, the latter of which is static 305

and can thus be precomputed as wReduced; the 306

signed to unsigined INT conversion must be con- 307

sidered as well (lines 17-21). Finally, we add these 308

dequantized values to the original outlier result, 309

yielding the final output (line 7). 310

3.4 Performance Optimizations 311

The main operation in the QUIK kernel is the low- 312

precision CUTLASS MatMul. However, the mixed 313

precision nature of the algorithm imposes the use 314

of auxiliary functions, such as input data splitting, 315

metadata computation, quantization and dequanti- 316

zation, which must be carefully optimized. 317

Quantization Fusion. A naive implementation 318

of splitting and quantization would require one 319

read-and-write pass for the outlier-part, another 320

read-and-write pass for the base-part, two read 321

passes to determine per-token min-max values and 322

one more read-and-write pass for actually carrying 323

out quantization. Many of these slow memory- 324

bound operations can be optimized away via care- 325

ful operator fusion in the form of bespoke kernels. 326

Specifically, we assign each input row to a 327

CUDA block and perform 3 passes over it: re- 328

duction (finding meta information) over the non- 329

outliers elements, quantization of them, and mov- 330

ing the outliers to a separate piece of memory. This 331

eliminates two costly reads (min-max calculation 332

4



Outlier Columns

X

4-bit Per-Token
Quantization

INT4 MatMul

Outlier Extraction

Quantizable Columns

Dequantize and
cast to FP16

FP16
Outlier Weights

FP16 MatMul

Y

Quantized 
Weights

INT4

  W

Transpose View

Transpose View

Weight Matrix  Input Matrix 

Figure 4: Schematic for the forward pass of a linear
layer (XWT ) with QUIK-4B. In the first step, the input
outlier features are extracted based on the pre-defined
indices and the rest of the input values will be quantized
using per-token quantization. The INT4 MatMul will be
applied using the quantized weights, calculated offline
(see Figure 3). Finally, the output will be dequantized,
cast to FP16, and added to the result of FP16 MatMul.

and base-part splitting) and one write pass (base-333

part splitting), and kernel launches overheads.334

Parallelization Tuning. For the above quantiza-335

tion procedure to be efficient on a modern GPU,336

we have to ensure optimal parallelization via care-337

ful tuning of CUDA blocks and threadcounts. The338

most critical tuning parameter is the number of339

rows we process with one CUDA block. Mapping340

one block per each row brings additional launch-341

ing overheads, while mapping too many rows per342

block results in block over-subscription and lower343

occupancy of the GPU. Hence, we optimized the344

appropriate number of rows per block for differ-345

ent matrix sizes (usually values between 8 and 32).346

This improved quantization speed by up to 30%.347

Dequantization Epilogue. CUTLASS first accu-348

mulates MatMul results in registers before com-349

mitting them to global memory. We can avoid an350

unnecessary write and read pass of intermediate351

INT32 matmul results by directly performing de-352

quantization in a custom epilogue that is applied be-353

fore the global memory commit, which we further354

directly accumulate into the results of the outlier355

MatMul. This interleaves two expensive operations356

and saves additional kernel calls and memory trips.357

Performance Impact. To separate out the im-358

pact of these optimizations, we mark them as dif-359

ferent versions of our kernel: version 1 has unfused360

quantization / dequantization; version 2 has fused361

quantization and unfused dequantization; version 362

3 fuses both. Figure 5 provides a detailed break- 363

down of each of these optimizations, showing that 364

they are especially effective for the small matrices, 365

where they lead to end-to-end speedups of almost 366

2x. Fused quantization gives up to 40% through- 367

put improvement and the dequantization epilogue 368

yields an additional 10% speedup. 369

(8192, 1024) (8192, 8192) (28672, 8192)
Layer size

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ti
m

e 
re

la
tiv

e 
to

 V
1 V1

V2 V3

V1
V2

V3

V1
V2 V3

Data Split
Meta

Quantization
INT Matmul

FP Matmul
Dequantization

Figure 5: Operation timings in different QUIK-4B ver-
sions with 256 outliers on an RTX3090 GPU with input
size 2048. Hatched bars represent fused operations.

4 Experimental Validation 370

General setup. We evaluate our method on 371

OPT (Zhang et al., 2022), LLaMA-2 (Touvron 372

et al., 2023), and Falcon (TII UAE, 2023) models, 373

using HuggingFace (Wolf et al., 2019) implementa- 374

tions of model definitions and datasets. Following 375

SmoothQuant (Xiao et al., 2022), we extract out- 376

lier indices using 512 random sentences from the 377

Pile dataset (Gao et al., 2020). We consider up 378

to 5% (based on the model size) of the input fea- 379

tures as outliers in the linear layers. During the 380

GPTQ weight quantization, we randomly select 381

128 samples with 2048 sequence length from the 382

C4 dataset (Raffel et al., 2020). We apply sym- 383

metric quantization to weights and asymmetric 384

quantization to activations. Clipping thresholds for 385

weight quantization are found via a linear search 386

over the squared error. QUIK quantizes a 70B 387

model in less than 2h on a single A100 GPU. 388

4.1 Accuracy Recovery 389

Accuracy Comparison on OPT. We first com- 390

pare QUIK with prior 4W4A quantization methods: 391

SmoothQuant (Xiao et al., 2022), RPTQ (Yuan 392

et al., 2023) and OmniQuant (Shao et al., 2023). 393

Table 1 shows the results of all methods for 4 394

larger OPT models on the WikiText2 task (Merity 395

et al., 2016). We observed that, with QUIK, the 396

accuracy of OPT models remains consistent even 397

when employing a uniform number of outliers for 398

all layers (instead of using a percentage of the input 399

5



Model OPT
6.7B 13B 30B 66B

Baseline 10.86 10.13 9.56 9.34

SmoothQuant 1.8e4 7.4e3 1.2e4 2.2e5
RPTQ 17.83 17.83 11.50 11.16
OmniQuant 12.24 11.65 10.60 10.29
QUIK (ours) 11.18 10.78 10.08 9.66

Table 1: Perplexity of 4-bit OPT models on the Wiki-
Text2 dataset. SmoothQuant, RPTQ, and OmniQuant
results are taken from Shao et al. (2023), RPTQ de-
notes their improved numbers. For the 66B model, all
prior schemes keep 0.71% of the linear layer operations
in FP16 (the Head), while, by excluding outliers from
quantization, we retain 2.78% of operations in FP16.

features). Consequently, we employed 256 outliers400

across all linear modules (which is ≈ 3% of OPT-401

66B’s hidden size). As can be seen, by effectively402

leveraging a small amount of full-precision outlier403

columns, QUIK can significantly outperform prior404

4-bit methods, dropping only 0.3 to 0.5 points in405

perplexity relative to the full precision baseline.406

We emphasize that, for a fair comparison, QUIK407

quantizes all linear backbone layers to 4-bit here.408

Additional results are presented in Appendix I.409

Accuracy on LLaMA-2 and Falcon Models.410

Next, we move to LLaMA-2 and Falcon models.411

See Table 2 for the results on WikiText2. As can412

be seen, QUIK-4B can preserve the accuracy in413

all models with at most 0.5 perplexity loss for the414

LLaMA-2 models, and 0.3 for Falcon models.415

Model
LLaMA-2 Falcon

7B 13B 70B 7B 40B 180B

Baseline 5.47 4.88 3.20 6.59 5.23 3.30

SmoothQuant 83.12 35.88 - - - -
OmniQuant 14.26 12.30 - - - -
QUIK-4B 5.84 5.28 3.74 6.90 5.46 3.61

Table 2: Perplexity results of QUIK (with 256 outliers)
for 4-bit LLaMA-2 and Falcon models on WikiText2.
For the down-projection (in LLaMA-2 models) and FC2
layers (in Falcon models), we use 8-bit quantization, and
increase the number of outliers (in FP16) proportionally
to the number of input features (which is not the case
for other schemes). Results for SmoothQuant and Om-
niQuant follow (Shao et al., 2023).

Zero-Shot Accuracy. Next, we evaluate the im-416

pact of QUIK on the accuracy of zero-shot tasks.417

To this end, we study the average accuracy of the418

largest LLaMA-2 and OPT models on five popu-419

lar zero-shot tasks: PIQA (Tata and Patel, 2003);420

WinoGrande (Sakaguchi et al., 2021); HellaSwag421

(Zellers et al., 2019); Arc (Easy and Challenge)422

(Boratko et al., 2018). We use the LM Evaluation423

Harness (Gao et al., 2021) with default parameters424

(4096, 4096)

(8192, 1024)

(11008, 4096)

(5120, 5120)

(8192, 8192)

(28672, 8192)

Matrix size

0

1

2

3

4

Sp
ee

du
p

Baseline
QUIK-8B
QUIK-4B

Figure 6: Layer-wise speedups on a single RTX3090
for different layer sizes and compression types. QUIK-
4B with 256 outliers, QUIK-8B without outliers.

in our experiments. Table 3 shows the averaged ac- 425

curacy of QUIK over zero-shot tasks. Similar to the 426

generation task, QUIK preserves the accuracy of 427

zero-shot tasks with at most a 1.5% accuracy drop 428

for LLaMA-2 models and 1.1% for OPT models. 429

Model Bits Avg. Score

OPT-30B FP16 64.45
QUIK-4B 63.34

OPT-66B FP16 66.16
QUIK-4B 65.10

LLaMA2-13B FP16 71.70
QUIK-4B 70.49

LLaMA2-70B FP16 76.57
QUIK-4B 74.97

Table 3: LM eval harness results of QUIK on OPT and
LLaMA-2 families using 256 outliers. The results are
averaged across five different zero-shot tasks. Detailed
results are provided in Table 9.

4.2 Performance Analysis 430

We now examine the performance of the QUIK 431

implementation by evaluating different aspects of 432

our kernel. We use PyTorch/1.13, CUDA/11.8, 433

Huggingface Transformers/4.34. We run all our 434

experiments on RTX 3090 GPUs. Appendix O 435

shows similar results on RTX 3080 GPUs. 436

Ideal and Layer-wise Speedups. We evaluate 437

the ideal speedups, as well as the actual speedups 438

we measure in each Transformer block separately. 439

The results in Figure 9 depict “ideal” computational 440

power for layer-wise matrix multiplications at dif- 441

ferent precision levels, without taking into account 442

any quantization/dequantization. Here, we focus on 443

realizable speedups when executing Algorithm 1, 444

which includes mixed-precision multiplication as 445

well as compression and decompression operations. 446

6



In Figure 6, we compare the layer-wise perfor-447

mance of quantized linear layers (QUIK-4B uses448

256 outliers per layer) relative to FP16, for a full449

implementation of our algorithm. The matrix sizes450

correspond to layers in LLaMA models. We ob-451

serve that QUIK-4B can achieve slightly higher452

than 4× speedup on large layers and over 2× on453

smaller ones. Thus, the speedups of raw low-454

precision matmul speedups can partially “hide” the455

overheads of QUIK.456

End-to-end speedups and Memory Saving. To457

examine end-to-end speedups, we integrate QUIK458

into the HuggingFace PyTorch implementation, by459

replacing linear layers with 4-bit (and 8-bit) QUIK460

versions. For the LLaMA2 models, we use FlashAt-461

tention (Dao et al., 2022) for all models (including462

FP16). The number of outliers in QUIK-4B is set to463

256 except for the special case of down projection464

layers in LLaMA and FC2 in the Falcon models,465

which we quantize to 8 bits with ∼ 600 outliers.466

We evaluate memory usage in Appendix C.467

In Figure 8, we compare the throughput im-468

provements of prefill passes (for single batches469

with 2048 tokens) for quantized models, relative470

to the corresponding FP16 version. The bar plot471

shows throughput improvements of QUIK-4B com-472

pared to FP16. The annotations to the baseline473

represent its actual throughput values in our ex-474

periments. For instance, OPT-66B using FP16 lin-475

ear layers achieved 439 tokens/s whereas the same476

model inference with QUIK-4B linear layers re-477

sulted in 1343 tokens/s. This shows that, in addition478

to a close to 4× memory reduction, which reduces479

the number of required GPUs for inference, QUIK480

also achieves up to 3.4× higher throughput relative481

to FP16, with the biggest improvements attained on482

the largest models (LLaMA2-70B), where the rel-483

ative impact of overheads is lowest. The memory484

reduction is important in the Falcon inference case:485

we were not able to run Falcon-180B in full pre-486

cision on 8xRTX3090 GPUs, as the max memory487

peak of the model is more than 360GB. However,488

QUIK-4B allows us to run full inference of this489

180B model on a single server resulting in 542 to-490

kens/second. Therefore, we estimated speedups for491

the FP16 180B model in Figure 8(c) based on the492

runtime of a single Transformer block.493

The speedups in our end-to-end experiments494

are exclusively through QUIK accelerated linear495

layers–other functions are precisely the same. Fig-496

ure 7 (right) shows that the overheads from atten-497

tion, softmax, and layernorm operations become498

0

1

2

3

4

5

6

Sp
ee

du
p

0.5k t/s

1.4k t/s1.4k t/s
1.7k t/s

1.9k t/s

FP16 Baseline
SmoothQuant QUIK-8B
Ideal 8 Bits

QUIK-4B
Ideal 4 Bits 7%

6%

61%

7%

19%

Quantization
FP MatMul
INT MatMul
FlashAttn
Other

Figure 7: Performance results and overhead breakdown
on LLaMA2-70B on a machine with 8x RTX 3090
GPUs. Left: Speedup vs. FP16 and vs. an ideal imple-
mentation, without overheads, for 4-bit and 8-bit QUIK
with absolute throughput values. Right: Performance
breakdown of end-to-end QUIK inference with outliers
in terms of MatMul time vs. quantization overheads.
significant when most computation occurs in 4-bit. 499

Outlier Performance Costs. To illustrate the 500

overheads of outliers, in Figure 7 (left) we pro- 501

vide end-to-end speedups for variants where we 502

directly use 8-bit and 4-bit kernels, without pre- 503

serving accuracy (Ideal 8-bit and 4-bit), relative to 504

our accurate QUIK implementations. 505

We observe that the 8-bit implementation pro- 506

vides close to ideal speedups, reducing the number 507

of GPUs from 7 to 5. QUIK-4B (taking outliers 508

into account) performs ≈15% better, further reduc- 509

ing the number of required GPUs to 3, using less 510

than 50 GB of GPU memory. The performance 511

impact of outlier selection (hence mixed precision 512

matrix multiplication) and selective 8-bit quanti- 513

zation (for down-projection MLP layer) is shown 514

in the comparison with Ideal 4-bit. QUIK-4B is 515

within 15% of Ideal 4-bit performance. (Notice 516

that this “Ideal” implementation has very poor ac- 517

curacy.) In Figure 7 (right) we break down the 518

per-operation overheads for LLaMA2-70B infer- 519

ence. We observe here and in Figure 5 that the 520

overheads of quantization and full precision multi- 521

plication can take up a large fraction of the overall 522

operation time, especially for smaller matrices. 523

4.3 Ablation Studies 524

We now provide in-depth examples of QUIK on the 525

large LLaMA2-70B and Falcon-180B models. The 526

former model is important as it is highly accurate 527

and sensitive, while the latter is the largest openly- 528

available GPT3-type model. 529

Case Study 1: LLaMA2-70B. First, we study 530

the FLOP breakdown across precisions using 531

QUIK-4B on LLaMA2-70B. Within the MLP mod- 532

ule of the LLaMA2-70B model, three linear layers 533

are present, referred to as "Up-Proj", "Gate-Proj", 534

and "Down-Proj". "Up-Proj" and "Gate-Proj" share 535

7



6.7B 13B 30B 66B
Model

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Sp
ee

du
p

34
91

 tk
ns

/s

20
65

 tk
ns

/s

95
6 

tk
ns

/s

43
9 

tk
ns

/s

Baseline
QUIK-4B

(a) OPT

7B 13B 70B
Model

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Sp
ee

du
p

40
39

 tk
ns

/s

24
09

 tk
ns

/s

48
0 

tk
ns

/s

Baseline
QUIK-4B

(b) LLaMA-2

7B 40B 180B*
Model

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Sp
ee

du
p

29
95

 tk
ns

/s

63
3 

tk
ns

/s

Baseline
QUIK-4B

(c) Falcon

Figure 8: End-to-end inference speedups for QUIK-4B with outliers relative to the FP16 baseline, on NVIDIA RTX
3090 GPUs. Falcon-180B results are from single Transformer block inference benchmark.

an input (MLP input) and apply their respective lin-536

ear transformations to it. Subsequently, the output537

of "Gate-Proj" is subjected to a SiLU activation538

function. Lastly, the input for the "Down-Proj"539

layer is constructed by taking the Hadamard prod-540

uct of the outputs from "Up-Proj" and "Gate-Proj".541

LLaMA-2 7B 13B 70B

Baseline 5.47 4.88 3.20

QUIK-4B 5.84 5.28 3.74
4-bit Down-Proj 8.87 7.78 6.91

Table 4: Ablation for keeping the Downproj in 4-bits.

We use input variance across layers to choose542

both the number of outliers and the set of layers to543

be executed in 8bit. (This is illustrated in Figure 11544

for LLaMA2-70B.) Specifically, the "Down-Proj"545

layers have large input variance, mainly due to the546

Hadamard product of the previous two outputs. To547

address this, we employ 8-bit quantization for both548

the weights and activations within the "Down-Proj"549

layers of LLaMA2 models. Table 4 shows that550

keeping the down-projection layers in 8-bit is criti-551

cal for high accuracy on LLaMA2, as it improves552

perplexity by > 2 points, across all models.553

Case Study 2: Falcon-180B. Finally, we apply554

QUIK to Falcon-180B, one of the largest GPT-555

style openly-available models. The model requires556

≈ 365GB of GPU memory for the inference, which557

makes it impossible to run inference on a GPU558

server with 8x RTX3090 nodes (192 GB memory),559

illustrating the importance of reducing the memory560

footprint of this model. The results in Tables 2561

and 8, and Figure 8 already presented quantiza-562

tion results; in addition we exlore the hardware-563

supported 2:4 sparse + INT4 format by combining564

QUIK with 2:4 sparsity.565

Instead of just sparsifying the already-quantized566

model, which results in high accuracy drops, we567

Precision Sparsity
Dense WikiText2 Mem. Peak
Layers (PPL) (rel to FP16)

FP16
0% All 3.30 100%
2:4 None 6.13 -

QUIK-4B

0% All 3.61 38 %
2:4 None 6.62 25%
2:4 Attn. Blocks 6.34 26%
2:4 MLP Blocks 3.93 36%

Table 5: Accuracy results for quantized + 2:4 sparsified
on Falcon-180B. For the quantized experiments, we
apply quantization on all layers with 256 outliers but
keep some of the layers in dense (mentioned in the
Table) for a single Transformer block.

extend the SparseGPT algorithm (Frantar and Alis- 568

tarh, 2023) to support our outlier scheme to jointly 569

quantize and sparsify the model, while keeping 570

the outlier features in dense FP16. In Table 5, we 571

present the results of quantizing all layers, but se- 572

lectively keep some layer types dense. Specifically, 573

we found that one-shot pruning of the weights in 574

the attention blocks to the 2:4 pattern throughout all 575

layers largely preserves accuracy, leading to small 576

memory gains. We present 8-bit results in the same 577

setting in Appendix M. 578

Discussion. In summary, QUIK shows that one 579

can execute a large majority of inference computa- 580

tion in 4-bit precision, with efficient GPU support. 581

Specifically, one can obtain speedups of over 3x in 582

using QUIK across several LLM types. 583

5 Limitations 584

Our current experiments are limited to compressing 585

the linear layers of LLMs. However, our scheme is 586

compatible with virtually any scheme for compress- 587

ing attention layers or the KV-cache (Sheng et al., 588

2023), which can be applied orthogonally. Another 589

limitation, which we plan to address in future work, 590

is experimenting with recent Mixture-of-Experts 591

(MoE) architectures, and integration with specula- 592

tive decoding (Leviathan et al., 2023). 593

8



References594

Michael Boratko, Harshit Padigela, Divyendra Mikki-595
lineni, Pritish Yuvraj, Rajarshi Das, Andrew McCal-596
lum, Maria Chang, Achille Fokoue-Nkoutche, Pa-597
van Kapanipathi, Nicholas Mattei, et al. 2018. A598
systematic classification of knowledge, reasoning,599
and context within the ARC dataset. arXiv preprint600
arXiv:1806.00358.601

Tri Dao, Daniel Y Fu, Stefano Ermon, Atri Rudra, and602
Christopher Ré. 2022. FlashAttention: Fast and603
memory-efficient exact attention with io-awareness.604
arXiv preprint arXiv:2205.14135.605

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke606
Zettlemoyer. 2022. LLM.int8(): 8-bit matrix mul-607
tiplication for transformers at scale. Advances in608
Neural Information Processing Systems 35: Annual609
Conference on Neural Information Processing Sys-610
tems 2022, NeurIPS 2022.611

Tim Dettmers, Ruslan Svirschevski, Vage Egiazarian,612
Denis Kuznedelev, Elias Frantar, Saleh Ashkboos,613
Alexander Borzunov, Torsten Hoefler, and Dan Al-614
istarh. 2023. Spqr: A sparse-quantized representa-615
tion for near-lossless llm weight compression. arXiv616
preprint arXiv:2306.03078.617

Tim Dettmers and Luke Zettlemoyer. 2022. The case for618
4-bit precision: k-bit inference scaling laws. arXiv619
preprint arXiv:2212.09720.620

Elias Frantar and Dan Alistarh. 2023. Sparsegpt: Mas-621
sive language models can be accurately pruned in622
one-shot.623

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and624
Dan Alistarh. 2022. Gptq: Accurate post-training625
quantization for generative pre-trained transformers.626
arXiv preprint arXiv:2210.17323.627

Leo Gao, Stella Biderman, Sid Black, Laurence Gold-628
ing, Travis Hoppe, Charles Foster, Jason Phang, Ho-629
race He, Anish Thite, Noa Nabeshima, et al. 2020.630
The pile: An 800gb dataset of diverse text for lan-631
guage modeling. arXiv preprint arXiv:2101.00027.632

Leo Gao, Jonathan Tow, Stella Biderman, Sid Black,633
Anthony DiPofi, Charles Foster, Laurence Golding,634
Jeffrey Hsu, Kyle McDonell, Niklas Muennighoff,635
et al. 2021. A framework for few-shot language636
model evaluation. Version v0. 0.1. Sept.637

Sehoon Kim, Coleman Hooper, Amir Gholami, Zhen638
Dong, Xiuyu Li, Sheng Shen, Michael W Ma-639
honey, and Kurt Keutzer. 2023. Squeezellm:640
Dense-and-sparse quantization. arXiv preprint641
arXiv:2306.07629.642

Yaniv Leviathan, Matan Kalman, and Yossi Matias.643
2023. Fast inference from transformers via spec-644
ulative decoding. In International Conference on645
Machine Learning, pages 19274–19286. PMLR.646

Qingyuan Li, Yifan Zhang, Liang Li, Peng Yao, 647
Bo Zhang, Xiangxiang Chu, Yerui Sun, Li Du, and 648
Yuchen Xie. 2023. Fptq: Fine-grained post-training 649
quantization for large language models. arXiv 650
preprint arXiv:2308.15987. 651

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, 652
Xingyu Dang, and Song Han. 2023. Awq: Activation- 653
aware weight quantization for llm compression and 654
acceleration. arXiv preprint arXiv:2306.00978. 655

Stephen Merity, Caiming Xiong, James Bradbury, and 656
Richard Socher. 2016. Pointer sentinel mixture mod- 657
els. arXiv preprint arXiv:1609.07843. 658

NVIDIA. Nvidia nsight compute. 659

NVIDIA. 2023. Nvidia cutlass library. 660

Adam Paszke, Sam Gross, Francisco Massa, Adam 661
Lerer, James Bradbury, Gregory Chanan, Trevor 662
Killeen, Zeming Lin, Natalia Gimelshein, Luca 663
Antiga, et al. 2019. Pytorch: An imperative style, 664
high-performance deep learning library. Advances in 665
neural information processing systems, 32. 666

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, 667
Dario Amodei, and Ilya Sutskever. 2019. Language 668
models are unsupervised multitask learners. OpenAI 669
blog, 1(8):9. 670

Colin Raffel, Noam Shazeer, Adam Roberts, Kather- 671
ine Lee, Sharan Narang, Michael Matena, Yanqi 672
Zhou, Wei Li, and Peter Liu. 2020. Exploring the 673
limits of transfer learning with a unified text-to-text 674
transformer. Journal of Machine Learning Research, 675
21(140):1–67. 676

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat- 677
ula, and Yejin Choi. 2021. Winogrande: An adver- 678
sarial winograd schema challenge at scale. Commu- 679
nications of the ACM, 64(9):99–106. 680

Wenqi Shao, Mengzhao Chen, Zhaoyang Zhang, Peng 681
Xu, Lirui Zhao, Zhiqian Li, Kaipeng Zhang, Peng 682
Gao, Yu Qiao, and Ping Luo. 2023. Omniquant: 683
Omnidirectionally calibrated quantization for large 684
language models. Preprint, arXiv:2308.13137. 685

Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuo- 686
han Li, Max Ryabinin, Beidi Chen, Percy Liang, 687
Christopher Ré, Ion Stoica, and Ce Zhang. 2023. 688
Flexgen: High-throughput generative inference of 689
large language models with a single gpu. In Inter- 690
national Conference on Machine Learning, pages 691
31094–31116. PMLR. 692

Sandeep Tata and Jignesh M Patel. 2003. PiQA: An al- 693
gebra for querying protein data sets. In International 694
Conference on Scientific and Statistical Database 695
Management. 696

TII UAE. 2023. The Falcon family of large language 697
models. https://huggingface.co/tiiuae. 698

9

https://developer.nvidia.com/nsight-compute
https://github.com/NVIDIA/cutlass/
https://arxiv.org/abs/2308.13137
https://arxiv.org/abs/2308.13137
https://arxiv.org/abs/2308.13137
https://arxiv.org/abs/2308.13137
https://arxiv.org/abs/2308.13137
https://huggingface.co/tiiuae


Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-699
bert, Amjad Almahairi, Yasmine Babaei, Nikolay700
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti701
Bhosale, et al. 2023. Llama 2: Open founda-702
tion and fine-tuned chat models. arXiv preprint703
arXiv:2307.09288.704

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien705
Chaumond, Clement Delangue, Anthony Moi, Pierric706
Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,707
et al. 2019. Huggingface’s transformers: State-of-708
the-art natural language processing. arXiv preprint709
arXiv:1910.03771.710

Guangxuan Xiao, Ji Lin, Mickael Seznec, Julien De-711
mouth, and Song Han. 2022. Smoothquant: Accurate712
and efficient post-training quantization for large lan-713
guage models. arXiv preprint arXiv:2211.10438.714

Zhihang Yuan, Lin Niu, Jiawei Liu, Wenyu Liu, Xing-715
gang Wang, Yuzhang Shang, Guangyu Sun, Qiang716
Wu, Jiaxiang Wu, and Bingzhe Wu. 2023. Rptq:717
Reorder-based post-training quantization for large718
language models. arXiv preprint arXiv:2304.01089.719

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali720
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a721
machine really finish your sentence? arXiv preprint722
arXiv:1905.07830.723

Susan Zhang, Stephen Roller, Naman Goyal, Mikel724
Artetxe, Moya Chen, Shuohui Chen, Christopher De-725
wan, Mona Diab, Xian Li, Xi Victoria Lin, et al. 2022.726
OPT: Open pre-trained transformer language models.727
arXiv preprint arXiv:2205.01068.728

10



A Ideal 4-bit Matrix Multiplication 729

Figure 9 shows the ideal performance of matrix multiplication kernel (using CUTLASS library) for different 730

matrix sizes. The plot shows nearly 4x speedup with large enough matrices. 731

256 512
1024

2048
3072

4096
5120

6144
7168

8192
9216

10240
11264

12288
13312

14336

Matrix Dimension (M=N=K)

0

100

200

300

400

TF
LO

P/
s

W4A4
W8A8
FP16
FP32

Figure 9: Ideal matrix multiplication performance for different layer sizes and data precision on RTX3090.

B Full QUIK Algorithm 732

Algorithm 1: Quantization and Dequantization kernels in QUIK.
Input :wInt, wFP, x, FPindices, scaleWeight, wReduced

1 Function QUIK Matmul:
2 xFP, xQ←−split(x, FPindices);
3 xINT, zeroAct, scaleAct←− Quantization(xQ);
4 resultFP ←− FPmatmul(xFP, wFP);
5 resultInt←− INTmatmul(xINT, wInt);
6 dequantFP ←− Dequantization(resultInt, zeroAct, scaleAct, scaleWeight, wReduced);
7 return dequantFP + resultFP;

Input :dataFP
8 Function Quantization:
9 zeroAct, scaleAct←− findZeroScale(dataFP);

10 for elem ∈ dataFP, outElem ∈ output do
11 //Use scale/zero corresponding to token
12 outFP ←− (elem - zeroAct) / scaleAct - halfRange;
13 outElem←− pack(outFP);

14 return output, zeroAct, scaleAct;
Input : inputINT, zeroAct, scaleAct, scaleWeight, wReduced

15 Function Dequantization:
16 for elem ∈ inputINT, outElem ∈ outputFP do
17 //Use scales for token and weight row, respectively
18 x←− elem * scaleAct * scaleWeight;
19 shift←− zeroAct + halfRange * scaleAct;
20 shift←− shift * wReduced;
21 outElem←− x+ shift;

22 return outputFP;

733

C QUIK Peak Memory Usage 734

In this section, we assess the memory usage of our quantized models. In Table 6, we evaluate the peak 735

memory usage across different configurations for the OPT and LLaMA-2 families. For OPT-66B, the 736

QUIK-8B and QUIK-4B models demonstrate peak memory reductions of approximately 47% (compared 737

to the ideal 50% reduction) and 74% (compared to the ideal 75% reduction), respectively. For the 738

LLaMA2-70B model, the reductions are 32% for QUIK-8B and 67% for QUIK-4B. This is because we 739

keep the down-projection in 8-bits and use additional outliers. Additional overheads come from auxiliary 740

buffers, which differ for various layer sizes. 741

11



Model
OPT LLaMA-2

13B 30B 66B 7B 13B 70B

Baseline 30.5 67.4 162.1 14.9 28.0 147.1

QUIK-8B 16.1 39.3 81.2 14.6 25.2 99.3

QUIK-4B 10.7 24.6 45.1 7.1 12.1 49.1

Table 6: Peak memory usage (in GB) in an end-to-end benchmark. In total, the outliers take 2.71 GB and 4.06 GB
for OPT-66B and LLaMA2-70B models respectively.

D QUIK FLOP/s Analysis742

Figure 10 shows the percentage of the FLOP/s we keep in each precision (INT4 for base weights, FP16743

for outliers, and INT8 for down-projection layers) in LLaMA2-70B. More precisely, for 256 outliers, we744

perform ≈70% of the operations in 4-bit and ≈27% using 8-bits.745

QKV Out-Proj Up-Proj Gate-Proj Down-Proj LM-Head Sum
Module

0

20

40

60

80

100

FL
O

P/
s 

(%
)

LLaMA2-70B Linear Modules
FP16
INT8
INT4

Figure 10: FLOP/s analysis of the LLaMA2-70B linear layers with QUIK. We use 3.125% outliers (256 outliers in
all layers and 896 for the down-projection layer) and 2048 sequence length.

E Input Variance of Linear Layers746

Figure 11 shows the variance of the inputs for different layers of 70B model.747

0 10 20 30 40 50 60 70 80
Layer

10
−2

10
−1

10
0

10
1

10
2

10
3

Va
ria
nc
e

Q/K/V Out-Proj Up/Gate-Proj Down-Proj

Figure 11: The variance of the inputs in different layers of LLaMA2-70B. The "Down-Proj" layers have significantly
larger variances, resulting in poor 4-bit quantization.

12



F Outlier Analysis 748

In this section, we look at how different outlier counts affect the WikiText2 score for the LLaMA2-70B 749

model. In Table 7, we observe that increasing the outliers from 128 to 1024 results in a 0.2 perplexity 750

improvement. We also adjusted the outliers for down-projection layers, ensuring there are 3.5x times 751

more than the other linear layers, to match input size. Our results show that using 256 outliers is already a 752

good choice for our experiments. Using additional outliers does not significantly improve accuracy. 753

Method Outliers Down-Proj WikiText2
Outliers (PPL)

Baseline - - 3.20

QUIK-4B

128 448 3.80
256 896 3.74
512 1792 3.67
1024 3584 3.62

Table 7: Ablation study of different outlier numbers in QUIK for the LLaMA2-70B model.

G Outlier-Free Layers 754

We study the effect of keeping multiple linear layers without any outliers. This might help boost end-to-end 755

performance by removing all the outlier-related overheads during the forward pass. (Although, as we 756

show later, these overheads are minor.) Table 8 shows how the accuracy of different models changes when 757

we use different absolute threshold values (shown by T), extracted using a linear search, for the outliers. 758

We conclude that there is no universal threshold across all models, which would preserve accuracy across 759

all models. For example, Falcon-180B can achieve reasonable accuracy even if 24% of the linear layers 760

(115 out of 480) contain zero outliers. However, this is not the case for smaller models: LLaMA2-70B 761

can recover accuracy with up to 5% of the linear layers (30 out of 560) having zero QUIK outliers. We 762

provide additional experiments in Appendix L. 763

Model T LLaMA2-70B Falcon-180B

FP16 - 3.2 3.30

QUIK-4B

0 3.74 (0) 3.61 (0)

2.0 3.75 (10) 3.61 (3)

3.0 3.85 (30) 3.61 (4)

4.0 5.15 (58) 3.72 (14)

8.0 5.92 (219) 3.73 (115)

Table 8: Study of zero outlier setting on WikiText2 using 256 outliers. We use zero outliers when the maximum
of scale is less than threshold T. For each experiment, the number of linear layers with zero outliers is written in
parentheses.

H Detailed Zero-Shot Results 764

Table 9 shows the detailed results of QUIK-4B on OPT and LLaMa-2 families on five popular zero-shot 765

tasks: PIQA (Tata and Patel, 2003); WinoGrande (Sakaguchi et al., 2021); HellaSwag (Zellers et al., 766

2019); Arc (Easy and Challenge) (Boratko et al., 2018). We use the LM Evaluation Harness (Gao et al., 767

2021) with default parameters in our experiments. 768

13



Model Bits Arc Challenge Arc Easy HellaSwag PIQA WinoGrande Avg. Score

OPT-30B FP16 38.05 65.36 72.28 78.13 68.43 64.45
QUIK-4B 36.69 64.39 70.84 77.75 67.01 63.34

OPT-66B FP16 40.02 67.26 74.87 79.82 68.82 66.16
QUIK-4B 38.82 64.73 73.68 79.43 68.82 65.10

LLaMA2-13B FP16 48.98 77.44 79.38 80.52 72.22 71.70
QUIK-4B 48.04 74.92 78.36 79.22 71.90 70.49

LLaMA2-70B FP16 57.34 80.98 83.81 82.75 77.98 76.57
QUIK-4B 56.14 79.00 81.57 81.56 76.56 74.97

Table 9: LM eval harness results of QUIK on OPT andLLaMA-2 families, using 256 outliers.

I Full OPT Accuracy Results769

Table 10 shows the perplexity results of OPT models. We use symmetric quantization for the weights in770

all our experiments. The results suggest that in a 4-bit setting, considering outlier features is crucial to771

preserve the accuracy even in small models (like OPT-1.3b). We note that 256 outliers is equivalent to772

12.5% of the 1.3B model’s hidden size (and 2.77% of the 66B model’s hidden size).773

Model OPT-1.3b OPT-6.7b OPT-13b OPT-30b OPT-66b

Task WIKI PT C4 WIKI PT C4 WIKI PT C4 WIKI PT C4 WIKI PT C4

Baseline 14.63 16.96 14.72 10.86 13.09 11.74 10.13 12.34 11.20 9.56 11.84 10.69 9.34 11.36 10.28

GPTQ-4B 15.89 18.83 15.90 11.43 13.81 12.21 10.38 12.65 11.41 9.60 12.02 10.83 9.65 11.63 10.56

0 Outliers 15k 9k 10k 10k 9k 9k 9k 12k 9k 12k 13k 17k 12k 13k 10k
64 Outliers 26.259 27.143 22.981 11.473 13.888 12.348 11.031 13.305 11.971 10.283 12.557 11.267 9.851 11.965 10.742
128 Outliers 17.638 19.709 16.799 11.671 13.809 12.314 10.964 13.241 11.894 10.339 12.564 11.279 9.805 11.842 10.653
256 Outliers 17.358 19.525 16.607 11.184 13.811 12.262 10.779 13.175 11.847 10.078 12.465 11.226 9.662 11.793 10.635

Table 10: Perplexity scores of QUIK-4B over various OPT models with different outliers on three datasets:
WikiText2 (WIKI), Pen Treebank (PT), and C4. GPTQ-4B only quantizes the weights (using int-4 symmetric
quantization) and keeps the activations in FP16.

J Full LLaMA-2 Accuracy Results774

Table 11 shows the perplexity of QUIK on LLaMA-2 models. We provide a list of tricks to improve the775

quality of the model without too much overhead. We found that keeping the down-proj layer in 8 bits can776

improve the perplexity by about 3 points. Also, we found weight clipping as a cheap and efficient trick for777

improving the accuracy of QUIK-4B.778

LLaMA-2 Down-Proj Clipping 7B 13B 70B

FP16 W16A16 - 5.47 4.88 3.2

GPTQ-4B W4A16 - 6.24 5.25 3.68

QUIK-4B W4A4 - 8.78 7.78 6.91

QUIK-4B W4A16 - 6.09 5.49 3.98

QUIK-4B W4A8 - 6.11 5.5 4.0

QUIK-4B W8A8 - 5.98 5.37 3.87

QUIK-4B W8A8 ✓ 5.84 5.28 3.74

Table 11: LLaMA-2 perplexity results on WikiText2 using 256 outliers. We apply clipping only during the weight
quantization.

14



K Full INT-8 Accuracy Results 779

Table 12 shows QUIK-8B comparison against SmoothQuant on the WikiText2 dataset. We use per-token 780

(per-column) quantization for the activations (weights) in SmoothQuant and only apply the quantization 781

on the linear layers (which is the case for QUIK also). We exclude the Falcon-7B model as this model has 782

a single layer-norm for both MLP and Attention blocks and it is not clear how the weights of the FC1 and 783

KQV will be updated in the SmoothQuant algorithm. 784

Model OPT LLaMA-2 Falcon
1.3b 6.7B 13B 30B 66B 7B 13B 70B 40B 180B

FP16 14.63 10.84 10.13 9.56 9.34 5.47 4.88 3.20 5.23 3.30

SmoothQuant 14.70 10.89 10.37 9.59 9.80 5.58 4.94 3.48 5.26 3.30

QUIK-8B 14.62 10.84 10.13 9.51 9.29 5.48 4.89 3.33 5.23 3.31

Table 12: Accuracy results for 8bit models on WikiText2. We use 256 outliers in QUIK experiments. Following
the SmoothQuant paper, we use α = 0.8 hyperparameter for LLaMA-2 models and α = 0.5 for OPT and Falcon
families.

L Zero-Outlier Full Results 785

Table 13 shows the results of keeping different numbers of layers without outliers for different models. 786

M 2:4 Sparsity + INT8 Quantization 787

Table 14 shows the accuracy results of applying QUIK-8B with 2:4 sparsity across all models. The results 788

suggest that the main accuracy drop is from introducing 2:4 sparsity to the weight matrices and keeping 789

some of the layers in dense is crucial to preserve the accuracy (See section 4.3). 790

N Falcon performance benchmark 791

We also explore the performance improvements of Falcon (TII UAE, 2023) models. The 8xRTX3090 792

machine contains around 190GB GPU memory which is not enough to run fp16 model inference. 793

Model T LLaMA-2 Falcon
7B 13B 70B 7B 40B 180B

FP16 - 5.47 4.88 3.2 6.59 5.23 3.30

QUIK-4B

0 5.84 (0) 5.28 (0) 3.74 (0) 6.90 (0) 5.46 (0) 3.61 (0)

2.0 5.91 (5) 5.33 (3) 3.75 (10) 6.90 (3) 5.46 (1) 3.61 (3)

3.0 6.09 (11) 5.34 (8) 3.85 (30) 6.91 (14) 5.46 (2) 3.61 (4)

4.0 6.13 (21) 5.36 (17) 5.15 (58) 6.93 (27) 10.56 (8) 3.72 (14)

8.0 12.93 (55) 21.85 (66) 5.92 (219) 6.94 (57) 10.61 (33) 3.73 (115)

Table 13: Study of zero outlier setting on WikiText2 using 256 outliers. We use zero outliers when the maximum
of scale is less than threshold T. For each experiment, the number of linear layers with zero outliers is written in
parentheses.

15



Model Sparsity OPT LLaMA-2 Falcon
1.3b 6.7B 13B 30B 66B 7B 13B 70B 7B 40B 180B

FP16 0% 14.63 10.84 10.13 9.56 9.34 5.47 4.88 3.20 6.59 5.23 3.30

SparseGPT 2:4 24.08 14.15 12.93 10.93 10.08 10.97 8.78 5.70 12.33 12.33 6.13

QUIK-8B 0% 14.62 10.84 10.13 9.51 9.29 5.48 4.89 3.33 6.59 5.23 3.31
2:4 22.69 14.59 12.87 11.06 10.24 11.07 8.66 5.89 11.07 8.09 6.19

Table 14: WikiText2 accuracy results for applying 2:4 sparsity with QUIK-8B. We use 256 outliers in all experiments.

(4096, 4096)

(8192, 1024)

(11008, 4096)

(5120, 5120)

(8192, 8192)

(28672, 8192)

Matrix size

0

1

2

3

4
Sp

ee
du

p
Baseline
QUIK-8B
QUIK-4B

Figure 12: Layer-wise speedups on a single RTX3080 for different layer sizes and compression types. QUIK-4B
with 256 outliers, QUIK-8B without outliers.

O Performance on RTX3080 GPUs794

To validate the performance of QUIK in other types of GPUs we conducted benchmarks on RTX3080795

GPUs. The results are presented in Figure 12. We can see that QUIK-4B still can get more that 4x speedup796

on another type of GPU.797

P Performance at different sequence sizes798

We mainly focus our work on the “prefill” cases with large sequence sizes (in all our experiments sequence799

size is equal to 2048). In this section we explore the performance of the QUIK-4B with other input800

sequence sizes. In Figures 13(a) and 13(b) we vary input size from 1 to 8k. In the first expeeriment801

(Figure. 13(a)) we ran layer-wise benchmark, in the second (Figure 13(b)) we ran inference of a single802

Transformer block (on a single GPU). We see that at small input sequence sizes QUIK is noticably slower803

for smaller layer size and models. It can be explained by the fact that the gains of low precision matrix804

multiplication at this scale can not compensate the quantization overheads. However, at large layer and805

model sizes QUIK has up to 2x speedup even with single token input. In case of the large input sequences806

we see that performance decreases meaning that low precision matrix multiplication saturates at this scale.807

Q Performance with various outlier number808

In this section we explore the effect of outliers numbers on the QUIK performances. Figure 14 suggests809

that the timing of QUIK matmul stays the same across all layer sizes for all non-zero outlier numbers. The810

zero outliers case superiority can be explained by the fact that it does not have additional full precision811

matrix multiplication and input data movements. However, these results show that QUIK allow increase812

the outlier number without performance sacrifices which is crucial for the accuracy recovery, as we813

discussed in the Section ??.814

16



1 16 256 2048 8192
Input size

1

2

3

4

Ti
m

e 
re

la
tiv

e 
to

 fp
16

(4096, 4096)
(8192, 1024)
(8192, 8192)
(28672, 8192)

(a) Layerwise Performance.

1 16 256 2048 8192
Input size

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

Th
ro

ug
hp

ut
 re

la
tiv

e 
to

 fp
16

7B
13B
70B

(b) LLaMA Block performance.

Figure 13: Relative performance of QUIK-4B with outliers for different sequence sizes (batch size = 1) on RTX3090
GPU

0 32 64 128 256 512 704 1024
Number of outliers

0.3

0.4

0.5

0.6

0.7

0.8

Ti
m

e 
pe

r m
at

m
ul

, m
s

(4096, 4096)
(8192, 1024)

(11008, 4096)
(5120, 5120)

Figure 14: Timing results for different QUIK-4B layers sizes with various number of outliers on RTX3090 GPU.

815

17


