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Abstract
Offline reinforcement learning (RL) aims to learn
an effective policy from a static dataset. To alle-
viate extrapolation errors, existing studies often
uniformly regularize the value function or policy
updates across all states. However, due to substan-
tial variations in data quality, the fixed regulariza-
tion strength often leads to a dilemma: Weak reg-
ularization strength fails to address extrapolation
errors and value overestimation, while strong reg-
ularization strength shifts policy learning toward
behavior cloning, impeding potential performance
enabled by Bellman updates. To address this issue,
we propose the selective state-adaptive regulariza-
tion method for offline RL. Specifically, we intro-
duce state-adaptive regularization coefficients to
trust state-level Bellman-driven results, while se-
lectively applying regularization on high-quality
actions, aiming to avoid performance degrada-
tion caused by tight constraints on low-quality
actions. By establishing a connection between
the representative value regularization method,
CQL, and explicit policy constraint methods, we
effectively extend selective state-adaptive regular-
ization to these two mainstream offline RL ap-
proaches. Extensive experiments demonstrate
that the proposed method significantly outper-
forms the state-of-the-art approaches in both of-
fline and offline-to-online settings on the D4RL
benchmark. The implementation is available at
https://github.com/QinwenLuo/SSAR.

1. Introduction
Reinforcement Learning (RL) has made remarkable strides
across diverse domains (Degrave et al., 2022; Kaufmann
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et al., 2023; Haarnoja et al., 2024). However, RL typically
improves performance through trial and error, which lim-
its its practical application to critical scenarios, such as
healthcare decision-making (Tang & Wiens, 2021; Fatemi
et al., 2022) and autonomous driving (Fang et al., 2022;
Diehl et al., 2023). These tasks often have such strict re-
quirements regarding potential risks and time costs that the
interaction with the environment is limited or inaccessible.

Offline RL has mitigated this problem by deriving policies
from static datasets without actual environment interactions.
Direct application of the off-policy algorithms could result
in value overestimation and extrapolation errors (Fujimoto
et al., 2019; Kumar et al., 2019). To address these chal-
lenges, based on how they resolved around the policy it-
eration process, existing RL-based offline methods can be
roughly divided into two groups, value regularization (Ku-
mar et al., 2020; Cheng et al., 2022; Nakamoto et al., 2024)
and policy constraint (Fujimoto & Gu, 2021; Kostrikov
et al., 2021b; Nair et al., 2020). The former suppresses the
Q-values of out-of-distribution (OOD) actions in the policy
evaluation function to alleviate value overestimation; while
the latter restricts updates near the dataset in the policy im-
provement function to avoid OOD actions. Both approaches
incorporate regularization terms into their online counter-
parts, shifting the update from an optimistic to a pessimistic
manner. Despite their demonstrated advances, existing meth-
ods still face the critical challenge of identifying optimal
regularization strengths that balance trust in the outcomes
derived from Bellman updates and the imitation of dataset
actions to fully unlock the potential of RL-based learning.

Given that in model-free RL methods, performance gains
beyond the behavior policy are fundamentally enabled by
Bellman updates, it is crucial to balance confidence in these
updates and conservative regularization. Since the balance is
typically achieved by the fixed global coefficient in the reg-
ularization term, identifying its optimal value is paramount
for effective performance. This presents challenges from
three key aspects. Firstly, from a task-level perspective, the
optimal global coefficient can vary significantly across dif-
ferent tasks. Certain tasks may benefit from a larger coeffi-
cient to enforce stricter regularization and avoid overestima-
tion, while others may require a lower coefficient to enable
more flexible policy updates, resulting in better performance
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(Nakamoto et al., 2024; Lyu et al., 2022). Secondly, from
the perspective of training dynamics, the optimal coeffi-
cient should evolve throughout the training process. When
the policy is less reliable and poorly constrained by the
dataset at the early stage, a larger coefficient is essential
to restrict policy updates. As the training advances and
the distribution of the learned policy becomes sufficiently
close to the dataset, a lower coefficient may be more ben-
eficial for states where the policy actions are close to the
dataset, thanks to the reliable and reasonable generalization
enabled by Bellman updates (Beeson & Montana, 2022).
Thirdly, considering the variability in data densities, it is
intuitive to trust the Q-values learned by Bellman updates
for states with high data density, while conversely tighten-
ing the constraints for states with low data density. Despite
some nuances, existing methods predominantly determine
the global coefficient through extensive experiments, which
struggles to address these challenges effectively.

Another critical issue with the fixed global regularization
lies in its impact on the efficiency of transitioning from
offline-to-online (O2O) RL. The uniform regularization
strength presents a dilemma: low regularization coefficients
may amplify the risks of extrapolation errors through in-
sufficient behavioral constraints, yielding poorly initialized
policies. Conversely, overly high regularization coefficients
induce significant discrepancies between the offline and on-
line Q-values in value regularization methods, as well as
misalignment between the learned policy and the policy
directly induced by the critic in policy constraint methods.
To enhance the efficiency of O2O RL, researchers have ex-
plored various approaches, including gradually relaxing con-
straint terms (Beeson & Montana, 2022; Zhao et al., 2022)
and adopting alternative action sampling strategies (Zhang
et al., 2023; Uchendu et al., 2023). However, these meth-
ods make modifications based on global coefficients, which
prevents further improvement in fine-tuning efficiency.

In this work, we propose state-adaptive regularization that
dynamically quantifies the reliability of Bellman updates,
guiding the policy to trust optimistic outcomes at the state
level. Instead of a fixed coefficient, our method employs a
neural network as a state-dependent coefficient generator
and adaptively updates it to adjust regularization strengths
based on the discrepancy between the dataset and the dis-
tribution of the learned policy. To enhance its universality,
we establish a connection between CQL, a representative
value regularization method, and explicit policy constraint
methods, extending it to both popular offline approaches.
Furthermore, we propose a selective regularization method
by selecting a subset of data with high rewards. This allows
the policy update to focus on high-quality actions and avoid
excessive constraints on low-quality parts. With the integra-
tion of selective state-adaptive regularization, we effectively
bridge the gap between offline and online RL, achieving ef-

ficient O2O RL through simple linear coefficient annealing.

2. Preliminaries
Offline RL The environment in RL is typically modeled
as a Markov Decision Process (MDP), which is defined by
the tuple (S,A,R,P,µ,γ) (Sutton & Barto, 2018), where S is
the state space, A is the action space, P : S × A → ∆(S)
is the transition function, R : S × A → R is the re-
ward function, µ is the initial state distribution and γ is
a discount factor. The goal of RL is to find a policy π :
S→ ∆(A) that maximizes the expected discounted return:
Es0∼µ,at∼π(·|st),st+1∼P (·|st,at) [

∑∞
t=0 γ

tR(st, at)]. For
any policy π, we define the state value function as V π(s) =
Eπ[
∑∞
t=0 γ

tR(st, at)|s0 = s] and the state-action value
function as Qπ(s) = Eπ[

∑∞
t=0 γ

tR(st, at)|s0 = s, a0 =
π(·|s0)]. The agent interacts with the environment by ob-
serving states, taking actions and receiving rewards, and
improves the policy through the interactive data.

In offline RL, the agent has no access to the environment
but only to a fixed dataset D, which is typically assumed to
be collected by a behavior policy πβ . Existing works follow
the key insight of maintaining pessimism in policy learning,
which constrains the learned policy close to the dataset.
For the value function and the policy, which are the two
crucial components of model-free RL, value regularization
and policy constraint are commonly applied in pursuit of
this goal.

Value regularization In the policy iteration, OOD actions
are inevitably taken to compute the Bellman targets for the
Q function update. This induces significant extrapolation
error and overestimation of OOD actions (Kumar et al.,
2019; Fujimoto et al., 2019), ultimately resulting in poor
or even negative performance improvement. Some work
combats this problem by applying value regularization to the
Q function update to suppress the overestimation of OOD
actions (Cheng et al., 2022; Kumar et al., 2020; Nakamoto
et al., 2024). A representative algorithm is conservative
Q-learning (CQL) (Kumar et al., 2020), which learns a
conservative Q function such that the expected values of a
policy under this Q function approximate the lower bound
of its true values. The crucial modification is the value
regularization applied to the Q function update

min
Q

β Es∼D

(
log
∑
a

exp [Q(s, a)]− Ea∼D [Q(s, a)]

)

+
1

2
Es,a,s′∼D

[(
Q(s, a)− B̂πkQ̂k(s, a)

)2]
(1)

The second term is the empirical Bellman error objective
used to update the Q function in RL, where the empiri-
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cal Bellman operator is computed as B̂πkQ̂k = r(s, a) +
γEa′∼πk(·|s′)[Q̂

k(s′, a′)]. The first term is a value regular-
izer, aiming to bound the Q values to avoid overestimation
of OOD actions, and β is a tradeoff factor controlling the
intensity of pessimism. Given that the regularization only
affects the update of the Q function, the policy update fol-
lows the form of online RL. Akin to the implementation of
SAC (Haarnoja et al., 2018), the policy of CQL is modeled
as a Gaussian distribution but updates by approximating the
Boltzmann distribution of Q values with the following loss:

min
π

Es∼D,a∼π(·|s)[α log π(a|s)−Q(s, a)] (2)

Explicit policy constraint Some other works focus on
directly constraining the policy update without the change
of Q function update. TD3+BC (Fujimoto & Gu, 2021)
is a minimalist but efficient approach by only adding a
regularization term of the MSE loss between the actions
output by the deterministic policy and the actions in the
dataset. With the same Q update function as TD3 (Fujimoto
et al., 2018), the update loss functions are defined as

min
Q

Es,a,s′∼D[(Q− [r(s, a) + γQ̂k(s′, πk(s
′)])2] (3)

max
π

Es,a∼D[λQ(s, π(s))− (π(s)− a)2] (4)

where λ = α/ 1
N
∑

(si,ai)
|Q(si, ai)| is an adaptive scalar

that controls the intensity of the regularizer and normalizes
the loss term about Q values.

3. Selective State-Adaptive Regularization
In this section, to adaptively adjust the regularization
strength across different states and maximize the potential
benefits of Bellman updates, we propose the Selective State-
Adaptive Regularization method. This approach com-
prises three key components: In Section 3.1, we establish
the equivalence between Conservative Q-Learning (CQL)
and explicit policy constraint methods. Building upon this
relationship, we introduce a learnable state-adaptive regu-
larization mechanism that dynamically adjusts state-wise
regularization coefficients based on the divergence between
the log-likelihood of dataset actions under the learned pol-
icy and a given threshold. In Section 3.2, we introduce a
distribution-aware strategy based on the learned policy to
automatically determine the appropriate threshold for this
mechanism. To further ensure the validity of the constraints
and fully exploit the advantages of the RL paradigm, we
propose a selective regularization strategy in Section 3.3.

Additionally, in Section 3.4, we extend our method to deter-
ministic policy algorithms that lack explicit policy distribu-
tions. Finally, Section 3.5 presents our online fine-tuning
method, highlighting its simplicity and minimal reliance on
the offline data.

3.1. State-Adaptive Coefficients

To address the challenges outlined in Section 1, we pro-
pose to use state-adaptive coefficients instead of a fixed
global coefficient, which allows for adaptively controlling
the strength of regularization at the state level. This mod-
ification exhibits two advantages. On the one hand, the
adaptive update manner performs automatic adjustments
to accommodate differences between tasks and dynamics
across training stages; on the other hand, the state-adaptive
nature enables us to determine the proper coefficients by
leveraging Bellman-driven results, which are closely related
to data density information.

Considering that different offline methods have different
constraint objectives, it is challenging to directly apply state-
adaptive coefficients to these methods. Recalling that the
core principle behind these algorithms is to learn a desir-
able policy within a reliable region near the dataset, we
provide a unified framework to integrate different constraint
objectives.

We begin with a classic offline RL algorithm CQL (Kumar
et al., 2020), which is also a representative of value regular-
ization methods, and bridge its relationship with the explicit
policy constraint methods.
Proposition 3.1. With the policy π modeled as a Boltz-
mann distribution, e.g. π(a|s) ∝ exp (Q(s, a)), the reg-
ularization term of Eq. (1) is equivalent to the negative
log-likelihood term about π at the dataset actions, that is

min
Q

β Es∼D
[
log
∑
a

exp (Q(s, a))− Ea∼D [Q(s, a)]

]
⇕

min
π

β E(s,a)∼D
[
− log π(a|s)

]

Proposition 3.1 shows that the equivalent regularization term
can be considered as an explicit policy constraint, similar
to SAC+ML used in (Yu & Zhang, 2023). This observation
tells us that the coefficients in both approaches directly af-
fect the probabilities of dataset actions in the learned policy.
This motivates us to use a unified framework to adjust the
coefficients for these two types of methods.

It becomes intuitive to relax the constraints when the policy
actions are sufficiently close to the dataset, while enhanc-
ing them in regions of higher uncertainty. Building on this
intuition, given the formulations of policy updates in Eq.
(4) and Proposition 3.1, we propose a simple yet effective
method to derive state-adaptive coefficients by constrain-
ing action probabilities to exceed the state-level thresholds
determined by the policy distribution. Specifically, for a
stochastic policy, we define the objective as

Lβ(ϕ) = E(s,a)∼D [log π(a|s)− Cn(s)]βϕ(s) (5)
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where

Cn(s) = min{log π(µ+ nσ|s), log π(µ− nσ|s)} (6)

where µ represents the mean of the learned policy, and σ
denotes its standard deviation. βϕ(s) is state-adaptive coef-
ficients modeled by a neural network, and n is a parameter
controlling the width of the trust region. Considering that in
some implementations of CQL, the policy is modeled as a
squashed Gaussian distribution, we use the min operator to
capture the appropriate thresholds.

With the proposed method, the state-adaptive coefficients
will decrease when the probabilities of the dataset actions
exceed the thresholds, and conversely, increase when they
fall below them. This ensures that the learned policy not
only restricts the updates within a reliable region but also
obtains the potential performance improvements enabled by
the generalization capabilities of Bellman updates.

By incorporating state-adaptive coefficients, we define the
regularization term in CQL as

min
Q

βϕ(s)Es∼D[log
∑
a

exp(Q(s, a))− Ea∼D[Q(s, a)]]

+
1

2
Es,a,s′∼D[(Q− B̂πkQ̂k)2]

(7)

which allows for a flexible trade-off between optimism and
pessimism at the state level.

3.2. Distribution-Aware Thresholds

An important problem is how large the reliable region should
be to impose an effective regularization. It is noteworthy
that the size of a reliable region controlled by n typically
reflects the confidence of the learned policy based on Bell-
man updates. Due to the variability in task complexity, it
is inherently challenging to determine a proper n across
different tasks. For instance, in the dataset with low data
coverage, a larger value might be necessary to account for
the increased uncertainty, whereas in well-sampled tasks, a
lower one can avoid unnecessary constraints. Using a task-
agnostic approach for determining n is not a good choice
and often yields unfavorable performance. This motivates
the need for an adaptive mechanism that performs dynami-
cal adjustments based on the characteristics of the task and
the underlying policy distribution.

Intuitively, the parameter n should be gradually increased
throughout the training process. In the early stage, the policy
distribution deviates significantly from the dataset, making
it suffer from extrapolation errors. Once the policy is well-
learned and sufficiently bounded around the dataset, looser
constraints can allow the learning process to potentially
benefit from Bellman updates. Given that the divergence
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Figure 1. Comparison of Uniform vs. Selective Regularization.
The values are evaluated by the policies trained by with different
regularization on all data in the dataset.

between the policy distribution and the dataset can reflect
the dynamic of the training progress, we propose to per-
form an adjustment of n in a distribution-aware manner to
dynamically expand the trust region.

We start by setting the initial value of n to a low value nstart,
ensuring sufficient constraint, and gradually increasing n un-
til it reaches nend. Throughout the training process, a simple
linear schedule for n is applied to relax the constraint:

n =← n+∆n (8)

where ∆n = (nend − nstart) · Tinc/T , Tinc represents the
update interval and T represents the total steps.

By using this approach, the threshold n is initially set to
a small value, causing the loss in Eq. (5) to be negative.
As a result, the coefficients of most states will increase
during the early stages to enforce the policy distribution
towards the dataset. As training progresses, the learned
policy gradually approximates the dataset actions across
most states. With the expansion of the trust region, the
constraints on certain states are gradually relaxed, allowing
for broader exploration. To reach a balance in the strength
of the constraint, we terminate the update once the condi-
tion E(s,a)∼D [log π(a|s)− Cn(s)] > 0 is satisfied. This
adaptive scheme ensures that the trust region evolves in
alignment with the distribution of the policy.

3.3. Selective Regularization

Although we can adaptively control the strength of regular-
ization with state-adaptive coefficients, it has still proven to
be difficult to obtain favorable performance on low-quality
datasets. As shown in Figure 1, this is because the proposed
coefficients updating mechanism encourages the policy to
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Sub-Dataset Offline Dataset

(a) Data with high returns in the dataset
with a low quality variance

(b) Data with high returns in the dataset
with a high quality variance

(c) Data with positive advantages in the
dataset with a high quality variance

Figure 2. t-sne visualization of different sub-dataset selection methods

output high probabilities for the actions within the dataset,
including those that lead to suboptimal or even poor per-
formance. To address this problem, we propose a selective
regularization strategy to impose the constraint on a sub-
set of high-quality actions, which prevents the policy from
being misguided by low-quality actions. To achieve this,
we prioritize trajectories with high returns, emphasizing the
regularization on valuable actions, while overlooking other
constraints with minimal returns.

we construct a sub-dataset denoted by D̂ by selecting tra-
jectories with returns greater than a selective threshold GT .
To mitigate the negative impact of low-quality actions, we
update the state-adaptive coefficients only within D̂ as

Lβ(ϕ) = E(s,a)∼D̂[log π(a|s)− Cn(s)]βϕ(s) (9)

where Cn(s) is still computed as Eq. (6).

When the sub-dataset D̂ can cover the most region of the
whole dataset D, we perform regularization selectively on
the actions with the sub-dataset. For CQL, the objective can
be reformulated as

min
Q

βϕ(s)Es∼D̂[log
∑
a

exp(Q(s, a))− Ea∼D[Q(s, a)]]

+
1

2
Es,a,s′∼D[(Q− B̂πkQ̂k)2]

(10)

Generally, there exist two situations for different datasets.
For datasets with low quality variances, the sub-dataset con-
sisting of high-return trajectories can effectively capture the
distribution of the offline dataset, as shown in Figure 2(a).
This motivates us to use selective regularization for increas-
ing the Q-values of valuable actions in the dataset while
allowing the Q-values of low-quality actions to update natu-
rally through the Bellman backup. This mitigates the over-
estimation of Q values by leveraging the generalization of
similar actions or states to constrain the policy.

For the datasets composed of heterogeneous data with a
wide-ranging distribution, such as walker2d-medium-replay-
v2, which records all samples in the replay buffer during
training, the sub-dataset can only cover a portion of the
entire distribution, as shown in Figure 2(b). In such a situ-
ation, solely adjusting constraints on the states within the
sub-dataset may cause catastrophic overestimation for the
remaining states.

To address this issue, we utilize the approaches from IQL
Kostrikov et al. (2021b) to pre-train a state-action value net-
work Q and a state value network V to capture the relative
value of the data. As a representative offline RL algorithm,
IQL has demonstrated the superiority of advantage-weighted
behavior cloning, where Q-values and V-values are learned
through expectile regression in a non-iterative manner with
in-sample learning

LV = E(s,a)∼D[L
τ
2(Q(s, a)− V (s))]

LQ = E(s,a,s′)∼D[(r(s, a) + γV (s′)−Q(s, a))2]
(11)

where Lτ2(x) = |τ − I(x < 0)|x2 and I(·) is the indicator
function.

With the pre-trained Q and V , we can filter the valuable
actions on the whole dataset by the condition Q(s, a) −
V (s) > 0. Analogous to Eq. (9) and Eq. (10), we can
construct the sub-dataset D̂ by the data that satisfies the
metric and favor these selected actions. Given that this
approach guarantees that at least one action is constrained
for all states, the sub-dataset can capture the approximate
distribution of the offline dataset, as shown in Figure 2(c).

3.4. Extend to Explicit Policy Constraint Methods

Based on the relationship between the value regularization
and the explicit policy constraint methods as shown in Propo-
sition 3.1, the idea of the selective regularization method can
also be applied to explicit policy constraint methods. In this
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section, we provide an extension of the proposed method to
the representative algorithm TD3+BC. However, it is infea-
sible to directly update the state-adaptive coefficients using
Eq. (9), as TD3+BC models the policy as a deterministic
form. Recalling that the interaction process in TD3, we find
that the exploration noise behaves similarly to the standard
deviation, allowing us to treat the actions as samples from
a Gaussian distribution with the mean of the policy actions
and a fixed standard deviation. This modification enables us
to rewrite Eq. (9) as

Lβ(ϕ) = E(s,a)∼D̂[n
2δ2 − (a− π(s))2]βϕ(s) (12)

where δ is the exploration noise in TD3, which is usually set
as 0.1. Note that Eq. (9) and Eq. (12) are grounded in the
same underlying mechanism, with the primary difference
lying in the specific policy formulations to which they are
applied. See Appendix C for the derivation.

By incorporating the state-adaptive coefficients, we define
the objective of the policy improvement in TBC+BC as

max
π

Es,a∼D[Qnorm(s, π(s))− βϕ(s)(π(s)− a)2] (13)

Similarly, for the datasets with low variance in quality, the
policy can be only constrained near the sub-dataset D̂

max
π

Es,a∼D[Qnorm (s, π(s))

− I
(
(s, a) ∈ D̂

)
βϕ(s) (π(s)− a)

2
]

(14)

where I
(
(s, a) ∈ D̂

)
denotes an indicator function that

specifies whether the data point (s, a) belongs to the sub-
dataset D̂, Qnorm(s, π(s)) follows the normalization trick
of TD3+BC (Fujimoto & Gu, 2021) and can be computed
as Q(s, π(s))/ 1

N
∑

(si,ai)
|Q(si, ai)|.

3.5. Efficient Offline-to-Online RL

Generally, the state-adaptive coefficients can be viewed as
the confidence of the policy in a given state. When the coef-
ficient is low, the policy update closely follows the results of
bellman updates. Similar to the online approaches, this up-
date has the optimistic property that encourages the policy to
explore higher-value regions. When the coefficient is high,
it serves to constrain the policy near the dataset for safety,
as the critic updated by the Bellman backup may guide the
policy toward unreliable regions. These state-adaptive co-
efficients allow the policy to determine whether to trust the
critic at the state level, enabling a flexible trade-off between
optimism and pessimism, which efficiently minimizes the
discrepancies between the offline and online update mecha-
nisms.

Additionally, since the policy is trained on an offline dataset
that spans a wide range of states, the coefficients can be

directly applied during the online fine-tuning stage. Two
factors ensure stable performance improvements: i) there
are far fewer out-of-distribution (OOD) actions during the
interaction phase, and ii) the coefficient network can gener-
alize its adaptability to new states.

Thanks to the advantages of state-adaptive coefficients, we
can efficiently implement online fine-tuning by fixing the
parameters of the coefficient network, with linear annealing
applied to the outputs as

βon(s) = min{1− N

Nend
, 0} · β(s) (15)

where N is the number of online interaction steps and Nend

is the given number of decay steps.

During online fine-tuning, the update functions of the actor
and the critic hold on and βon(s) is used to replace the
regularization coefficients.

Although the form of our method is similar to unified ap-
proaches across O2O phases, such as IQL, our method offers
advantages due to the well-trained coefficient network and
its generalization. As a result, we can reserve only a subset
of trajectories for initializing the online replay buffer, or
even discard the offline dataset entirely and use only the
online data to update the policy. This is infeasible for the
unified methods, as they require the offline dataset to con-
strain the policy update, thereby hindering the utilization
efficiency of online data and resulting privacy breaches in
some scenarios. On the other hand, with low coefficients in
some states, the Q-values are not severely underestimated,
which is helpful for avoiding drastic jumps and the con-
sequent performance degradation for value regularization
methods. For explicit policy constraint methods, low co-
efficients enable the actor to update in the direction of the
maximal Q-values, which prevents potentially inaccurate
evaluations.

Since the offline policy is well-trained to collect online data
with higher quality, we apply the constraint term for all
online data to achieve stable performance improvement.

The complete training procedure is outlined in the pseudo-
code provided in Algorithm 1.

4. Experiments
In this section, we incorporated the proposed method with
CQL (Kumar et al., 2020) and TD3+BC (Fujimoto & Gu,
2021) and conducted extensive experiments to validate
the effectiveness on D4RL (Fu et al., 2020) MuJoCo and
AntMaze tasks, including HalfCheetah, Hopper, Walker2d
and AntMaze environments. In Section 4.1, we first demon-
strate significant performance improvements compared to
the backbone methods, CQL and TD3+BC. Then, in Sec-
tion 4.2, we highlight the effectiveness of our approach in
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Table 1. Offline performance comparison with backbone algorithms TD3+BC (Fujimoto & Gu, 2021) and CQL (Kumar et al., 2020) on
the D4RL benchmark. We evaluate the D4RL normalized scores of standard base algorithms (denoted as ”Base”) against those augmented
with selective state-adaptive regularization (referred to as ”Ours”). The symbol ± represents the standard deviation across the seeds.
Superior scores are highlighted in bold.

Dataset
TD3+BC CQL Avg.

Base Ours Base Ours Base Ours

halfcheetah-m-v2 48.3±0.2 56.5±3.7 47.1±0.2 63.9±1.2 47.7 60.0
hopper-m-v2 58.7±3.9 101.6±0.4 65.6±3.5 89.1±9.7 62.1 95.4
walker2d-m-v2 82.3±2.2 87.9±2.4 81.6±1.2 84.9±1.7 81.9 86.4
halfcheetah-mr-v2 44.4±0.6 49.6±0.3 45.7±0.4 53.8±0.4 45.0 51.7
hopper-mr-v2 66.4±27.1 101.6±0.7 92.3±9.3 101.4±2.1 79.3 101.5
walker2d-mr-v2 81.6±7.1 93.5±2.0 79.2±1.9 94.7±3.3 80.4 94.1
halfcheetah-me-v2 92.9±2.0 94.9±1.2 93.0±4.2 102.1±1.2 93.0 98.5
hopper-me-v2 101.4±8.2 103.8±6.7 97.8±8.6 109.6±3.2 99.6 106.7
walker2d-me-v2 110.3±0.5 112.5±1.4 109.2±0.2 112.2±0.9 109.8 112.4
halfcheetah-e-v2 95.9±1.1 95.5±1.3 97.0±0.5 105.9±0.9 96.5 100.7
hopper-e-v2 108.4±3.6 109.8±4.3 108.7±2.8 111.4±0.2 108.6 110.6
walker2d-e-v2 110.1±0.5 109.6±0.3 110.1±0.2 110.2±0.2 110.1 110.0

locomotion total 1000.8 1116.7 1030.4 1139.1 1015.6 1128.0
95% CIs 917.9∼1083.7 1096.2∼1137.3 990.4∼1070.1 1111∼1167.3 937.5∼1078.6 1093.2∼1162.8

umaze-v2 88.6±4.6 93.4±3.3 92.8±1.5 96.0±2.3 90.7 94.7
umaze-diverse-v2 43.2±18.8 50.0±5.4 27.8±13.1 80.2±7.9 35.5 65.1
medium-play-v2 0.0±0.0 49.4±3.4 67.0±4.2 70.2±6.7 33.5 59.8
medium-diverse-v2 0.0±0.0 47.6±12.1 60.5±9.2 71.6±9.3 30.3 59.6
large-play-v2 0.0±0.0 18.0±4.6 24.8±9.8 53.0±4.1 12.4 35.5
large-diverse-v2 0.0±0.0 17.6±9.8 21.2±12.1 35.8±18.9 10.6 26.7

antmaze total 131.8 276.0 294.1 406.8 213.0 341.4
95% CIs 78.2∼185.5 246.5∼305.5 230.9∼357.3 334.9∼478.7 130.1∼295.8 273.7∼409.1

the offline-to-online setting by applying a simple annealing
scheme to the state-adaptive coefficients. Lastly, to validate
the contributions of individual components, we perform ab-
lation studies to evaluate the impact of the state-adaptive
coefficients and the selection methods for the sub-dataset
D̂. All methods are run with four random seeds, and the
averaged results are reported.

4.1. Performance in Offline Setting

We first demonstrate a significant performance improve-
ment over the backbone methods, CQL and TD3+BC, as
shown in Table 1. Our method consistently outperforms
both CQL and TD3+BC across a wide range of datasets,
with particularly notable improvements in datasets contain-
ing lower-quality data, such as hopper-medium-v2. We

attribute this improvement primarily to the unique ability
of our method to selectively identify and focus on valuable
sub-datasets, combined with the enhanced generalization
enabled by bellman updates with state-adaptive coefficients.

By leveraging the sub-dataset D̂, the policy is selectively
constrained to focus on high-value actions, resulting in con-
servative updates but with high returns. Additionally, the
state-adaptive coefficients allow Bellman updates to general-
ize more effectively, achieving superior performance within
a reliable region near the sub-dataset.

In a manner similar to TD3+BC, we incorporate a behavior
cloning term E(s,a)∼D,a′∼π(·|s) (a

′ − a)
2
/2 into the policy

update for CQL in the Antmaze tasks to ensure stable perfor-
mance. We also compare our method with several advanced
offline methods in Appendix B.1, further highlighting the
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Table 2. Comparison of online fine-tuning (250k steps) performance with the baseline algorithms on D4RL benchmark.

Dataset IQL SPOT FamCQL CQL TD3+BC TD3+BC(SA) CQL(SA)

halfcheetah-medium-v2 49.7 58.6 65.3 48.0 52.5 82.9±2.5 95.3±1.5
hopper-medium-v2 75.2 99.9 101.0 63.8 63.7 103.5±0.4 99.3±3.8
walker2d-medium-v2 80.8 82.5 93.3 82.8 86.6 101.6±7.4 105.9±3.7
halfcheetah-medium-replay-v2 45.2 57.6 73.1 49.4 49.3 73.1±3.0 79.4±2.3
hopper-medium-replay-v2 91.1 97.3 102.8 101.3 97.0 102.9±0.9 103.1±0.2
walker2d-medium-replay-v2 89.2 86.4 103.6 87.9 89.9 100.9±5.4 116.3±2.1
halfcheetah-medium-expert-v2 92.4 91.9 95.7 95.7 93.2 98.5±4.1 115.4±1.5
hopper-medium-expert-v2 109.6 106.5 104.4 110.8 99.8 111.2±2.9 109.5±5.4
walker2d-medium-expert-v2 115.0 110.6 110.4 109.8 115.8 115.7±5.5 117.5±2.5
halfcheetah-expert-v2 96.4 94.1 106.5 97.3 95.8 102.5±0.9 113.3±0.8
hopper-expert-v2 100.3 111.8 109.6 111.9 109.5 112.0±2.4 110.8±1.6
walker2d-expert-v2 112.5 109.9 112.6 109.7 111.4 113.8±0.5 112.6±1.2

locomotion total 1057.4 1107.1 1178.3 1068.4 1064.5 1218.6 1278.4
95% CIs min 981.5 1093.1 1165.3 1058.9 1039.8 1165.4 1254.9
95% CIs max 1133.2 1121.4 1191.5 1080.1 1089.2 1248.9 1303.5

antmaze-umaze-v2 83.0 98.8 - 95.2 72.8 96.5±3.2 99.0±0.6
antmaze-umaze-diverse-v2 38.2 56.8 - 59.2 39.8 87.2±5.0 95.0±2.5
antmaze-medium-play-v2 78.8 92.5 - 77.0 0.0 76.5±16.3 88.0±2.4
antmaze-medium-diverse-v2 80.2 87.0 - 84.0 0.2 63.0±36.1 89.0±3.2
antmaze-large-play-v2 42.8 60.0 - 51.8 0.0 35.5±13.2 66.5±13.4
antmaze-large-diverse-v2 40.2 63.0 - 38.2 0.0 30.5±15.0 56.8±18.2

antmaze total 363.2 458.1 - 405.5 112.8 389.2 494.3
95% CIs min 302.8 384.0 - 327.9 79.5 316.1 415.6
95% CIs max 423.7 534.0 - 483.1 146.1 462.4 573.4

superior performance of our approach.

4.2. Performance in Offline-to-Online Setting

We conducted experiments in the O2O setting with 250,000
online steps and compared the results with several unified
O2O methods, including CQL, TD3+BC, and advanced ap-
proaches such as IQL (Kostrikov et al., 2021b), SPOT (Wu
et al., 2022), and FamO2O (Wang et al., 2024). FamO2O
employs hierarchical models to determine state-adaptive
improvement-constraint balances. For our experiments,
we used an implementation of FamO2O integrated with
CQL, referred to as FamCQL. However, since FamCQL did
not provide its hyperparameters for the AntMaze tasks, we
tested the default settings but observed poor performance.
As a result, its scores are not included in the comparisons.

Table 2 illustrates the competitive performance of our

method in O2O tasks, even with a simple linear anneal-
ing of the coefficients, where (SA) indicates the use of our
approach. We attribute this to the fact that adaptive con-
straints in the offline process can reduce the difference be-
tween offline and online updates, thereby ensuring effective
exploration in online fine-tuning.

Another advantage of our approach is that it can eliminate
the need for access to the offline dataset during online fine-
tuning, as discussed in Section 4.2. For better performance
improvements, in our experiments, we initialized the on-
line replay buffer with a subset of high-return trajectories
during online fine-tuning for Mujoco tasks, but with the
entire offline dataset for Antmaze tasks. We also conducted
experiments with other initialization strategies and listed the
results in Appendix B.2. The results demonstrate that our
method achieves competitive fine-tuning performance even
without access to the offline dataset or when utilizing only a

8
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subset of it.

4.3. Ablation Study

In this subsection, we conduct ablation studies on the effec-
tiveness of the state-adaptive coefficients and the selective
regularization, particularly the IQL-style selection method
for datasets with high quality variance.
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Figure 3. Offline performance comparisons of different types of
the coefficient used for the regularization.

Figure 3 shows the necessity of the state-adaptive coeffi-
cients, where the fixed coefficient is applied globally. As
discussed in Section 1, the global coefficient constrains the
policy update to a narrow region of the sub-dataset, limiting
the ability to achieve performance beyond it. In contrast,
the state-adaptive coefficients allow policy updates within
a reliable region induced by bellman updates, enabling per-
formance that exceeds the dataset.
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Figure 4. Offline performance comparisons of different selection
methods for the sub-dataset.

From Figure 4, for datasets with a wide-ranging distribution,
the sub-dataset composed solely of high-return trajectories
can lead to significant performance degradation and volatil-
ity. This happens because the sub-dataset represents only
a portion of the overall distribution and may be overly nar-
row, while the entire dataset is used for updating Q-values.
As a result, the policy update can drift toward unreliable
regions in out-of-distribution states, which subsequently
affects updates for other states. The sub-dataset extracted
using the IQL-style approach can mitigate this issue, as data
is selected at the state level rather than the trajectory level,
resulting in a broader yet equally valuable distribution.

5. Conclusions
To unlock the potential performance improvements enabled
by Bellman updates and address the challenges posed by
cross-task, cross-training stage, and varying data densities
in uniform regularization, we propose state-adaptive regular-
ization coefficients on selective states. We replace the global
coefficient with state-adaptive coefficients and adaptively ad-
just them based on the policy distribution by the relationship
between CQL and explicit policy methods. Additionally,
we pre-select sub-datasets containing high-quality actions
to reasonably relax the constraints. Empirically, extensive
experiments show that our approach offers a significant im-
provement over various baseline methods, achieving state-
of-the-art performance on the D4RL benchmark.
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A. Related Work
Offline RL In offline RL, inaccessible interactions with the environment pose challenges such as extrapolation error and
overestimation due to out-of-distribution (OOD) actions (Fujimoto et al., 2019; Kumar et al., 2019). Current model-free
offline RL approaches can be categorized into two main groups based on their constraint forms. Value regularization
methods learn a conservative value function to mitigate overestimation (Cheng et al., 2022; Kumar et al., 2020; Bai et al.,
2022; Ma et al., 2021; Kostrikov et al., 2021a), while policy constraint methods explicitly or implicitly constrain policy
updates close to the behavior policy (Fujimoto & Gu, 2021; Wu et al., 2022; Wang et al., 2022b; Kostrikov et al., 2021b;
Nair et al., 2020). Recent methods have added regularization terms to the policy objective, deriving the regularization term
for both the updates of policy and Q-values (Garg et al., 2023; Xu et al., 2023; Tarasov et al., 2024). Some model-based
offline RL methods achieve exceptional performance (Yu et al., 2020; 2021; Sun et al., 2023; Luo et al., 2023; Zhu et al.,
2025) due to the generalization capabilities of learned models. Additionally, recent works have framed policy learning as a
supervised learning and sequence modeling problem using advanced network architectures (Emmons et al., 2021; Chen
et al., 2021; Janner et al., 2022). However, due to the pessimistic constraints for reliable learning, several hyperparameters
need to be determined before employing offline algorithms, most of which are empirical (Paine et al., 2020). Furthermore,
most current algorithms use a uniform constraint coefficient across all states, despite variations in data density.

Value regularization Value regularization methods penalize the Q-values of OOD actions, thereby reducing the prob-
ability of selecting such actions as the policy is derived from the Q-values. Some works address extrapolation error and
overestimation by applying regularization constraints to suppress the Q-values of OOD actions. CQL (Kumar et al., 2020)
augments the standard Bellman error objective with a Q-value regularizer that provides a lower bound on the value of the
current policy. Various CQL variants adjust the constraints or modify the regularizer to avoid excessive pessimism (Lyu
et al., 2022; Nakamoto et al., 2024; Mao et al., 2024; Yu et al., 2021). Ensemble-based approaches (An et al., 2021; Nikulin
et al., 2022) use a similar Bellman target by estimating uncertainty to mitigate the overestimation of OOD actions. Notably,
one study demonstrated the connection between value regularization and one-step RL (Eysenbach et al., 2023) by modifying
the entire policy evaluation formula, while we reveal the link between the regularizer of CQL and explicit policy constraint
methods.

Policy constraint Unlike value regularization methods, policy constraint methods maintain the policy evaluation formula
but constrain policy updates during the improvement stage. TD3+BC (Fujimoto & Gu, 2021) illustrates the effectiveness
of a simple policy constraint applied to the off-policy TD3 algorithm (Fujimoto et al., 2018). Recent works focus on
explicit policy constraints for stochastic policies (Wu et al., 2022; Nair et al., 2020) or more expressive policies (Kang et al.,
2024; Wang et al., 2022a). Another implementation of policy constraints is the implicit policy constraint derived from
the KL-divergence between the learned policy and the behavior policy, known as advantage-weighted behavior cloning
(Peng et al., 2019). Many works based on this approach have demonstrated significant performance improvements across
various tasks (Nair et al., 2020; Kostrikov et al., 2021b; Wang et al., 2024; Park et al., 2024; Hansen-Estruch et al., 2023).
Among them, FamO2O (Wang et al., 2024) also utilizes state-adaptive coefficients, but it is limited to IQL-style methods
with implicit constraints and the entire dataset. Moreover, the coefficients are updated by maximizing Q-values, lacking the
interpretability offered by our method.

Offline-to-online RL The distribution shift between the offline dataset and that induced by the learned policy is the most
challenging issue in offline-to-online RL. Policy constraint methods can mitigate this distribution shift by keeping policy
updates close to the replay buffer. For transitioning from offline RL to online settings, some methods adopt the key idea of
policy constraints while adjusting constraints for improved online performance, such as decaying the constraint coefficient
in a certain way (Beeson & Montana, 2022; Zhao et al., 2022; Wang et al., 2024). Additionally, certain offline methods
can be directly applied to O2O RL (Nair et al., 2020; Kostrikov et al., 2021b). However, the use of a uniform constraint
coefficient makes it difficult to balance stability and speed, inhibiting efficient online fine-tuning. Conversely, transitioning
from value regularization offline methods to online poses a challenge due to the sudden increase in Q-values, resulting from
the pessimistic estimation of OOD actions in offline RL. During online fine-tuning, the agent will estimate the Q-values of
OOD actions optimistically, leading to a rapid increase in overall Q-values and subsequent performance degradation. Some
works have relaxed constraints to prevent severe underestimation of OOD actions during offline learning (Lyu et al., 2022;
Nakamoto et al., 2024) or utilized Q-ensemble methods to maintain reliable estimations at a higher computational cost (Lee
et al., 2022; Mark et al., 2022; Zhao et al., 2023). In contrast, our method assigns different levels of pessimism based on the
distance between the output of the learned policy and the reliable sub-dataset, avoiding unreasonable underestimation. Thus,
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Table 3. Offline performance comparison with prior methods on the D4RL benchmark. The mean-wise best results among algorithms are
highlighted in bold.

Dataset AWAC IQL Cal-QL SPOT FamCQL TD3+BC(SA) CQL(SA)

halfcheetah-m 49.8±0.3 48.1±0.3 47.8±0.2 57.6±0.6 58.1±0.5 56.5±3.7 63.9±1.2
hopper-m 68.6±11.2 66.7±4.4 64.7±3.4 71.4±37.2 82.3±16.0 101.6±0.4 89.1±9.7
walker2d-m 85.1±0.5 74.8±1.8 84.3±0.9 69.6±30.2 87.4±0.6 87.9±2.4 84.9±1.7
halfcheetah-m-r 45.4±0.6 44.5±0.3 46.2±0.3 52.3±0.7 51.9±1.3 49.6±0.3 53.8±0.4
hopper-m-r 97.8±1.4 89.6±11.9 93.4±6.6 87.1±23.9 85.4±14.2 101.6±0.7 101.4±2.1
walker2d-m-r 73.2±8.4 80.6±5.8 84.7±1.4 88.9±1.6 88.6±1.5 93.5±2.0 94.7±3.3
halfcheetah-m-e 95.3±0.9 91.8±2.1 52.7±5.4 92.7±2.3 91.7±2.8 94.9±1.2 102.1±1.2
hopper-m-e 108.6±2.3 106.3±7.4 107.6±2.4 102.1±8.8 92.9±14.8 103.8±6.7 109.6±3.2
walker2d-m-e 89.7±39.4 111.9±1.0 109.0±0.3 110.3±0.2 110.6±0.4 112.5±1.4 112.2±0.9
halfcheetah-e 97.1±0.5 95.1±3.1 96.1±0.9 94.4±0.5 93.4±0.9 95.5±1.3 105.9±0.9
hopper-e 99.7±11.1 111.1±2.2 111.9±0.3 110.1±3.9 111.7±1.3 109.8±4.3 111.4±0.2
walker2d-e 112.7±0.3 113.0±0.2 109.1±0.3 110.1±0.2 110.1±0.3 109.6±0.3 110.2±0.2

locomotion total 1023 1033.5 1007.5 1046.6 1064.1 1116.7 1139.1

antmaze-u 63.5±19.2 74.8±5.8 74.8±1.8 88.8±3.3 - 93.4±3.3 96.0±2.3
antmaze-u-d 57.8±8.0 52.2±6.4 16.2±20.1 41.5±5.3 - 50.0±5.4 80.2±7.9
antmaze-m-p 0.0±0.0 63.8±4.8 69.5±8.0 63.0±13.9 - 49.4±3.4 70.2±6.7
antmaze-m-d 0.0±0.0 61.2±2.5 64.0±5.6 67.0±21.5 - 47.6±12.1 71.6±9.3
antmaze-l-p 0.0±0.0 37.8±3.8 41.8±4.5 34.0±7.1 - 18.0±4.6 53.0±4.1
antmaze-l-d 0.0±0.0 20.8±6.1 32.8±9.3 36.2±11.6 - 17.6±9.8 35.8±18.9

antmaze total 121.3 310.6 299.1 330.5 - 286 406.8

the Q-values estimated during the offline stage will not fall significantly below the values evaluated during the online stage,
preventing drastic jumps in Q-values. Furthermore, the adaptive coefficients can relax the constraints in some states and
achieve more effective fine-tuning.

B. More Experimental Results
B.1. Comparison with some advanced offline methods

We also compared our method with several common advanced baseline methods. The results shown in Table 3 demonstrate
the competitive performance of our method.

B.2. Different initializations for online replay buffer

A notable advantage of our method is its ability to reduce reliance on offline datasets, as the state-adaptive coefficients can
generalize to OOD data encountered during the online fine-tuning process. We conducted O2O experiments by initializing
the online replay buffer with four different types: (1) Initialize the buffer with the entire offline dataset akin to (Kostrikov
et al., 2021b). (2) Conduct a separate online buffer and sample symmetrically from both the offline dataset and online buffer
akin to (Ball et al., 2023). (3) Initialize the buffer with the sub-dataset D̂ used in offline training. (4) Initialize the buffer
without any offline data. For simplicity, we denote them as all, half, part and none respectively.

From the results shown in Table 4, we can see that in non-sparse reward tasks, our method achieves good fine-tuning
performance even without accessing the offline dataset. In challenging sparse reward tasks, fine-tuning with offline data
performs better due to the difficulty in accurately capturing the value function distribution (especially for TD3+BC). In our
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implementation, we initialized the online replay buffer during fine-tuning with a high-value subset of the offline dataset for
Mujoco tasks, whereas for Antmaze tasks, the entire offline dataset was used.

Table 4. The performance comparison of online fine-tuning with different sample strategies.

Dataset
TD3+BC(SA) CQL(SA)

all half part none all half part none

halfcheetah-medium-v2 61.2 63.4 82.9 66.6 71.2 70.6 95.3 69.8
hopper-medium-v2 102.6 103.1 103.5 97.0 102.1 77.7 99.3 89.4
walker2d-medium-v2 99.6 101.5 101.6 101.8 86.6 105.3 105.9 104.1
halfcheetah-medium-replay-v2 65.9 69.4 73.1 71.6 59.9 61.8 79.4 62.4
hopper-medium-replay-v2 100.7 101.4 102.9 100.9 103.2 103.0 103.1 102.8
walker2d-medium-replay-v2 96.2 98.0 100.9 101.6 101.5 110.2 116.3 105.9
halfcheetah-medium-expert-v2 99.0 98.0 98.5 99.9 117.8 103.3 115.4 106.1
hopper-medium-expert-v2 98.1 111.9 111.2 87.4 110.8 111.3 109.5 110.3
walker2d-medium-expert-v2 116.4 113.1 115.7 109.7 114.9 112.4 117.5 113.8
halfcheetah-expert-v2 103.4 102.5 102.5 103.3 109.1 108.5 113.3 104.7
hopper-expert-v2 107.6 108.8 112.0 98.9 110.4 110.8 110.8 100.6
walker2d-expert-v2 110.6 111.4 113.8 112.6 111.7 111.6 112.6 112.1

locomotion total 1154.8 1180.9 1218.6 1165.0 1196.0 1192.1 1279.4 1190.1

antmaze-umaze-v2 96.5 95.5 95.8 95.8 99.0 99.2 97.8 97.8
antmaze-umaze-diverse-v2 87.2 61.5 78.8 83.5 95.2 93.8 95.0 95.0
antmaze-medium-play-v2 76.5 59.0 18.8 2.8 88.8 84.2 86.2 83.5
antmaze-medium-diverse-v2 63.0 38.0 38.8 2.0 89.0 89.8 88.0 88.5
antmaze-large-play-v2 35.5 31.2 14.0 5.8 66.5 57.8 58.2 53.0
antmaze-large-diverse-v2 30.5 35.2 18.2 9.2 56.8 42.5 26.5 26.5

antmaze total 389.2 320.4 264.4 199.1 495.3 467.3 451.7 444.3

B.3. Computational cost

Our method introduces a lightweight network with minimal overhead. Below is the training time on a 2080 GPU, excluding
IQL-style pretraining, showing a slight increase in time cost.

Algorithm TD3+BC TD3+BC(SA) CQL CQL(SA)

Time Cost(h) 2.25 2.69 7.22 8.05

Table 5. The computational time required by TD3+BC, CQL, and the integration of our proposed method.

C. Proof
Derivation of Eq. (12) Revisiting the interaction process in TD3, when the policy takes an action, the exploration noise is
sampled from a Gaussian distribution N(0, δ) and added to the output π(s) of the policy. Thus, the action can be viewed as
a sample from a stochastic policy N(π(s), δ), denoted as πact.
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We can explicitly compute the logarithmic value of the policy πact as follows

log πact(a|s) = − log
√
2πδ − (a− π(s))2

2δ2
(16)

By plugging it to Eq. (9), we can get

Lβ(ϕ) = E(s,a)∼D̂[log πact(a|s)− Cn(s)]βϕ(s)

= E(s,a)∼D̂[− log
√
2πδ − (a− π(s))2

2δ2
+ log

√
2πδ +

n2δ2

2δ2
]βϕ(s)

=
1

2δ2
E(s,a)∼D̂[n

2δ2 − (a− π(s))2]βϕ(s)

(17)

where Cn(s) = min{log πact(π(s) + nδ|s), log πact(π(s)− nδ|s))} = log πact(π(s)± nδ|s).

Omit the coefficient 1/2δ2, we can get Eq. (12).

Proof of Proposition 3.1 Revisit the original formula of CQL(ρ) (Eq. (3) in (Kumar et al., 2020) with the regularizer of
KL-divergence)

min
Q

max
µ

β(Es∼D,a∼µ(a|s)[Q(s, a)]− Es,a∼D) +
1

2
Es,a,s′∼D[(Q(s, a)− B̂πkQ̂k(s, a))2]−DKL(µ||ρ) (18)

Consider the inner optimization problem for a more general form

max
µ

β(Ex∼µ[f(x)]−DKL(µ||ρ) s.t.
∑
x

µ(x) = 1, µ(x) ≥ 0 ∀x (19)

The optimal solution is equal to

µ∗(x) =
ρ(x) exp (f(x))∑
x
ρ(x) exp (f(x))

(20)

If we set f(x) = Q(s, a)/α, then we can get

min
Q

β · α · Es∼D[log
∑
a

exp(Q(s, a)/α)− 1

α
Ea∼D[Q(s, a)]]︸ ︷︷ ︸

regularizerR

+
1

2
Es,a,s′∼D[(Q− B̂πkQ̂k)2] (21)

As the policy π is modeled as a Boltzmann distribution, we can get

∀(s, a) ∈ S ×A, π(a|s) = exp (Q(s, a))/α∑
a
exp (Q(s, a))/α

(22)

Then

∀(s, a) ∈ S ×A, log
∑
a

exp(Q(s, a)/α) =
1

α
Q(s, a)− log π(a|s) (23)

Select actions that follow the distribution of the behavior policy, and plug Eq. (23) into the regularizer R in Eq. (21)

R = β · α · Es∼D[Ea∼D[
1

α
Q(s, a)− log π(a|s)]− 1

α
Ea∼D[Q(s, a)]]

= βEs,a∼D[− log π(a|s)]
(24)

D. pseudo code
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Algorithm 1 state-adaptive Regularization for offline and offline-to-online RL
Input: the return threshold GT , the initial value nstart, the end value nend, update interval Tinc, offline total steps T ,
online decay steps Nend

Initialize Q network Q, V network V with random parameters for IQL-style update
Initialize critic network Qψ , actor network πω , coefficient network βϕ with random parameters for offline policy learning,
replay buffer D with the offline dataset
# Pre-training

Compute the returns G for all trajectories or train Q and V by Eq. (11)
Obtain the sub-dataset D̂ by G > GT or Q(s, a)− V (s) > 0
# Offline training

for iteration i = 1, 2, · · · , T do
Sample a mini-batch B = (s, a, r, s′, d) from D, where d is the done flag
Update πω by Eq. (2) (Eq. (13) or Eq. (14) for TD3+BC)
Update Qψ by Eq. (7) or Eq. (10) (Eq. (3) for TD3+BC)
Update βϕ by Eq. (9) (Eq. (12) for TD3+BC)
if i % Tinc == 0 then

if E(s,a)∼D [log π(a|s)− Cn(s)] ≤ 0 then
Increase n by Eq. (8)

else
Terminate the update of n

end if
end if

end for
# Online training

Reset the replay buffer D according to the given strategy
for iteration i = 1, 2, · · · do

Interact with the environment and store the new transition in the replay buffer D
Obtain the annealed coefficients βon by Eq. (15)
Update πω by Eq. (2) (Eq. (13) for TD3+BC)
Update Qψ by Eq. (7) (Eq. (3) for TD3+BC)

end for

E. Implementation details
E.1. Baseline implementation

We reproduce all results of baseline algorithms, except for FamCQL, using the deep offline RL library CORL (Tarasov
et al., 2022) (https://github.com/tinkoff-ai/CORL). For FamCQL, we reproduce the results according to the official code
(https://github.com/LeapLabTHU/FamO2O). All hyperparameters are kept consistent with the official implementations.

E.2. Network structure of the coefficient generator

We employ a three-layer MLP architecture with 512 neurons per hidden layer to parameterize β(s). The sigmoid activation
function is adopted in the final output layer, with output values constrained to the interval (0, 1.5βinit), where βinit denotes
the regularization coefficient from the original implementations of both CQL and TD3+BC algorithms.

Additionally, to prevent catastrophic value overestimation, we applied the trick of Layernorm on the critic networks.

E.3. Return thresholds

Since the critic induced by the deterministic policy is less robust, the return thresholds of TD3+BC are slightly lower than
that of CQL. The return thresholds are shown in Table 6. For the dataset involving replay data, we use the IQL method to
filter valuable actions. The value of τ is set as 0.7, the same as the original implementation of IQL.

Furthermore, in Antmaze tasks, substantial fluctuations were observed in the number of valuable actions acquired through
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IQL pre-training. Therefore, we construct the sub-dataset D by selecting trajectories that complete the task successfully.

Table 6. The return thresholds for different tasks.

Dataset CQL(SA) TD3+BC(SA)

halfcheetah-medium-v2 6000 5200
hopper-medium-v2 2500 1800
walker2d-medium-v2 3600 2500
halfcheetah-expert-v2 11000 10500
hopper-expert-v2 3500 3500
walker2d-expert-v2 4800 4500

E.4. Distribution-aware threshold setting

For the distribution-aware threshold, in Mujoco tasks, we set nstart to 1 and nend primarily to 3 (1.5 for expert datasets to
better mimic high-quality actions). In Antmaze tasks, we set nend to 5 for more efficient exploration. Other details about the
hyperparameters can be found in our open-source code.

E.5. Offline-to-online setting

After offline training, the policy interacts with the environment for 5,000 warm-up steps without any parameter updates. The
decay steps Nend is set to 400,000, while the total number of interaction steps in our experiments is limited to 250,000.
For hard Antmaze tasks in TD3+BC(SA), we keep the coefficients unchanged during the online fine-tuning because the
coefficients are relatively small after the offline process. And we set the interval for policy updates to a larger value to
achieve stable updates.
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