
Graphical Abstract

MedVista3D: Vision-Language Modeling for Reducing Diagnostic
Errors in 3D CT Disease Detection, Understanding and Reporting

Yuheng Li, Yenho Chen, Yuxiang Lai, Jike Zhong, Vanessa Wildman, Xiaofeng
Yang



Highlights

MedVista3D: Vision-Language Modeling for Reducing Diagnostic
Errors in 3D CT Disease Detection, Understanding and Reporting

Yuheng Li, Yenho Chen, Yuxiang Lai, Jike Zhong, Vanessa Wildman, Xiaofeng
Yang

• Research highlight 1

• Research highlight 2



MedVista3D: Vision-Language Modeling for Reducing

Diagnostic Errors in 3D CT Disease Detection,

Understanding and Reporting

Yuheng Lia, Yenho Chenb, Yuxiang Laic, Jike Zhongd, Vanessa Wildmane,
Xiaofeng Yanga,e,f,∗

aDepartment of Biomedical Engineering, Georgia Institute of
Technology, Atlanta, GA, USA

bDepartment of Machine Learning, Georgia Institute of Technology, Atlanta, GA, USA
cDepartment of Radiation Oncology, Emory University School of

Medicine, Atlanta, GA, USA
dDepartment of Computer Science, University of Southern California, Los

Angeles, CA, USA
eDepartment of Radiation Oncology, Emory University School of

Medicine, Atlanta, GA, USA
fEmory University School of Medicine, Atlanta, GA, USA

Abstract

Radiologic diagnostic errors, such as under-reading errors, inattentional blind-
ness, and communication failures, remain prevalent in clinical practice. These
issues often stem from missed localized abnormalities, limited global con-
text, and variability in report language. These challenges are amplified
in 3D imaging, where clinicians must examine hundreds of slices per scan.
Addressing them requires systems with precise localized detection, global
volume-level reasoning, and semantically consistent natural language report-
ing. However, existing 3D vision-language models are unable to meet all three
needs jointly—lacking local-global understanding for spatial reasoning and
struggling with the variability and noise of uncurated radiology reports. We
present MedVista3D, a unified semantic-enriched vision-language pretraining
framework for 3D CT analysis. To enable joint disease detection and holistic
interpretation, MedVista3D performs local and global image-text alignment
for fine-grained representation learning within full-volume context. To address
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report variability, we apply language model rewrites and introduce a Radiol-
ogy Semantic Matching Bank for semantics-aware alignment. MedVista3D
achieves state-of-the-art performance on zero-shot disease classification, report
retrieval, and medical visual question answering, while transferring well to
organ segmentation and prognosis prediction. Code and datasets will be
released.

Keywords: Computed tomography, Vision language model, Foundation
model, Report generation

1. Introduction

Despite decades of clinical experience, radiologic diagnostic errors remain
common and pose a persistent source of patient harm Bruno et al. (2015). In
a large-scale study Kim and Mansfield (2014), three categories of errors were
found to be prevalent. Under-reading errors occur when abnormalities
are simply missed even within the field of view, often due to insufficient
attention to localized findings. Inattentional blindness arise due to tunnel
vision or limited global context, missing lesions outside the area of focus or
in underexamined slices. Communication failures occur when correctly
identified findings are ineffectively conveyed, often due to ambiguous phras-
ing or inconsistent terminology in the radiology report Waite et al. (2018).
Addressing these errors requires systems capable of precise local detection,
comprehensive image understanding, and clear, consistent communication of
findings.

The development of such systems is particularly crucial for 3D medical
images, where physicians must examine hundreds of cross-sectional slices
which remains both time-consuming and expertise-driven Shen et al. (2017).
Fundamentally, radiologic image interpretation spans three related tasks:
(1) localized detection of anomalies like tumors or opacities; (2) global
understanding of disease patterns across whole volume, which informs tasks
like disease classification and report retrieval; and (3) reporting, which
involves accurately describing findings and answering clinical questions in
natural language. Recent advances in medical vision-language models (VLMs)
have shown promise in automating these components—enabling localized
disease identification, global image-report retrieval, zero-shot classification,
and report generation or visual question answering Shui et al. (2025); Li et al.
(2024b); Thawkar et al. (2023); Zhang et al. (2023).
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However, current medical VLMs cannot concurrently address these three
diagnostic challenges, due to limitations in their training objectives and
supervision data. First, existing models lack the capability to jointly perform
local detection and global understanding, demonstrating under-reading and
inattentional blindness for disease diagnosis. We analyze two state-of-the-
art 3D CT VLMs (CT-CLIP Hamamci et al. (2024) and fVLM Shui et al.
(2025)) under local and global settings for disease query. CT-CLIP is trained
with a global-only objective, aligning entire volumes with full reports. As
a result, it struggles to identify small and localized abnormalities due to
insufficient local alignment. As shown in Figure 1 (top row, second column), its
gradient activations focus on irrelevant regions when queried about gallbladder
carcinoma, paralleling the under-reading error. Conversely, fVLM aligns
organ-level features with their corresponding text descriptions, but lacks a
mechanism for global understanding. As shown in Figure 1 (bottom row,
third column), its activations neglect relevant organs under a global query,
analogous to inattentional blindness where context beyond the region of
focus is neglected. Second, the variability in real-world radiology reports
could hinder learning consistent disease representations for effective reporting.
Figure 2 (right) shows text examples from a large-scale public dataset (e.g.
CT-RATE). Empirically, we find that unstructured reports often contain
inconsistent interpretations, repetitive phrasing, and vague expressions that
fail to clearly convey clinically significant findings, such as lymphadenopathy.
These issues degrade the quality of learned representations and introduce
ambiguity in downstream tasks such as report generation and visual question
answering (VQA). Addressing them requires medical VLMs to combine unified
visual grounding with semantically enriched alignment signals.

We propose MedVista3D, a 3D VLM to enhance the detection, un-
derstanding, and reporting of 3D CT image analysis. Our approach learns
local-global representations while enhancing the disease-semantics understand-
ing of the model. First, we derive a unified loss that simultaneously aligns
CT volumes and organ-level features with their corresponding text descrip-
tions. This maximizes the mutual information shared between CT images
and corresponding text descriptions, enabling both local detection and global
understanding of the model. We theoretically demonstrate that this unified
loss captures more mutual information between global and local images and
texts than single-scale alignment loss. We propose a novel dual-pathway
vision encoder to jointly process global 3D CT volumes and local segmented
organs. Second, we improve semantic supervision through unified semantic
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Figure 1: We visualize gradient activation maps for both global and local queries on global
model (CT-CLIP) and local model (fVLM). Each row shows model attention for either a
local (top) or global (bottom) query, with ground truth (GT) segmentations color-coded
by sentence. The global model fails to detect tumor given a local query. The local model
does not capture relevant anatomical regions given a global query. Our model effectively
attends to relevant regions in both cases, demonstrating superior unified understanding.

alignment. We enhance radiology reports via Large Language Model (LLM)
rewrites to emphasize the presence or absence of each disease to ensure con-
sistency. We then propose the Radiology Semantic Matching Bank (RSMB)
for additional semantic alignment at global and local scales. RSMB retrieves
semantically matched disease descriptions via nearest-neighbor search, pro-
viding robust text supervision. As shown in Figure 2 (left), our MedVista3D
considerably outperforms existing medical vision-language models on global
disease zero-shot classification.

We summarize the following contributions:

• We identify the limitations of single-scale training objectives in existing
3D medical VLMs and derive a unified alignment loss. We theoretically
demonstrate that our loss can capture more shared cross-modal informa-
tion than single-scale losses. With a novel dual-pathway transformer, we
jointly encode global-local representations using our unified objective.

• To address the variations in unstructured reports, we introduce unified

4



Figure 2: Left: Global zero-shot performance of MedVista3D-ViT on CT-RATE. AUC
scores are reported per disease, reflecting the model’s generalization across diverse patholo-
gies. Right: LLM-based refinement of radiology reports. To address ambiguity and
inconsistency in uncurated CT-RATE reports, we apply large language models (e.g., GPT-
4o, Qwen2.5) to rewrite them with improved clarity and clinical coherence.

semantic supervision using LLM-rewritten reports and the Radiology
Semantic Matching Bank, which retrieves semantically similar disease
texts to enhance contrastive training across scales.

• We validate MedVista3D through comprehensive experiments across
diverse medical tasks (e.g. disease zero-shot detection, report retrieval,
medical VQA, organ segmentation, disease classification), achieving
state-of-the-art performance through unified alignment.

2. Related work

2.1. Vision language models for medical imaging

Previous medical VLMs predominantly employ global alignment, contrast-
ing entire images and reports Chauhan et al. (2020); Zhang et al. (2024b);
Lin et al. (2023); Stevens et al. (2024); Blankemeier et al. (2024); Hamamci
et al. (2024). More recent works introduced local region-text alignment Lin
et al. (2024); Shui et al. (2025) or local token-wise Wang et al. (2022); Huang
et al. (2021) alignment to learn fine-grained visual features. However, our
investigation reveals a large gap between representations learned from global
model and local model (Figure 1). We motivate our approach by building a
unified pretraining method to combine the strengths of each alignment.
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2.2. Multi-scale alignment for VLM

There remains limited research in multi-scale alignment for VLMs. Ex-
isting methods Huang et al. (2024); Du et al. (2024) focus on multiscale
radiography-report alignment but lack the use of region masks or bounding
boxes for fine-grained detection. Other approaches Chen et al. (2024); Zhang
et al. (2022) combine image-text and region-text alignments using coarse
bounding boxes, which are less effective for precise organ localization. In
contrast, our work utilizes segmentation masks to extract fine-grained organ
features, enabling more accurate local alignment.

2.3. Improving medical VLMs using synthetic data.

Given the scarcity of annotated data and privacy concerns in medical
imaging, synthetic data has been widely explored to augment images Koetzier
et al. (2024); Özbey et al. (2023); Chlap et al. (2021). A few studies explored
generating synthetic image or text data to support VLM pretraining Wu et al.
(2023); Liu et al. (2024a); Bluethgen et al. (2024). MedKlip Wu et al. (2023)
extracts named entities from reports and supervises using these disease-specific
queries. However, this approach overlooks the context and completeness of a
query sentence. The closest to our work are local VLMs Shui et al. (2025); Lin
et al. (2024) that learn fine-grained representation using LLMs to decompose
long reports into specific regions. However, these works do not learn unified
representations for local-global disease understanding, nor do they address
the text variations in radiology reports. We tackle this by enhancing disease
semantics in reports via LLMs and performing semantic alignment using
nearest-neighbor search in the text embedding space.

3. Method

Overview Compared to previous VLMs, our model performs alignment
at four scales (Figure 3): (1) global volume with report, (2) local region with
text, (3) global volume with a semantically enriched report, and (4) local
region with a semantically enriched sentence. We also propose a simple and
effective dual-pathway transformer to encode global-local information. The
unified alignment strategy is detailed in Section 3.1, while semantic alignment
using LLM-based rewrites and the Radiology Semantic Matching Bank is
presented in Section 3.2.
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Figure 3: a). MedVista3D encodes 3D CT volumes at both global and local scales. For local
alignment, visual organ embeddings are paired with organ and semantic-enriched phrases.
For global alignment, global volume embedding is matched with the report embedding and
its semantic-enriched versions augmented by LLMs. b). A radiology semantic matching
bank maintains a queue of text embeddings from diverse radiology descriptions. For each
query, a top-k similarity search retrieves semantically matching texts, filtering out less
relevant ones.

3.1. Unifying Global and Local Alignment

We propose unified alignment to leverage the complementary strengths
of single-scale approaches. We first show that from a mutual information
perspective, our proposed objective captures more shared cross-modal in-
formation than single-scale losses. Then, we propose a novel architecture
dual-pathway transformer to jointly encode unified representations from 3D
CT volumes.

Connection to mutual information maximization (MI). Contrastive
VLM aims to learn positive-negative image-text embeddings by jointly train-
ing an image encoder fI(·) and a text encoder fT(·). MI quantifies the shared
information between image and text by measuring how much knowing one
variable reduces the uncertainty about the other. First, we define a common
objective global image-text alignment, such as CLIP Radford et al. (2021).
Given a dataset of P pairs of CT image volumes and their corresponding
radiology reports, X = {x1, . . . , xP} and Y = {y1, . . . , yP}, the global em-
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beddings for the ith volume-report pair can be obtained as vGi = fI(xi) and
tGi = fT(yi), where xi ∈ R1×D×H×W and yi ∈ Rl represent the dimensions
of the input CT volume and radiology report, respectively. To align image
and text representations, a contrastive objective pushes the embeddings of
matched volume-report pairs together while pushing those of unmatched pairs
apart. Using InfoNCE loss Oord et al. (2018), the global alignment objective
becomes,

LGlobal =
1

2

[
LG

I→T + LG
T→I

]
, (1)

The first term consists of the global image-to-text loss, LG
I→T , and is defined

as,

LG
I→T = − 1

N

N∑
i=1

log
exp

(
sim(vGi , t

G
i )/τ

)∑N
j=1 exp

(
sim(vGi , t

G
j )/τ

) , (2)

where N is the batch size and sim(·, ·) is the similarity function and τ is a
learnable logit. We omit LG

T→I since it is symmetric.
However, global approach can overlook fine-grained similarities or dif-

ferences among various organs. Alternatively, local image-text alignment
identifies all possible regions in the CT image and extracts region-specific
features Shui et al. (2025); Lin et al. (2024). Assuming the CT image can be
divided into image regions x1

i , . . . , x
r
i , and radiology reports can also be decom-

posed into fine-grained captions y1i , . . . , y
r
i describing each organ, region-text

pairs can be formed as {(x1
i , y

1
i ), . . . , (xr

i , y
r
i )}. For region r, fI extracts local

image embedding vri and fT extracts local text embeddings tLi . The local
alignment loss can be defined as:

LLocal =
1

2

[
LL

I→T + LL
T→I

]
, (3)

The local image-to-text loss can be written as:

LL
I→T = − 1

RN

R∑
r=1

N∑
i=1

log
exp

(
sim

(
vri , t

r
i )
)
/τ

)
∑N

j=1 exp
(

sim
(
vri , t

r
j

)
/τ

) , (4)

where R is the total number of regions.
We make the connection between global/local objectives and MI using

findings from Poole et al. (2019): contrastive InfoNCE loss estimates a lower
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bound for MI. Extending this theorem to both global and local alignment
yields:

I(XG;YG) ≥ −LGlobal + log(NG), (5)

I(XL;YL) ≥ −LLocal + log(NL), (6)

where NG and NL are the number of negative samples in global and local
alignment, respectively.

A unified objective. We observe that equations 5 and 6 can only
capture partial structure as they focus exclusively on either local or global
views separately. Our core insight is that capturing both the holistic contexts
and fine-grained details requires maximizing a unified mutual information
between the full set of global and local CT images X = (XL, XG) and text
reports Y = (YL, YG), defined as,

IUnified(X, Y ) = I(XG, XL;YL, YG). (7)

By the chain rule for mutual information, we have

IUnified(X, Y ) ≥ max {I(XL;YL), I(XG;YG)} , (8)

indicating that the unified objective can capture more shared information
between the modalities than considering either global or local inputs alone.
This makes it better suited for learning representations that encode both global
semantics and local alignment. However, directly optimizing IUnified(X, Y ) is
computationally intractable. Instead, we propose a unified contrastive loss
that linearly integrates global and local alignment:

Lunified =
1

2
[LGlobal + LLocal] . (9)

This objective is part of a valid lower bound,

IUnified(X, Y ) ≥ −Lunified +
1

2
[log(NL) + log(NG)] , (10)

and explicitly encourages the learned representation to jointly capture infor-
mation from both global and local views of the input data.

Dual-pathway transformer. To jointly encode global and local informa-
tion, we propose a novel dual-pathway transformer encoder for MedVista3D
(Figure 3a). For global pathway, given CT volume xi, the model first extracts
patch embeddings pi ∈ Rc×d×h×w using a 3D convolutional layer. Transformer
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blocks then generate a latent image embedding vLi , which the final transformer
block refines into the global image embedding vGi . The radiology report is
encoded by text encoder into a global text embedding tGi . For local pathway,
given anatomical region r and its segmentation map M r

i ∈ {0, 1}D×H×W ,
mask pooling downsamples it to M̃ r

i ∈ {0, 1}d×h×w, matching the patch grid
resolution. Active region tokens (threshold 0.5 in M̃ r

i ) are selected from
pi element-wise. These are processed by the last transformer block to pro-
duce the local image embedding vri . The corresponding region-specific text
phrase is encoded into a local text embedding tri . This preserves the spatial
relationships between global and local embeddings.

3.2. Radiology Semantic Enrichment and Alignment

Semantic enrichment of radiology reports. While unified alignment
yields richer representations, communication errors could still be caused by
directly training on unstructured reports. Free-form radiology reports often
suffer from length and inconsistent terminologies (e.g., nodular opacities
vs. lesions). To address this, we prompt the LLMs to identify all possible
abnormalities from the report and rewrite the findings as discrete, presence-
or-absence statements. This process, applied to both global reports and local
region phrases, yields standardized, succinct text descriptions where each
sentence details at least one abnormality (prompts in Appendix D).

Radiology semantics matching bank. Building on these enriched
texts, the RSMB provides robust supervision by retrieving semantically similar
embeddings, addressing minor wording variations. We observe that enriched
texts often describe the same findings with only minor variations in wording
(e.g., “mild pleural thickening” vs. “slight pleural thickening”). RSMB is a
64k-sized first-in-first-out queue storing previously encoded enriched global
and local text features. For a new enriched query text, its top-1 nearest
neighbor (via cosine similarity) is retrieved from RSMB. The corresponding
image embedding is then aligned with this retrieved text, ensuring robustness
to text variations while maintaining consistent disease semantics.

Unified semantic alignment. Using RSMB and the enriched texts, we
establish semantic alignment at two levels. For global-level, a semantically-
enriched text embedding t̂Gi queries RSMB to retrieve its nearest neighbor
t̂GNN
i . This embedding is aligned with global image embedding vGi using

contrastive loss:

LGlobal Semantic = LGNN
I→T + LGNN

T→I , (11)
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LGNN
I→T = − 1

N

N∑
i=1

log
exp

(
sim(vGi , t̂

GNN
i )/τ

)
∑N

j=1 exp
(

sim(vGi , t̂
GNN
j )/τ

) . (12)

Similarly for local-level, a semantically-enriched region embedding t̂ri queries
RSMB for its neighbor t̂rNN

i , which is aligned with the region image embedding
vri :

LLocal Semantic = LLNN
I→T + LLNN

T→I , (13)

LLNN
I→T = − 1

RN

R∑
r=1

N∑
i=1

log
exp

(
sim

(
vri , t̂

rNN
i )

)
/τ

)
∑N

j=1 exp
(

sim
(
vri , t̂

rNN
j

)
/τ

) (14)

We propose the unified semantic objective as,

Lunified Semantic = LGlobal Semantic + LLocal Semantic. (15)

Combining both unified and semantic alignment, our final pretraining objec-
tive is defined as,

LMedVista3D = Lunified + Lunified Semantic. (16)

4. Experiments

4.1. Implementation details

Pretraining on CT-RATE: We pretrain MedVista3D on the CT-RATE
dataset Hamamci et al. (2024) using the training split (24,128 volumes) and
perform testing on the internal test split (1,564 volumes). Local alignment
uses Radgenome masks and region texts Zhang et al. (2024a). For dataset
preprocessing, we use volumes resampled to 3.0 mm × 1.0 mm × 1.0 mm
from Radgenome dataset Zhang et al. (2024a). We also use its segmentation
masks and region sentences for regional image-text alignment. For intensity
normalization, we follow CT-CLIP Hamamci et al. (2024) preprocessing. We
uniformly resize all volumes to 96 × 320 × 320 using padding or center
cropping. For text encoder, we use BiomedVLP-CXR-BERT-specialized
Boecking et al. (2022). For vision encoder, we use 1). ViT-B, with embedding
dimension as 768 and depth as 12; and 2). UniMISS-Small Xie et al. (2022).
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We train MedVista3D-ViT using a batch size of 32 and MedVista3D-UniMISS
using a batch size of 20 for a total of 16 epochs on our proposed loss. The
optimizer is AdamW with the weight decay of 1e-5. We use a linear warmup
with cosine decay scheduler for 200 steps and a learning rate of 5e-5. All
experiments were conducted using NVIDIA A100 GPUs (80GB) on an internal
cluster.

Visual question answering using MedVista3D-LLaVA: We use
Llama-3.1-7B Dubey et al. (2024) as the language decoder and the pretrained
MedVista3D-ViT as the vision encoder. For multi-modal projector, we use a
two-layer MLP-GELU following LLaVA-1.5 Liu et al. (2024b). We follow the
two-stage training strategy same as LLaVA: 1). First, we perform contrastive
alignment using CT-RATE’s volume-report pairs to tune the multi-modal
projector; 2). Second, we perform supervised finetuning using LoRA Hu et al.
(2021) with rank r set to 128, scaling factor α set to 256, and a learning rate
of 2e-5. We train a total of 10 epochs following CT-CHAT.

Segmentation on TotalSegmentator: We use pretrained MedVista3D-
UniMISS as the segmentation encoder and attach STU-Net-B’s decoder
Huang et al. (2023). We use nn-UNet Isensee et al. (2021) to preprocess
the TotalSegmentator dataset and train within their framework. We use a
learning rate of 5e-5 and a batch size of 2. Input volumes are uniformly
cropped to 128 × 128 × 128. We train for a total of 1000 epochs following
the default setting.

Classification on STOIC 2021: MedVista3D-UniMISS is initialized
with pretrained CT-RATE weights. We resample CT volumes to 3.0 mm
× 1.0 mm × 1.0 mm and crop/pad to 96 × 320 × 320. From the full 2000
volumes, we randomly select 80% for training, 10% for validation and 10%
for testing. We use a batch size of 96, a learning rate of 1e-4 and finetune for
10 epochs.

4.2. Reducing under-reading and inattentional blindness via MedVista3D

We evaluate how MedVista3D reduces under-reading and inattentional
blindness by assessing both global understanding and local disease detection
from CT volumes. We compare with global VLMs—trained on the entire CT
volume and corresponding text (e.g., CLIP Radford et al. (2021), CT-CLIP
Hamamci et al. (2024), Merlin Blankemeier et al. (2024))—and local VLMs
aligning region features with region text (e.g., fVLM Shui et al. (2025)).

Local Task: Assess under-reading errors by evaluating localized disease
detection within anatomical regions (lungs, heart, aorta, and esophagus).
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Table 1: Performance comparison of VLMs at global tasks and local task on CT-RATE.
Blue for global models and green for local model. BOLD means best result and underline
second best. † : our implementation. ‡ : using official checkpoint.

Method
Global Local

Disease zero-shot Report retrieval Disease zero-shot

Precision F1 ACC AUC Recall 5 Recall 10 Precision F1 ACC AUC

CLIP Radford et al. (2021) 0.334 0.726 0.691 0.703 2.67% 5.00% 0.306 0.696 0.657 0.659
Merlin‡ Blankemeier et al. (2024) 0.229 0.612 0.558 0.578 1.11% 2.02% 0.199 0.479 0.433 0.538
CT-CLIP Hamamci et al. (2024) 0.306 0.691 0.651 0.704 2.34% 3.95% 0.297 0.678 0.636 0.645

fVLM† Shui et al. (2025) 0.293 0.684 0.641 0.644 1.82% 3.06% 0.372 0.752 0.722 0.759
fVLM‡ Shui et al. (2025) 0.248 0.684 0.600 0.591 0.32% 1.09% 0.379 0.751 0.718 0.778

MedVista3D-ViT (ours) 0.379 0.760 0.737 0.778 6.64% 10.68% 0.377 0.765 0.742 0.780
MedVista3D-UniMISS (ours) 0.385 0.770 0.745 0.782 5.01% 8.65% 0.372 0.754 0.726 0.753

Table 2: Generalization of VLMs at global tasks and local task on Rad-ChestCT. Blue for
global models and green for local model. BOLD means best result and underline second
best. † : our implementation. ‡ : using official checkpoint.

Method
Global Local

Disease zero-shot Disease zero-shot

Precision F1 ACC AUC Precision F1 ACC AUC

CLIP Radford et al. (2021) 0.352 0.637 0.617 0.609 0.321 0.593 0.569 0.559
Merlin‡ Blankemeier et al. (2024) 0.339 0.605 0.581 0.596 0.210 0.562 0.513 0.552
CT-CLIP Hamamci et al. (2024) 0.339 0.648 0.599 0.632 0.334 0.608 0.584 0.689

fVLM† Shui et al. (2025) 0.314 0.587 0.562 0.518 0.315 0.596 0.571 0.524
fVLM‡ Shui et al. (2025) 0.332 0.561 0.535 0.544 0.374 0.688 0.647 0.680

MedVista3D-ViT (ours) 0.426 0.693 0.684 0.702 0.402 0.681 0.668 0.710
MedVista3D-UniMISS (ours) 0.393 0.664 0.646 0.713 0.378 0.650 0.628 0.697

1. Disease zero-shot classification: Given text prompts and segmentation
masks, identify the presence of diseases. For global models, we crop the
CT volume to the segmentation mask and perform padding. Metrics
include AUC, ACC, precision, and weighted F1-score.

Global Tasks: Address inattentional blindness by evaluating the model’s
ability to detect findings outside expected regions and retrieve reports correctly
describing relevant findings.

1. Disease zero-shot classification: Given text prompts, identify the presence
of diseases in the CT volume without segmentation masks. We report
the same metrics as in the local task.

2. Report retrieval: Given a CT volume, retrieve the corresponding radiology
report from the entire dataset. We measure recall at top-5 and top-10.
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Table 3: Comparison of various LLaVA architectures on medical VQA (long answer, short
answer, report generation, and multiple choice) on CT-RATE. BOLD means best result
and underline second best. Blue for 2D MLLMs and green for 3D MLLMs.

Method
Long Answer Short Answer

BLEU 1 METEOR ROUGE L CIDER BLEU 1 METEOR ROUGE L CIDER

CXR-LLaVA 0.203 0.140 0.231 0.577 0.016 0.000 0.021 0.040
LLaVA-Med 0.137 0.156 0.202 0.315 0.014 0.051 0.025 0.007
CT-CHAT 0.480 0.294 0.512 3.100 0.280 0.160 0.598 1.821
MedVista3D-LLaVA (ours) 0.516 0.309 0.546 3.395 0.299 0.178 0.602 1.817

Method
Report Generation Multiple Choice

BLEU 1 METEOR ROUGE L CIDER BLEU 1 METEOR ROUGE L CIDER

CXR-LLaVA 0.050 0.000 0.020 0.049 0.057 0.009 0.063 0.065
LLaVA-Med 0.002 0.024 0.056 0.000 0.085 0.175 0.135 0.151
CT-CHAT 0.381 0.217 0.334 0.221 0.838 0.578 0.895 7.850
MedVista3D-LLaVA (ours) 0.474 0.252 0.386 0.349 0.936 0.668 0.927 8.210

Results for local task. On localized zero-shot detection, both Med-
Vista3D backbones match or surpass fVLM. Importantly, fVLM suffers from
poor generalization to global tasks (AUC drops from 0.759 to 0.644), whereas
MedVista3D maintains superior performance across both tasks. This demon-
strates our model’s ability to reduce under-reading errors.

Results for global tasks. Both MedVista3D-ViT and MedVista3D-
UniMISS outperform all global models in disease zero-shot and report retrieval
(Table 1). For global disease zero-shot, MedVista3D-UniMISS achieves the
highest AUC (0.782) and F1 (0.770), outperforming CT-CLIP by 7.4 points
in AUC and 6.9 points in F1. For report retrieval, MedVista3D-ViT surpasses
CT-CLIP by 4.3% and 6.7% in top-5 and top-10 recall. These results validate
our model’s ability to jointly reduce inattentional blindness and under-reading
errors.

External validation. To assess generalization, we perform external vali-
dation on the full Rad-ChestCT dataset Draelos et al. (2021) (3626 volumes),
following CT-CLIP and fVLM. We evaluate on global and local zero-shot
disease detection. Segmentation masks are obtained using TotalSegmentator
model Wasserthal et al. (2023). As shown in Table 2, MedVista3D-ViT con-
sistently outperforms existing global models (CLIP, Merlin, CT-CLIP) across
all global metrics, achieving an AUC of 0.702. MedVista3D-UniMISS achieves
the highest global AUC of 0.713. For local tasks, MedVista3D-ViT also sur-
passes the fVLM with an AUC of 0.710, demonstrating robust generalization
capabilities.
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Qualitative results. Figure 4 illustrates how region masking modulates
the attention map of [CLS]-to-patch tokens in CLIP, fVLM, and our model.
CLIP shows broad attention without masking, but it fails to localize the
correct region with mask, reflecting under-reading and explaining its poor local
detection performance. fVLM attends correctly with a mask but fixates on
irrelevant, tiny background areas without it, indicating inattentional blindness
and poor global understanding. In contrast, MedVista3D demonstrates both
fine-grained attention with mask and global attention on the anatomy without
mask, effectively mitigating both error types.

4.3. Mitigating communication errors with MedVista3D-LLaVA

To evaluate how our model mitigates communication errors in CT re-
porting, we train MedVista3D-LLaVA, a multimodal large language model
(MLLM), on the CT-RATE VQA dataset. The dataset includes long-answer
questions, short-answer questions, multiple-choice questions, and report gen-
eration tasks. Following our pretraining setup, we train on the CT-RATE
training split and validate on its internal validation split. Evaluation follows
CT-CHAT Hamamci et al. (2024), using BLEU, METEOR, ROUGE L, and
CIDER scores. As shown in Table 3, our method consistently outperforms
CT-CHAT as well as 2D multimodal assistants (LLaVA-Med Li et al. (2024a),
CXR-LLaVA Lee et al. (2025)) by considerable margins. It achieves the best
performance on multiple-choice questions (BLEU 1: 0.936, METEOR: 0.668,
ROUGE L: 0.927, CIDER: 8.21), and surpasses CT-CHAT by 3.6% and 1.9%
BLEU 1 on long and short answer tasks, respectively. On the accuracy of
multiple choice, our method achieves 91.5%. For report generation, our model
shows a 9.3-point BLEU 1 improvement. These gains demonstrate the effec-
tiveness of our unified alignment and semantic enrichment of radiology reports,
which mitigate potential communication errors in diagnostic workflows.

Table 4: Ablation study on unified and semantic image-text alignment.

Pretraining Strategy
Region phrase grounding Report retrieval Global disease zero-shot

Top 10 Top 50 Top 5 Top 10 Precision F1 ACC AUC

Global Alignment 0.04% 0.36% 4.53% 7.88% 0.293 0.689 0.633 0.675
+ Local Alignment 0.19% 0.76% 4.98% 8.32% 0.281 0.676 0.634 0.664
+ Mask Pooling 0.48% 2.42% 4.53% 7.88% 0.279 0.674 0.631 0.609
+ Global Semantic Alignment 0.38% 1.99% 4.98% 8.25% 0.398 0.789 0.758 0.807
+ Local Semantic Alignment 0.83% 3.46% 6.64% 10.68% 0.379 0.760 0.737 0.778
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Figure 4: Impact of region masking on attention for CLIP, fVLM and MedVista3D (on
CT-RATE). We visualize the attention maps of [CLS] token with other patch tokens given
CT volume with (top) and without (bottom) region mask. MedVista3D remains focused on
important organs regardless of masking. With mask CLIP shows diffuse attention; fVLM
struggles without the mask.

4.4. Ablation Study

Ablation on unified and semantic alignment. We conduct a detailed
analysis on our proposed objective loss on both global and local tasks using CT-
RATE. For local task, we evaluate region phrase grounding, where the model
retrieves the correct region description given an image and a segmentation
mask. As summarized in Table 4, we begin with a single global-level loss,
with moderate global disease zero-shot and report retrieval performance, but
lacking local capabilities. We further add local alignment which enables
region grounding by explicitly learning organ-level embeddings. Next, we add
mask pooling to allow more focused vision features on the segmentation mask,
which further improve the region grounding but slightly compromising global
zero-shot performance. Adding our proposed semantic alignment at global
level considerably boosts global disease zero-shot and maintaining decent
region retrieval. Finally, adding local semantic alignment yields the best
overall balance between global and local tasks.

Ablation on mask pooling. We conduct a study on the mask pooling
mechanism of our method on local disease zero-shot. Specifically, we choose
various layers of vision transformer blocks to perform organ mask pooling.
As shown in Table 5, we find that applying mask pooling before the last
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transformer block yields the best performance. Applying mask pooling either
before the first block or before the second block yields suboptimal performance.

Table 5: Ablation study on transformer block for mask pooling.

Local disease zero-shot

Layer Precision F1 ACC AUC

1st block 0.336 0.709 0.656 0.703
2nd block 0.342 0.716 0.666 0.732
12th block 0.377 0.765 0.742 0.780

Table 6: Organ segmentation on TotalSegmentator and prognosis prediction on STOIC.

Method TotalSeg (DSC) STOIC (AUC)

nnUNet 0.852 -
CT-CLIP 0.805 0.631
Merlin 0.860 0.782
M3D 0.597 0.627
RadFM - 0.649
Ours 0.872 0.807

4.5. Additional Applications

Organ Segmentation. MedVista3D learns transferable representations
for organ segmentation. We finetune our model using Totalsegmentator
Wasserthal et al. (2023) which contains 1204 patients and 104 organs, cov-
ering a wide range of anatomical structures. We attach a U-Net decoder to
our MedVista3D-UniMISS backbone for adaptation to segmentation task.
We evaluate the segmentation performance using dice coefficient (DSC). We
use nnUNet’s default 5-fold cross-validation split for training and testing.
MedVista3D-UniMISS achieves a DSC of 0.872 on TotalSegmentator, outper-
forming the state-of-the-art nnUNet by 2 points in DSC and Merlin by 1.2
point (Table 6).

Prognosis prediction. MedVista3D also enables accurate COVID prog-
nosis prediction. We finetune using STOIC 2021 Revel et al. (2021) dataset
for pneumonia severity prediction. We randomly select 80% for training, 10%
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for validation and 10% for testing. A linear head is attached for classifying
severe or non-severe (defined as death or need for intubation). AUC is used
to evaluate the performance. MedVista3D-UniMISS achieves 0.807 AUC
outperforming all comparable methods. These results show the adaptability
of our method beyond multi-modal tasks.

5. Conclusion

We present MedVista3D, a 3D VLM using unified semantic alignment
to address three major diagnostic errors in radiology: under-reading, inat-
tentional blindness, and communication failures. To jointly support local
detection and global understanding from 3D CT volumes, we propose a uni-
fied alignment loss based on mutual information maximization. To mitigate
variability in report language, we leverage LLM-based rewrites and intro-
duce a Radiology Semantic Matching Bank for robust semantic alignment.
MedVista3D consistently outperforms existing 3D VLMs across multiple
downstream tasks, including zero-shot disease classification, report retrieval,
and VQA. It also demonstrates strong transferability to organ segmenta-
tion and prognosis prediction, highlighting its potential as a general-purpose
foundation model for 3D medical imaging.

Limitation and Future Work. Our current pretraining is limited to
chest CT, primarily due to the lack of large-scale, publicly available 3D
image-report datasets for other anatomical regions. In future work, we aim
to expand MedVista3D to include additional anatomical sites such as the
brain, head-and-neck region, and pelvis. Moreover, we plan to extend our
framework to other imaging modalities, such as MRI and PET, to further
enhance its generalizability across clinical contexts.

Appendix A. Prompting LLMs for improving disease semantics

We provide the prompts for LLM in Figure A.5.

Appendix B. Training algorithm

We also provide training pseudo code in Algorithm 1.
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Algorithm 1 MedVista3D

Require: (xG
i , y

G
i )Bi=1, (x

r
i , y

r
i )

B
i=1, (x

G
i , ŷ

G
i )Bi=1, (x

r
i , ŷ

r
i )

B
i=1, fI , fT ,RSMB

1: function Compute MedVista3D Loss(fI , fT )
2: vGi , t

G
i ← fI(x

G
i ), fT (yGi ) ▷ Global features.

3: vri , t
r
i ← fI(x

r
i ), fT (yri ) ▷ Local features.

4: vGi , t̂
G
i ← fI(x

G
i ), fT (ŷGi ) ▷ Global semantic features.

5: vri , t̂
r
i ← fI(x

r
i ), fT (ŷri ) ▷ Local semantic features.

6: t̂GNN
i ← Top-1 nearest neighbor of t̂Gi from RSMB ▷ Global semantic

query with RSMB.
7: t̂rNN

i ← Top-1 nearest neighbor of t̂ri from RSMB ▷ Local semantic
query with RSMB.

8: Compute LGlobal from (vGi , t
G
i ) and LLocal from (vri , t

r
i )

9: Compute LGlobal Semantic from (vGi , t̂
GNN
i ) and

LLocal Semantic from (vri , t̂
rNN
i )

10: Compute LMedVista3D from LGlobal, LLocal, LGlobal Semantic and LLocal Semantic.

▷ Calculate the losses.
11: Backward LMedVista3D and update fI , fT ▷ Update the network.

12: RSMB← Queue Update(RSMB, t̂Gi )
13: RSMB← Queue Update(RSMB, t̂ri ) ▷ Update RSMB.
14: end function
15:

16: function Queue Update(RSMB, t̂i)
17: B ← batch size of t̂i
18: ptr ← next free position in RSMB
19: S ← length of RSMB
20: if ptr + B ≥ S then ▷ Queue size is exceeded.
21: RSMB[:, ptr : S]← t̂i[:, 0 : (S − ptr)] ▷ Fill remaining slots.
22: ptr ← 0 ▷ Reset pointer to the start.
23: else
24: RSMB[:, ptr : ptr + B]← t̂i ▷ Push embeddings into the queue.
25: ptr ← ptr + B ▷ Advance pointer by the batch size.
26: end if
27: return RSMB ▷ Return updated RSMB.
28: end function
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Figure A.5: Prompts for report-level rewrites to emphasize disease presences.
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