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Compressing the Latent Space of Single-Sequence Protein Predictors for
Multimodal Generation
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Abstract
ESMFold learns a joint latent space of sequence
and structure while requiring only sequence as
input. However, the latent space of ESMFold
is disorganized and we find pathologies, similar
to those observed in large language models, that
render these models unusable for multimodal rep-
resentation learning. Meanwhile, latent diffusion
in both continuous and discrete spaces have im-
proved efficiency and performance in image and
multimodal generation, but are built on an abun-
dance of knowledge on autoencoders for images.
To create a protein encoder which captures struc-
tural and functional information for generative
modeling in the latent space, we create CHEAP
(Compressed Hourglass Embedding Adaptations
of Proteins) representations, and find that the
channel dimension of ESMFold latent spaces can
be compressed by up to 256× while retaining rich
structural, sequence, and functional information,
as demonstrated on protein understanding bench-
marks and reconstruction performance.

1. Introduction
Generative modeling has emerged as a popular tool for pro-
tein design due to its scaling properties on complex data
distributions (Watson et al., 2023; Ingraham et al., 2022).
To synthesize the molecule in the lab, however, a sequence
that can fold into the structure must be specified. Despite
the dual importance of structure and sequence modalities,
existing methods are typically single modality, and generate
either structure (Watson et al., 2023; Ingraham et al., 2022)
or sequence (Gruver et al., 2023; Alamdari et al., 2023). By
sampling sequence and structure simultaneously, one gains
structure-conditioned control over protein design, which is
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Figure 1. Overview of the compression scheme. The protein lan-
guage model output contains massive activations, and is first nor-
malized using the statistics of each channel. Then, the Hourglass
Encoder architecture is used, where linear projections are used
to shorten along the length dimension and downproject along the
channel dimension. In the bottleneck layer, we examine methods
for obtaining both discrete and continuous compressed embed-
dings, as described in Section 3.2.

highly useful given the large array of structure-mediated use
cases in drug discovery, such as efficient hit binding, target-
ing specific biological pathways, learning protein-protein
interactions (PPI), and perform more efficient docking.

Sequence-to-structure prediction (Jumper et al., 2021; Lin
et al., 2023) have been posited as “protein structure foun-
dation models" (Wang et al., 2024). ESMFold (Lin et al.,
2023) demonstrates that sequence-to-structure prediction
can be built on top of protein language model (pLM) em-
beddings. Intriguingly, at inference time, though pLM at-
tentions capture pairwise contact information (Rao et al.,
2021), the pairwise input to the structural module is initial-
ized to zero (Section C and Figure 2). All the information
required for the structure, therefore, is contained within this
sequence embedding. Thus, by learning a generative model
to approximate the distribution of natural proteins under
this representation, one can perform simultaneous multi-
modal generation of structure and sequence. Importantly,
this allows structural diffusion from only sequence as inputs,
which is desirable because sequence datasets can be 102 to
104 times larger than structural datasets.

Naively intercepting this latent space, however, presents
numerous challenges. The latent space of large language
models (LLMs) often have high activations in certain chan-
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Figure 2. Learning the joint distribution of protein sequence and
structure as the latent space of ESMFold for multimodal generation.
(A) Overview of the ESMFold (Lin et al., 2023) model at inference
time. (B) Disassembling ESMFold for latent multimodal genera-
tion. By training a decoder from x back to sequence, and using
the pretrained ESMFold Structure Head, we obtain deterministic
mappings between x and both the sequence and structure spaces.
(C) At inference time, given a learned generative model pθ(x), we
can sample compressed latent x̃′ embeddings, decompress them
(see Section 3.1, and map them back to sequence and structure,
thus simultaneously generating both structure and sequence.

nels that persist regardless of the input sequence (Sun et al.,
2024) (Figure ??), rending them unwieldy for learning with
a generative model. Furthermore, the large dimensional-
ity of language model embeddings render them difficult
to learn. The intrinsic dimensionality of protein language
model is often much smaller than the actual channel dimen-
sion (Valeriani et al., 2024), suggesting that they can maybe
be compressedto smaller dimensions while retaining the
sturctural and functional information desirable for protein
design.

Contributions Towards our goal of taming the latent
space of sequence-to-structure models for flexible, con-
trollable, and compute-efficient latent generation for pro-
teins, we compress the ESMFold latent space and introduce
CHEAP (Compressed Hourglass Embedding Adaptations
of Proteins) representations. CHEAP embeddings are de-
signed for latent generation but also perform competitively
on function, localization, and structure-related benchmarks.
We also demonstrate how compression affects reconstruc-
tion performance and function prediction across both dis-
crete and continuous compression schemes.

2. Related Works
Latent Space Generation in Visual Media Latent-space
based generative models is often used to manage the high-
dimensional nature of visual data; design of these successful
methods is built on ample research around architectural and
algorithmic choices for visual representations. Contempo-
rary scalable generative models for vision and multimodal
media often fall into two categories: those working with
discrete representations in either an masked-token or autore-

Figure 3. (Left) Histogram of per-channel means, and after remov-
ing three outlier channels with mean absolute values >20. (Middle)
Original prediction (purple) entirely deteriorates after setting these
three outlier channels to zero (teal). (Right) Model performance
deteriorates after dropping outlier channels, as quantified by the
TMScore (structure accuracy) and pLDDT (model confidence).

gressive next-token prediction manner (He et al., 2022; Bao
et al., 2021; Chang et al., 2022; Yu et al., 2022; Razavi et al.,
2019; Villegas et al., 2022; Esser et al., 2021), or diffusion-
based models with continuous data (Ho et al., 2020; Saharia
et al., 2022; Rombach et al., 2022; Peebles & Xie, 2023; Ho
et al., 2022).

Protein diffusion and multimodal generation Though
protein structure diffusion has seen empirical and lab-
verified success (Watson et al., 2023; Bennett et al., 2024),
such models learn a probability distribution over plausible
protein structures, rather than the joint distribution of both
sequence and structure. Such models rely on an exogenous
structure-to-sequence prediction step to obtain the sequence.
Empirical results show that such methods often exhibit “low
designability", where generated structures may not have
a sequence that can fold into that structure. Some works
attempt to generate both structure and sequence simulta-
neously, usually alternating between sequence-to-structure
and structure-to-sequence steps (Lisanza et al., 2023; Chu
et al., 2023).

Massive Activations in LLMs Large transformers often
suffer from the massive activations (Sun et al., 2024) or
outlier features (Dettmers et al., 2022) phenomenon, where
output values in intermediate layers exhibit unusually high
values on the magnitude of up to 20x larger. Sun et al. (2024)
provides detail study and finds that for both Llama and ViT,
finding channels which have outlier values, and dominate
attention patterns. In contrast to the well-tamed latent space
of two-stage latent diffusion works in images (Rombach
et al., 2022), the latent space of LLMs should be expected
to be much more unwieldy, and we indeedly find this to be
true empirically (Figures 2).
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Figure 4. Comparing FSQ and VQ-VAE performance across a range of codebook sizes. Consistent with reported findings in Mentzer et al.
(2023), performance is initially higher for VQ-VAE, with FSQ outperforming VQ-VAE at codebook sizes greater than 210. Blue arrows
denote metrics where lower is better, and red arrows denote metrics where higher is better.

Figure 5. Examining codebook utilization for FSQ and VQVAE. VQVAE suffers from codebook collapse, while FSQ is constructed by
design to use all codes. Codebook utilization is generally more favorable wih FSQ (top).

3. Methods
3.1. Organizing the Latent Space for Generation

Per-Channel Normalization To address the issue of mas-
sive activations as shown in Figure 2, we use a per-channel
normalization scheme. The embeddings are processed as:

x′ =
x− xmin

xmax − xmin
×
(
(cmax − cmin) + cmin

)
where xmin and xmax are vectors with shape (1024, ) broad-
casted along the length dimension to match x, and denote
statistics calculated for each channel, independently. This
prevents outlier channel values from dominating the normal-
ization. For consistency with image diffusion works, we
choose cmin = −1 and cmax = 1.

Latent Space Compression with the Hourglass Compres-
sion Transformer Unlike images, proteins have different
lengths, which precludes usage of convolution-based au-
toencoders. However, we reason that the downsampling
operation in convolution neural network may also be key
for compressing information from adjacent amino acids
into local motifs. Furthermore, on transformer-based gen-
erative models, reducing the length dimension also helps
with managing the quadratic memory requirements of trans-
former attention layers (Vaswani et al., 2017). Therefore,
we choose an encoder architecture inspired by the Hourglass
Transformer (Nawrot et al., 2021), which includes a short-

ening operation, g(x), that transforms a tensor x with shape
(L,D) to (LS , D). The Hourglass Compression Transformer
architecture is described in Algorithm A.

3.2. Compression Representations

For discrete representation, we further examine two
schemes: (1) Vector-quantized variational auto-encoders
(VQ-VAE) (Van Den Oord et al., 2017) and (2) Finite Scalar
Quantization (FSQ) (Mentzer et al., 2023). The VQ-VAE
(Van Den Oord et al., 2017) learns a discrete representation
of the input, typically of images. In the forward pass, the
encoder he produces a continuous feature representation
of input x. Then, each feature vector is mapped to a dis-
crete code in the codebook space, C, where each discrete
code is associated with a continous vector ei. The complete
VQ-VAE loss is:

LVQ = log p(x|hq(z))+||sg[he(x)]−z||22+β||he(x)−sg[z]||22

VQ-VAE can be prone to “codebook collapse", whereby a
few codes are over-utilized, especially for larger codebook
sizes (Takida et al., 2022; Łańcucki et al., 2020; Dhariwal
et al., 2020; Huh et al., 2023). We therefore also investigate
using the FSQ (Mentzer et al., 2023) approach. Rather
than using a nearest-neighbor search to choose a code, FSQ
directly quantizes the continuous encoder representations
z ∈ Rd into L bins:
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Figure 6. Qualitative examination of structure reconstruction ϕ−
Ω1(xreconstructed), for different bottleneck c dimensions (original embedding

contains 1024 channels), and a shortening factor of 2. Despite aggressive downsampling and channel down projection, substantial
structure information can be recovered via neural compression.

z = he(x), z ∈ Rd Encoder output
ẑ = tanh(z) Bound to [−1, 1]

ẑ = round(⌊(L/2)⌋ · ẑ) Discretize to L bins

The predetermined bins L is selected to be small relative to
VQ-VAE codebook sizes. The implicit codebook size |C|,
however, comes from the combinatorial possibilities arising
from using one of L integers at each of the D channels. For
z with d channels, there are d associated integer represen-
tations, and thus |C| = Ld. A large implicit codebook can
thus be achieved, while forcing all codes to be used.

4. Results
Similar to using perceptual loss evaluation in addition to
reconstruction performance, we also examine reconstruction
performance in sequence and structure space (Figure 2).
Template-modeling score (TM-Score) is a backbone only
metric of structure reconstruction, while root-mean-square
deviation (RMSD) is a more fine-grained measure between
atom positions. Sequence reconstruction accuracy examines
token matches after decoding back to sequence space.

4.1. Discrete Compression

Though reference experiments exist in images with regard
to how big codebook sizes should be, it is unclear how many
bits of information can be expected from a joint represen-
tation of both sequence and all-atom structure. We there-
fore do a thorough investigation across different codebook
sizes for both VQVAE and FSQ. Consistent with findings
in Mentzer et al. (2023), we find that FSQ outperforms
VQVAE for codebook sizes larger than 210 across both
reconstruction MSE and performance measured in structure
and sequence spaces.

4.2. Continuous Compression

Table 4.2 examines performance on benchmarks from Xu
et al. (2022). The downprojected version of the latent that
is intercepted upstream of the original ESM output per-

# Dimensions Cont Fold SSP Yst

DDE 400 – 0.10 – 0.56
Moran 240 – 0.07 – 0.53
LSTM 640 0.26 0.08 0.69 0.54
Transformer 512 0.18 0.09 0.60 0.54
CNN 21 0.10 0.11 0.66 0.55
ResNet 512 0.20 0.09 0.70 0.49
ProtBert 1024 0.40 0.11 0.82 0.54
ESM-1b 1280 0.46 0.30 0.83 0.66

CHEAP (ours) 8 0.28 0.15 0.82 0.45
64 0.42 0.45 0.85 0.48

128 0.38 0.47 0.85 0.51
256 0.23 0.50 0.85 0.51
512 0.37 0.53 0.86 0.46

Table 1. Comparing representation learning results on benchmarks
described in Xu et al. (2022). CHEAP performs competitively or
better despite aggressive compression.

forms competitively or better than ESM1b, despite aggres-
sive compression. More benchmark results can be found
in the Appendix. Figure 4.2 demonstrates that good back-
bone alignment (i.e. TM-Score), RMSD below idealized
inter-residue bond lengths, and near-perfect sequence recon-
struction performance can be retained even after aggressive
compression.

5. Conclusion
CHEAP embeddings investigate the compression of the
ESMFold latent space for protein multimodal generation,
to both enable speed and flexibility. Using an Hourglass
autoencoder architecture, our results demonstrate that func-
tional and structural information learned by ESMFold can
be compactly captured.
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Figure 7. (Top) Comparing TM-Score and sequence recovery of
compressed structure and the original prediction for compressed
representations. (Bottom) Comparing the RMSD with RMSPD
(super-imposition free) to distinguish reconstruction errors in ori-
entation only vs. those which also alter pairwise distances.
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A. Hourglass Compression Transformer
Though different operations may be used for g(x), we find a simple linear downsampling to work well (Algorithm ??),
which can be seen as a convolution with a filter size and stride both equal to S. Since the original model is designed for
sequence-to-sequence tasks rather than compression, we remove the skip connections that would make the solving the
reconstruction task trivial. Additionally, we add a projection layer along the channel dimension after each shortening
operation. At training time, xreconstructed is used for calculating the mean-squared-error reconstruction loss, and at inference
time, the output of the encoder is used as the compressed representation, with additional processing in the bottleneck,
depending on if the compression is discrete or continuous (Section 3.2).

Algorithm 1 Hourglass Compression Transformer
embedding a← a ∈ RL×D,
mask m←mLength[L] := {1, 0}Ll ,
shortening factor S ← S ∈ Z,
downprojection factor K ← K ∈ Z,
downprojection Wd ←Wd ∈ RD×D

K ,
upprojection Wu ←Wu ∈ RD

K ×D

a,m← Pad length to multiple of S
a← Transformer(a, m)
a′ ← LinearDownsampling(a, S)
m′ ←

∑
S mLength[L]→[LS ] > 0 {Reduce}

a′ ← AttentionResampling(a′,a,m′)
c←Wda

′

if quantize then
c← Bottleneck(c,m′)

else
c← Tanh(c)

end if
a′ ←Wuc
a← LinearUpsampling(c′,m′)
m←m′Length[LS ]→[L] > 0 {Repeat}
a← AttentionResampling(a,a′,m)
areconstructed ← Transformer(a, m)
return: areconstruction ∈ RL×D, c ∈ RL

S ×D
K

B. Discrete Representation Learning
The assembled array of learned codes and their vector embeddings z = {e1, e2, ...e|C|} and their corresponding feature
features are fed into the decoder hq(z). Since the quantization operation is not differentiable, the straight-through estimator
(STE) () is used by copying the gradients from the decoder input to the encoder output. The codebook is selected via
a nearest-neighbor search in Euclidean space; auxiliary losses are introduced to pull the codeword vectors towards the
unquantized encoder outputs. As in autoencoder training, a reconstruction loss between output and input is also used.

C. Defining a Joint Structure-Sequence Latent Space
A key observation for this work is that during inference use, it is empirically sufficient to initialize the pairwise representation
input z as an array of zeros, and thus all information needed for structure is contained in x = ϕs(s) (Figure 2). The core
idea of the PLAID framework is to train a generative model pθ(x) to characterize the joint latent space of all feasible protein
sequence and structures as ϕ(s,Ω), as defined by the intermediate layers of ESMFold (Lin et al., 2023). We intercept the
sequence representation that is the direct input into the folding trunk (Figure 2).

Constructing forward- and backward-mappings To define mappings from sequence s and structure Ω to the joint
multimodal representation space ϕ(s,Ω), we can decompose ϕ(s,Ω) = ϕs(·) ◦ ϕΩ(·), and use components of ESMFold to

6
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represent ϕΩ(·) and ϕs(·) mappings:

x = ϕs(s) ESM2 Language Model (1)

Ω = ϕ−1
Ω (x,∅) ESMFold Structure Module (2)

At inference time, after sampling x̃ ∼ pθ(x) = pθ(s,Ω), we can generate new protein sequences as s̃ = ϕ−1
s (x̃), which we

see from Eq. 1 is the backward mapping of the ESM2 language model. This “back-mapping" sequence decoder can be
trained separately, and since the space is already the output of a language model, we observe a per-token accuracy of 99.7%
on a randomly partitioned heldout set.

D. Further Benchmark Results

# Dimensions Flu ↑ Sta ↑ β-lac ↑ Sol ↑ Sub ↑ Bin ↑
DDE 400 0.64 0.65 0.62 0.60 0.49 0.77

Moran 240 0.40 0.32 0.38 0.58 0.31 0.56
LSTM 640 0.49 0.53 0.14 0.70 0.63 0.88

Transformer 512 0.64 0.65 0.26 0.70 0.56 0.76
CNN 21 0.68 0.64 0.78 0.64 0.59 0.83

ResNet 512 0.64 0.13 0.15 0.67 0.52 0.79
ProtBert 1024 0.34 0.70 0.62 0.59 0.59 0.82
ESM-1b 1280 0.43 0.75 0.53 0.67 0.80 0.92

CHEAP (ours) 4 0.14 0.40 0.13 0.60 0.33 0.68
8 0.22 0.44 0.17 0.64 0.45 0.74

16 0.27 0.55 0.23 0.65 0.54 0.84
32 0.28 0.56 0.28 0.67 0.57 0.87
64 0.31 0.56 0.28 0.69 0.62 0.90
128 0.41 0.58 0.38 0.70 0.68 0.90
256 0.47 0.60 0.41 0.71 0.72 0.92
512 0.51 0.63 0.36 0.72 0.74 0.93

No compression 1024 0.52 0.64 0.45 0.72 0.76 0.94

Table 2. Benchmarks on function and localization.
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