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ABSTRACT

Inspired by the phenomenon of performance disparity between languages in ma-
chine translation, we investigate whether and to what extent languages are equally
hard to “conditional-language-model”. Our goal is to improve our understanding
and expectation of the relationship between language, data representation, size,
and performance. We study one-to-one, bilingual conditional language modeling
through a series of systematically controlled experiments with the Transformer and
the 6 languages from the United Nations Parallel Corpus. We examine character,
byte, and word models in 30 language directions and 5 data sizes, and observe
indications suggesting a script bias on the character level, a length bias on the byte
level, and a word bias that gives rise to a hierarchy in performance across languages.
We also identify two types of sample-wise non-monotonicity — while word-based
representations are prone to exhibit Double Descent, length can induce unstable
performance across the size range studied in a novel meta phenomenon which we
term erraticity. By eliminating statistically significant performance disparity on
the character and byte levels by normalizing length and vocabulary in the data, we
show that, in the context of computing with the Transformer, there is no complexity
intrinsic to languages other than that related to their statistical attributes and that
performance disparity is not a necessary condition but a byproduct of word segmen-
tation. Our application of statistical comparisons as a fairness measure also serves
as a novel rigorous method for the intrinsic evaluation of languages, resolving a
decades-long debate on language complexity. While all these quantitative biases
leading to disparity are mitigable through a shallower network, we find room for a
human bias to be reflected upon. We hope our work helps open up new directions
in the area of language and computing that would be fairer and more flexible and
foster a new transdisciplinary perspective for DL-inspired scientific progress.

1 INTRODUCTION

With a transdisciplinary approach to explore a space at the intersection of Deep Learning (DL) /
Neural Networks (NNs), language sciences, and language engineering, we report our undertaking
in use-inspired basic research — with an application-related phenomenon as inspiration, we seek
fundamental scientific understanding through empirical experimentation. This is not an application
or machine translation (MT) paper, but one that strives to evaluate and seek new insights on language
in the context of DL with a consideration to contribute to our evaluation, segmentation, and model
interpretation practice in multilingual Natural Language Processing (NLP).

Our inspiration: performance disparity in MT The use case that inspired our investigation is
the disparity of MT results reported in Junczys-Dowmunt et al.|(2016)). Of the 6 official languages of
the United Nations (UN) — Arabic (AR), English (EN), Spanish (ES), French (FR), Russian (RU),
and Chinese (ZH), results with target languages AR, RU, and ZH seem to be worse than those with
EN/ES/FR, regardless of the algorithm, may it be from phrased-based Statistical MT (SMT/Moses
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(Koehn et al.,|2007)) or Neural MT (NMT) The languages have the same amount of line-aligned,
high-quality parallel data available for training, evaluation, and testing. This prompts the question:
are some languages indeed harder to translate from or to?

Problem statement: are all languages equally hard to Conditional-Language-Model (CLM)?
A similar question concerning (monolingual) language modeling (LMing) was posed in |Cotterell
et al.[(2018)) and Mielke et al.| (2019) along with the introduction of a method to evaluate LMs with
multiway parallel corpora (multitexts) in information-theoretic terms. To explicitly focus on modeling
the complexities that may or may not be intrinsic to the languages, we study the more fundamental
process of CLMing without performing any translation. This allows us to eliminate confounds
associated with generation and other evaluation metrics. One could think of our effort as estimating
conditional probabilities with the Transformer, with a bilingual setup where perplexity of one target
language (lir¢) is estimated given the parallel data in one source language (ls:c), Where l. 7# lirs. We
focus on the very basics and examine the first step in our pipeline — input representation, holding
everything else constant. Instead of measuring absolute cross-entropy scores, we evaluate the relative
differences between languages from across 5 magnitudes of data sizes in 3 different representation
types/levels. We consider bias to be present when performance disparity in our Transformer
models is statistically significant.

1.1 SUMMARY OF FINDINGS AND CONTRIBUTIONS

In investigating performance disparity as a function of size and data with respect to language and
representation on the Transformer in the context of CLMing, we find:

1. in a bilingual (one-to-one) CLMing setup, there is neutralization of source language instances,
i.e. there are no statistically significant differences between source language pairs. Only pairs of
target languages differ significantly (see Table [)).

2. We identify 2 types of sample-wise non-moneotonicity on each of the primary representation
levels we studied:

(a) Double Descent (Belkin et al.| [2019; Nakkiran et al., [2020): on the word level, for all
languages, performance at 10 lines is typically better than at 10 before it improves again
at 10* and beyond. This phenomenon can also be observed in character models with ZH
as a target language as well as on the word level with non-neural n-gram LMs;

(b) erraticity: performance is irregular and exhibits great variance across runs. We find
sequence length to be predictive of this phenomenon. We show that this can be rectified by
data transformation or hyperparameter tuning. In our study, erraticity affects AR and RU
on the byte level where the sequences are too long with UTF-8 encoding and ZH when
decomposed into strokes on the character level.

3. In eliminating performance disparity through lossless data transformation on the character
and byte levels, we resolve language complexity (§ 4] and App. J). We show that, in the
context of computing with the Transformer, unless word-based methods are used, there is no
linguistic/morphological complexity applicable or necessary. There is no complexity that is
intrinsic to a language aside from its statistical properties. Hardness in modeling is relative
to and bounded by its representation level (representation relativity). On the character and
byte levels, hardness is correlated with statistical properties concerning sequence length and
vocabulary of a language, irrespective of its linguistic typological, phylogenetic, historical, or
geographical profile, and can be eliminated. On the word level, hardness is correlated with
vocabulary, and a complexity hierarchy arises through the manual preprocessing step of word
tokenization. This complexity/disparity effected by word segmentation cannot be eliminated
due to the fundamental qualitative differences in the definition of a “word” being one that
neither holds universally nor is suitable/consistent for fair crosslinguistic comparisons. We
find clarification of this expectation of disparity necessary because more diligent error analyses
need to be afforded instead of simply accepting massively disparate results or inappropriately
attributing under-performance to linguistic reasons.

Representational units of finer granularity can help close the gap in performance disparity.

Bigger/overparameterized models can magnify/exacerbate the effects of differences in data

statistics. Quantitative biases that lead to disparity are mitigable through numerical methods.

vk

"We provide a re-visualization of these grouped in 6 facets by target language in Figurein Appendix@
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Outline of the paper In § 2| we define our method and experimental setup. We present our results
and analyses on the primary representations in § [3]and those from secondary set of controls in § f]in
a progressive manner to ease understanding. Meta analyses on fairness evaluation, non-monotonic
behavior, and discussion on biases are in §[5] Additional related work is in §[6] We refer our readers to
the Appendices for more detailed descriptions/discussions and reports on supplementary experiments.

2 METHOD AND DEFINITIONS

Controlled experiments as basic research for scientific understanding Using the United Na-
tions Parallel Corpus (Ziemski et al.,[2016)), the data from which the MT results in|[Junczys-Dowmunt
et al.| (2016)) stem, we perform a series of controlled experiments on the Transformer, holding the
hyperparameter settings for all 30 one-to-one language directions from the 6 languages constant. We
control for size (from 102 to 106 lines) and language with respect to representational granularity. We
examine 3 primary representation types — character, byte (UTF-8), and word, and upon encountering
some unusual phenomena, we perform a secondary set of controls with 5 alternate representations —
on the character level: Pinyin and Wubi (ASCII representations for ZH phones and character strokes,
respectively), on the byte level: code page 1256 (for AR) and code page 1251 (for RU), and on the
word level: Byte Pair Encoding (BPE) (Sennrich et al.| [2016), an adapted compression algorithm
from Gage| (1994)). These symbolic variants allow us to manipulate the statistical properties of the
representations, while staying as “faithful” to the language as possible. We adopt this symbolic
data-centric approach because we would like to more directly interpret the confounds, if any, that
make language data different from other data types. We operate on a smaller data size range as
this is more common in traditional domain sciences and one of our higher goals is to bridge an
understanding between language sciences and engineering (the latter being the dominant focus in
NLP). We run statistical tests to identify the strongest correlates of performance and to assess whether
the differences between the mean performance of different groups are indeed significant. We are
concerned not with the absolute scores, but with the relations between scores from different
languages and the generalizations derived therefrom.

Information-theoretic, fair evaluation with multitexts Most sequence-to-sequence models are
optimized using a cross-entropy loss (see Appendix [B]for definition). [Cotterell et al| (2018) propose
to use “renormalized” perplexity (PP) to evaluate LMs fairly using the total number of bits divided
by some constant. In our case, we choose instead a simpler method of using an “unnormalized” PP,
directly using the total number of bits needed to encode the development (dev) set, which has a
constant size of 3,077 lines per language.

Disparity/Inequality In the context of our CLMing experiments, we consider there to be “dis-
parity” or “inequality” between languages [ and /5 if there are significant differences between the
performance distributions of these two languages with respect to each representation. Here, by
performance we mean the number of bits required to encode the held-out data using a trained CLM.
With 30 directions, there are 15 pairs of source languages (g1, lsre2) and 15 pairs of target languages
(lirg1, lig2) possible. To assess whether the differences are significant, we perform unpaired two-sided
significance tests with the null hypothesis that the score distributions for the two languages are not
different. Upon testing for normality with the Shapiro-Wilk test (Shapiro & Wilk, |1965; Royston,
1995)), we use the parametric unpaired two-sample Welch’s t-test (Welch, [1947) (when normal) or the
non-parametric unpaired Wilcoxon test (Wilcoxon, [1945)) (when not normal) for the comparisons.
We use the implementation in R (R Core Team), 2014)) for these 3 tests. To account for the multiple
comparisons we are performing, we correct all p-values using Bonferroni’s correction (Benjamini
& Heller, 2008 Dror et al.,[2017) and follow Holm’s procedureﬂ (Holm, 1979; Dror et al., 2017)) to
identify the pairs of I; and l» with significant differences after correction. We report all 3 levels of
significance (o < 0.05,0.01,0.001) for a more comprehensive evaluation.

Experimental setup The systematic, identical treatment we give to our data is described as follows
with further preprocessing and hyperparameter details in Appendices [B]and [C] respectively. The
distinctive point of our experiment is that the training regime is the same for all (intuition in App.[O.I).

2using implementation from https://github.com/rtmdrr/replicability-analysis-NLP
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After filtering length to 300 characters maximum per line in parallel for the 6 languages, we made 3
subsets of the data with 1 million lines each — one having lines in the order of the original corpus
(dataset A) and two other randomly sampled (without replacement) from the full corpus (datasets
B & C). Lines in all datasets are extracted in parallel and remain fully aligned for the 6 languages.
For each run and each representation, there are 30 pairwise directions (i.e. one Iy, to one li,) that
result from the 6 languages. We trained all 150 (for 5 sizes) 6-layer Transformer models for each run
using the SOCKEYE Toolkit (Hieber et al.l 2018). We optimize using PP and use early stopping if no
PP improvement occurs after 3 checkpoints up to 50 epochs maximum, taking the best checkpoint.
Characters and bytes are supposed to mitigate the out-of-vocabulary (OOV) problem on the word
level. In order to assess the effect of modeling with finer granularity more precisely, all vocabulary
items appearing once in the train set are accounted for (i.e. full vocabulary on train, as in |Gerz
et al.| (2018azb)). But we allow our system to categorize all unknown items in the dev set to be
unknown (UNK) so to measure OOVs (open vocabulary on dev (Jurafsky & Martin, 2009)). To
identify correlates of performance, we perform Spearman’s correlation (Spearman, |1904) with some
basic statistical properties of the data (e.g. length, vocabulary size (|V]), type-token-ratio, OOV
rate) as metrics — a complete list thereof is provided in Appendix [F} For each of the 3 primary
representations — character, byte, and word, we performed 5 runs total in 5 sizes (10%-10° lines)
(runs A0, BO, CO, Al, & A2) and 7 more runs in 4 sizes (102-10° lines) (A3-7, B1, & C1), also
controlling for seeds. For the alternate/secondary representations, we ran 3 runs each in 5 sizes
(102-10° lines) (A0, BO, & C0).

3 EXPERIMENTAL RESULTS OF PRIMARY REPRESENTATIONS

Subfigures|Ta] [Tb] and[Ic|present the mean results across 12 runs of the 3 primary representations —
character, byte, and word, respectively. The x-axis represents data size in number of lines and y-axis
the total conditional cross-entropy, measured in bits (Eq. [T]in Appendix [B). Each line connects 5 data
points corresponding to the number of bits the CLMs (trained with training data of 102, 103, 10%, 10,
and 10° lines) need to encode the target language dev set given the corresponding text in the source
language. These are the same data in the same 30 language directions and 5 sizes with the same
training regime, just preprocessed/segmented differently. This confirms representation relativity —
languages (or any objects being modeled) need to be evaluated relative to their representation. “One
size does not fit all” (Durranti et al., 2019), our conventional way of referring to “language” (as a
socio-cultural product or with traditional word-based approaches, or even for most multilingual tasks
and competitions) is too coarse-grained (see also|Fisch et al.|(2019) and |Ponti et al.| (2020)).

Subfigures[Id] [Te] and [If] display the corresponding information sorted into facets by target language,
source languages represented as line types. Through these we see more clearly that results can be
grouped rather neatly by target language (cf. figures sorted by source language in Appendix [H) —
as implicit in the Transformer’s architecture, the decoder is unaware of the source language in the
encoder. As shown in Table([T]in § [5]summarizing the number of source and target language pairs
with significant differences, there are no significant differences across any source language pairs.
The Transformer neutralizes source language instances. This could explain why transfer learning or
multilingual/zero-shot translation (Johnson et al.,[2017) is possible at all on a conceptual level.

In general, for character and byte models, most language directions do seem to converge at 10*
lines to similar values across all target languages, with few notable exceptions. There are some
fluctuations past 10%, indicating further tuning of hyperparameters would be beneficial due to our
present setting possibly working most favorably at 10%. On the character level, target language ZH
(ZH;4) shows a different learning pattern throughout. And on the byte level, ARy, and RUy,,
display non-monotonic and unstable behavior, which we refer to as erratic. Word models exhibit
Double Descent across the board (note the spike at 10%), but overall, difficult/easy languages stay
consistent, with AR and RU being the hardest, followed by ES and FR, then EN and ZH. A practical
takeaway from this set of experiments: in order to obtain more robust training results, use bytes
for ZH (as suggested in|Li et al.|(2019a)) and characters for AR and RU (e.g.[Lee et al.|(2017)) —
also if one wanted to avoid any “class” problems in performance disparity with words. Performance
disparity for these representations is reported in Table[Tjunder “CHAR”, “BYTE”, and “WORD”.
Do note, however, that the intrinsic performance of ZH with word segmentation is not particularly
subpar. But this often does not correlate with its poorer downstream tasks results (recall results
from Junczys-Dowmunt et al.| (2016)). Since the notion of word in ZH is highly contested and
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Figure 1: Number of bits (the lower the better) as a function of data size plotted for all 30 directions.
Subfigures [Id] and [Tf] depict the corresponding information as in [Ta] [Tb] and [T (showing mean across
12 runs), respectively, but sorted in 6 facets by target language and with error bars. Legend in Subfigure[Tg]
shows the correspondence between colors and source languages, in Subfigure [Th|between line types and target
languages. (These figures are also shown enlarged in Appendix @)

ambiguous — 1) it is often aimed to align with that in other languages so to accommodate manual
feature engineering and academic theories, 2) there is great variation among different conventions, 3)
native ZH speakers identify characters as words — there are reasons to rethink this procedure now
that fairer and language-independent processing in finer granularity is possible (cf.|Li et al.|(2019b)
as well as Duanmu| (2017) for a summary on the contested nature of wordhood in ZH). A more native
analysis of ZH, despite being considered a high-resource language, has not yet been recognized in
NLP.

4 UNDERSTANDING THE PHENOMENA WITH ALTERNATE REPRESENTATIONS

To understand why some languages show different results than others, we carried out a secondary
set of control experiments with representations targeting the problematic statistical properties of the
corresponding target languages. (An extended version of this section is provided in Appendix [P})

Character level We reduced the high |V'| in ZH with representations in ASCII characters — Pinyin
and Wubi. The former is a romanization of ZH characters based on their pronunciations and the latter
an input algorithm that decomposes character-internal information into stroke shape and ordering and
matches these to 5 classes of radicals (Lundel [2008)). We replaced the ZH data in these formats only on
the target side and reran the experiments involving ZH;,., on the character level. Results in Figuregj
and Table|l|{show that the elimination of disparity on character level is possible if ZH is represented
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Figure 2: Character-level remedies for ZH: Wubi vs. Pinyin.
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Figure 3: Byte-level (Subﬁgures & remedies with code page 1256 for target AR and 1251 for
target RU, and word-level (Subfigures [3¢| & [3d) remedy with BPE for all languages.

through Pinyin (transliteration), as in Subfigure 2c] But models with ZH logographic scripts display
a behaviorial tendency unlike those with other (phonetic) alphabetic scripts (Subfigure [2a). Work
published thus far using Wubi with the Transformer seems to have needed some form of architectural
modification (Gao et al.,[2020) or a different architecture altogether (Nikolov et al.l 2018} |Zhang
et al.l 2019), suggesting a possible script bias (to be further discussed in § [5|under “Basis for biases”).

Byte level Length is the most salient statistical attribute that makes AR and RU outliers. To shorten
their sequence lengths, we tested with alternate encodings on ARy, and RUy;,.; — code page 1256
and 1251, which provide 1-byte encodings specific to AR and RU, respectively. Results are shown
in Subfigures[3aland [3b] Not only is erraticity resolved, the number of 15 possible target language
pairs with significant differences reduces from 8 with the UTF-8 byte representation to 0 (Table[T]
under “ARRU,”), indicating that we eliminated disparity with this optimization heuristic. Since
our heuristic is a lossless and reversible transform, it shows that a complexity that is intrinsic and
necessary in languageE] does not exist in computing, however diverse they may be, as our 6 are,
from the conventional linguistic typological, phylogenetic, historical, or geographical perspectives.
Please refer to Appendix [J| for our discussion on language complexity.

Word level The main difference between word and character/byte models is length not being a top
contributing factor correlating with performance, but instead |V'| is. This is understandable as word
segmentation neutralizes sequence lengths. To remedy the OOV problem, we use BPE, which learns
a fixed vocabulary of variable-length character sequences (on word level, as it presupposes word

3aside from its statistical properties related to length and vocabulary. “Language” here refers to language
represented through all representations.
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Table 1: Number of language pairs out of 15 with significant differences, with respective p-values. ARRU;
refers to AR & RU being optimized only on the target side; whereas ARRU; ; denotes optimization on both
source and target sides (relevant for directions AR-RU and RU-AR).

CHAR Pinyin Wubi BYTE ARRU; ARRU,; WORD BPE
p-value src trg src trg src trg src trg src trg src trg src trg  src trg

0.05 0 7 0 4 0 8 0 9 0 4 0 4 0 11 0 10
0.01 0 5 0 2 0 6 0 8 0 30 4 0 &8 0 8

I 0.001 0 3 0 0 O 5 0 8 0 0 0 2 0 8 0 7

segmentation) from the training data. It is more fine-grained than word segmentation and is known
for its capability to model subword units for morphologically complex languages (e.g. AR and RU).
We use the same vocabulary of 30,000 as specified in Junczys-Dowmunt et al.| (2016). This reduced
our averaged OOV token rate by 89-100% across the 5 sizes. The number of language pairs with
significant differences reduced to 7 from 8 for word models, showing how finer-grained modeling
has a positive effect on closing the disparity gap.

5 META-RESULTS, ANALYSIS, AND DISCUSSION

Performance disparity Table |I| lists the number of language pairs with significant differences
under the representations studied. Considering how it is possible for our character and byte models
to effect no performance disparity for the same languages on the same data, this indicates that
disparity is not a necessary condition. In fact, the customary expectation that languages ought to
perform differently stems from our word segmentation practice. Furthermore, the order of AR/RU
> ES/FR > EN/ZH (Figure resembles the idea of morphological complexity. Considering there
are character-internal meaningful units in languages with logographic script such as ZH (cf.|Zhang
& Komachi (2018))) that are rarely captured, studied, or referred to as “morphemes”, this goes to
show that linguistic morphology, along with its complexity, as is practiced todayﬂ and that which
has occurred in the NLP discourse thus far, has only been relevant on and is bounded to the “word”
level. The definition of word, however, has been recognized as problematic for a very long time in
the language sciences (see Haspelmath| (2011)) and references therein from the past century). Since
the conventional notion of word, which has been centered on English and languages with alphabetic
scripts, has a negative impact on languages both morphologically rich (see Minkov et al.| (2007),
Seddah et al.|(2010), inter alia), AR and RU in our case, as well as morphologically “frugal” (Koehn|,
2003)), as in ZH, finer-grained modeling with characters and bytes (or n-gram variants/pieces thereof)
is indeed a more sensible option and enables a greater variety of languages to be handled with more
simplicity, fairness, independence, and flexibility.

While the lack of significant differences between pairs of source languages would signify neutraliza-
tion of source language instances, it does not mean that source languages have no effect on target.
For our byte solutions with code pages, we experimented also with source side optimization in the
directions that involve AR/RU as source. This affected the distribution of the disparity results for that
representation — with 2 pairs being significantly different (see Table[T|under “ARRU ;). We defer
further investigation on the nature of source language neutralization to future work.

Sample-wise Double Descent (DD) Sample-wise non-monotonicity/DD (Nakkiran et al., [2020)
denotes a degradation followed by an improvement in performance with increasing data size. We
notice word models and character models with ZHy,.¢, i.e. models with high target |V/|, are prone
to exhibit a spike at 103. A common pattern for these is the ratio of target training token count
to number of parameters falls into O(10~%) for 102 lines, O(10~3) at 103, O(10~?) at 10%, and
O(1071) for 10° lines and so on. But for more atomic units such as alphabetic (not logographic)
characters (may it be Latin, Cyrillic, or Abjad) and for bytes, this progression instead begins at
O(1073) at 10? lines. Instead of thinking this spike of 103 as irregular, we may instead want to

“But there are no reasons why linguistics or linguistic typology cannot encompass a statistical science of
language beyond/without “words”, or with continuous representations of characters and bytes. In fact, that could
complement the needs of language engineering and the NNs/DL/ML communities better.
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think of this learning curve as shifted by 1 order of magnitude to the right for characters and bytes
and/or the performance at 102 lines for words and ZH-characters due to being overparameterized
and hence abnormal. This would also fit in with the findings by Belkin et al.|(2019) and Nakkiran
et al.[(2020) attributing DD to overparameterization. If we could use this ratio and logic of higher |V|
to automatically detect “non-atomic” units, ones that can be further decomposed, this observation
could potentially be beneficial for advancing other sciences, e.g. biology. From a cognitive modeling
perspective, the similarity in behavior of ZH characters and words of other languages can affirm the
interpretation of wordhood for those ZH speakers who identify ZH characters as words (see also
last paragraph in § [3|and Appendix [J). While almost all work attribute DD to algorithmic reasons,
concurrent work by (Chen et al.|(2020) corroborates our observation and confirms that DD arises due
to “the interaction between the properties of the data and the inductive biases of learning algorithms”.
Other related work on DD and its more recent development can also be found in their work.

We performed additional experiments testing our setting on the datasets used by the [Nakkiran et al.
(2020) and testing our data on a non-neural LM. Results support our findings and are provided in
Appendix [K] Number of model parameters can be found in Appendix [[]

Erraticity We observe another type of sample-wise non-monotonicity, one that signals irregular
and unstable performance across data sizes and runs. Within one run, erraticity can be observed
directly as changes in direction on the y-axis. Across runs, large variance can be observed, even
with the same dataset (see Figure [I8]in Appendix [M). Erraticity can also be observed indirectly
through a negative correlation between data size and performance. Many work on length bias in
NMT have focused on solutions related to search, e.g. Murray & Chiang|(2018). Our experiments
show that a kind of length bias can surface already with CLMing, without generation taking place. If
the connection between erraticity and length bias can indeed be drawn, it could strengthen the case
for global conditioning (Sountsov & Sarawagi, 2016). (See Appendix [M]for more discussion and
results.)

Script bias, erraticity, word bias — are these necessary conditions? To assess whether the
observed phenomena are particular to this one setting, we performed one run with dataset A in 4
sizes with the primary representations on 1-layer Transformers (see Appendix [N). We observed
no significant disparity across the board. It shows that larger/overparameterized models can
magnify/exacerbate the differences in the data statistics. That hyperparameter tuning — in this
case, through the reduction of the number of layers — can mitigate effects from data statistics
is, to the best of our knowledge, a novel insight, suggesting also that a general expectation of
monotonic development as data size increases can indeed be held. Our other findings remain
consistent (representational relativity, source language neutralization, and DD on word level).

Bases for biases Recall in § [I} we “consider bias to be present when performance disparity in
our Transformer models is statistically significant”. As shown in our data statistics and analysis
(Appendices [D]and [P|respectively), script bias, length bias wrt erraticity in CLMing, and word bias
are all evident in the vocabulary and length information in the data statistics. Hence these disparities
in performance are really a result of the Transformer being able to model these differences in data at
such a magnitude that the differences are statistically significant. The meta phenomenon of erraticity,
however, warrants an additional consideration indicative of the empirical limits of our compute (cf.
Xu et al.|(2020)), even when the non-monotonicity is not observed during the training of each model.

In eliminating performance disparity in character and byte models by normalizing vocabulary and
length statistics in the data, we demonstrated that performance disparity as expected from the
morphological complexity hierarchy is due to word tokenization, not intrinsic or necessary in language.
This is the word bias. Qualitative issues in the concept of word will persist and make crosslinguistic
comparison involving “words” unfair even if one were to be able to find a quantitative solution to
mitigate the OOV issue, the bottleneck in word-based processing. We humans have a choice in how
we see/process languages. That some might still prefer to continue with a crosslinguistic comparison
with “words” and exert the superiority of “word” tokenization speaks for a view that is centered on
“privileged” languages — in that case, word bias is a human bias.

And, in eliminating performance disparity across the board with our one-layer models, we show that
all quantitative differences in data statistics between languages can also be modeled in a “zoomed-
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out”/*desensitized” mode, suggesting that while languages can be perceived as being fundamentally
different in different ways in different granularities, they can also be viewed as fundamentally similar.

6 ADDITIONAL RELATED WORK

Similar to our work in testing for hardness are |Cotterell et al.| (2018)), Mielke et al.| (2019), and
Bugliarello et al.|(2020). The first two studied (monolingual) LMs — the former tested on the Europarl
languages (Koehn, 2005)) with n-gram and character models and concluded that morphological
complexity was the culprit to hardness, the latter studied 62 languages of the Bible corpus (Mayer
& Cysouw, 2014) in addition and refuted the relevance of linguistic features in hardness based
on character and BPE models on both corpora in word-tokenized form. Bugliarello et al.| (2020)
compared translation results of the Europarl languages with BPEs at one data size and concluded
that it is easier to translate out of EN than into it, statistical significance was, however, not assessed.
In contrast, we ablated away the confound of generation and studied CLMing with controls with
a broader range of languages with more diverse statistical profiles in 3 granularities and up to 5
orders of magnitude in data size. That basic data statistics are the driver of success in performance
in multilingual modeling has so far only been explicitly argued for in Mielke et al.|(2019). We go
beyond their work in monolingual LMs to study CLMs and evaluate also in relation to data size,
representational granularity, and quantitative and qualitative fairness.

Bender| (2009) advocated the relevance of linguistic typology for the design of language-independent
NLP systems based on crosslinguistic differences in word-based structural notions, such as parts
of speech. Ponti et al.|(2019) found typological information to be beneficial in the few-shot setting
on the character level for 77 languages with Latin scripts. But no multilingual work has thus far
explicitly examined the relation between linguistic typology and the statistical properties of the data,
involving languages with diverse statistical profiles in different granularities.

As obtaining training data is often the most difficult part of an NLP or Machine Learning (ML) project,
Johnson et al.[(2018)) introduced an extrapolation methodology to directly model the relation between
data size and performance. Our work can be viewed as one preliminary step towards this goal. To the
best of our knowledge, there has been no prior work on demonstrating the neutralization of source
language instances through statistical comparisons, a numerical analysis on DD for sequence-to-
sequence models, the meta phenomenon of a sample-wise non-monotonicity (erraticity) being related
to length, or the connection between effects of data statistics and modification in architectural depth.

7 CONCLUSION

Summary We performed a novel, rigorous relational assessment of performance disparity across
different languages, representations, and data sizes in CLMing with the Transformer. Different dispar-
ity patterns were observed on different representation types (character, byte, and word), which can be
traced back to the data statistics. The disparity pattern reflected on the word level corresponds to the
morphological complexity hierarchy, reminding us that the definition of morphology is predicated on
the notion of word and indicating how morphological complexity can be modeled by the Transformer
simply through word segmentation. As we were able to eliminate disparity on the same data on
the character and byte levels by normalizing length and vocabulary, we showed that morphological
complexity is not a necessary concept but one that results from word segmentation and is bounded to
the word level, orthogonal to the performance of character or byte models. Representational units of
finer granularity were shown to help eliminate performance disparity though at the cost of longer
sequence length, which can have a negative impact on robustness. In addition, we found all word
models and character models with ZH,,., to behave similarly in their being prone to exhibit a peak
(as sample-wise DD) around 102 lines in our setting. While bigger/overparameterized models can
magnify the effect of data statistics, exacerbating the disparity, we found a decrease in model depth
can eliminate these quantitative biases, leaving only the qualitative aspect of “word” and the necessity
of word segmentation in question.

QOutlook Machine learning has enabled greater diversity in NLP (Joshi et al.,[2020). Fairness, in
the elimination of disparity, does not require big data. This paper made a pioneering attempt to bridge
research in DL/NNSs, language sciences, and language engineering through a data-centric perspective.
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We believe a statistical science for NLP as a data science can well complement algorithmic analyses
with an empirical view contributing to a more generalizable pool of knowledge for NNs/DL/ML. A
more comprehensive study not only can lead us to new scientific frontiers, but also better design and
evaluation, benefitting the development of a more general, diverse and inclusive Artificial Intelligence.
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A RE-VISUALIZATION OF FIGURE 1 INJJUNCZYS-DOWMUNT ET AL.|(2016]) IN
6 FACETS BY TARGET LANGUAGE
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Figure 4: Results of the Moses baseline systems (right group in each facet) and neural models (left)
with 1.2 million iterations (1 iteration corresponds to 1 mini-batch) for the 30 directions of the 6-way
UN corpus, tokenized (ZH segmented), lowercased, and length filtered to 100 BPE tokens.

B DATA SELECTION AND PREPROCESSING DETAILS

The UN Parallel Corpus v1.0 (Ziemski et all,[2016)) consists of manually translated UN documents
from 1990 to 2014 in the 6 official UN languages. Therein is a subcorpus that is fully aligned
by line, comprising the 6-way parallel corpus we use. We tried to have as little preprocessing or
filtering as necessary to eliminate possible confounds. But as the initial runs of our experiment failed
due to insufficient memory on a single GPU with 12 GB VRANEI, we filtered out lines with more
than 300 characters in any language in lockstep with one another for all the 6 languages such that
the subcorpora would remain parallel, thereby keeping the material of each language semantically
equivalent to one another. 8,944,859 lines for each language were retained as our training data which
cover up to the 75 percentile in line length for all 6 languages. In order to monitor the effect of data
size, we made subcorpora of each language in 5 sizes by heading the first 102, 103, 10%, 105, 10°
linesﬂ We refer to this as dataset A. In addition, to better understand and verify the consistency of the
phenomena observed, we made 2 supplemental datasets by shuffling the 8,944,859 lines two different
times randomly and heading the number of lines in our 5 sizes for each language, again in lockstep
with one another (datasets B and C).

SGPUs used for experiments in this paper range from a NVIDIA TITAN RTX (24 GB), NVIDIA GeForce
RTX 2080 Ti (11 GB), a GTX Titan X (12 GB), to a GTX 1080 (8 GB). All jobs were run on a single GPU
setting. Some word-level experiments involving AR, or RUy,., at 10° had to be run on a CPU as 24 GB
VRAM were not sufficient. Models with higher maximum sequence lengths (e.g. byte models) were trained with
24 GB VRAM. Difference in equipment does not necessarily lead to degradation/improvement in scores.

The terms “line” and “sentence” have been used interchangeably in the NLP literature. We use “line” to
denote a sequence that ends with a newline character and “sentence” as one with an ending punctuation. Most
parallel corpora, such as ours, are aligned by line, as a line may be part of a sentence or without an ending
punctuation (e.g. a header/title). Using a standardized unit such as “line” would also be a fairer measure to
linguae/scriptiones continuae (languages/scripts with no explicit punctuation).

17



Under review as a conference paper at ICLR 2021

For character modeling, we used a dummy symbol to denote each whitespace. For byte, we turned
each UTF-8-encoded character into a byte string in decimal value, such that each token is a number
between 0 and 255, inclusive. For word, we followed (Junczys-Dowmunt et al., 2016) and used
the Moses tokenizer (Koehn et al.||2007) as is standard in NMT practice when word tokenization is
applied and J iebzﬂ for segmentation in ZH.

For Pinyin, we used the implementation from https://github.com/lxyu/pinyin in the
numerical format such that each character/syllable is followed by a single digit indicating its lexical
tone in Mandarin. For Wubi, we used the dictionary from the implementation from https://
github.com/arcsecw/wubil

We have implemented all representations such that they would be reversible even when the sequence
contains code-mixing.

We used the official dev set as provided in (Ziemski et al.l 2016)), 3,077 lines per language remained
from 4,000 after filtering line length to 300 characters. Data statistics is provided in Appendix [D]for
reference.

The systematic training regime that we give to our language directions are identical for all. For each
primary representation type (character, byte, and word), we performed:

 5Stunsin 5 sizes (102 — 105): AO (seed=13), BO (13), CO (9948), A1 (9948), A2 (265), and
« 7 more runs in 4 sizes (102 — 10%): A3 (777), A4 (42), A5 (340589), A6 (1000), A7 (83146),
B1 (9948), & C1 (13).

For each run and each size, there are 30 pairwise directions (i.e. 1 source language to 1 target language,
e.g. AR-EN for Arabic to English) that result from the 6 languages. We trained all 150 jobs for
each run and representation using the Transformer model (Vaswani et al., 2017) as supported by the
SOCKEYE Toolkit (Hieber et al.,[2018) (version 1.18.85), based on MXNet (Chen et al., 2015). A
detailed description of the architecture of the Transformer can be found in (Vaswani et al.|[2017)). The
same set of hyperparameters applies to all and its values are listed in Appendix [C]

Notes on training time Each run of 30 directions in 5 sizes took approximately 8-12 days for
character and byte models. Byte models generally took longer — hence training time is positively
correlated with length (concurring with observations by |(Cherry et al.| (2018)) as they compared
character with BPE models). A maximum length of 300 characters entails a maximum length of
at least 300 bytes in UTF-8. Each run of word models (30 directions, 5 sizes) took about 6 days
(excluding the training of some 7-9 directions out of 30 per run involving AR;,4 or RUy,.4 at 10% on
word level which took about 12-18 hours each direction to train on a CPU as these required more
space and would run out of memory (OOM) on our GPUs otherwise). These figures do not include
the additional probing experiments described in § ]

Evaluation metric Most sequence-to-sequence models are optimized using a cross-entropy loss,
defined as:

N
H(t,s)=— logyp(t: | t<i,s) (1)
i=1

where t is the sequence of tokens to be predicted, t; refers to the i*” token in that sequence, s is
the sequence of tokens conditioned on, and N = |¢|. It is customary to report scores as PP, which

is 2vH(t5) je 2 to the power of the cross-entropy averaged by the number of tokens (based on
whichever granularity of unit is used for training) in the data. (Cotterell et al.| (2018]) propose to use
“renormalized” PP to evaluate LMs fairly through the division of an arbitrary constant. In our case, we
choose instead a simpler method of using an “unnormalized” PP, i.e. the total number of bits needed
to encode the development (dev) set, which has a constant size of 3,077 lines per language (after
length filtering of the same dev set used in Junczys-Dowmunt et al.|(2016))) for all various training
sizes. As the implementation we used (SOCKEYE (Hieber et al.,[2018))) only reports PP, we transform
it back to entropy as defined above by noting that H (¢, s) = log, PP(t|s) x N.

"nttps://github.com/fxsjy/jieba
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HYPERPARAMETER SETTING

encoder transformer;

decoder transformer;

num-layers 6:6;

num-embed 512:512;

transformer-model-size 512;
transformer-attention-heads 8;
transformer-feed-forward-num-hidden 2048;
transformer-activation-type relu;
transformer-positional-embedding-type fixed;
transformer-preprocess d; transformer-postprocess drn;
transformer-dropout-attention 0.1;
transformer-dropout-act 0.1;
transformer-dropout-prepost 0.1;

batch-size 15;

batch-type sentence;
max-num-checkpoint-not-improved 3;
max-num-epochs 50;

optimizer adam;

optimized-metric perplexity;
optimizer-params epsilon: 0.000000001, betal: 0.9, beta2: 0.98;
label-smoothing 0.0;
learning-rate-reduce-num-not-improved 4;
learning-rate-reduce-factor 0.001;
loss-normalization-type valid;

max-seq-len 300 for character, word, and BPE, 672 for all bytes, 688 for Wubi, 680 for Pinyin;

checkpoint-frequency/interval 4000.

(For smaller datasets, the end of 50 epochs is often reached before the first checkpoint. Since SOCKEYE
only outputs scores at checkpoints, we adjusted the checkpoint frequency as follows to get a score outputted
by the end of 50 epochs: 1000 for 100 lines for all character & byte instances, 400 for 100 lines for word
and 500 for 100 lines BPE, 3450 for 1000 lines for word & BPE. For the very few cases that this default
does not suffice due to bucketing of similar length sequences, we manually set the checkpoint frequency to

the last batch.)
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F CORRELATION STATISTICS

Best correlating metrics, i.e. the union of top 3 metrics for all representations.

For each representation, the top 3 metrics are boldfaced.

All correlations are highly significant (p < 1073°), except for min source length for worp (p ~ 0.0001) and
min target length for worp (p = 0.3861).

Metric CHAR Pinyin Wubi BYTE ARRU; ARRU;; WORD  BPE

minimum length (target) 084 085 0.86 0.60 0.84 084 —0.02 0.65
minimum length (source) 0.82 0.84 0.85 0.57 0.84 0.84 0.10 0.64
number of tokens (source) -0.78 -0.81 -0.82 —-0.60 -0.81 —0.81 —-0.59 -0.83
TTR (target) 0.83 083 0.84 0.48 0.81 0.81 0.61 0.83
|V| (source) —-0.54 —-0.51 —-0.51 —0.50 —0.67 —-0.68 —-0.63 —-0.86
data size in lines —-0.80 —-0.83 —-0.83 —-0.59 —0.81 —0.81 —-0.62 —0.86
OOV token rate (target) 0.69 0.66 0.66 0.47 0.67 0.68 0.66 0.62
OOV type rate (target) 0.70 0.71 0.72 0.47 0.69 0.70 0.65 0.62
TTR (source) 0.67 0.71 0.71 0.60 0.81 0.81 0.56 0.82

The full list of metrics used for the correlation analysis is:

. minimum length (source),

. minimum length (target),

. maximum length (source),

. maximum length (target),

. median length (source),

. median length (target),

. mean length (source),

. mean length (target),

. length std (source),

10. length std (target),

11. data size in lines,

12. number of parameters,

13. number of types (|V]) (source),

14. number of types (|V|) (target),

15. number of tokens (source),

16. number of tokens (target),

17. type-token-ratio (TTR) (source),

18. type-token-ratio (TTR) (target),

19. OOV type rate (source),

20. OOV type rate (target),

21. OOV token rate (source),

22. OOV token rate (target),

23. token ratio,

24. target type-to-parameter ratio,

25. target token-to-parameter ratio,

26. distance between the TTRs of source and target = (1 - TTR,-¢/TTR¢rg)?,
27. token-to-parameter ratio (i) = (median length source * median length target * num_lines) / num_parameters,
28. token-to-parameter ratio (ii) = (num_source_tokens * num_target_tokens) / num_parameters.

O 001\ WL Wi —
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G ENLARGED FIGURES FOR ALL 30 LANGUAGE DIRECTIONS (AGGREGATE RESULTS
FROM ALL RUNS)
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Figure 5: CHAR: character models
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Figure 5: CHAR: character models (target language as facet)
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Figure 6: CHAR with Pinyin for ZH;,.,
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Figure 6: CHAR with Pinyin for ZHy,., (target language as facet)
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Figure 8: BYTE models with UTF-8 encoding
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Figure 8: BYTE models with UTF-8 encoding (target language as facet)
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Figure 9: BYTE with AR;,, & RUy,., optimized with code pages 1256 & 1251 (ARRUj,.;)
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Figure 9: BYTE with ARy, & RUy,., optimized with code pages 1256 & 1251 (target language as
facet)
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Figure 10: BYTE with directions AR-RU & RU-AR optimized on both source and target sides
(ARRUsrc,trg)
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Figure 10: BYTE with directions AR-RU & RU-AR optimized on both source and target sides (target
language as facet)
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H SAMPLE FIGURES FROM RUN AQ, ALSO SORTED BY SOURCE LANGUAGE
FOR CONTRAST

(a) CHAR (b) CHAR by target (c) CHAR by source

Figure 13: CHAR: character models from run AO

\u e
(a) BYTE (b) BYTE by target (c) BYTE by source

Figure 14: BYTE: byte models from run AQ

(a) WORD (b) WORD by target (c) WORD by source

Figure 15: WORD: word models from run A0
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I LANGUAGE PAIRS WITH SIGNIFICANT DIFFERENCES

15 (non-directional) language pairs total possible from 30 language directions, p=0.001.

LANG PAIR CHAR Pinyin Wubi BYTE ARRU; ARRU,; WORD BPE

AR-EN X X X
AR-ES

EN-ES X

AR-FR X

EN-FR X X
ES-FR

AR-RU X

EN-RU X X X X
ES-RU X

FR-RU X

AR-ZH X X X X X
EN-ZH X X

ES-ZH X X X
FR-ZH X X X X
RU-ZH X X X X X

Language pairs with significant differences indicate that the 2 languages are not equally/similarly good or
equally/similarly bad.

o Character models with ZH behave differently but the disparity can be eliminated with Pinyin.

e Byte models with AR and RU exhibit unstable performance due to length but this can be rectified with
compression on the target side only (ARRUy).

e Word-based models, including BPE, however, consistently favor EN and ZH (though it is more of a
“mis-segmentation” for the latter, see § [B|and Appendix[J) and disfavor AR and RU (as morphologically
complex languages with higher OOV rates).
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J  LANGUAGE COMPLEXITY

In the words of Bentz et al.| (2016):

Languages are often compared with regard to their complexity from a compu-
tational, theoretical and learning perspective. In computational linguistics, it is
generally known that methods mainly developed for the English language do not
necessarily transfer well to other languages. The cross-linguistic variation in the
amount of information encoded at the level of a word is, for instance, recognized
as one of the main challenges for multilingual syntactic parsing (formulated as
The Architectural Challenge (Tsarfaty et al., 2013)). Complexity of this kind is
also found to influence machine translation: translating from morphologically rich
languages into English is easier than the other way around (Koehnl 2005).

Fokkrk

Morphology is “the study of the formation and internal structure of words”.
Morphemes are “the smallest meaningful units of language”. (Bender, [2013)

hskskoskosk

AR and RU are traditionally considered morphologically complex (see e.g. Minkov et al.| (2007),
Seddah et al.|(2010) and proceedings of related workshops in subsequent years), and ZH lacking
morphological richness (Koehnl 2005). But this definition of morphology is predicated on the notion
of word, defined primarily from an alphabetic perspective. As pointed out by [Zhang & Komachi
(2018)), “the important differences between logographic and alphabetic writing systems have long
been overlooked”. In logographic languages (i.e. languages with logographic scripts), there can be
units within a character that carry semantic and phonetic information that have never been accounted
for in the traditional practice of morphology or in the computation of morphological complexity.
For example, in the comparison of different morphological complexity measures by [Bentz et al.
(2016), all measures studied are defined with the notion of word | Yet, there is no universally valid
definition of a “word” — the form/idea (as in, the philosophical concept) of a “word” may be there
for most languages/cultures (though that is certainly also debatable), but its instantiations are different
in different languages/cultures, as well as in different genres/settings within one language. The
variability in the definition of word is evident in the variation in language-specific word tokenization
algorithms, along with the “indeterminacy of word segmentation” or a work-in-progress status for the
definition of “word” advocated by Haspelmath| (2011}, as well as the contested nature of wordhood,
esp. for logographic languages such as ZH (see Duanmu|(2017)) and [Li et al.[|(2019b) for how some
ZH speakers do indeed consider a ZH character to be a word or how “word”, as conventionally used
in NLP, is not a native term or does not correspond with speakers’ judgement).

Our results with the Transformer indicate that a notion of morphological complexity can be modeled
given our word tokenization scheme, confirming that morphological complexity is only predicated on
the notion of word and bounded within the word level, and orthogonal to the performance of character
or byte models. That is, unless word-based segmentation has been applied, there is no reason to
attribute crosslinguistic performance disparity to differences in morphological complexity. In fact, on
the character and byte level, we were able to achieve performance without disparity. Hence disparity
is not a necessary condition but an expectation that has been in mutual reinforcement with
our practice of word segmentation, while the definitions of ‘“morphological complexity” and
“word” are in a circular dependency with each other.

In this paper, we resolve language complexity, more specifically that of morphological complexity,
in the context of computing through CLMing with the Transformer, in that we explain away the
representation granularities and criteria relevant for such calculation.

TLDR: Up to the point of our taking up the subject of language complexity in this paper, there has
been not a rigorous definition of “language complexity”. Conventionally, “language complexity”
is synonymous to “linguistic complexity” (with the tradition of “linguistics” being primarily word-

8 An exception could be that of the type/token ratio (TTR). One could imagine applying TTR on the character
level for ZH, and that would be indicative of its morphological richness on the character level. However, that has
thus far never been practiced or recognized in NLP.
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based), and people just assume linguistic complexity, e.g. morphological/syntactic complexity, to be
intrinsic and necessary in languages (across representation levels). Our findings show that linguistic
complexity is relative to the representation granularity, i.e. since morphology is based on words, it is
bounded to the word level.

sksksksksk

An alternative perspective, with finer prints:

We have also developed a more rigorous interpretation. We take on the definition of “language
complexity” as one that is related to the statistical attributes of languages. We assume and define
solving as the elimination of statistically significant performance disparity.

In larger (6-layer) models, and according to the conventional definition of “language” — i.e. language
as a whole, we solved language complexity with compression of AR and RU in byte representations.
In smaller (1-layer) models, one can think of the situation as: i) no complexity has been modeled by
the Transformer hence there is nothing to solve, or ii) there is no complexity between these languages
to begin with, or iii) the Transformer solved the complexity.

With respect to each representation level/granularity in the larger models:

e BYTE: one can think of us as having solved complexity with byte representations or with
1-layer models — for these 6 languages empirically. Theoretically, there could be languages
with longer sequence lengths than RU and AR, in those cases, we don’t claim to have solved
the matter empirically but only resolved it conceptually. But this is the most that anyone
could do at the moment, as there is no relevant parallel data available.

o CHARACTER: one can think of us as having solved it via bytes or 1-layer models. Whether
we can be considered to have solved it via Pinyin for ZH depends on whether the evaluator
accepts decomposition into a phonetic representation only qualifies as a solution for the ZH
language.

e WORD: one can think of us as having solved it via bytes or 1-layer models. It is not possible
to solve it strictly within the word level without creating word segmentation criteria that
would be unrelatable to native speakers. And since “word” is exclusively a human concept,
we must either claim that a universal solution is undefined or undefinable for computing,
or retreat to a unit that is the greatest common factor crosslinguistically. Since some ZH
speakers consider ZH characters as words, we return to the character-level solution.

It is beyond the scope of our paper to solve the qualitative disparity on the word level. However, we
do advocate a more inclusive evaluation and critical reflection on the possibility of discontinuing the
usage of “word” as such a non-technical term biases against both “morphologically complex” and
“morphologically simple” languages. The world of languages in written form can be divided into
those with logographic scripts and those with (phonetic) alphabetic ones, with the unit of character
being the greatest common factor of them all, from the human perspective. For technical processing,
esp. for fair multilingual sequence-to-sequence modeling with the Transformer, we recommend
measures that are more standardized, such as those based on bytes or characters. There is room
for improvement in the design of character encoding that complements the statistical profiles, e.g.
with relative rank in sequence length, of different languages. We believe there is crosslinguistic
systematicity on the character level to be leveraged.

One’s readiness to accept this as a solution to language complexity can be a subjective matter.
One may insist that language complexity be solved exclusively with monolingual LMing (which
lies outside the scope of the present work), instead of being confounded with the logic of one
language being conditional on another. One may also object to the idea of (re-)solving morphological
complexity being equivalent to or leading to solving language complexity as a whole, for there
could also be e.g. syntactic complexity (although as substantial “information concerning syntactic
units and relations is expressed at word level” in morphologically rich languages (Tsarfaty et al.,
2010), the boundary between morphology and syntax is less distinct for some languages than others
(Haspelmath, 2011)). If, however, our results could be extended, we wonder if syntactic complexity
could be due to our sentence segmentation or a combination of word and sentence segmentation
practice. That we leave for future work for those who are interested in the topic.
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K SAMPLE-WISE DOUBLE DESCENT (DD)

K.1 OUR EXPERIMENTAL FRAMEWORK ON DD DATASETS FROM (NAKKIRAN ET AL.,[2020)

Text experiments from previous work reporting sample-wise DD involved words (Belkin et al.;[2019)
and BPEs (Nakkiran et al., [2020).

We applied our experimental framework — by testing data points with 10™ lines — on the datasets
reported in (Nakkiran et al.||2020) to exhibit DD. WMT’ léﬂ EN-FR was reported to demonstrate
model-wise DD and IWSLT’ 14 (Cettolo et al.,2012) DE-EN model-wise and sample-wise DD. We
downloaded and prepared the data with script from the FAIRSEQ Toolkit (Ott et al.,[2019). The
WMT data was preprocessed with 40,000 BPE operations and IWSLT 10,000. Our focus is on
sample-wise DD and hence our goal was to see if the spike at 10? we observed with the UN data
would apply also to these datasets. We used the same training regimeEr] with the Transformer and
Adam on SOCKEYE as before and tested both language directions on the entirety of both datasets,
with no subsampling. For the IWSLT dataset, we tested data sizes with 102 — 10° lines, then at
160, 239 as that is the total number of lines available. For the WMT dataset, we tested from 102 to
107, then at 35, 762, 532.

(a) WMT’ 14 (b) WMT’ 14 by target (c) IWSLT’ 14 (d) IWSLT" 14 by target

Figure 16: WMT’14 EN-FR and FR-EN and IWSLT’14 DE-EN and EN-DE: sample-wise DD shown at 10°

Table 2: Target-Train-Token-to-Parameter ratio (TTT2P ratio) for WMT’ 14 EN-FR and FR-EN

Number of lines

100 1,000 10,000 100,000 1,000,000 10,000,000 35,762,532
EN: num train tokens 3,248 33,768 313,154 3,123,129 30,852,455 308,640,462 1,174,344,513
FR: num train tokens 3,548 36,507 339,803 3,414,959 33,865,679 343,344,536 1,327,817,765
EN-FR num params 45,609,474 51,039,363 62,871,584 75,630,304 85,210,037 108,226,335 111,417,633
TTT2P ratio 0.000078 0.000715 0.005405 0.045153 0.397438 3.172468 11.917483
FR-EN num params 45,540,219 50,692,575 61,916,891 74,547,874 83,936,258 107,378,859 111,399,165
TTT2P ratio 0.000071 0.000666 0.005058 0.041894 0.367570 2.874313 10.541771

This shows that the effect we reported in § [5] also holds on these datasets: “the ratio of target
training token count to number of parameters falls into O(10~*) for 102 lines, O(10~?) at 103,
0(1072) at 10*, and O(10~1) for 10° lines and so on”.

http://www.statmt.org/wmt1l4/translation-task.html

Yhttps://github.com/pytorch/fairseq/blob/master/examples/translation/
prepare-wmtl4den2fr.sh and |https://github.com/pytorch/fairseqg/blob/master/
examples/translation/prepare—-iwsltl4.sh

""max-seq-len 300; checkpoint-frequency 4000 except for cases where 50 epochs would be reached before
the first checkpoint: 400 for 10? lines and 3450 for 10? lines.
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Table 3: Target-Train-Token-to-Parameter ratio (TTT2P ratio) for IWSLT’ 14 DE-EN and EN-DE

Number of lines

100 1,000 10,000 100,000 160,239
DE: num train tokens 2,874 27,675 253,757 2,519,534 4,035,591
EN: num train tokens 2,739 26,416 245,659 2,461,879 3,949,114
DE-EN num params 45,297,348 49,410,683 53,639,825 55,189,376 55,428,584
TTT2P ratio 0.000060 0.000535 0.004580 0.044608 0.071247
EN-DE num params 45,405,078 49,809,797 54,300,056 56,245,643 56,564,366
TTT2P ratio 0.000063 0.000556 0.004673 0.044795 0.071345

K.2 TOKEN-TO-PARAMETER RATIO FOR NON-NEURAL MONOLINGUAL LMSs

We experimented also on KenLM (Heafield, |2011}; Heafield et al.,|2013), a non-neural LM with
modified Kneser-Ney smoothing (Kneser & Ney, |1995} |Chen & Goodman|[1999), on our dataset
A and found that on the word level, such a spike (or a hump) is common across all languages, see
Figure[T7] The target-token-to-parameter ratio is under 1 for most of these smaller data sizes. This
seems related to the analytical findings in|Opper et al.| (1990) where the pseudo-inverse solution to a
simple learning problem was shown to exhibit non-monotonicity, with the peak exactly as the ratio of
data to parameters («) approaches 1.
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1000000 -

750000~

500000~
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== CHAR
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Figure 17: Kneser-Ney (monolingual) n-gram LMs on the same data (A) used for our neural CLMs

The number of parameters of a k-gram model is the number of unique n-grams, 1 < n < k. Table@
shows the ratios for our trigram model (all n-gram models of higher order exhibit the same effect).
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On word level, where the function of number of bits to data size is not always monotonic, we observe
less of a monotonic development whenever the token-to-parameter ratio is smaller than 1. This
is more notably shown in the first 4 sizes in AR with a hump-like curve before the performance
improves at 10°. This is different from the sharper descent for ES and FR, where only the first two
data sizes have a non-monotonic relationship and a token-to-parameter ratio less than 1. Taking the
token-to-parameter ratio as a rough proxy for over- (< 1) and under-parameterization (> 1), this
can be seen as an instance of non-monotonicity with respect to data size in the “critical regime”, i.e.
when the model transitions from being (heavily) over- to under-parameterized (Belkin et al.| 2019;
Nakkiran, [2019).

A remark on modeling with finer granularity Our KenLLM results show the performance of bytes
and characters is not on par with that of words with non-neural algorithms. NNs/DL has enabled
much progress in this regard.
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CHAR

BYTE

WORD

Table 4: Token-to-parameter ratios on non-neural monolingual trigram LMs

lang_numlines

AR_100
AR_1000
AR_10000
AR_100000
AR_1000000
EN_100
EN_1000
EN_10000
EN_100000
EN_1000000
ES_100
ES_1000
ES_10000
ES_100000
ES_1000000
FR_100
FR_1000
FR_10000
FR_100000
FR_1000000
RU_100
RU_1000
RU_10000
RU_100000
RU_1000000
ZH_100
ZH_1000
ZH_10000
ZH_100000
ZH_1000000
AR_100
AR_1000
AR_10000
AR_100000
AR_1000000
EN_100
EN_1000
EN_10000
EN_100000
EN_1000000
ES_100
ES_1000
ES_10000
ES_100000
ES_1000000
FR_100
FR_1000
FR_10000
FR_100000
FR_1000000
RU_100
RU_1000
RU_10000
RU_100000
RU_1000000
ZH_100
ZH_1000
ZH_10000
ZH_100000
ZH_1000000
AR_100
AR_1000
AR_10000
AR_100000
AR_1000000
EN_100
EN_1000
EN_10000
EN_100000
EN_1000000
ES_100
ES_1000
ES_10000
ES_100000
ES_1000000
FR_100
FR_1000
FR_10000
FR_100000
FR_1000000
RU_100
RU_1000
RU_10000
RU_100000
RU_1000000
ZH_100
ZH_1000
ZH_10000
ZH_100000
ZH_1000000

num_tokens

9079
123832
1083517
10625047
102064230
11730
159444
1344001
13132862
123491871
12374
171104
1484804
14549703
138596036
12456
179048
1490983
14528593
138049189
11980
168156
1436078
14151728
134706120
3318
42572
372003
3659617
34672612
16655
227163
1985014
19487689
186171180
11731
159449
1345771
13158948
123705128
12629
175286
1513782
14821495
141276766
12875
185227
1542105
15055657
143495667
21751
309279
2636591
25990263
247098758
8559
116667
1019969
9990046
94268840
1776
23460
206549
2035190
19410502
2071
27398
236569
2339109
21943139
2232
29461
263024
2588791
24654449
2298
32011
273195
2684982
25595487
1854
24746
216638
2150746
20421965
1751
23568
207714
2038639
19361101

| unigrams |
85
110
152
179
242
78

84
125
170
247
87

93
117
176
257
89

97
133
178
259
98
111
163
190
263
605
1239
2270
3403
4888
76

98
133
148
165
79

85
130
154
169
88

94
121
154
169
90

99
133
156
175
100
113
151
160
169
140
146
156
167
196
869
5868
26108
97997
304978
682
3292
12014
37264
122457
710
3839
15116
49499
142809
745
3881
13998
42870
118204
886
5433
23403
81342
236088
630
3181
13137
46941
134492

49

| bigrams |
925
1577
3216
5114
8517
806
1215
2532
4231
7126
781
1210
2534
4261
7217
836
1259
2607
4390
7353
952
1415
3506
5737
10186
2036
13266
68178
241215
611213
320
539
1616
2844
5219
807
1219
2527
3971
6422
766
1146
2409
3925
6338
830
1227
2492
4014
6423
475
694
1898
3364
6224
1524
2706
5596
9228
13407
1534
16064
116814
776730
4297319
1567
13148
83397
428249
1818166
1605
13199
83900
439584
1840029
1737
14535
86815
428339
1703399
1589
15511
108516
670857
3295028
1434
13998
96829
554739
2527710

| trigrams |
2894
8592
21479
44251
90353
2532
5808
17181
36104
70406
2398
5045
15462
33554
67280
2610
5711
16282
35051
69522
3051
7106
20478
44071
94975
2634
24811
175730
968852
3977112
1163
2070
5974
14274
40507
2533
5812
17139
34985
66606
2414
4901
14894
31905
62199
2560
5497
15615
33105
64044
1365
2732
8430
18321
45935
3532
12857
36176
81997
160359
1669
20063
164062
1383009
10005650
1869
19834
155493
1117802
6505850
1974
20634
160078
1116177
6268684
2072
22608
170729
1150965
6171437
1734
20035
162401
1306351
8617195
1614
19341
160642
1278188
8401311

num_params
3904
10279
24847
49544
99112
3416
7107
19838
40505
77779
3266
6348
18113
37991
74754
3535
7067
19022
39619
77134
4101
8632
24147
49998
105424
5275
39316
246178
1213470
4593213
1559
2707
7723
17266
45891
3419
7116
19796
39110
73197
3268
6141
17424
35984
68706
3480
6823
18240
37275
70642
1940
3539
10479
21845
52328
5196
15709
41928
91392
173962
4072
41995
306984
2257736
14607947
4118
36274
250904
1583315
8446473
4289
37672
259094
1605260
8251522
4554
41024
271542
1622174
7993040
4209
40979
294320
2058550
12148311
3678
36520
270608
1879868
11063513

tokens/params
2.325563525
12.04708629
43.60755826
214.4567859
1029.786807
3.433840749
22.43478261
67.7488154
324.2281694
1587.727677
3.788732394
26.95400126
81.97449346
382.9776263
1854.02836
3.523620934
25.33578605
78.38203133
366.707716
1789.732012
2.921238722
19.48053753
59.4723154
283.0458818
1277.755729
0.6290047393
1.082816156
1.511113909
3.015828162
7.548661906
10.68313021
83.91688216
257.0262851
1128.674215
4056.812447
3.431120211
2240711074
67.98196605
336.4599335
1690.030029
3.864443084
28.54355968
86.87913223
411.8912572
2056.250779
3.699712644
27.14744247
84.54523026
403.9076325
2031.308103
11.21185567
87.39163606
251.607119
1189.757977
4722.113553
1.647228637
7.426761729
24.32667907
109.3098521
541.893287
0.4361493124
0.5586379331
0.6728331118
0.9014295737
1.328763173
0.5029140359
0.7553068313
0.9428665944
1.477349106
2.59790554
0.5204010259
0.7820397112
1.01516824
1.612692648
2.987866844
0.5046113307
0.780299337
1.006087456
1.655175092
3.202221808
0.4404846757
0.603870275
0.7360627888
1.044786865
1.681053852
0.4760739532
0.6453450164
0.7675826287
1.08445859
1.749995774
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M ERRATICITY

Length has been an issue since the dawn of the encoder-decoder approach for NMT (Cho et al.| 2014).
Most work on length bias, except for that by e.g./Sountsov & Sarawagi|(2016)), seems to have focused
on the evaluation of generated translation output and monitored performance degradation with respect
to sequence length, often arguing that beam size plays a role (Koehn & Knowles, [2017}; Murray &
Chiang| |2018). (Related work in Stahlberg & Byrne|(2019) provides a good summary on this issue.)
While there could also be confounds in search, our experiments show that a kind of length bias can
surface already with CLMing, without generation taking place. To our knowledge, length bias has
not been expressed as a sample-wise non-monotonicity across a large data size range as ours. While
the connection between erraticity in CLMs and length bias in NMT models remains to be verified on
a case-by-case basis, the knowledge of length also contributing to robustness (not just consistently
poor/poorer performance) could support further experimentation/replication of any study. Failed
attempts to reproduce results may be explainable by erraticity.

One may argue that erraticity may not be relevant when each model is more optimally trained (as
opposed to being treated with our one-setting-for-all regime). But we do want to stress that this very
stark contrast between erratic and non-erratic behavior is possible, prompting a question on fairness:
is there a one-for-all setting under which the languages with non-erratic behavior shown in our study
would demonstrate erraticity and vice versa?

To the best of our knowledge, the meta phenomenon of erraticity, as a sample-wise non-monotonicity
measured intrinsically with cross-entropy and contributing to large variance across runs, is a novel and
original discovery and contribution to research in robustness. We hope our work would inspire further
evaluation on other models/architectures, reflection and theories on our assumption of unbounded
computation (e.g. Xu et al|(2020)), as well as new understanding and solutions that take data statistics
and realistic computational aspects into account. We defer a more comprehensive analysis of erraticity
with further experiments to future work.

M.1 ERRATICITY AS LARGE VARIANCE: EVIDENCE FROM DIFFERENT RUNS OF THE SAME
DATA

To confirm that erraticity is not due to data-specific reasons, e.g. when certain data segments might be
“easier” to model than others, we show figures from 2 runs (Figs. [I8aJand [I8Db) on the same dataset
of wildly differing performance that only differ in seed. Note that changes in the y-direction can vary
much, indicating large variance across runs.

By establishing that high variance holds across sample sizes, we showcased how it’d be possible to
just test on 2 or 3 data points of smaller sizes to get a gauge on the robustness in higher order. It
serves as a signal of when the system is being “stress-tested”” and hyperparameters need re-tuning.
Spot-testing on a couple of smaller data sizes can indeed save much time and energy. Take our run BO
byte models as an example: the training of the 102-line model for EN-RU took 15 minutes, 103 40
minutes, 10* 1 hour 50 minutes, and 10° 3 hours 36 minutes. One can imagine how these would just
be a fraction of training time for bigger models. (Likewise, for our ratio of target training token count
to number of parameters — knowing when a representation might be prone to DD within a data size
range could help prevent practitioners from prematurely declaring experimental results as negative or
from unnecessarily rerunning an experiment because bigger data did not lead to better results.)

M.2 ADDITIONAL EXPERIMENT WITH LENGTH FILTERING TO 300 BYTES

Figure [19a] and [T9b] show results of additional experiment with subset of data in byte (UTF-8)
representation length-filtered to 300, including dev data:

Erraticity remains for AR and RU. Scores are lower, though they cannot be compared with the
experiments in the main paper due to difference in dev data size (3,077 lines vs. 1,804 lines here).
Number of total lines for train is 5,533,672 lines for each language, from which we took the initial
102-10°. As in our main experiments, we filtered out only whole lines, i.e. not by discarding the
tails of longer lines. 300 bytes aren’t long sequences, but without data transform or hyperparameter
tuning, things can look unfair. The EN translation of the longest RU line in this dataset is: “47. It is
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Figure 18: Same data with differing seeds

noted that there is a lack of information provided by the Government of Trinidad and Tobago with
regard to the legal status of the Convention in the domestic legislation.”
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Figure 19: Additional experiment with maximum length of 300 bytes (with no hyperparamter tuning,
in our blind one-setting-for-all evaluation). Considering there are languages with much higher

character sequence length than RU, there is food for thought for the design of next-generation
Multilingual Plane.
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N EXPERIMENTS WITH ONE-LAYER TRANSFORMER

We performed 1 run with dataset A in 4 sizes (102-10° lines, seed=13) with the primary representations
of characters, bytes, and words, on 1-layer Transformers (num-layers 1:1, all other hyperparameters
remain the same as for our main experiments). We compared this against run A0 in 4 sizes with the
same seed. (Based on how our null hypothesis is set up, the higher the number of runs, the more
likely it is for there to be disparity. Important is that we evaluate based on an equal number of runs
and on the same data for all candidates.) Results are shown in Table [5] with no statistically significant
disparity observed on the models trained with 1 layer across the board.

Many are under the impression that big data is the cause to the neutralization of language instances in
DL/NNs. But, as this set of experiments shows, it is possible for there to be no statistically significant
differences between them, with as little as our smallest data size of 100 lines.

Table 5: Number of language pairs out of 15 with significant differences, with respective p-values. BYTEgiqyers
is the representation with erratic ARty and RU¢4.

CHAR6layers BYTEGlayers WORDGlaycrs CHARlluyeT BYTEllayer WORDllayc7'

p-value src trg src trg src trg src  trg src  trg src  trg
0.05 0 0 0 6 0 5 0 0 0 0 0 0
0.01 0 0 0 6 0 1 0 0 0 0 0 0
0.001 0 0 0 5 0 0 0 0 0 0 0 0

A\
(a) CHARIlayer (b) BYTEllaye'r (C) WORDllaye'r
\ \
\ \\\ N \\\ /\ \
L \
\ N\ \ N\ \ N ~\ /\ /\
(d) CHAR{jqyer by target (e) BYTE1;4yer by target (f) WORD14yer by target

Figure 20: One-layer Transformer models
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O PAQs (PREVIOUSLY ASKED QUESTIONS)

0.1 ONE SETTING FOR ALL

Q: Normally, one trains a model with the objective of optimizing based on the training and evaluation
data with hyperparameter tuning. The experiments here used one setting for all. Some model
configurations might train better and converge close to their optima while other configurations might
not reach their full potential. Can this not create a distortion in the results?

A: For conventional engineering practice, we agree that hyperparameter tuning would be a sine qua
non. However, the evaluation objective is the relational distance between languages, hence we need
to see it in a different light. Here is a loose analogy:

Fkk

Assume 3 objects in 3 different locations in space.

Relative evaluation from one setting allows one to capture the distance between these objects. It does
not matter whether these three objects are in their “best” states.

For example, if one were to use a camera to capture these 3 objects and one does not adjust the setting
(using just one random aperture, shutter speed, and focus), i.e. no tuning to capture any of these 3
specifically, nor does one try to model these 3 to their individual bests separately, what would result
could be a picture that captures one of these 3 objects more favorably than the others, or it could
be that all of these would be blurred. But either way, there is a degree of blurriness to be measured,
giving us an idea of the relative distance between the objects. Such relative measurement is the
evaluation strategy that our paper adopts.

Now, to add to the camera analogy, say one of the objects is running water, which was extra blurry
[erraticity]: we suggest freezing the water, so even from the one arbitrary angle, it could be captured
better. And it worked.

Also, while one might generally like to have a “pretty” photo, one that is e.g. taken with sub-optimal
lighting, say, overexposure, can have a telling effect as it can bring out details in something dark, like
a black box.

skkosk

Alternatively, one can tune hyperparameters for each model individually such that each model would
be a more optimized one and then compare these models. In that case, one would be interpreting
the differences between language in terms of hyperparameters, and the paper would be one that
is algorithm-centric. That is of course also a possibility. Our approach, however, is a data-centric
one. We would, first of all, like to understand the nature of language data, i.e. what it is about
language, if there is anything at all, that makes it a different data type than other data, and what kind
of structural constraints, if any, that we need to take into consideration. Then with findings from this
data perspective, we try to relate back to the algorithm and make connections so to create a more
holistic picture.

0.2 TRANSLATIONESE / WORD ORDER

Q: Multitexts are parallel texts or translations with the same meaning. There is little to no variation
in word order, hence they are just “Translationese” (Gellerstam, |1986). That is why they turn out to
be the same, with no performance disparity.

A: Our findings do show that when the semantics is properly controlled, such as in multitexts, the
factors influencing performance are statistical properties related to sequence length and vocabulary,
e.g. |V or TTR, and the languages tested can be different. Semantic equivalence is also not a reason
why we should expect neutralization of source language instances, as that would mean we should
expect equal results across target languages.

We agree that faithfulness is often a priority in producing good translations. Whether the translations
are produced by humans or machines, only a single best translation can surface as the translation
of choice. There may be many other competing hypotheses, but regardless of whether it is done
through an automatic ranking algorithm by a machine or through a human expert, the purpose of
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translation is the same. However, styles and preferences in translations can vary. While faithfulness
is generally preferred in the translations of legal texts, more freedom with skillful rearrangement
of and play on words (or rather, character or sub-character sequences) or sounds being a criterion
for literary texts could be appreciated by certain readers. We agree that it could be very interesting
and necessary to model these variations, and we understand that languages can surface in many
multimodal forms beyond the confines of texts as well. But with a data-driven perspective, to model
this broader variation in language, we need corresponding datasets — we suggest contrast sets where
the difference in e.g. sequential order is explicit. And for evaluation, we would require an even more
systematic meta evaluation, one that spans different datasets.

But the argument that language or data could be different beyond how it appears in one dataset is
irrelevant in the evaluation of experiments involving said dataset.
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P UNDERSTANDING THE PHENOMENA WITH ALTERNATE REPRESENTATIONS
(EXTENDED VERSION)

[Appendix P|is an extended version of §[}]

To understand why some languages show different results than others, we carried out a secondary
set of control experiments with representations targeting the problematic statistical properties of the
corresponding target languages.

Character level On the character level, it is well known that ZH differs from the other languages
in its high |V/|, in this study it has an averaged mean=std of 2550i144 across all 5 data sizes
from all 3 datasets compared to 170+87 from all other 5 languages combined, may these be in Latin
or Cyrillic alphabet or the Abjad script. But what is often not known is that the character sequence
length of logographic languages such as ZH is typically short (think and compare the sequence
length of the Ancient Egyptian hieroglyphs or the Demotic script with that of the Greek script on
the Rosetta Stone). Here in our case, the averaged mean sequence length in characters for ZH is
35419, compared to 129+71 from the other 5 languages. Heuristics to mitigate high |V| often
involve decomposition, which automatically resolve the problem of short sequence length. We tried 2
methods to lower character |V'| with representations in ASCII characters — Pinyin and Wubi. The
former is a romanization of ZH characters based on their pronunciations and the latter is an input
algorithm that decomposes character-internal information into stroke shape and ordering and matches
these to 5 classes of radicals (Lunde} [2008). We replaced the ZH data with these formats only on
the target side and reran the experiments involving ZH as a target language (ZH,.4) on the character
level.

Results in Figure 2] and Table [I] show that the elimination of disparity on character level is possible if
ZH is represented through Pinyin (transliteration), as in Subfigure|2c| But Wubi exhibits erraticity
(Subfigure 2a). Wubi in our data has a maximum sequence length of 688 characters. As we shall also
show in our byte-level analysis below, there are reasons to attribute length as cause to erraticity.

Decomposition into strokes may seem like a natural remedy analogous to decomposing an EN word
into character sequences, but one needs to be mindful of not exceeding an optimal length given finite
computation. Considering the ZH in the UN data is represented in simplified characters, decomposing
traditional characters would surely complicate the problem. As there are also sub-character semantic
and phonetic units (Zhang & Komachi, [2018)) that can be exploited for information and aligned with
character sequences of other alphabets, qualitative advances in this area can indeed be a new state of
the art.

Byte level On the byte level, we observe irregularity for AR and RU. We find minimum sequence
length of the target language to be one of the highest metrics correlating positively with the total
number of bits (p = O.60)E] Our data is based on 300 characters as maximum length per line.
While we wanted to retain at least 75% of the UN data after length filtering, this length still renders
a maximum sequence length that exceeds 100 words (the default maximum length for the word
alignment model, GIZA++ (Och & Ney| 2003)), in the traditional SMT pipeline). Translated into bytes
with UTF-8 encoding, data with 300 characters maximum gives us, e.g. for the 10°-line datasets, an
averaged mean=std of 185+106 in length for AR and 2464142 for RU, considerably larger than that
for ZH (94+53) and for EN/ES/FR (=145.41£77). With UTF-8 encoding, each character in AR, RU,
and ZH contains 2 or more bytes. ZH typically has shorter line length in characters, compensating
for the total byte sequence in length, even when most ZH characters are 3 bytes each. However,
AR and RU generally have long line length in characters, so when converted to bytes, the sequence
length remains long even when most of the characters might be just 2 bytes each. Results from our
pairwise comparisons indicate 8 (non-directional) language pairs to be significantly different (see
Table[T|under “BYTE”): ES-RU, EN-RU, FR-RU, RU-ZH, AR-RU, AR-EN, AR-ZH, and AR-FR
— all involving AR or RU. (Appendix[[|lists also the language pairs with significant differences for
other representations.)

"2Figures are rounded to whole number. Complete tables of data statistics are provided in Appendix@
3Top-3 correlates for each representation can be found in Appendix
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Leveraging language-specific code pages can be a useful practical trick, a reminder that there are
alternatives to UTF-8 for analyses and back-end processing if data is clean and homogeneous and if
success of larger-scale prediction is not a concern. But one more sustainable alternative is to design a
more adaptive and flexible character encoding scheme in general, taking into account the statistical
profiles such as length (wrt characters and bytes) and sub-character (atomic/elementary/compound)
information of all (or as many as possible) of the world’s languages.

Word level The main difference between word and character/byte models is the absence of length
as a top contributing factor correlating with performance. Instead, what matters more are metrics
concerning word vocabulary, with top correlate being OOV token rate in the target language (p =
0.66). This is understandable as word segmentation neutralizes sequence lengths — the longer
lengths in phonetic alphabetic scripts are shortened through multiple-character groupings, while
the shorter lengths in logographic scripts (cf. difference in length for the 3 scripts on the Rosetta
Stone, logographic scripts are typically shorter than phonetic ones) are lengthened by the insertion
of whitespaces. To remedy the OOV problem, we use BPE, which learns a fixed vocabulary of
variable-length character sequences (on word level, as it presupposes word segmentation) from the
training data. It is more fine-grained than word segmentation and is known for its capability to model
subword units for morphologically complex languages (e.g. AR and RU). We use the same vocabulary
of 30,000 as specified in Junczys-Dowmunt et al.| (2016). This reduced our averaged OOV token rate
by 89-100% across the 5 sizes. The number of language pairs with significant differences (p < 0.001)
reduced to 7 from 8 for word models, showing how finer-grained modeling has a positive effect on
closing the disparity gap.
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Version 1.1 (graphs to be updated, score tables added)
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