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ABSTRACT

Multimodal Electronic Health Records (EHRs), comprising structured time-series
data and unstructured clinical notes, offer complementary views of patient health.
However, multi-label prediction tasks on multimodal EHR data, such as phenotyp-
ing, are hindered by potential label noise, including false positives and negatives.
Existing noisy-label learning methods, often designed for single-label vision data,
fail to capture real label-dependencies or account for the cross-modal, longitudi-
nal nature of EHRs. To address this, we propose MIRACL (Multimodal Instance
Relabelling And Correction for multi-Label noise (MIRACL1)), a novel frame-
work that systematically addresses these challenges. Notably, MIRACL is the first
framework designed to explicitly leverage longitudinal patient context to resolve
more challenging multi-label noise scenarios. To achieve this, MIRACL unifies
three synergistic mechanisms: (1) a difficulty- and rank-based metric for robust
identification of noisy instance-label pairs, (2) a class-aware correction module for
robust label refinements, promoting the recovery of real label-dependencies, and
(3) a patient-level contrastive regularization loss that leverages both cross-modal
and longitudinal patient context to correct for noisy supervision across different
visits. Extensive experiments on large-scale multimodal EHR datasets (MIMIC-
III/IV) demonstrate that MIRACL achieves state-of-the-art robustness, improving
test mAP by over 2% under various noise levels.

1 INTRODUCTION

Electronic Health Records (EHRs) data are usually gathered from multimodal sources, providing
complementary views of a patient’s health. This includes structured data such as temporal medi-
cal records (vital signs and lab test results) and unstructured data such as clinical notes (symptom
descriptions and the reason for symptoms). Combining both modalities is crucial: while structured
data reflect objective physiological signals, unstructured notes capture nuanced physician interpre-
tations, such as symptom reasoning or context, underscoring the need for reliable multimodal fu-
sion. A fundamental task in this domain is multi-label prediction (e.g., Phenotyping), where each
patient can exhibit multiple conditions simultaneously. This requires models that can handle seman-
tics of multi-label and heterogeneous modality. Multi-label noise in multimodal EHRs additionally
presents a major obstacle to reliable multi-label prediction. Table 1 illustrates these challenges by
providing two patient examples. The goal is to learn a robust multi-label model to predict the correct
diagnoses (unobserved ground truth) instead of noisy diagnoses (observed but noisy labels).

Challenge 1: Learning from noisy single-label. Noisy prediction for patient P1001 suffers from
straightforward Flip Noise, where a Bipolar Disorder label is missing despite clear evidence in the
notes (a false negative), while a Shock label is added without any supporting evidence from EHR or
clinical notes (a false positive).

Challenge 2: Corrupted dependency enforcement under label noise. Patient P1002’s first visit
(row 2) demonstrates that the model reinforces a dependency that is corrupted by noisy labels: the
flipped ỹDiabetes = 0 (i.e., the noisy label incorrectly marks Diabetes as absent) distorts the Dia-
betes ↔ Hypertension association learned during training. Consequently, despite strong evidence

1https://github.com/anon-coder-def/MIRACL
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Patient Key EHR Note Summary Ground Truth Noisy Labels Noisy Prediction

P1001 • HR=97
• SpO2=95%
• SBP=95

• Bipolar, Heroin abuse.
• No abnormal vitals noted.

1 Bipolar

0 Shock
0 Sepsis

0 Bipolar

1 Shock
0 Sepsis

0 Bipolar

1 Shock
0 Sepsis

P1002 • HR=85
• SpO2=96%
• SBP=160

• Currently on medication for
diabetes.

1 Diabetes
0 Bipolar

1 Hypertension

0 Diabetes
1 Bipolar

1 Hypertension

0 Diabetes
1 Bipolar

0 Hypertension

P1002 • HR=90
• SBP=125

• Follow-up for uncontrolled
Diabetes.
• Antihypertensive medica-
tion.

1 Diabetes
0 Bipolar

1 Hypertension

1 Diabetes
0 Bipolar

0 Hypertension

1 Diabetes
0 Bipolar

0 Hypertension

Table 1: Phenotyping examples of two patients. Noisy Prediction represents the predictions by
FlexCare Xu et al. (2024a) using a training set contaminated by Symmetric Flip Noise. Colorbox:
Noisy Labels (Observed) against Ground Truth (Unobserved) ( red : false positive cases, blue :
false negative cases, green : true cases). Font color: Noisy Prediction against Ground Truth (red:
incorrect, green: correct). The 1/0 denotes the binary status of a label.

(SBP=160) and a correctly observed (noisy) label for Hypertension, the model under-predicts Hy-
pertension (0). Thus, dependent label noise propagates errors across labels by enforcing corrupted
inter-label structure rather than failing to learn any dependency.

Challenge 3: Synthesizing fragmented evidence across both modalities and patient visits. The
second visit of Patient P1002 (row 3) presents a complex inference problem. The ground truth, Hy-
pertension is contaminated by a false negative. Correctly inferring this condition requires a model
to perform longitudinal cross-modal reasoning: the model must integrate historical numerical evi-
dence from Visit 1’s EHR (an SBP of 160, which meets the clinical threshold for hypertension) with
current textual evidence from Visit 2’s note, which mentions antihypertensive medication.

Together, these examples highlight the necessity for robust multimodal multi-label learning methods
that can: (1) correct both positive and negative label errors with high precision, (2) restore the
underlying structure of clinical comorbidities from the noisy labels, and (3) leverage complementary
information across both modalities and longitudinal patient information.

Existing research in noisy label learning either focuses on single-label image classification Han et al.
(2018); Chen et al. (2019), or adopts global reweighting schemes Arazo et al. (2019a). While some
recent methods explore multi-label noise Li et al. (2022b); Ghiassi et al. (2023); Xu et al. (2024b)
or targeted multimodal medical models Zhang et al. (2022); Hayat et al. (2022); Xu et al. (2024a),
they lack a unified mechanism to simultaneously (1) perform efficient instance-level correction to
enable the learning of real label-dependencies, and (2) learn a robust model tailored to multimodal
EHR data.

To bridge these gaps, we propose MIRACL: a Multimodal Instance Relabeling And Correction
framework for noisy multimodal multi-label EHR data. We are the first to systematically address
multi-label noise in multimodal EHRs by unifying three critical modules: patient-level contrastive
loss, class-aware sample selection, and label correction. The main novelties and contributions are:

• We design a class-specific correction module that mitigates the bias toward negative labels and
corrects noisy labels to learn correct label dependencies. (Addressing Challenge 1 and Challenge
2).

• We propose a patient-level contrastive regularization loss that promotes generating a cross-modal
and longitudinal representation for each patient, alleviating the impact of label noise under high-
noise scenarios. (Addressing Challenge 3).

• MIRACL demonstrates its state-of-the-art (SOTA) performance on EHR datasets (MIMIC-III/IV)
under different levels and types of multi-label noise.
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2 RELATED WORK

Multimodal Multi-Label Learning for Healthcare Existing multi-label models for healthcare are
often embedded in multimodal multitask learning, as in FlexCare Xu et al. (2024a); or are designed
for addressing missing modalities, as in M3Care Zhang et al. (2022) by imputing information from
similar patients; or originates from multimodal fusion models, as in MedFuse Hayat et al. (2022).
However, none of the existing multimodal multi-label healthcare models considers the detrimental
effect of label noise.

Learning from Multi-Label Noise The traditional approach for handling multi-label is Binary
Cross-Entropy (BCE), which treats positive and negative samples with equal weights. To better
address imbalance, Focal Loss Lin et al. (2017) assigns different weights to positive and negative
samples. ASL Ridnik et al. (2021a) adjusts the weighting scheme asymmetrically by shifting label
probabilities, effectively avoiding the contribution of negative labels with extremely low probabili-
ties. MLLSC Ghiassi et al. (2023) is designed for missing and corrupted labels by leveraging loss
value for true positive or false positive labels. Other involve estimating transition matrix by leverag-
ing label correlation for clean posterior calculation as in Multi-T Li et al. (2022b). iLaCo Xu et al.
(2024b) proposes an instance-level pair correction re-training strategy tailored for noisy multi-label
text classification, while failing to scale to large-scale multimodal datasets due to extra re-training.
BalanceMix Song et al. (2024) is proposed to handle multi-label noise and imbalance via Mixup-
based augmentation; however, it is not directly applicable to multimodal EHR data. Thus, none of
the existing noisy multi-label learning methods considers the case on large-scale multimodal EHR
datasets. Additional discussion on recent work is provided in Appendix A.7. In contrast to the above
methods, we propose an efficient sample-selection-based label correction method in response to all
genres of multi-label noise for multimodal data. By leveraging a patient-level contrastive regular-
ization module, we further extend its adaptability to multimodal EHR data.

3 METHODOLOGY

3.1 OVERVIEW

Overall, the proposed model contains three essential components, as shown in Fig. 1:

• The Class-Wise Sample Selection Module: aims to calculate selection criteria Z based on in-
stance dynamics and fit a 2-component Gaussian Mixture Model (GMM) to divide samples into
three categories, which are clean sets, uncertain sets, and noisy sets, preparing for correction at
the next stage.

• The Correction Module: aims to correct the observed noisy label leveraging both label correla-
tion and the probability of being a noisy label from the mixture model.

• The Patient-Level Contrastive Learning Module: aims to generate a robust multimodal repre-
sentation by adding patient-level contrastive regularization loss.

3.2 PROBLEM FORMULATION

The multi-label learning task of multimodal data is formally defined as follows. Assuming there is a
noiseless dataset D = {(Xi, Yi, Pi, Si)}Ni=1, where N is the number of instances, Xi = {xm

i }m∈M

represents the input data of instance i from modality m, from a set of modalities M . Yi = {yli}Ll=1,
where L represents total number of classes; yli = 1 represents the presence of class label l for
instance i as ground truth; yli = 0 otherwise. Si denotes the unique stay identifier corresponding
to instance i. Pi denotes the patient identifier associated with the same instance. In practice, the
ground-truth label sets often contain substantial label noise, leading to a noisy dataset defined as
D̃ = {(Xi, Ỹi, Pi, Si)}Ni=1 where Ỹi = {ỹli}Ll=1 is the observed noisy label set. Our objective is to
design a robust model f∗ to minimize the empirical risk of the model prediction sets Ŷi with respect
to the latent true label sets Yi, rather than the noisy label sets Ỹi.

3
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Figure 1: Overall architecture of MIRACL

3.3 CLASS-WISE SAMPLE SELECTION STRATEGY

3.3.1 MEMORIZATION AND FORGETTING IN NOISY MULTI-LABEL LEARNING

To better distinguish clean and noisy pairs at the instance-pair level without relying on interference
of noisy label dependencies, we define the memorization difficulty Dm(ŷli) and forgetting difficulty
Df (ŷ

l
i), based on the observation that clean instance-label pairs are typically easier to memorize and

harder to forget Hu et al. (2023). To estimate how easy or difficult a label is to learn, we track how
often it is memorized and then forgotten during training. For each instance xi and label ŷli (predicted
value for label l), we define the overall difficulty D(ŷli) as:

D(ŷli) = Dm(ŷli)−Df (ŷ
l
i), (1)

where Dm(ŷli) =
∑T

t=1

∣∣∣∆(t)
m (ŷli)

∣∣∣ as memorization difficulty over the total number of training

epochs T , Df (ŷ
l
i) =

∑T
t=1

∣∣∣∆(t)
f (ŷli)

∣∣∣ as forgetting difficulty, ∆(t)
m (ŷli) is an indicator function that

equals 1 if label ŷli was incorrectly predicted at epoch t−1 but correctly predicted at epoch t — rep-
resenting a memorization event. Conversely, ∆(t)

f (ŷli) equals 1 if ŷli was correctly predicted at epoch
t − 1 but incorrectly predicted at epoch t — representing a forgetting event. Clean instance-label
pairs typically exhibit lower Dm(ŷli), indicating they are memorized quickly and stably, whereas
noisy pairs tend to have higher memorization difficulty. By focusing on the transition dynamics of
individual label predictions, the overall difficulties provide a label-wise estimation of noise.

Selection Metric Considering the inter-dependencies inherent in multi-label learning, the rank of an
instance has been shown to effectively capture inter-label relationships without being significantly
disrupted by noisy instance-label pairs Xu et al. (2024b). Motivated by this, we introduce a multi-
label selection metric Z(ỹli) for the i-th instance and l-th label, which satisfies two key properties:
1) Leveraging reliability from a single-label perspective; 2) Identifying noisy signals by capturing
inter-label dependencies through instance-level prediction dynamics. The selection metric is defined
as,

Z(ỹli) = αRank(ŷli) + (1− α)(Dm(ỹli)−Df (ỹ
l
i)), (2)

where α balances the reliance on ranking-based selection versus memorization-forgetting difficulty.
We set α = 0.5 to balance the contribution of both signals. Rank(ŷli) is the rank of label confidence
from model predictions using the rank function Rank(.), which is highly indicative of clean positive
labels. A higher Z(ỹli) score suggests that label ỹli is more likely to be corrupted, enabling the model
to dynamically filter out noisy labels.

Sample Selection To allow the model to apply distinct correction strategies based on the estimated
label reliability, we use three-way partitioning to improve robustness under varying noise levels.
For this task, we model the normalized selection metric Z̃ per-class and per-label using GMM,

4
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2 × L in total. This allows us to statistically separate samples, with each component modeling
clean or noisy samples for that category. First, we normalize the distribution Z (Eq. 2) respectively,
using Z̃lc = Zlc−min(Zlc)

max(Zlc)−min(Zlc)+ϵ
, to ensure the distribution values fall in the range from 0 to 1. l

denotes the index of label; c ∈ {0, 1} indicates the binary value of a class label; ϵ is set as 1e−6

to prevent zero division errors. We partition samples into clean, uncertain, and noisy sets using
the mean of each component based on empirical observation and Lu & He (2022). To avoid hand-
crafted thresholds that may not generalize across noise levels, we then adopt a thresholding strategy
inspired by Huang et al. (2022).

Specifically, for each label l and the value of the class label c, we model the normalized selection
score Z̃lc using a bimodal GMM. Let µlc

clean and µlc
noisy denote the mean values of the two mixture

components, with µlc
clean < µlc

noisy. Based on these thresholds, we further classify normalized selec-
tion score set S = {Z̃lc} into three subsets:

Sclean = {Z̃lc | Z̃lc ≤ µlc
clean},

Sunce = {Z̃lc | µlc
clean < Z̃lc < µlc

noisy},

Snoisy = {Z̃lc | Z̃lc ≥ µlc
noisy}.

(3)

Pairs with selection score falling below µlc
clean (in Sclean) are treated as clean and used directly for

training, while those above µlc
noisy (in Snoisy), as well as uncertain samples in between (in Sunce), are

handled by tailored noise mitigation strategies.

To reduce computational overhead and ensure reliable fitting across all 2×L GMMs, we fit GMMs
per epoch 2, which both accelerates training and provides more diverse samples for stable conver-
gence.

3.4 JOINT LABEL CORRECTION

Two types of noise occur in noisy multi-label learning: false positive noise and false negative noise.
To address these issues, we have designed dedicated correction strategies for each. We refer to a set
of instance-label pairs with negative/positive labels as negative/positive pairs.

Clean Set: Pairs with scores in Sclean, which are likely to be clean, the model should improve its
trustworthiness by using the original label without performing any label correction.

Uncertain Set: Pairs with scores in Sunce, we apply soft label correction by interpolating between
the model’s prediction and the original label, inspired by Arazo et al. (2019a). The interpolation
weight is derived from the uncertainty score U lc based on the class-wise GMM. Specifically,

U lc =
Z̃lc − µlc

clean

µlc
noisy − µlc

clean + ϵ
, (4)

where U lc is clipped in the range [0, 1]. We then define soft label correction as:

Y lc
soft = U lc · Ŷ lc + (1− U lc) · Ỹ lc. (5)

which is the expectation of the ground truth label for a particular uncertain sample. A lower un-
certainty score means the label is highly likely to be the original annotation, and vice versa. This
strategy is particularly effective in handling samples within the ambiguous decision boundary, al-
lowing the model to dynamically adjust the impact of clean and predicted labels during training.

Noisy Set: For pairs with scores in Snoisy, the model should trust the prediction and perform soft
label correction.

Negative Pairs: Real-world datasets often contain many true negative pairs, which can significantly
distract the model from accurately identifying false negative cases, as illustrated in Xu et al. (2024b).
In addition to label correction, we apply a filtering mechanism to retain correlated negative labels
against positive labels. This filtered dataset Z− helps retain informative negative pairs while also
improving computational efficiency. Specifically, we define the filtered score set Z− as:

Z− = {Z̃lc|S > τ},S = ỸC (6)
2Computational Analysis is provided in Appendix A.6

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

where S reflects how strongly each label is supported by correlated labels in the prediction space, τ
is the correlation coefficient threshold, C is the correlation matrix between the observed labels that
captures how often label k co-occurs with label j (Appendix D). The corrected label for negative
pairs, Ỹ l0

corr is defined as follows:

Ỹ l0
corr =


Ỹ l0, Z̃l0 ∈ Sclean ∩ Z−

Y l0
soft, Z̃l0 ∈ Sunce ∩ Z−

Ŷ l0, Z̃l0 ∈ Snoisy ∩ Z−
, (7)

where Ŷ lc represents the model prediction for label l and the observed class c.

Positive Pairs: Due to the shortage of positive pairs, we propose to consider all positive pairs and
correct positive pairs based on the criteria if the selection metric Z̃lc is less than the mean of the
smaller mixture of that particular class µlc

clean. The corrected labels for positive pairs Ỹ l1
corr are:

Ỹ l1
corr =


Ỹ l1, Z̃l1 ∈ Sclean

Y l1
soft, Z̃l1 ∈ Sunce

Ŷ l1, Z̃l1 ∈ Snoisy

. (8)

3.5 CROSS-MODAL CONTRASTIVE REGULARIZATION

Visit 1

Visit 1

Visit 2

Visit 1

Visit 1

Patient A Patient B Attraction Repulsion

Visit 2

Patient-Level Visit-Level
Visit 1

Visit 1

Visit 2

Visit 1

Visit 2

Visit 1

Note EHR

Figure 2: Conceptual illustration of Patient-Level vs. Visit-
Level contrastive learning. While a Visit-Level approach
(left) only aligns modalities within a single visit, our Patient-
Level strategy (right) correctly leverages patient identity to
group all representations from the same patient (orange),
while separating them from a different patient (green).

Contrastive learning has proven ef-
fective for learning robust multi-
modal representations by pulling to-
gether positive pairs and pushing
apart negative ones Li et al. (2022a).
To avoid confusion, we note that
the term positive/negative pair here
refers to cross-modal representations
of the same instance. A key challenge
in multimodal EHRs lies in defining
what constitutes a positive pair. A
common strategy— Visit-Level con-
trastive learning — treats different
modalities (e.g., structured EHR and
clinical notes) from the same hospi-
tal visit as positives, and data from all
other visits, even from the same pa-
tient, as negatives. As shown on the
left side of Fig. 2, this enforces align-
ment only within a single visit, ignoring the longitudinal nature of patient records. It fails to capture
stable patient identity across admissions and cannot leverage cross-visit evidence to resolve noise.

3.5.1 PATIENT-LEVEL MULTIMODAL CONTRASTIVE REGULARIZATION

To address this, we propose a Patient-Level Multimodal Contrastive Loss, which softly aligns all
representations from the same patients — across visits and modalities — into a shared embedding
space. Within a mini-batch, we define positive and negative pairs based on patient identity. For an
anchor (e.g., an EHR embedding hi from patient PA), its positive set P (i) includes: 1) its cross-
modal counterpart from the same visit (e.g., a note embedding), and 2) all other representations from
PA, regardless of modality or visit. All representations from any other patients PB form the negative
pairs.

Contrastive Loss: We apply this contrastive loss on latent embeddings extracted from modality-
specific encoders: a bidirectional LSTM Graves et al. (2005) to model sparse and temporal depen-
dencies in multivariate EHR sequences, and a pretrained BioBERT Lee et al. (2019) for capturing
domain-specific semantics from clinical notes. This allows our model to learn cross-modal and
cross-visit consistency even under noisy supervision.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

We adapt the SCL Li et al. (2022a) to encourage patient-level alignment across modali-
ties and visits. Specifically, we concatenate the latent representations from both modality-
specific encoders—structured EHR (h(E)) and clinical notes (h(N))—into a unified set: H =

[h
(E)
1 , . . . ,h

(E)
B ,h

(N)
1 , . . . ,h

(N)
B ] along with their corresponding patient identifiers, where B is the

batch size. The contrastive loss Lcons for an anchor hi is then defined as:

Lcons = − 1

|P (i)|
∑

p∈P (i)

log
exp(sim(hi,hp)/τtemp)∑
k ̸=i exp(sim(hi,hk)/τtemp)

, (9)

where P (i) denotes the set of all other representations in the batch that share the same patient
ID as hi; sim(·, ·) denotes cosine similarity; and τtemp is a temperature scaling factor. This loss
encourages all embeddings derived from the same patients — across modalities and visits — to
cluster in latent space, forming a stable, identity-preserving representation that supports downstream
noise correction.

The overall training pipeline of MIRACL, consisting of a warm-up phase and a correction phase, is
detailed in Appendix A.4.

Table 2: Comparison of performance on MIMIC-IV Phenotyping test dataset under different noise
conditions (ρ+, ρ−). The evaluation metric is average mAP with standard deviation (in bracket) in
the last epoch across 3 runs. The best average results are highlighted in bold. ∗, ∗∗, and ∗∗∗ indicate
p < 0.05, p < 0.01, and p < 0.001.

Model Symmetric Flip Noise (%) Asymmetric Flip Noise (%) Balanced Noise (%)
(20,20) (40,40) (0,20) (0,40) (20,0) (40,0) (20,4.48) (40,8.96)

ASL 0.501(0.001) 0.377(0.026) 0.511(0.004) 0.471(0.003) 0.472(0.003) 0.448(0.006) 0.474(0.002) 0.458(0.011)
Focal 0.184(0.000) 0.182(0.000) 0.184(0.002) 0.184(0.001) 0.188(0.003) 0.189(0.001) 0.185(0.002) 0.185(0.001)
GCE 0.523(0.002) 0.411(0.007) 0.538(0.002) 0.497(0.005) 0.514(0.003) 0.446(0.005) 0.514(0.006) 0.469(0.002)

MLLSC 0.196(0.011) 0.202(0.009) 0.202(0.005) 0.202(0.005) 0.207(0.012) 0.200(0.006) 0.197(0.006) 0.199(0.011)
MultiT 0.522(0.000) 0.391(0.008) 0.546(0.004) 0.487(0.007) 0.555(0.008) 0.539(0.009) 0.546(0.003) 0.517(0.003)

MedFuse 0.433(0.014) 0.296(0.001) 0.461(0.009) 0.418(0.009) 0.484(0.001) 0.477(0.002) 0.471(0.007) 0.399(0.013)
M3Care 0.432(0.001) 0.368(0.001) 0.444(0.001) 0.434(0.001) 0.454(0.000) 0.449(0.001) 0.449(0.001) 0.436(0.001)
FlexCare 0.510(0.004) 0.369(0.020) 0.542(0.003) 0.513(0.008) 0.554(0.005) 0.542(0.006) 0.548(0.001) 0.510(0.004)
MIRACL 0.540(0.002)*** 0.439(0.012)** 0.560(0.004)** 0.539(0.006)* 0.569(0.003) 0.557(0.001)* 0.564(0.002)*** 0.537(0.001)**

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets: In this study, we utilize three datasets derived from MIMIC-III Johnson et al. (2016)
and MIMIC-IV Johnson et al. (2023a;b), which include two multi-label learning sub-task datasets
Phenotyping for MIMIC-III PHE and MIMIC-IV PHE, and MIMIC-IV DIA (Appendix C). We
split each dataset into training and test sets using an 8:2 ratio on a patient-wise basis. We introduce
artificial noise to the training dataset only, while keeping the test set unmodified.

Noisy Label Generation: Following prior work Xu et al. (2024b), we simulate three types of label
noise to assess model robustness under controlled settings, governed by a noise ratio ρ. They are 1)
Symmetric Noise: Each label is flipped with a uniform probability ρ (i.e., ρ+ = ρ− = ρ), where
ρ+ represents the probability of flipping a label from 1 to 0, and vice versa for ρ−; 2) Asymmetric
Noise: Labels are flipped with different probabilities for positive and negative pairs (ρ+ ̸= ρ−); 3)
Balanced Flip Noise: As defined in Xu et al. (2024b), this method ensures a similar number of flips
for both positive and negative instances: ρ+ = ρ, ρ− =

Lavg

L−Lavg
ρ+, Lavg represents the average

number of positive instance-label pairs per dataset.

Baselines: We compare our approach to several baseline models for noisy multi-label learning from
two categories: 1) Multimodal multi-label healthcare models: M3Care Zhang et al. (2022), Med-
Fuse Hayat et al. (2022), FlexCare Xu et al. (2024a); 2) Noisy multi-label methods (built upon the
FlexCare Xu et al. (2024a) backbone): Focal Loss (Focal) Lin et al. (2017), Asymmetric Focal
Loss (ASL) Ridnik et al. (2021a), Generalized Cross-Entropy (GCE) Zhang & Sabuncu (2018),
MLLSC Ghiassi et al. (2023), MultiT Li et al. (2022b).

Evaluation Metric: Consistent with the previous literature Xu et al. (2024b), we train the model
on the noisy training set and report the mean and standard deviation of mean average precision

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

(mAP) over three independent runs on the clean test set. We evaluate model robustness based on the
average performance at the final training epoch. We have applied one-sided Student’s t-tests against
the second best baseline (Appendix C).

Hyperparameter Configuration: Appendix A.5.

Table 3: Comparison of performance on MIMIC-III Phenotyping test dataset under different noise
conditions (ρ+, ρ−). The evaluation metric is average mAP with standard deviation (in bracket) in
the last epoch across 3 runs.

Model Symmetric Flip Noise (%) Asymmetric Flip Noise (%) Balanced Noise (%)
(20,20) (40,40) (0,20) (0,40) (20,0) (40,0) (20,3.95) (40,7.90)

ASL 0.462(0.002) 0.316(0.012) 0.487(0.001) 0.450(0.001) 0.408(0.005) 0.321(0.004) 0.431(0.004) 0.411(0.004)
Focal 0.165(0.000) 0.166(0.001) 0.166(0.001) 0.166(0.001) 0.166(0.001) 0.166(0.001) 0.166(0.000) 0.166(0.001)
GCE 0.457(0.006) 0.306(0.031) 0.481(0.003) 0.434(0.007) 0.444(0.005) 0.326(0.032) 0.454(0.004) 0.408(0.004)

MLLSC 0.162(0.010) 0.155(0.002) 0.157(0.007) 0.157(0.001) 0.158(0.005) 0.161(0.011) 0.158(0.008) 0.158(0.008)
MultiT 0.452(0.007) 0.309(0.006) 0.482(0.001) 0.423(0.002) 0.493(0.003) 0.474(0.005) 0.481(0.005) 0.445(0.008)

MedFuse 0.331(0.003) 0.252(0.001) 0.376(0.005) 0.326(0.001) 0.421(0.004) 0.400(0.015) 0.390(0.009) 0.349(0.012)
M3Care 0.382(0.001) 0.316(0.002) 0.392(0.001) 0.379(0.000) 0.405(0.003) 0.401(0.002) 0.401(0.001) 0.384(0.001)
FlexCare 0.441(0.006) 0.298(0.016) 0.476(0.000) 0.436(0.008) 0.491(0.007) 0.476(0.005) 0.477(0.004) 0.436(0.014)
MIRACL 0.469(0.006)** 0.279(0.009) 0.498(0.004)*** 0.471(0.006)*** 0.511(0.002)*** 0.497(0.001)*** 0.504(0.002)*** 0.475(0.001)***

4.2 COMPARATIVE EVALUATION

MIMIC-IV PHE: As shown in Table 2, MIRACL achieves statistically significant, strong, and con-
sistent mAP performance across various noise conditions, outperforming other methods by over 2%.
This consistent performance demonstrates MIRACL’s robustness under all noise types. Notably,
MIRACL achieves the largest relative improvements under symmetric noise, outperforming the best
baseline by over 3.6% at 40% corruption. Under asymmetric and balanced noise, MIRACL remains
the top performer, with stable margins of 1.5%, reflecting its reliability across label corruption.

Figure 3: Impact of λcons on MIMIC-
IV.

MIMIC-III PHE: As shown in Table 3, MIRACL demon-
strates consistently strong performance in a wide range of
noise configurations on MIMIC-III. While MIRACL expe-
riences a substantial drop in performance under the higher
noise level of Sym. 40%, this is expected given the fixed
hyperparameter setup used across datasets. Fig. 3 further il-
lustrates that MIRACL becomes more sensitive to the con-
trastive regularization strength λcons under extreme noise.
Despite this, MIRACL continues to outperform all base-
lines in these challenging settings and achieves competitive
results even without tuning λcons, highlighting its robustness
and practical generalizability.

4.3 ABLATION STUDIES

Table 4: Ablation study of MIRACL under MIMIC-IV.

MIRACL Variant (0,20) (20,20) (20,4.48)
Baseline 0.542 ± 0.003 0.510 ± 0.004 0.548 ± 0.001
+ Con. Reg. 0.553 ± 0.001 0.534 ± 0.004 0.557 ± 0.001
+ Correction / / /

w/ Loss only 0.550 ± 0.002 0.530 ± 0.004 0.563 ± 0.002
w/ Mems only 0.557 ± 0.004 0.535 ± 0.004 0.561 ± 0.002
w/ Rank only 0.559 ± 0.004 0.539 ± 0.006 0.561 ± 0.001

MIRACL 0.560 ± 0.004 0.540 ± 0.002 0.564 ± 0.002

In this section, we empirically eval-
uate the contributions of different
components of our model by ab-
lation study. We select Symmet-
ric (20, 20), Asymmetric (0, 20), and
Balanced (20, 4.48) noise as repre-
sentative cases to assess the effec-
tiveness of different model compo-
nents. As shown in Table 4, Patient-
Level Contrastive Regularization (+
Con. Reg.) yields the largest perfor-
mance boost, particularly under higher noise ratios, confirming its central role in learning robust
representations. Label correction further improves performance, with Rank-based filtering outper-
forming Difficulty-based selection. The full MIRACL model consistently achieves the best perfor-
mance, demonstrating the complementary strengths of contrastive regularization and class-aware
noise correction.
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4.3.1 PATIENT-LEVEL CONTRASTIVE LEARNING ANALYSIS

We observe that the performance gain from contrastive regularization (Con. Reg.) is most pro-
nounced under high-noise conditions, as shown in Fig. 3. For instance, under Sym. 40% noise,
increasing λcons from 0.0 to 0.05 substantially improves mAP, suggesting that contrastive signals be-
come increasingly valuable as label supervision degrades. This is because, when ground-truth labels
are unreliable, our patient-level contrastive loss provides an alternative training signal by leveraging
structural consistency across modalities and visits. Notably, the performance curve shows a clear
upward trend as λcons increases from 0.0 to 0.05 under high noise level, after which it plateaus or
slightly declines. In contrast, in low-noise settings (e.g., Sym. 20%), the effect of λcons is relatively
mild, reflecting that corrected labels already offer strong supervision. These observations highlight
the role of contrastive regularization as an effective fallback mechanism under severe label noise.

4.3.2 CORRECTION LABELS ANALYSIS

Figure 4: MIMIC-IV (Sym.
20%).

Fig. 4 illustrates the effectiveness of our label correction strat-
egy by tracking test accuracy trends over 30 training epochs un-
der Sym. 20% noise on MIMIC-IV phenotyping. The blue line
indicates accuracy on clean labels, orange indicates accuracy on
noisy labels after correction by MIRACL, and green indicates ac-
curacy on noisy labels without any correction. Notably, the accu-
racy of corrected noisy (orange) consistently and substantially out-
performs its uncorrected counterpart (green) throughout training,
highlighting the critical role of our correction pipeline in denois-
ing supervision. This performance gap demonstrates that MIR-
ACL’s GMM-based filtering and class-aware correction effectively
recover useful signal from noisy instance-label pairs. Furthermore,
the accuracy on clean data (blue) steadily improves as noisy super-
vision improves, indicating that our correction not only rescues noisy labels, but also stabilizes
overall learning by preventing error propagation from corrupted labels.

4.3.3 SELECTION METRIC ANALYSIS

(a) BCE Loss (b) Prediction Rank

(c) Overall Difficulty (d) Holistic Metric (Z)

Figure 5: Metric Distribution (Sym. 20% Noise,
MIMIC-IV)

We analyze the distributions of the selection
metrics for MIMIC-IV (Fig. 5). An effective
metric should clearly separate clean from
noisy pairs. In Table 4, we find that while
Overall Difficulty (Fig. 5c) excels at isolat-
ing clean pairs at the individual instance-
label level based on their learning dynamics.
Conversely, Rank (Fig. 5b) implicitly cap-
tures inter-label dependencies, as the model
learns to assign correlated ranks to clinically
related conditions. Although the BCE loss
(Fig. 5a) aligns with the small-loss criterion
(pairs with small loss tend to be clean Song
et al. (2019)), it exhibit similarly low losses
in later epochs, making it increasingly dif-
ficult to distinguish them from clean ones
as training progresses (Appendix B). There-
fore, we propose a Holistic Metric (Z) that
fuses these complementary signals. As shown in Fig. 5d, this fusion of pair-level dynamics and
instance-level context yields a distinctly bimodal distribution with significantly improved separation
between clean and noisy pairs, providing a robust foundation for our GMM-based selection.

5 CONCLUSION

In conclusion, we present MIRACL, a unified framework that robustly addresses multi-label noise
in multimodal EHRs. We introduce a patient-level contrastive regularization loss to support cross-
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modal and cross-visit learning, along with a novel selection metric that integrates the strengths of
instance-level and rank-based learning to more effectively distinguish clean from noisy instance-
label pairs. By fitting class-wise GMMs and jointly training with corrected soft labels, MIRACL
achieves state-of-the-art performance on the MIMIC datasets. In future work, we plan to ex-
plore cross-modal attention mechanisms to further improve label reliability and extend MIRACL
to datasets with additional modalities.
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A EXPERIMENTAL SETUP & IMPLEMENTATION DETAILS

A.1 PREDICTION TASKS

• Phenotyping(PHE): A multi-label classification problem that classifies which of 25 acute care
conditions are present in a given patient ICU stay record.

• Diagnosis(DIA): A multi-label classification problem that predicts 14 diagnosis conditions.

A.2 DATASET AND PREPROCESSING

A.2.1 DATASET DOWNLOAD

Please check our GitHub repository https://github.com/anon-coder-def/MIRACL for
more details. You will first need to request access to download MIMIC dataset.

A.2.2 PREPROCESSING

Due to the limited number of multimodal multi-label learning datasets, we choose 3 EHR-based
datasets to further validate our approach.

• MIMIC-IV (PHE, DIA) Johnson et al. (2023b;a) Phenotyping, Diagnosis: We use the same pre-
processing procedure as Xu et al. (2024a) for MIMIC-IV.

• MIMIC-III (PHE) Johnson et al. (2016): We use the same preprocessing procedure as Harutyun-
yan et al. (2019) for EHR. For clinical notes, we adapt the Khadanga et al. (2019) to extract clinical
notes and use a maximum length of 512 for each.

Table 5: Statistics of the Multimodal Multi-Label dataset, TS refers to time series, T refers to
Clinical Notes.

Task Prediction Task Modality # Records L Lavg

MIMIC-IV PHE Clinical Phenotype {TS, T} 59,798 25 4.575
MIMIC-IV DIA Clinical Diagnosis {TS, T} 132,576 14 2.246
MIMIC-III PHE Clinical Phenotype {TS, T} 41,904 25 4.126

A.3 BASELINE DESCRIPTION

Baselines: We use FlexCare Xu et al. (2024a) as the backbone model for noisy multi-label ap-
proaches and compare our approach to several baseline models with same hyperparameter setting:

• Focal Loss (Focal) Lin et al. (2017): Addresses class imbalance by focusing more on hard-to-
classify examples.

• Asymmetric Focal Loss (ASL) Ridnik et al. (2021b): Modifies Focal Loss to better handle label
imbalance in multi-label settings by assigning different weights to relevant and irrelevant labels.

• Generalised Cross-Entropy (GCE) Zhang & Sabuncu (2018): A robust loss function designed
for noisy multi-label classification, combining properties of mean absolute error (MAE) and cross-
entropy (CE) for better noise tolerance.

• MLLSC Ghiassi et al. (2023): Handles missing and corrupted labels by leveraging loss values for
both true-positive and false-positive labels to improve model robustness.

• MultiT Li et al. (2022b): Utilises label correlations to estimate a transition matrix for noisy multi-
label learning, effectively aligning observed labels with true labels to mitigate label noise.

We also compare our approach against existing multimodal healthcare model:

• M3Care Zhang et al. (2022): Proposes an end-to-end multimodal framework that addresses miss-
ing modalities in healthcare data by imputing missing modalities information from similar pa-
tients.

15

https://github.com/anon-coder-def/MIRACL


810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

• MedFuse Hayat et al. (2022): A lightweight and flexible multimodal model that projects each
modality (e.g., time-series EHR, medical images) into a shared latent space using modality-
specific encoders, by a LSTM fusion-based module

• FlexCare Xu et al. (2024a): A flexible multimodal multitask framework that decomposes parallel
task prediction into asynchronous single-task outputs, uses task-agnostic representation learning
with covariance regularization across modalities, and integrates these via a task-guided hierarchi-
cal fusion module to support multimodal multi-label EHR prediction.

A.4 OVERALL TRAINING PROCEDURE

A.4.1 WARM-UP PHASE:

As demonstrated by Arazo et al. (2019b), cross-entropy loss distribution naturally fits a mixture
model with theoretical justification. Similarly, in the multi-label setting, the binary cross-entropy
(BCE) loss Lbce = −

(
Ỹ · log(Ŷ ) + (1− Ỹ ) · log(1− Ŷ )

)
. We treat Lcons as a regularization term

and incorporate it into the final objective:
Lwarmup = Lbce + λcons · Lcons, (10)

where λcons is a weighting coefficient controlling the strength of the contrastive regularization.

A.4.2 CORRECTION PHASE:

We fit the computed selection scores to Gaussian Mixture Models from the last epoch over the entire
dataset. We then perform Label correction based on the sample selection mechanism derived from
the GMMs. We train using the corrected BCE loss Lcorr = Lbce(Ỹcorr, Ŷ ) for the remainder of the
training period: At the beginning of training, the model relies more on the corrected loss to mitigate
the influence of label noise. As training progresses and the model learns more robust representations,
the weights gradually shifts towards the standard BCE loss, balancing the contributions of both
components dynamically.

Mathematically, the weighted loss Lweighted is defined as:
Lweighted = βt Lcorr +(1− βt)Lbce +λcons · Lcons, (11)

where T represents max epoch, βt increases linearly with epoch t that transitions smoothly from
an initial value β0 = 1 to a final value βf = 0.5 for stabilising the final stages of training in label
correction framework Arazo et al. (2019b). The detailed algorithm is shown below in Algorithm 1.

Y lc
soft = U lc · Ŷ lc + (1− U lc) · Ỹ lc. (12)

Ỹ l0
corr =


Ỹ l0, Z̃l0 ∈ Sclean ∩ Z−

Y l0
soft, Z̃l0 ∈ Sunce ∩ Z−

Ŷ l0, Z̃l0 ∈ Snoisy ∩ Z−
, (13)

where c = 0 indicates the observed negative class; Ŷ l0 represents model prediction for label l and
observed class 0.

Ỹ l1
corr =


Ỹ l1, Z̃l1 ∈ Sclean

Y l1
soft, Z̃l1 ∈ Sunce

Ŷ l1, Z̃l1 ∈ Snoisy

, (14)

where c = 1 indicates the observed positive class; Ŷ l1 represents model prediction for label l and
observed class 1; Y lc

soft denotes the expected soft label refined by the uncertainty-aware correction
strategy (see Equation 12).

A.5 MODEL IMPLEMENTATION AND HYPERPARAMETER

All experiments are performed on the High-Performance Computing infrastructure using PyTorch
1.11.0 and an NVIDIA A100 GPU. To maintain fairness in comparisons, we apply consistent hy-
perparameter settings and neural network architecture across all experiments. Early stopping is not
used, as we assume the unavailability of a clean validation set, reflecting real-world conditions.
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Algorithm 1 MIRACL: Multi-modal Instance Relabelling And Correction for multi-Label noise

1: Input: Multi-label Dataset D, learning rate η, max epochs T , warmup time twarmup

2: Output: Trained Model M
3: Initialise model M
4: for epoch t = 1 to T do
5: if t ≤ twarmup then
6: Update Lwarmup
7: else
8: Calibrate Ỹ using Equation (13), (14)
9: Update Lweighted with Ỹcorr by Equation (11)

10: end if
11: if t ≥ twarmup then
12: for l = 1 to C do
13: for c = 0 to 1 do
14: Fit GMMlc, select Sclean, Sunce, Snoisy
15: end for
16: end for
17: end if
18: end for
19: return Trained Model M

A.5.1 IMPLEMENTATION DETAIL

Each baseline model is trained independently with the same hyperparameter settings. Each model
is trained for 30 epochs using the Adam optimizer, with an initial learning rate of 10−3 scheduled
via cosine annealing (Tmax = 10, ηmin = 0), batch size of 128, a warm-up period of 5, a correla-
tion threshold of τ = 0.02, a regularization strength coefficient λcons = 0.1, and a selection metric
coefficient of α = 0.5. For each noise type, experiments are repeated three times with three dif-
ferent random seeds = {30, 40, 100}. To prevent overfitting to corrected labels, we apply a weight
decay parameter of 1e−5 when initiating label correction. The noise ratios are defined as follows:
ρ−, ρ+ ∈ {0.2, 0.4} for Symmetric; Asymmetric Flip Noise ρ−, ρ+ ∈ {0, 0.2, 0.4}; Balanced
Noise ρ+ = ρ ∈ {0.2, 0.4}, ρ− = {0.0448, 0.0896} respectively for MIMIC-IV phenotyping,
ρ− = {0.0395, 0.0790} for MIMIC-III phenotyping and ρ− = {0.0382, 0.0764} for diagnosis.

A.5.2 BASELINE SETTING

We use FlexCare Xu et al. (2024a) as the backbone model for noisy multi-label approaches and
compare our approach to several baseline models with same hyperparameter setting:

• FlexCare Xu et al. (2024a): layers=4, expert k=2, expert total=10, hidden dim = 128, ehr dim =
76, max-length = 512

• Focal Loss (Focal) Lin et al. (2017): Focusing parameter γ = 2.0, Alpha-balancing weight
α = 0.25

• Asymmetric Focal Loss (ASL) Ridnik et al. (2021b): Negative focusing parameter γ− = 4.0,
Positive focusing parameter γ+ = 1.0, Probability margin (clipping) m = 0.05,

• Generalised Cross-Entropy (GCE) Zhang & Sabuncu (2018): Default parameters, designed to
be robust to noise.

• MLLSC Ghiassi et al. (2023): Positive threshold τpos = 0.55, Negative threshold τneg = 0.6,
Margin m = 1.0, Gamma γ = 2.0

• MultiT Li et al. (2022b): Default parameters, designed to perform loss correction based on esti-
mated transition matrix T̂ .

• M3Care Zhang et al. (2022): hidden dim = 128, ehr dim = 76, dropout = 0.1

• MedFuse Hayat et al. (2022): hidden dim = 128, ehr dim = 76, dropout = 0.1
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Table 6: Computation time comparison for different models under Sym. 20% condition. Computa-
tion time (h) refers to the time for a single run

Model Name Computation Time (h)

MedFuse 3.108
MultiT 3.979
M3Care 3.118
FlexCare 3.884
MIRACL (Ours) 4.104

A.6 COMPUTATIONAL ANALYSIS

Despite incorporating L× 2 Gaussian Mixture Model (GMM) for dynamic sample selection, MIR-
ACL does not introduce significant computational since it does not rely on re-training strategy
against corrected labels. As shown in Table 6, its total training time remains comparable to other
advanced baselines. This efficiency stems from our design choice to fit the GMM once per epoch
rather than per batch, and only after the warm-up phase, which amortizes the cost and avoids redun-
dant computation. This demonstrates that MIRACL achieves robust noise correction with gradual
increase in training time. Notably, most of the time complexity stems from the underlying Flex-
Care backbone shared by MIRACL, rather than the noise modeling module itself.

A.7 OTHER RELATED WORKS

Label noise under EHR is gaining more attention recently. Initial efforts in addressing single-
label noise underlying a neighbor consistency regularization approach in unimodal EHR Yang et al.
(2024). MEDFuse Phan et al. (2024) presents a LLM-enhanced multimodal EHR fusion framework
with masked lab-test modeling. While their method emphasizes imputation and masked recovery
with LLMs, our framework instead targets label denoising with a model-agnostic backbone, offer-
ing complementary contributions. Zhan et al. (2023) introduces a reliability-based cleaning method
using inductive conformal prediction, which shares our goal of identifying trustworthy samples
in noisy multimodal contexts. However, MIRACL further integrates label ranking and modality-
specific difficulty into the sample selection pipeline. Li et al. (2025) dynamically augments and
calibrates labels in EHRs by modeling temporal uncertainty under time series data. In contrast,
MIRACL performs static and progressive correction via joint relabeling, and explicitly accounts for
cross-modal inconsistencies rather than purely temporal calibration. In the image domain, BoMD
Chen et al. (2023) introduces descriptor-based re-labeling for noisy multi-label classification in chest
X-rays. While BoMD focuses on image-noise structure, our work addresses multimodal fusion with
textual and temporal signals and supplements with patient-level contrastive regularization during
correction.

Contrastive learning offers a compelling solution by enforcing alignment through multimodal in-
stance or class-level objectives. While supervised contrastive learning (SCL)Chen et al. (2020)
has shown strong performance, recent efforts extend it into noisy Li et al. (2022a) and medical
domains Wang et al. (2022). However, there is still a critical gap: no prior work has adapted patient-
level contrastive learning for the unique pairing of structured EHRs and clinical notes, nor has it
been investigated as a mechanism to mitigate label noise by leveraging longitudinal patient context.

B ADDITIONAL ANALYSIS AND VISUALIZATIONS

B.1 SELECTION METRIC ANALYSIS

Figure 6 presents a comparative analysis of BCE loss, ranking, and overall difficulty across training
epochs for clean and noisy instance-label pairs under symmetric (40%, 40%) label noise. Among
the three, memorization-based metrics (Fig. 1c) demonstrate the strongest discriminative power dur-
ing the early training phase (e.g., epochs 0–40), where the curves for clean and noisy pairs—both
positive and negative—are clearly separable. This behavior aligns with the prior observation that
deep networks tend to fit clean samples earlier.
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(a) Loss Across Epochs (b) Ranks Across Epochs (c) Overall Difficulty Across
Epochs

Figure 6: Comparison of metrics such as BCE Loss, Ranks, and Overall Difficulty across 100 train-
ing epochs using the Vanilla FlexCare model under 5% of MIMIC-Phenotyping Dataset with Sym-
metric (20%, 20%) flip noise.

Table 7: Statistical comparison of MIRACL vs. second-best baseline under each noise setting (based
on test mAP over 3 runs) on MIMIC-IV phenotyping.

Noise Type (ρ+, ρ−) Second-best p-value Significance

(20,20) GCE 0.00082 ***
(40,40) GCE 0.00288 **
(0,20) MultiT 0.00807 **
(0,40) FlexCare 0.01233 *
(20,0) MultiT 0.05908
(40,0) FlexCare 0.03163 *
(20,4.48) FlexCare 0.00002 ***
(40,8.96) MultiT 0.00367 **

In contrast, ranking-based indicators (Fig. 1b) become more stable and reliable in later training
stages (after epoch 50), consistently assigning higher ranks to clean positive labels while maintaining
a steady gap between clean and noisy pairs. This suggests that rank-based selection becomes more
robust once the model has formed high-confidence predictions.

These observations validate our two-stage design: leveraging difficulty metric in the early phase to
identify clean pairs based on learning dynamics, and adopting rank-based metrics in the later phase
to exploit the model’s matured confidence estimates.

B.2 SENSITIVITY ANALYSIS FOR GMM INITALIZATION

GMM does have some dependence on initialization, but in our setting the effect is very small. We
evaluated the symmetric-20initializations and observed only minor fluctuations in performance. The
coefficient of variation (CV) across runs is below 1(mAP: 0.61%, F1: 0.73%, F1 class: 0.98%), and
the score ranges are narrow (e.g., mAP varies from 0.5433 to 0.5499). These results show that the
selection scores form a stable bimodal structure, so different GMM initializations lead to nearly
identical clean/noisy assignments. The small run-to-run variance suggests that GMM initialization
does not materially affect MIRACL’s robustness.

B.3 BIMODAL ASSUMPTION VERIFICATION

Fig. 7 illustrates the selection-metric distributions and GMM fits for the five rarest phenotypes in
MIMIC-IV under Sym. 20% setting. These conditions represent the most challenging scenarios for
identifying clean versus noisy samples due to extremely low prevalence and high label imbalance.
For each phenotype—Acute cerebrovascular disease, Acute myocardial infarction, Gastrointestinal
hemorrhage, Other upper respiratory disease, and Pleurisy/Pneumothorax/Pulmonary collapse—the
empirical density displays a distinct two-mode structure. The dominant mode corresponds to easy-
to-learn (clean) samples with low selection scores, while a secondary, smaller mode captures harder
or potentially noisy samples.
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Table 8: Statistical comparison of MIRACL vs. second-best baseline under each noise setting (based
on test mAP over 3 runs) on MIMIC-III phenotyping.

Noise Type (ρ+, ρ−) Second-best p-value Significance

(20,20) ASL 0.00610 **
(40,40) ASL 0.98795
(0,20) ASL 0.00057 ***
(0,40) ASL 0.00068 ***
(20,0) MultiT 0.00328 **
(40,0) FlexCare 0.01053 *
(20,3.95) MultiT 0.00771 **
(40,7.90) MultiT 0.01376 *

Metric Mean ± Std CV Range
mAP 0.5468± 0.0033 0.61% 0.5433–0.5499
F1 0.5794± 0.0042 0.73% 0.5755–0.5839
F1 Class 0.4349± 0.0043 0.98% 0.4305–0.4390

Table 9: Stability of MIRACL under different GMM initialization seeds. The table reports the mean,
standard deviation, coefficient of variation (CV), and value range across five runs. The low standard
deviations and CV (< 1% for all metrics) indicate that MIRACL’s GMM-based selection is highly
robust to initialization.

Across all five cases, the fitted 2-component GMMs clearly separate these two regimes with strong
component separation, consistent BIC improvements, and silhouette scores around 0.68. These
results provide empirical evidence that the bimodal assumption underlying MIRACL’s class-aware
correction remains valid even for rare phenotypes with severe class imbalance.

C FULL QUANTITATIVE RESULTS & CHECKLIST

C.1 MIMIC-IV DIAGNOSIS EXPERIMENT:

While MIRACL demonstrates state-of-the-art performance on the phenotyping task, our results from
Table 10 show that it does not consistently outperform M3Care in the diagnosis setting. This dis-
crepancy is attributable to the distinct architectural priorities of the two models in the face of extreme
modality missingness. The diagnosis dataset suffers from severe data sparsity, with 76.3% of time-
series and 32.6% of clinical notes absent. M3Care is explicitly designed to handle this challenge
through robust modality-specific pathways and dropout mechanisms. In contrast, MIRACL’s core
strength lies in leveraging cross-modal signals for label noise correction. When one or both modal-
ities are frequently absent, MIRACL’s ability to cross-reference evidence is fundamentally limited,
reducing its advantage. Nevertheless, MIRACL consistently ranks as the second-best model across
most noise configurations, indicating strong generalization despite missing data. This analysis un-
derscores that robustness to label noise and robustness to missing modalities are distinct challenges,
and MIRACL is highly specialized for the former. Future work could explore hybrid architectures
that combine MIRACL’s sophisticated label correction with M3Care’s proven robustness to missing
data.

C.2 STATISTICAL TESTING

We perform one-sided Student’s t-tests (across 3 runs) comparing MIRACL to the second-best base-
line under each noise condition on MIMIC-III (Table 8) Phenotyping and MIMIC-IV Phenotyping
(Table 7). Significance is marked in the table using ∗, ∗∗, and ∗∗∗, indicating p<0.05, p<0.01, and
p<0.001, respectively. All tests compare test mAP scores under the same seeds.
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(a) Acute cerebrovascular disease (b) Acute myocardial infarction (c) Gastrointestinal hemorrhage

(d) Other upper respiratory disease
(e) Pleurisy / Pneumothorax / Pul-
monary collapse

Figure 7: Selection metric distributions and 2-component GMM fits for the five rarest phenotypes in
MIMIC-IV under Symm. 20% setting. All cases show a clear bimodal structure separating easy-to-
learn (clean) and hard-to-learn (noisy) regimes, supporting the GMM assumption used in MIRACL’s
class-aware correction module.

Table 10: Comparison of performance on MIMIC-IV Diagnosis test dataset under different noise
conditions (ρ+, ρ−). The evaluation metric is average mAP with standard deviation (in bracket) in
the last epoch across 3 runs.

Model Symmetric Flip Noise (%) Asymmetric Flip Noise (%) Balanced Noise (%)
(20,20) (40,40) (0,20) (0,40) (20,0) (40,0) (20,3.82) (40,7.64)

ASL 0.207(0.006) 0.197(0.004) 0.221(0.003) 0.211(0.004) 0.198(0.010) 0.197(0.013) 0.202(0.010) 0.196(0.005)
Focal 0.18(0.000) 0.167(0.011) 0.18(0.000) 0.174(0.011) 0.173(0.012) 0.167(0.011) 0.167(0.011) 0.18(0.000)
GCE 0.193(0.006) 0.193(0.003) 0.208(0.004) 0.195(0.007) 0.193(0.004) 0.189(0.003) 0.19(0.001) 0.193(0.002)

MLLSC 0.157(0.007) 0.154(0.002) 0.153(0.002) 0.157(0.006) 0.159(0.006) 0.159(0.006) 0.157(0.006) 0.159(0.006)
MultiT 0.2(0.004) 0.193(0.003) 0.218(0.006) 0.195(0.002) 0.23(0.001) 0.22(0.016) 0.214(0.021) 0.196(0.009)
M3Care 0.219(0.000) 0.206(0.000) 0.222(0.000) 0.22(0.000) 0.224(0.000) 0.223(0.000) 0.224(0.000) 0.22(0.000)
MedFuse 0.208(0.001) 0.195(0.001) 0.214(0.002) 0.212(0.001) 0.218(0.004) 0.217(0.001) 0.216(0.003) 0.209(0.001)
FlexCare 0.194(0.007) 0.194(0.004) 0.214(0.009) 0.212(0.010) 0.231(0.001) 0.219(0.017) 0.209(0.013) 0.198(0.008)
MIRACL 0.219(0.000) 0.207(0.002) 0.223(0.001) 0.22(0.001) 0.228(0.001) 0.225(0.001) 0.225(0.002) 0.219(0.001)

D TECHNICAL DETAILS OF LABEL CORRELATION MATRIX

We construct the label correlation matrix C ∈ RL×L using label co-occurrence statistics across the
training set. Each entry Ck,j reflects the normalized co-occurrence frequency between label k and
label j, defined as:

Ck,j =

{
0, k = j∑N

i=1 Ỹi,k·Ỹi,j∑L
b=1

∑N
i=1 Ỹi,k·Ỹi,b

, k ̸= j

where Ỹi,j ∈ {0, 1} indicates whether the j-th label is assigned to the i-th instance. The row
normalization ensures that each row of C sums to 1, facilitating a probabilistic interpretation of
inter-label dependency.
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