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ABSTRACT

Multimodal Electronic Health Records (EHRs), comprising structured time-series
data and unstructured clinical notes, offer complementary views of patient health.
However, multi-label prediction tasks on multimodal EHR data, such as phenotyp-
ing, are hindered by potential label noise, including false positives and negatives.
Existing noisy-label learning methods, often designed for single-label vision data,
fail to capture real label-dependencies or account for the cross-modal, longitudi-
nal nature of EHRs. To address this, we propose MIRACL (Multimodal Instance
Relabelling And Correction for multi-Label noise (MIRACID)), a novel frame-
work that systematically addresses these challenges. Notably, MIRACL is the first
framework designed to explicitly leverage longitudinal patient context to resolve
more challenging multi-label noise scenarios. To achieve this, MIRACL unifies
three synergistic mechanisms: (1) a difficulty- and rank-based metric for robust
identification of noisy instance-label pairs, (2) a class-aware correction module for
robust label refinements, promoting the recovery of real label-dependencies, and
(3) a patient-level contrastive regularization loss that leverages both cross-modal
and longitudinal patient context to correct for noisy supervision across different
visits. Extensive experiments on large-scale multimodal EHR datasets (MIMIC-
III/IV) demonstrate that MIRACL achieves state-of-the-art robustness, improving
test mAP by over 2% under various noise levels.

1 INTRODUCTION

Electronic Health Records (EHRs) data are usually gathered from multimodal sources, providing
complementary views of a patient’s health. This includes structured data such as temporal medi-
cal records (vital signs and lab test results) and unstructured data such as clinical notes (symptom
descriptions and the reason for symptoms). Combining both modalities is crucial: while structured
data reflect objective physiological signals, unstructured notes capture nuanced physician interpre-
tations, such as symptom reasoning or context, underscoring the need for reliable multimodal fu-
sion. A fundamental task in this domain is multi-label prediction (e.g., Phenotyping), where each
patient can exhibit multiple conditions simultaneously. This requires models that can handle seman-
tics of multi-label and heterogeneous modality. Multi-label noise in multimodal EHRs additionally
presents a major obstacle to reliable multi-label prediction. Table [1]illustrates these challenges by
providing two patient examples. The goal is to learn a robust multi-label model to predict the correct
diagnoses (unobserved ground truth) instead of noisy diagnoses (observed but noisy labels).

Challenge 1: Learning from noisy single-label. Noisy prediction for patient P1001 suffers from
straightforward Flip Noise, where a Bipolar Disorder label is missing despite clear evidence in the
notes (a false negative), while a Shock label is added without any supporting evidence from EHR or
clinical notes (a false positive).

Challenge 2: Corrupted dependency enforcement under label noise. Patient P1002’s first visit
(row 2) demonstrates that the model reinforces a dependency that is corrupted by noisy labels: the
flipped Upiabetes = O (i.e., the noisy label incorrectly marks Diabetes as absent) distorts the Dia-
betes <+ Hypertension association learned during training. Consequently, despite strong evidence
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Patient | Key EHR | Note Summary | Ground Truth |Noisy Labels | Noisy Prediction
P1001 |« HR=97 « Bipolar, Heroin abuse. 1 Bipolar 0 Bipolar 0 Bipolar
* Sp0O2=95% |+ No abnormal vitals noted. 0 Shock 1 Shock 1 Shock
* SBP=95
0 Sepsis 0 Sepsis 0 Sepsis
P1002 | HR=85 ¢ Currently on medication for|1 Diabetes 0 Diabetes 0 Diabetes
* Sp02=96% | diabetes. 0 Bipolar 1 Bipolar 1 Bipolar
* SBP=160
1 Hypertension |1 Hypertension |0 Hypertension
P1002 [ HR=90 * Follow-up for uncontrolled | 1 Diabetes 1 Diabetes 1 Diabetes
*SBP=125 | Diabetes. ) |0 Bipolar 0 Bipolar 0 Bipolar
* Antihypertensive medica-
tion. 1 Hypertension |0 Hypertension |0 Hypertension

Table 1: Phenotyping examples of two patients. Noisy Prediction represents the predictions by
FlexCare Xu et al.| (2024a) using a training set contaminated by Symmetric Flip Noise. Colorbox:
Noisy Labels (Observed) against Ground Truth (Unobserved) (red : false positive cases, blue :
false negative cases, green : true cases). Font color: Noisy Prediction against Ground Truth (red:

incorrect, green: correct). The 1/0 denotes the binary status of a label.

(SBP=160) and a correctly observed (noisy) label for Hypertension, the model under-predicts Hy-
pertension (0). Thus, dependent label noise propagates errors across labels by enforcing corrupted
inter-label structure rather than failing to learn any dependency.

Challenge 3: Synthesizing fragmented evidence across both modalities and patient visits. The
second visit of Patient P1002 (row 3) presents a complex inference problem. The ground truth, Hy-
pertension is contaminated by a false negative. Correctly inferring this condition requires a model
to perform longitudinal cross-modal reasoning: the model must integrate historical numerical evi-
dence from Visit 1’s EHR (an SBP of 160, which meets the clinical threshold for hypertension) with
current textual evidence from Visit 2’s note, which mentions antihypertensive medication.

Together, these examples highlight the necessity for robust multimodal multi-label learning methods
that can: (1) correct both positive and negative label errors with high precision, (2) restore the
underlying structure of clinical comorbidities from the noisy labels, and (3) leverage complementary
information across both modalities and longitudinal patient information.

Existing research in noisy label learning either focuses on single-label image classification|/Han et al.
(2018); |Chen et al.|(2019)), or adopts global reweighting schemes |Arazo et al.[|(2019a). While some
recent methods explore multi-label noise [Li et al.| (2022b)); |(Ghiassi et al.| (2023); Xu et al.| (2024b))
or targeted multimodal medical models Zhang et al.| (2022); Hayat et al.[(2022)); | Xu et al.| (2024a),
they lack a unified mechanism to simultaneously (1) perform efficient instance-level correction to
enable the learning of real label-dependencies, and (2) learn a robust model tailored to multimodal
EHR data.

To bridge these gaps, we propose MIRACL: a Multimodal Instance Relabeling And Correction
framework for noisy multimodal multi-label EHR data. We are the first to systematically address
multi-label noise in multimodal EHRs by unifying three critical modules: patient-level contrastive
loss, class-aware sample selection, and label correction. The main novelties and contributions are:

* We design a class-specific correction module that mitigates the bias toward negative labels and
corrects noisy labels to learn correct label dependencies. (Addressing Challenge 1 and Challenge
2).

* We propose a patient-level contrastive regularization loss that promotes generating a cross-modal
and longitudinal representation for each patient, alleviating the impact of label noise under high-
noise scenarios. (Addressing Challenge 3).

* MIRACL demonstrates its state-of-the-art (SOTA) performance on EHR datasets (MIMIC-III/TV)
under different levels and types of multi-label noise.
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2 RELATED WORK

Multimodal Multi-Label Learning for Healthcare Existing multi-label models for healthcare are
often embedded in multimodal multitask learning, as in FlexCare | Xu et al.|(2024a); or are designed
for addressing missing modalities, as in M3Care Zhang et al.[(2022)) by imputing information from
similar patients; or originates from multimodal fusion models, as in MedFuse Hayat et al.| (2022).
However, none of the existing multimodal multi-label healthcare models considers the detrimental
effect of label noise.

Learning from Multi-Label Noise The traditional approach for handling multi-label is Binary
Cross-Entropy (BCE), which treats positive and negative samples with equal weights. To better
address imbalance, Focal Loss [Lin et al.| (2017) assigns different weights to positive and negative
samples. ASL Ridnik et al.| (2021a) adjusts the weighting scheme asymmetrically by shifting label
probabilities, effectively avoiding the contribution of negative labels with extremely low probabili-
ties. MLLSC |Ghiassi et al.| (2023) is designed for missing and corrupted labels by leveraging loss
value for true positive or false positive labels. Other involve estimating transition matrix by leverag-
ing label correlation for clean posterior calculation as in Multi-T [Li et al.| (2022b)). iLaCo Xu et al.
(2024b)) proposes an instance-level pair correction re-training strategy tailored for noisy multi-label
text classification, while failing to scale to large-scale multimodal datasets due to extra re-training.
BalanceMix |Song et al.| (2024)) is proposed to handle multi-label noise and imbalance via Mixup-
based augmentation; however, it is not directly applicable to multimodal EHR data. Thus, none of
the existing noisy multi-label learning methods considers the case on large-scale multimodal EHR
datasets. Additional discussion on recent work is provided in Appendix[A.7] In contrast to the above
methods, we propose an efficient sample-selection-based label correction method in response to all
genres of multi-label noise for multimodal data. By leveraging a patient-level contrastive regular-
ization module, we further extend its adaptability to multimodal EHR data.

3 METHODOLOGY

3.1 OVERVIEW
Overall, the proposed model contains three essential components, as shown in Fig.

* The Class-Wise Sample Selection Module: aims to calculate selection criteria Z based on in-
stance dynamics and fit a 2-component Gaussian Mixture Model (GMM) to divide samples into
three categories, which are clean sets, uncertain sets, and noisy sets, preparing for correction at
the next stage.

* The Correction Module: aims to correct the observed noisy label leveraging both label correla-
tion and the probability of being a noisy label from the mixture model.

* The Patient-Level Contrastive Learning Module: aims to generate a robust multimodal repre-
sentation by adding patient-level contrastive regularization loss.

3.2 PROBLEM FORMULATION

The multi-label learning task of multimodal data is formally defined as follows. Assuming there is a
noiseless dataset D = {(X;, Y, P;, S;)},, where N is the number of instances, X; = {27 },enr
represents the input data of instance i from modality m, from a set of modalities M. Y; = {y!}- |,
where L represents total number of classes; 3! = 1 represents the presence of class label  for
instance i as ground truth; y! = 0 otherwise. S; denotes the unique stay identifier corresponding
to instance i. P; denotes the patient identifier associated with the same instance. In practice, the
ground-truth label sets often contain substantial label noise, leading to a noisy dataset defined as
D = {(X,,Y;, P;, Si)}., where Y; = {§!}}_| is the observed noisy label set. Our objective is to
design a robust model f* to minimize the empirical risk of the model prediction sets Y; with respect
to the latent true label sets Y;, rather than the noisy label sets fﬁ
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Figure 1: Overall architecture of MIRACL

3.3 CLASS-WISE SAMPLE SELECTION STRATEGY
3.3.1 MEMORIZATION AND FORGETTING IN NOISY MULTI-LABEL LEARNING

To better distinguish clean and noisy pairs at the instance-pair level without relying on interference
of noisy label dependencies, we define the memorization difficulty D, (9!) and forgetting difficulty
Dy (1), based on the observation that clean instance-label pairs are typically easier to memorize and
harder to forget[Hu et al| (2023). To estimate how easy or difficult a label is to learn, we track how
often it is memorized and then forgotten during training. For each instance x; and label §}! (predicted
value for label 1), we define the overall difficulty D(!) as:

D(g;) = Dim (i) = Dy (i), M
where D, (7}) = Zthl ‘Ag,?(g)f)‘ as memorization difficulty over the total number of training

N T )/ n
epochs T D (71) = X A ()
equals 1 if label g Was incorrectly predicted at epoch t — 1 but correctly predicted at epoch t — rep-

as forgetting difficulty, A (9!) is an indicator function that

resenting a memorlzatlon event. Conversely, Agc ) (yl) equals 1 if g yi was correctly predicted at epoch
t — 1 but incorrectly predicted at epoch t — representing a forgetting event. Clean instance-label
pairs typically exhibit lower D, (3!), indicating they are memorized quickly and stably, whereas
noisy pairs tend to have higher memorization difficulty. By focusing on the transition dynamics of
individual label predictions, the overall difficulties provide a label-wise estimation of noise.

Selection Metric Considering the inter-dependencies inherent in multi-label learning, the rank of an
instance has been shown to effectively capture inter-label relationships without being significantly
disrupted by noisy 1nstance label pairs Xu et al| (2024b). Motivated by this, we introduce a multi-
label selection metric Z(§!) for the i-th instance and [-th label, which satisfies two key properties:
1) Leveraging reliability from a single-label perspective; 2) Identifying noisy signals by capturing
inter-label dependencies through instance-level prediction dynamics. The selection metric is defined
as,

Z(}) = aRank(j}) + (1 — a)(Dm (7)) — Dy(31})), )

where « balances the reliance on ranking-based selection versus memorization-forgetting difficulty.
We set a = 0.5 to balance the contribution of both signals. Rank(4!) is the rank of label confidence
from model predictions using the rank function Rank( ), which is highly indicative of clean positive
labels. A higher Z(7!) score suggests that label g} is more likely to be corrupted, enabling the model
to dynamically filter out noisy labels.

Sample Selection To allow the model to apply distinct correction strategies based on the estimated
label reliability, we use three-way partitioning to improve robustness under varying noise levels.
For this task, we model the normalized selection metric Z per-class and per-label using GMM,
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2 x L in total. This allows us to statistically separate samples, with each component modeling
clean or noisy samples for that category. First, we normalize the distribution Z (Eq. [2) respectively,
Z' —min(Z'
max(ZlC)—Irli(rl(Zl)C)+e
denotes the index of label; ¢ € {0,1} indicates the binary value of a class label; € is set as 1e=6
to prevent zero division errors. We partition samples into clean, uncertain, and noisy sets using
the mean of each component based on empirical observation and [Lu & He| (2022). To avoid hand-
crafted thresholds that may not generalize across noise levels, we then adopt a thresholding strategy

inspired by [Huang et al.| (2022).

using Z'¢ =

, to ensure the distribution values fall in the range from O to 1. {

Speciﬁf:ally, for each label [ and the value of the class label ¢, we model the normalized selection
score Z'® using a bimodal GMM. Let pl¢, and uflf)isy denote the mean values of the two mixture

components, with 1ff,,, < uflf)isy. Based on these thresholds, we further classify normalized selec-
tion score set S = {Z'“} into three subsets:

Sclean _ {Zlc ‘ Zlc < Mlc

clean S »

Sunce = {Zlc ‘ /’Léfean < zt < Mfl?)isy ’ )
Snoisy = {Zlc ‘ Zlc > /J“ilf)isy}'

Pairs with selection score falling below uéfean (in Sgean) are treated as clean and used directly for

training, while those above Mff)isy (in Spoisy), as well as uncertain samples in between (in Sypce), are

handled by tailored noise mitigation strategies.

To reduce computational overhead and ensure reliable fitting across all 2 x L. GMMs, we fit GMMs
per epoch |”| which both accelerates training and provides more diverse samples for stable conver-
gence.

3.4 JOINT LABEL CORRECTION

Two types of noise occur in noisy multi-label learning: false positive noise and false negative noise.
To address these issues, we have designed dedicated correction strategies for each. We refer to a set
of instance-label pairs with negative/positive labels as negative/positive pairs.

Clean Set: Pairs with scores in Scean, Which are likely to be clean, the model should improve its
trustworthiness by using the original label without performing any label correction.

Uncertain Set: Pairs with scores in Synce, We apply soft label correction by interpolating between
the model’s prediction and the original label, inspired by |Arazo et al.|(2019a). The interpolation
weight is derived from the uncertainty score U'“ based on the class-wise GMM. Specifically,
Ulc — 7' — /’Léfean
le _ ,lc b
Mnoisy Helean te

where U'¢ is clipped in the range [0, 1]. We then define soft label correction as:

}/Si)(i"t — Ul(: . }A/l(: _|_ (1 _ Ul(:) . ?lcl (5)
which is the expectation of the ground truth label for a particular uncertain sample. A lower un-
certainty score means the label is highly likely to be the original annotation, and vice versa. This

strategy is particularly effective in handling samples within the ambiguous decision boundary, al-
lowing the model to dynamically adjust the impact of clean and predicted labels during training.

“4)

Noisy Set: For pairs with scores in Syoisy, the model should trust the prediction and perform soft
label correction.

Negative Pairs: Real-world datasets often contain many true negative pairs, which can significantly
distract the model from accurately identifying false negative cases, as illustrated in | Xu et al.|(2024b)).
In addition to label correction, we apply a filtering mechanism to retain correlated negative labels
against positive labels. This filtered dataset Z~ helps retain informative negative pairs while also
improving computational efficiency. Specifically, we define the filtered score set Z~ as:

zZ-={Z"S>r},8S=YC (6)

>Computational Analysis is provided in Appendix
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where S reflects how strongly each label is supported by correlated labels in the prediction space, T
is the correlation coefficient threshold, C is the correlation matrix between the observed labels that
captures how often label & co-occurs with label j (Appendix [D). The corrected label for negative

pairs, Y9 is defined as follows:

?ZO’ ?lo € Sclean nz-
YO, Z0eSnenNZ™ ,

soft? .
VIO 70 € Spiy N2~

yio _

corr

(7

where Y€ represents the model prediction for label [ and the observed class c.

Positive Pairs: Due to the shortage of positive pairs, we propose to consider all positive pairs and
correct positive pairs based on the criteria if the selection metric Z'° is less than the mean of the

smaller mixture of that particular class ;¢ . The corrected labels for positive pairs Y are

Y“ %ll S Sclean
P = 3V 2 € Sue ®)
Yl17 le S Snoisy

3.5 CROSS-MODAL CONTRASTIVE REGULARIZATION

Contrastive learning has proven ef-
fective for learning robust multi-

modal representations by pulling to-
gether positive pairs and pushing
apart negative ones |Li et al.| (2022a)).
To avoid confusion, we note that
the term positive/negative pair here
refers to cross-modal representations
of the same instance. A key challenge
in multimodal EHRs lies in defining
what constitutes a positive pair. A
common strategy— Visit-Level con-

- LEUEL:] <>Attraction <>Repulsion .

Visit-Level

i /.\I‘I
& ¢/

Patient-Level

L

Figure 2: Conceptual illustration of Patient-Level vs. Visit-

trastive learning — treats different
modalities (e.g., structured EHR and
clinical notes) from the same hospi-
tal visit as positives, and data from all
other visits, even from the same pa-
tient, as negatives. As shown on the
left side of Fig. 2] this enforces align-
ment only within a single visit, ignoring the longitudinal nature of patient records. It fails to capture
stable patient identity across admissions and cannot leverage cross-visit evidence to resolve noise.

Level contrastive learning. While a Visit-Level approach
(left) only aligns modalities within a single visit, our Patient-
Level strategy (right) correctly leverages patient identity to
group all representations from the same patient (orange),
while separating them from a different patient (green).

3.5.1 PATIENT-LEVEL MULTIMODAL CONTRASTIVE REGULARIZATION

To address this, we propose a Patient-Level Multimodal Contrastive Loss, which softly aligns all
representations from the same patients — across visits and modalities — into a shared embedding
space. Within a mini-batch, we define positive and negative pairs based on patient identity. For an
anchor (e.g., an EHR embedding h; from patient P,), its positive set P(%) includes: 1) its cross-
modal counterpart from the same visit (e.g., a note embedding), and 2) all other representations from
P4, regardless of modality or visit. All representations from any other patients Pp form the negative
pairs.

Contrastive Loss: We apply this contrastive loss on latent embeddings extracted from modality-
specific encoders: a bidirectional LSTM |Graves et al.| (2005) to model sparse and temporal depen-
dencies in multivariate EHR sequences, and a pretrained BioBERT |Lee et al.| (2019) for capturing
domain-specific semantics from clinical notes. This allows our model to learn cross-modal and
cross-visit consistency even under noisy supervision.
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We adapt the SCL |Li et al| (2022a) to encourage patient-level alignment across modali-
ties and visits. Specifically, we concatenate the latent representations from both modality-
specific encoders—structured EHR (h(®)) and clinical notes (h¥))—into a unified set: H =
[th), R hSBE), th), cee hSB,N)] along with their corresponding patient identifiers, where B is the
batch size. The contrastive loss Econs for an anchor h; is then defined as:

Z log exp(sim(h;, hy,) /Tiemp) 9)

Econs =
Zk;&z exp(sim(h;, hy) /Tiemp)

|P
pGP(z
where P(i) denotes the set of all other representations in the batch that share the same patient
ID as h;; sim(-, ) denotes cosine similarity; and Teemp 18 @ temperature scaling factor. This loss
encourages all embeddings derived from the same patients — across modalities and visits — to
cluster in latent space, forming a stable, identity-preserving representation that supports downstream
noise correction.

The overall training pipeline of MIRACL, consisting of a warm-up phase and a correction phase, is
detailed in Appendix

Table 2: Comparison of performance on MIMIC-IV Phenotyping test dataset under different noise
conditions (p, p—). The evaluation metric is average mAP with standard deviation (in bracket) in
the last epoch across 3 runs. The best average results are highlighted in bold. *, **, and *** indicate
p < 0.05, p < 0.01, and p < 0.001.

Model Symmetric Flip Noise (%) Asymmetric Flip Noise (%) Balanced Noise (%)
(20,20) (40,40) (0,20) (0,40) (20,0) (40,0) (20,4.48) (40,8.96)
ASL 0.501(0.001) | 0.377(0.026) | 0.511(0.004) | 0.471(0.003) [0.472(0.003)| 0.448(0.006) | 0.474(0.002) | 0.458(0.011)
Focal 0.184(0.000) | 0.182(0.000) | 0.184(0.002) | 0.184(0.001) |0.188(0.003)| 0.189(0.001) | 0.185(0.002) | 0.185(0.001)
GCE 0.523(0.002) | 0.411(0.007) | 0.538(0.002) | 0.497(0.005) |0.514(0.003)| 0.446(0.005) | 0.514(0.006) | 0.469(0.002)
MLLSC | 0.196(0.011) | 0.202(0.009) | 0.202(0.005) | 0.202(0.005) [0.207(0.012)| 0.200(0.006) | 0.197(0.006) | 0.199(0.011)
MultiT | 0.522(0.000) | 0.391(0.008) | 0.546(0.004) | 0.487(0.007) [0.555(0.008)| 0.539(0.009) | 0.546(0.003) | 0.517(0.003)
MedFuse| 0.433(0.014) | 0.296(0.001) | 0.461(0.009) |0.418(0.009) |0.484(0.001)| 0.477(0.002) | 0.471(0.007) | 0.399(0.013)
M3Care | 0.432(0.001) | 0.368(0.001) | 0.444(0.001) |0.434(0.001) |0.454(0.000)| 0.449(0.001) | 0.449(0.001) | 0.436(0.001)
FlexCare| 0.510(0.004) | 0.369(0.020) | 0.542(0.003) | 0.513(0.008) |0.554(0.005)| 0.542(0.006) | 0.548(0.001) | 0.510(0.004)
MIRACL|0.540(0.002)***|0.439(0.012)**]0.560(0.004)**(0.539(0.006)*0.569(0.003)(0.557(0.001)*|0.564(0.002)***|0.537(0.001)**

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets: In this study, we utilize three datasets derived from MIMIC-III Johnson et al| (2016)
and MIMIC-IV [Johnson et al.| (2023aib), which include two multi-label learning sub-task datasets
Phenotyping for MIMIC-III PHE and MIMIC-IV PHE, and MIMIC-IV DIA (Appendix [C). We
split each dataset into training and test sets using an 8:2 ratio on a patient-wise basis. We introduce
artificial noise to the training dataset only, while keeping the test set unmodified.

Noisy Label Generation: Following prior work Xu et al.| (2024b)), we simulate three types of label
noise to assess model robustness under controlled settings, governed by a noise ratio p. They are 1)
Symmetric Noise: Each label is flipped with a uniform probability p (i.e., py = p— = p), where
p+ represents the probability of flipping a label from 1 to 0, and vice versa for p_; 2) Asymmetric
Noise: Labels are flipped with different probabilities for positive and negative pairs (p+ # p_); 3)

Balanced Flip Noise: As defined in|Xu et al. (2024b), this method ensures a similar number of flips

for both positive and negative instances: py = p, p— = LL% P+ Lavg represents the average
avg

number of positive instance-label pairs per dataset.

Baselines: We compare our approach to several baseline models for noisy multi-label learning from
two categories: 1) Multimodal multi-label healthcare models: M3Care Zhang et al.| (2022), Med-
Fuse Hayat et al.| (2022), FlexCare Xu et al.| (20244); 2) Noisy multi-label methods (built upon the
FlexCare [Xu et al.| (2024a)) backbone): Focal Loss (Focal) |Lin et al.| (2017), Asymmetric Focal
Loss (ASL) Ridnik et al.| (2021a), Generalized Cross-Entropy (GCE) |Zhang & Sabuncu| (2018),
MLLSC Ghiassi et al.| (2023)), MultiT L1 et al.| (2022b).

Evaluation Metric: Consistent with the previous literature Xu et al.| (2024b), we train the model
on the noisy training set and report the mean and standard deviation of mean average precision
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(mAP) over three independent runs on the clean test set. We evaluate model robustness based on the
average performance at the final training epoch. We have applied one-sided Student’s ¢-tests against
the second best baseline (Appendix [C).

Hyperparameter Configuration: Appendix [A23]

Table 3: Comparison of performance on MIMIC-III Phenotyping test dataset under different noise
conditions (p, p—). The evaluation metric is average mAP with standard deviation (in bracket) in
the last epoch across 3 runs.

Model Symmetric Flip Noise (%) Asymmetric Flip Noise (%) Balanced Noise (%)
(20,20) (40,40) (0,20) (0,40) (20,0) (40,0) (20,3.95) (40,7.90)
ASL 0.462(0.002) [0.316(0.012)] 0.487(0.001) | 0.450(0.001) | 0.408(0.005) | 0.321(0.004) | 0.431(0.004) | 0.411(0.004)
Focal | 0.165(0.000) |0.166(0.001)| 0.166(0.001) | 0.166(0.001) | 0.166(0.001) | 0.166(0.001) | 0.166(0.000) | 0.166(0.001)
GCE | 0.457(0.006) |0.306(0.031)| 0.481(0.003) | 0.434(0.007) | 0.444(0.005) | 0.326(0.032) | 0.454(0.004) | 0.408(0.004)
MLLSC | 0.162(0.010) |0.155(0.002)| 0.157(0.007) | 0.157(0.001) | 0.158(0.005) | 0.161(0.011) | 0.158(0.008) | 0.158(0.008)
MultiT | 0.452(0.007) |0.309(0.006)| 0.482(0.001) | 0.423(0.002) | 0.493(0.003) | 0.474(0.005) | 0.481(0.005) | 0.445(0.008)
MedFuse| 0.331(0.003) [0.252(0.001)] 0.376(0.005) | 0.326(0.001) | 0.421(0.004) | 0.400(0.015) | 0.390(0.009) | 0.349(0.012)
M3Care | 0.382(0.001) [0.316(0.002)| 0.392(0.001) | 0.379(0.000) | 0.405(0.003) | 0.401(0.002) | 0.401(0.001) | 0.384(0.001)
FlexCare| 0.441(0.006) |0.298(0.016)| 0.476(0.000) | 0.436(0.008) | 0.491(0.007) | 0.476(0.005) | 0.477(0.004) | 0.436(0.014)
MIRACL|0.469(0.006)**(0.279(0.009)|0.498(0.004)***|0.471(0.006)***|0.511(0.002)***|0.497(0.001)***|0.504(0.002) ***|0.475(0.001) ***

4.2 COMPARATIVE EVALUATION

MIMIC-1V PHE: As shown in Table[2] MIRACL achieves statistically significant, strong, and con-
sistent mAP performance across various noise conditions, outperforming other methods by over 2%.
This consistent performance demonstrates MIRACL’s robustness under all noise types. Notably,
MIRACL achieves the largest relative improvements under symmetric noise, outperforming the best
baseline by over 3.6% at 40% corruption. Under asymmetric and balanced noise, MIRACL remains
the top performer, with stable margins of 1.5%, reflecting its reliability across label corruption.
MIMIC-III PHE: As shown in Table 3} MIRACL demon-
strates consistently strong performance in a wide range of
noise configurations on MIMIC-III. While MIRACL expe-
riences a substantial drop in performance under the higher
noise level of Sym. 40%, this is expected given the fixed
hyperparameter setup used across datasets. Fig. [3|further il-
lustrates that MIRACL becomes more sensitive to the con-
trastive regularization strength .., under extreme noise.
Despite this, MIRACL continues to outperform all base-
lines in these challenging settings and achieves competitive
results even without tuning Acons, highlighting its robustness
and practical generalizability.

N MIRACL A=0.1 0547
BN MIRACL A=0.05
N MIRACL A=0.01
S MIRACL A=0.0

0450
0430 0430
. i

(40, 40)

0545 0548 0547

0540 | zI

(20, 20)

0.550 0541

o537 0540
0.525
0.500
0.475
0.450
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0.400

0.375

(40, 8.96)

Figure 3: Impact of A\ o,s on MIMIC-
Iv.

4.3 ABLATION STUDIES

In this section, we empirically eval-
uate the contributions of different

Table 4: Ablation study of MIRACL under MIMIC-IV.
components of our model by ab-

lation study. We select Symmet- MIRACL Variant]  (0,20) (20,20) (20,4.48)

ric (20, 20), Asymmetric (0, 20), and Baseline 0.542 £ 0.003]0.510 + 0.004]0.548 & 0.001

Balanced (20,4.48) noise as repre- + gon. Reg. 0.553 T 0.001(0.534 T 0.004/0.557 T 0.001
. + Correction

sentative cases to assess the effec- w/Lossonly  |0.550 % 0.002/0.530 & 0.004]0.563 = 0.002

tiveness of different model compo- w/ Mems only |0.557 £ 0.004/0.535 £ 0.004/0.561 + 0.002

nents. As shown in Table [4] Patient- w/ Rank only  |0.559 = 0.004|0.539 + 0.006|0.561 = 0.001

Con. Reg.) yields the largest perfor-

mance boost, particularly under higher noise ratios, confirming its central role in learning robust
representations. Label correction further improves performance, with Rank-based filtering outper-
forming Difficulty-based selection. The full MIRACL model consistently achieves the best perfor-
mance, demonstrating the complementary strengths of contrastive regularization and class-aware
noise correction.
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4.3.1 PATIENT-LEVEL CONTRASTIVE LEARNING ANALYSIS

We observe that the performance gain from contrastive regularization (Con. Reg.) is most pro-
nounced under high-noise conditions, as shown in Fig. 3] For instance, under Sym. 40% noise,
increasing Acons from 0.0 to 0.05 substantially improves mAP, suggesting that contrastive signals be-
come increasingly valuable as label supervision degrades. This is because, when ground-truth labels
are unreliable, our patient-level contrastive loss provides an alternative training signal by leveraging
structural consistency across modalities and visits. Notably, the performance curve shows a clear
upward trend as A.ps increases from 0.0 to 0.05 under high noise level, after which it plateaus or
slightly declines. In contrast, in low-noise settings (e.g., Sym. 20%), the effect of A\ o is relatively
mild, reflecting that corrected labels already offer strong supervision. These observations highlight
the role of contrastive regularization as an effective fallback mechanism under severe label noise.

4.3.2 CORRECTION LABELS ANALYSIS

Fig. [] illustrates the effectiveness of our label correction strat-

egy by tracking test accuracy trends over 30 training epochs un- S —
der Sym. 20% noise on MIMIC-IV phenotyping. The blue line s f/\/v\'/\ T
indicates accuracy on clean labels, orange indicates accuracy on s >

noisy labels after correction by MIRACL, and green indicates ac-  oss B e [
curacy on noisy labels without any correction. Notably, the accu- oz ~7 Noisy Accuracy wio Correction
racy of corrected noisy (orange) consistently and substantially out- o

performs its uncorrected counterpart (green) throughout training, °*® - .
highlighting the critical role of our correction pipeline in denois- ** s 1 1 2 2z =
ing supervision. This performance gap demonstrates that MIR-
ACL’s GMM-based filtering and class-aware correction effectively
recover useful signal from noisy instance-label pairs. Furthermore,
the accuracy on clean data (blue) steadily improves as noisy super-
vision improves, indicating that our correction not only rescues noisy labels, but also stabilizes
overall learning by preventing error propagation from corrupted labels.

Figure 4: MIMIC-IV (Sym.
20%).

4.3.3 SELECTION METRIC ANALYSIS

I Clean Pairs 0.08 I Clean Pairs
8 Noisy Pairs N Noisy Pairs

P

We analyze the distributions of the selection
metrics for MIMIC-1V (Fig. EI) An effective
metric should clearly separate clean from

noisy pairs. In Table e find that while

Density

Overall Difficulty (Fig. [3c) excels at isolat-  *°  “3riginai Metric valie Original Metric Value
ing clean pairs at the individual instance- -

lal%el level Eased on their learning dynamics. (2) BCE Loss (b) Prediction Rank
Conversely, Rank (Fig. 5b) implicitly cap- ~ ° — ;'::;‘ pr o
tures inter-label dependencies, as the model 2.
learns to assign correlated ranks to clinically _
related conditions. Although the BCE 10SS o | mm nerey paire
(Fig.[5a) aligns with the small-loss criterion
(pairs with small loss tend to be clean |Song
et al.| (2019)), it exhibit similarly low losses
in later epochs, making it increasingly dif-
ficult to distinguish them from clean ones
as training progresses (Appendix [B). There-
fore, we propose a Holistic Metric (Z) that
fuses these complementary signals. As shown in Fig. [5d] this fusion of pair-level dynamics and
instance-level context yields a distinctly bimodal distribution with significantly improved separation
between clean and noisy pairs, providing a robust foundation for our GMM-based selection.

S

30

-10 0 10 20
Original Metric Value

20 100 o 2
Original Metric Value

(c) Overall Difficulty (d) Holistic Metric (Z)

Figure 5: Metric Distribution (Sym. 20% Noise,
MIMIC-1V)

5 CONCLUSION

In conclusion, we present MIRACL, a unified framework that robustly addresses multi-label noise
in multimodal EHRs. We introduce a patient-level contrastive regularization loss to support cross-
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modal and cross-visit learning, along with a novel selection metric that integrates the strengths of
instance-level and rank-based learning to more effectively distinguish clean from noisy instance-
label pairs. By fitting class-wise GMMs and jointly training with corrected soft labels, MIRACL
achieves state-of-the-art performance on the MIMIC datasets. In future work, we plan to ex-
plore cross-modal attention mechanisms to further improve label reliability and extend MIRACL
to datasets with additional modalities.

10
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A  EXPERIMENTAL SETUP & IMPLEMENTATION DETAILS

A.1 PREDICTION TASKS

* Phenotyping(PHE): A multi-label classification problem that classifies which of 25 acute care
conditions are present in a given patient ICU stay record.

 Diagnosis(DIA): A multi-label classification problem that predicts 14 diagnosis conditions.

A.2 DATASET AND PREPROCESSING
A.2.1 DATASET DOWNLOAD

Please check our GitHub repository https://github.com/anon-coder—-def /MIRACL for
more details. You will first need to request access to download MIMIC dataset.

A.2.2 PREPROCESSING

Due to the limited number of multimodal multi-label learning datasets, we choose 3 EHR-based
datasets to further validate our approach.

* MIMIC-1V (PHE, DIA) [Johnson et al.| (2023bja) Phenotyping, Diagnosis: We use the same pre-
processing procedure as Xu et al.| (2024a) for MIMIC-IV.

e MIMIC-III (PHE) Johnson et al.| (2016)): We use the same preprocessing procedure as |Harutyun-
yan et al.|(2019) for EHR. For clinical notes, we adapt the Khadanga et al.[(2019) to extract clinical
notes and use a maximum length of 512 for each.

Table 5: Statistics of the Multimodal Multi-Label dataset, T'S refers to time series, 1" refers to
Clinical Notes.

Task Prediction Task Modality #Records L L,y

MIMIC-IV PHE Clinical Phenotype {T'S,T'} 59,798 25 4575
MIMIC-IV DIA  Clinical Diagnosis  {7'S,T'} 132,576 14 2.246
MIMIC-III PHE Clinical Phenotype {7'S,T'} 41,904 25 4.126

A.3 BASELINE DESCRIPTION

Baselines: We use FlexCare |Xu et al| (2024a) as the backbone model for noisy multi-label ap-
proaches and compare our approach to several baseline models with same hyperparameter setting:

* Focal Loss (Focal) [Lin et al.| (2017): Addresses class imbalance by focusing more on hard-to-
classify examples.

* Asymmetric Focal Loss (ASL) Ridnik et al.|(2021b): Modifies Focal Loss to better handle label
imbalance in multi-label settings by assigning different weights to relevant and irrelevant labels.

* Generalised Cross-Entropy (GCE) Zhang & Sabuncul (2018)): A robust loss function designed
for noisy multi-label classification, combining properties of mean absolute error (MAE) and cross-
entropy (CE) for better noise tolerance.

* MLLSC Ghiassi et al.|(2023)): Handles missing and corrupted labels by leveraging loss values for
both true-positive and false-positive labels to improve model robustness.

* MultiT [Li et al.|(2022b)): Utilises label correlations to estimate a transition matrix for noisy multi-
label learning, effectively aligning observed labels with true labels to mitigate label noise.

We also compare our approach against existing multimodal healthcare model:
* M3Care Zhang et al.|(2022): Proposes an end-to-end multimodal framework that addresses miss-

ing modalities in healthcare data by imputing missing modalities information from similar pa-
tients.
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* MedFuse Hayat et al.| (2022): A lightweight and flexible multimodal model that projects each
modality (e.g., time-series EHR, medical images) into a shared latent space using modality-
specific encoders, by a LSTM fusion-based module

* FlexCare Xu et al.|(2024a)): A flexible multimodal multitask framework that decomposes parallel
task prediction into asynchronous single-task outputs, uses task-agnostic representation learning
with covariance regularization across modalities, and integrates these via a task-guided hierarchi-
cal fusion module to support multimodal multi-label EHR prediction.

A.4 OVERALL TRAINING PROCEDURE

A.4.1 WARM-UP PHASE:

As demonstrated by |Arazo et al.| (2019b), cross-entropy loss distribution naturally fits a mixture
model with theoretical justification. Similarly, in the multi-label setting, the binary cross-entropy

(BCE) loss Lpee = — (17 . log(f/) +(1- 17) -log(1 — Y)) We treat L. as a regularization term
and incorporate it into the final objective:

Ewarmup = Ebce + )\cons : Econ& (10)
where A\qops is a weighting coefficient controlling the strength of the contrastive regularization.

A.4.2 CORRECTION PHASE:

We fit the computed selection scores to Gaussian Mixture Models from the last epoch over the entire
dataset. We then perform Label correction based on the sample selection mechanism derived from
the GMMs. We train using the corrected BCE loss Leorr = Lice(Yeorrs Y) for the remainder of the
training period: At the beginning of training, the model relies more on the corrected loss to mitigate
the influence of label noise. As training progresses and the model learns more robust representations,
the weights gradually shifts towards the standard BCE loss, balancing the contributions of both
components dynamically.

Mathematically, the weighted loss Ly.cighiea is defined as:

ﬁweighted = Bt Ecorr +(1 - Bt) Lbce +)\cons : ECOnSa (1 1)
where T represents max epoch, J; increases linearly with epoch ¢ that transitions smoothly from
an initial value By = 1 to a final value 3y = 0.5 for stabilising the final stages of training in label
correction framework |Arazo et al.| (2019b). The detailed algorithm is shown below in Algorithmm

vie =ule.yle 4 (1 -U'le).vte (12)

YZO’ ZZO € Sclean nz-
YO =8V0, Z0eSpenZ2™ (13)

corr soft?

}A/ZO, A= Sm,isy nzZ-

where ¢ = 0 indicates the observed negative class; ylo represents model prediction for label [ and
observed class 0.

?l17 le S ‘Sclean
Yo = { Yot 2" € Sunce (14)
Y'll7 le c Snoisy
where ¢ = 1 indicates the observed positive class; yH represents model prediction for label [ and
observed class 1; Y.'¢, denotes the expected soft label refined by the uncertainty-aware correction

strategy (see Equation[12).

A.5 MODEL IMPLEMENTATION AND HYPERPARAMETER

All experiments are performed on the High-Performance Computing infrastructure using PyTorch
1.11.0 and an NVIDIA A100 GPU. To maintain fairness in comparisons, we apply consistent hy-
perparameter settings and neural network architecture across all experiments. Early stopping is not
used, as we assume the unavailability of a clean validation set, reflecting real-world conditions.
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Algorithm 1 MIRACL: Multi-modal Instance Relabelling And Correction for multi-Label noise

1: Input: Multi-label Dataset D, learning rate 1, max epochs 7', warmup time t,qrmup
2: Qutput: Trained Model M

3: Initialise model M

4: for epocht = 1to T do

5 if t <twarmup then
6: Update Lyarmup
7: else _
8: Calibrate Y using Equation ,
9: Update Lycighed With Yoo by Equation
10: end if
11: if ¢ > tyarmup then
12: for=1to C do
13: forc=0to1do
14: Fit GMM", select Seiean, Sunces Shoisy
15: end for
16: end for
17: end if
18: end for

19: return Trained Model M

A.5.1 IMPLEMENTATION DETAIL

Each baseline model is trained independently with the same hyperparameter settings. Each model
is trained for 30 epochs using the Adam optimizer, with an initial learning rate of 10~3 scheduled
via cosine annealing (Tpmax = 10, Mmin = 0), batch size of 128, a warm-up period of 5, a correla-
tion threshold of 7 = 0.02, a regularization strength coefficient ., = 0.1, and a selection metric
coefficient of « = 0.5. For each noise type, experiments are repeated three times with three dif-
ferent random seeds = {30, 40, 100}. To prevent overfitting to corrected labels, we apply a weight
decay parameter of 1e~® when initiating label correction. The noise ratios are defined as follows:
p—,py+ € {0.2,0.4} for Symmetric; Asymmetric Flip Noise p_, p; € {0,0.2,0.4}; Balanced
Noise py = p € {0.2,0.4},p_ = {0.0448,0.0896} respectively for MIMIC-IV phenotyping,
p— ={0.0395,0.0790} for MIMIC-III phenotyping and p_ = {0.0382,0.0764} for diagnosis.

A.5.2 BASELINE SETTING

We use FlexCare Xu et al.[ (2024a) as the backbone model for noisy multi-label approaches and
compare our approach to several baseline models with same hyperparameter setting:

* FlexCare[Xu et al.|(2024a)): layers=4, expert_k=2, expert_total=10, hidden_dim = 128, ehr_dim =
76, max-length = 512

* Focal Loss (Focal) [Lin et al| (2017): Focusing parameter v = 2.0, Alpha-balancing weight
a=0.25

* Asymmetric Focal Loss (ASL) Ridnik et al.| (2021b)): Negative focusing parameter v_ = 4.0,
Positive focusing parameter v = 1.0, Probability margin (clipping) m = 0.05,

* Generalised Cross-Entropy (GCE) Zhang & Sabuncul (2018)): Default parameters, designed to
be robust to noise.

* MLLSC Ghiassi et al.| (2023): Positive threshold 7,,; = 0.55, Negative threshold 7,4, = 0.6,
Margin m = 1.0, Gamma v = 2.0

* MultiT |Li et al.|(2022b)): Default parameters, designed to perform loss correction based on esti-
mated transition matrix 7.

* M3Care Zhang et al|[(2022)): hidden_dim = 128, ehr_dim = 76, dropout = 0.1

* MedFuse Hayat et al.[(2022): hidden_dim = 128, ehr_dim = 76, dropout = 0.1
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Table 6: Computation time comparison for different models under Sym. 20% condition. Computa-
tion time (h) refers to the time for a single run

Model Name \ Computation Time (h)
MedFuse 3.108
MultiT 3.979
M3Care 3.118
FlexCare 3.884
MIRACL (Ours) 4.104

A.6 COMPUTATIONAL ANALYSIS

Despite incorporating L x 2 Gaussian Mixture Model (GMM) for dynamic sample selection, MIR-
ACL does not introduce significant computational since it does not rely on re-training strategy
against corrected labels. As shown in Table [f] its total training time remains comparable to other
advanced baselines. This efficiency stems from our design choice to fit the GMM once per epoch
rather than per batch, and only after the warm-up phase, which amortizes the cost and avoids redun-
dant computation. This demonstrates that MIRACL achieves robust noise correction with gradual
increase in training time. Notably, most of the time complexity stems from the underlying Flex-
Care backbone shared by MIRACL, rather than the noise modeling module itself.

A.7 OTHER RELATED WORKS

Label noise under EHR is gaining more attention recently. Initial efforts in addressing single-
label noise underlying a neighbor consistency regularization approach in unimodal EHR |Yang et al.
(2024). MEDFuse Phan et al.|(2024) presents a LLM-enhanced multimodal EHR fusion framework
with masked lab-test modeling. While their method emphasizes imputation and masked recovery
with LLMs, our framework instead targets label denoising with a model-agnostic backbone, offer-
ing complementary contributions. Zhan et al.|(2023) introduces a reliability-based cleaning method
using inductive conformal prediction, which shares our goal of identifying trustworthy samples
in noisy multimodal contexts. However, MIRACL further integrates label ranking and modality-
specific difficulty into the sample selection pipeline. |[Li et al.| (2025) dynamically augments and
calibrates labels in EHRs by modeling temporal uncertainty under time series data. In contrast,
MIRACL performs static and progressive correction via joint relabeling, and explicitly accounts for
cross-modal inconsistencies rather than purely temporal calibration. In the image domain, BoMD
Chen et al.| (2023) introduces descriptor-based re-labeling for noisy multi-label classification in chest
X-rays. While BoMD focuses on image-noise structure, our work addresses multimodal fusion with
textual and temporal signals and supplements with patient-level contrastive regularization during
correction.

Contrastive learning offers a compelling solution by enforcing alignment through multimodal in-
stance or class-level objectives. While supervised contrastive learning (SCL)Chen et al.| (2020)
has shown strong performance, recent efforts extend it into noisy [L1 et al.| (2022a) and medical
domains |[Wang et al.| (2022)). However, there is still a critical gap: no prior work has adapted patient-
level contrastive learning for the unique pairing of structured EHRs and clinical notes, nor has it
been investigated as a mechanism to mitigate label noise by leveraging longitudinal patient context.

B ADDITIONAL ANALYSIS AND VISUALIZATIONS

B.1 SELECTION METRIC ANALYSIS

Figure [6|presents a comparative analysis of BCE loss, ranking, and overall difficulty across training
epochs for clean and noisy instance-label pairs under symmetric (40%,40%) label noise. Among
the three, memorization-based metrics (Fig. 1c) demonstrate the strongest discriminative power dur-
ing the early training phase (e.g., epochs 0—40), where the curves for clean and noisy pairs—both
positive and negative—are clearly separable. This behavior aligns with the prior observation that
deep networks tend to fit clean samples earlier.
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Figure 6: Comparison of metrics such as BCE Loss, Ranks, and Overall Difficulty across 100 train-
ing epochs using the Vanilla FlexCare model under 5% of MIMIC-Phenotyping Dataset with Sym-
metric (20%, 20%) flip noise.

Table 7: Statistical comparison of MIRACL vs. second-best baseline under each noise setting (based
on test mAP over 3 runs) on MIMIC-IV phenotyping.

Noise Type (p+,p—) Second-best p-value  Significance

(20,20) GCE 0.00082 ok
(40,40) GCE 0.00288 ok
(0,20) MultiT 0.00807 ok
(0,40) FlexCare 0.01233 *
(20,0) MultiT 0.05908

(40,0) FlexCare 0.03163 *
(20,4.48) FlexCare 0.00002 ok
(40,8.96) MultiT 0.00367 ok

In contrast, ranking-based indicators (Fig. 1b) become more stable and reliable in later training
stages (after epoch 50), consistently assigning higher ranks to clean positive labels while maintaining
a steady gap between clean and noisy pairs. This suggests that rank-based selection becomes more
robust once the model has formed high-confidence predictions.

These observations validate our two-stage design: leveraging difficulty metric in the early phase to
identify clean pairs based on learning dynamics, and adopting rank-based metrics in the later phase
to exploit the model’s matured confidence estimates.

B.2 SENSITIVITY ANALYSIS FOR GMM INITALIZATION

GMM does have some dependence on initialization, but in our setting the effect is very small. We
evaluated the symmetric-20initializations and observed only minor fluctuations in performance. The
coefficient of variation (CV) across runs is below 1(mAP: 0.61%, F1: 0.73%, F1 class: 0.98%), and
the score ranges are narrow (e.g., mAP varies from 0.5433 to 0.5499). These results show that the
selection scores form a stable bimodal structure, so different GMM initializations lead to nearly
identical clean/noisy assignments. The small run-to-run variance suggests that GMM initialization
does not materially affect MIRACL’s robustness.

B.3 BIMODAL ASSUMPTION VERIFICATION

Fig. [7]illustrates the selection-metric distributions and GMM fits for the five rarest phenotypes in
MIMIC-IV under Sym. 20% setting. These conditions represent the most challenging scenarios for
identifying clean versus noisy samples due to extremely low prevalence and high label imbalance.
For each phenotype—Acute cerebrovascular disease, Acute myocardial infarction, Gastrointestinal
hemorrhage, Other upper respiratory disease, and Pleurisy/Pneumothorax/Pulmonary collapse—the
empirical density displays a distinct two-mode structure. The dominant mode corresponds to easy-
to-learn (clean) samples with low selection scores, while a secondary, smaller mode captures harder
or potentially noisy samples.
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Table 8: Statistical comparison of MIRACL vs. second-best baseline under each noise setting (based
on test mAP over 3 runs) on MIMIC-III phenotyping.

Noise Type (p+,p—) Second-best p-value  Significance

(20,20) ASL 0.00610 ok
(40,40) ASL 0.98795

(0,20) ASL 0.00057 ok
(0,40) ASL 0.00068 ok
(20,0) MultiT 0.00328 ok
(40,0) FlexCare 0.01053 *
(20,3.95) MultiT 0.00771 ok
(40,7.90) MultiT 0.01376 *
Metric Mean + Std CvV Range
mAP 0.5468 £0.0033 0.61% 0.5433-0.5499
Fl 0.5794 +£0.0042 0.73% 0.5755-0.5839

F1_Class 0.4349 £0.0043 0.98% 0.4305-0.4390

Table 9: Stability of MIRACL under different GMM initialization seeds. The table reports the mean,
standard deviation, coefficient of variation (CV), and value range across five runs. The low standard
deviations and CV (< 1% for all metrics) indicate that MIRACL’s GMM-based selection is highly
robust to initialization.

Across all five cases, the fitted 2-component GMMs clearly separate these two regimes with strong
component separation, consistent BIC improvements, and silhouette scores around 0.68. These
results provide empirical evidence that the bimodal assumption underlying MIRACL’s class-aware
correction remains valid even for rare phenotypes with severe class imbalance.

C FULL QUANTITATIVE RESULTS & CHECKLIST

C.1 MIMIC-IV DIAGNOSIS EXPERIMENT:

While MIRACL demonstrates state-of-the-art performance on the phenotyping task, our results from
Table [T0] show that it does not consistently outperform M3Care in the diagnosis setting. This dis-
crepancy is attributable to the distinct architectural priorities of the two models in the face of extreme
modality missingness. The diagnosis dataset suffers from severe data sparsity, with 76.3% of time-
series and 32.6% of clinical notes absent. M3Care is explicitly designed to handle this challenge
through robust modality-specific pathways and dropout mechanisms. In contrast, MIRACL’s core
strength lies in leveraging cross-modal signals for label noise correction. When one or both modal-
ities are frequently absent, MIRACL’s ability to cross-reference evidence is fundamentally limited,
reducing its advantage. Nevertheless, MIRACL consistently ranks as the second-best model across
most noise configurations, indicating strong generalization despite missing data. This analysis un-
derscores that robustness to label noise and robustness to missing modalities are distinct challenges,
and MIRACL is highly specialized for the former. Future work could explore hybrid architectures
that combine MIRACL’s sophisticated label correction with M3Care’s proven robustness to missing
data.

C.2 STATISTICAL TESTING

We perform one-sided Student’s ¢-tests (across 3 runs) comparing MIRACL to the second-best base-
line under each noise condition on MIMIC-III (Table [8) Phenotyping and MIMIC-IV Phenotyping
(Table . Significance is marked in the table using *, **, and ***, indicating p<0.05, p<0.01, and
p<0.001, respectively. All tests compare test mAP scores under the same seeds.
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Figure 7: Selection metric distributions and 2-component GMM fits for the five rarest phenotypes in
MIMIC-IV under Symm. 20% setting. All cases show a clear bimodal structure separating easy-to-
learn (clean) and hard-to-learn (noisy) regimes, supporting the GMM assumption used in MIRACL’s
class-aware correction module.

Table 10: Comparison of performance on MIMIC-IV Diagnosis test dataset under different noise
conditions (p4, p—). The evaluation metric is average mAP with standard deviation (in bracket) in
the last epoch across 3 runs.

Model Symmetric Flip Noise (%) Asymmetric Flip Noise (%) Balanced Noise (%)
(20,20) (40,40) (0,20) (0,40) (20,0) (40,0) (20,3.82) (40,7.64)

ASL 0.207(0.006) | 0.197(0.004) | 0.221(0.003) | 0.211(0.004) | 0.198(0.010) | 0.197(0.013) | 0.202(0.010) | 0.196(0.005)
Focal 0.18(0.000) | 0.167(0.011) | 0.18(0.000) | 0.174(0.011) | 0.173(0.012) | 0.167(0.011) | 0.167(0.011) | 0.18(0.000)
GCE 0.193(0.006) | 0.193(0.003) | 0.208(0.004) | 0.195(0.007) | 0.193(0.004) | 0.189(0.003) | 0.19(0.001) | 0.193(0.002)
MLLSC | 0.157(0.007) | 0.154(0.002) | 0.153(0.002) | 0.157(0.006) | 0.159(0.006) | 0.159(0.006) | 0.157(0.006) | 0.159(0.006)
MultiT 0.2(0.004) | 0.193(0.003) | 0.218(0.006) | 0.195(0.002) | 0.23(0.001) | 0.22(0.016) | 0.214(0.021) | 0.196(0.009)
M3Care | 0.219(0.000) | 0.206(0.000) | 0.222(0.000) | 0.22(0.000) | 0.224(0.000) | 0.223(0.000) | 0.224(0.000) | 0.22(0.000)
MedFuse | 0.208(0.001) | 0.195(0.001) | 0.214(0.002) | 0.212(0.001) | 0.218(0.004) | 0.217(0.001) | 0.216(0.003) | 0.209(0.001)
FlexCare | 0.194(0.007) | 0.194(0.004) | 0.214(0.009) | 0.212(0.010) | 0.231(0.001) | 0.219(0.017) | 0.209(0.013) | 0.198(0.008)
MIRACL | 0.219(0.000) | 0.207(0.002) | 0.223(0.001) | 0.22(0.001) | 0.228(0.001) | 0.225(0.001) | 0.225(0.002) | 0.219(0.001)

D TECHNICAL DETAILS OF LABEL CORRELATION MATRIX

We construct the label correlation matrix C € RY* using label co-occurrence statistics across the
training set. Each entry C), ; reflects the normalized co-occurrence frequency between label £ and
label j, defined as:

0, k=3j

Cr,j = S Y Yig k+#j

Sry iy Yk Yiy) J
where Y; ; € {0,1} indicates whether the j-th label is assigned to the i-th instance. The row
normalization ensures that each row of C sums to 1, facilitating a probabilistic interpretation of
inter-label dependency.
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