

MIRACL: A ROBUST FRAMEWORK FOR MULTI-LABEL LEARNING ON NOISY MULTIMODAL ELECTRONIC HEALTH RECORDS

006 **Anonymous authors**

007 Paper under double-blind review

ABSTRACT

013 Multimodal Electronic Health Records (EHRs), comprising structured time-series
 014 data and unstructured clinical notes, offer complementary views of patient health.
 015 However, multi-label prediction tasks on multimodal EHR data, such as phenotyping,
 016 are hindered by potential label noise, including false positives and negatives.
 017 Existing noisy-label learning methods, often designed for single-label vision data,
 018 fail to capture real label-dependencies or account for the cross-modal, longitudinal
 019 nature of EHRs. To address this, we propose MIRACL (**M**ultimodal **I**nstance
 020 **R**elabelling **A**nd **C**orrection for multi-**L**abel noise (MIRACL¹)), a novel frame-
 021 work that systematically addresses these challenges. Notably, MIRACL is the first
 022 framework designed to explicitly leverage longitudinal patient context to resolve
 023 more challenging multi-label noise scenarios. To achieve this, MIRACL unifies
 024 three synergistic mechanisms: (1) a difficulty- and rank-based metric for robust
 025 identification of noisy instance-label pairs, (2) a class-aware correction module for
 026 robust label refinements, promoting the recovery of real label-dependencies, and
 027 (3) a patient-level contrastive regularization loss that leverages both cross-modal
 028 and longitudinal patient context to correct for noisy supervision across different
 029 visits. Extensive experiments on large-scale multimodal EHR datasets (MIMIC-
 030 III/IV) demonstrate that MIRACL achieves state-of-the-art robustness, improving
 031 test mAP by over 2% under various noise levels.

1 INTRODUCTION

034 Electronic Health Records (EHRs) data are usually gathered from multimodal sources, providing
 035 complementary views of a patient’s health. This includes structured data such as temporal medi-
 036 cal records (vital signs and lab test results) and unstructured data such as clinical notes (symptom
 037 descriptions and the reason for symptoms). Combining both modalities is crucial: while structured
 038 data reflect objective physiological signals, unstructured notes capture nuanced physician interpre-
 039 tations, such as symptom reasoning or context, underscoring the need for reliable multimodal fu-
 040 sion. A fundamental task in this domain is multi-label prediction (e.g., Phenotyping), where each
 041 patient can exhibit multiple conditions simultaneously. This requires models that can handle seman-
 042 tics of multi-label and heterogeneous modality. Multi-label noise in multimodal EHRs additionally
 043 presents a major obstacle to reliable multi-label prediction. Table 1 illustrates these challenges by
 044 providing two patient examples. The goal is to learn a robust multi-label model to predict the correct
 045 diagnoses (unobserved ground truth) instead of noisy diagnoses (observed but noisy labels).

046 **Challenge 1: Learning from noisy single-label.** Noisy prediction for patient P1001 suffers from
 047 straightforward Flip Noise, where a Bipolar Disorder label is missing despite clear evidence in the
 048 notes (a *false negative*), while a Shock label is added without any supporting evidence from EHR or
 049 clinical notes (a *false positive*).

050 **Challenge 2: Corrupted dependency enforcement under label noise.** Patient P1002’s first visit
 051 (row 2) demonstrates that the model reinforces a dependency that is corrupted by noisy labels: the
 052 flipped $\tilde{y}_{\text{Diabetes}} = 0$ (i.e., the noisy label incorrectly marks Diabetes as absent) distorts the Dia-
 053 betes \leftrightarrow Hypertension association learned during training. Consequently, despite strong evidence

¹<https://github.com/anon-coder-def/MIRACL>

Patient	Key EHR	Note Summary	Ground Truth	Noisy Labels	Noisy Prediction
P1001	• HR=97 • SpO2=95% • SBP=95	• Bipolar, Heroin abuse. • No abnormal vitals noted.	1 Bipolar 0 Shock 0 Sepsis	0 Bipolar 1 Shock 0 Sepsis	0 Bipolar 1 Shock 0 Sepsis
P1002	• HR=85 • SpO2=96% • SBP=160	• Currently on medication for diabetes .	1 Diabetes 0 Bipolar 1 Hypertension	0 Diabetes 1 Bipolar 1 Hypertension	0 Diabetes 1 Bipolar 0 Hypertension
P1002	• HR=90 • SBP=125	• Follow-up for uncontrolled Diabetes . • Antihypertensive medication .	1 Diabetes 0 Bipolar 1 Hypertension	1 Diabetes 0 Bipolar 0 Hypertension	1 Diabetes 0 Bipolar 0 Hypertension

Table 1: Phenotyping examples of two patients. Noisy Prediction represents the predictions by FlexCare Xu et al. (2024a) using a training set contaminated by Symmetric Flip Noise. Colorbox: Noisy Labels (Observed) against Ground Truth (Unobserved) (red : false positive cases, blue : false negative cases, green : true cases). Font color: *Noisy Prediction* against *Ground Truth* (red: incorrect, green: correct). The 1/0 denotes the binary status of a label.

(SBP=160) and a correctly observed (noisy) label for Hypertension, the model under-predicts Hypertension (0). Thus, dependent label noise propagates errors across labels by enforcing corrupted inter-label structure rather than failing to learn any dependency.

Challenge 3: Synthesizing fragmented evidence across both modalities and patient visits. The second visit of Patient P1002 (row 3) presents a complex inference problem. The ground truth, Hypertension is contaminated by a false negative. Correctly inferring this condition requires a model to perform longitudinal cross-modal reasoning: the model must integrate historical numerical evidence from Visit 1’s EHR (an SBP of 160, which meets the clinical threshold for hypertension) with current textual evidence from Visit 2’s note, which mentions antihypertensive medication.

Together, these examples highlight the necessity for robust multimodal multi-label learning methods that can: (1) correct both positive and negative label errors with high precision, (2) restore the underlying structure of clinical comorbidities from the noisy labels, and (3) leverage complementary information across both modalities and longitudinal patient information.

Existing research in noisy label learning either focuses on single-label image classification Han et al. (2018); Chen et al. (2019), or adopts global reweighting schemes Arazo et al. (2019a). While some recent methods explore multi-label noise Li et al. (2022b); Ghiassi et al. (2023); Xu et al. (2024b) or targeted multimodal medical models Zhang et al. (2022); Hayat et al. (2022); Xu et al. (2024a), they lack a unified mechanism to simultaneously (1) perform efficient instance-level correction to enable the learning of real label-dependencies, and (2) learn a robust model tailored to multimodal EHR data.

To bridge these gaps, we propose **MIRACL**: a Multimodal Instance Relabeling And Correction framework for noisy multimodal multi-label EHR data. We are the first to systematically address multi-label noise in multimodal EHRs by unifying three critical modules: patient-level contrastive loss, class-aware sample selection, and label correction. The main novelties and contributions are:

- We design a class-specific correction module that mitigates the bias toward negative labels and corrects noisy labels to learn correct label dependencies. (Addressing Challenge 1 and Challenge 2).
- We propose a patient-level contrastive regularization loss that promotes generating a cross-modal and longitudinal representation for each patient, alleviating the impact of label noise under high-noise scenarios. (Addressing Challenge 3).
- MIRACL demonstrates its state-of-the-art (SOTA) performance on EHR datasets (MIMIC-III/IV) under different levels and types of multi-label noise.

108

2 RELATED WORK

110 **Multimodal Multi-Label Learning for Healthcare** Existing multi-label models for healthcare are
 111 often embedded in multimodal multitask learning, as in FlexCare Xu et al. (2024a); or are designed
 112 for addressing missing modalities, as in M3Care Zhang et al. (2022) by imputing information from
 113 similar patients; or originates from multimodal fusion models, as in MedFuse Hayat et al. (2022).
 114 However, none of the existing multimodal multi-label healthcare models considers the detrimental
 115 effect of label noise.

116 **Learning from Multi-Label Noise** The traditional approach for handling multi-label is Binary
 117 Cross-Entropy (BCE), which treats positive and negative samples with equal weights. To better
 118 address imbalance, Focal Loss Lin et al. (2017) assigns different weights to positive and negative
 119 samples. ASL Ridnik et al. (2021a) adjusts the weighting scheme asymmetrically by shifting label
 120 probabilities, effectively avoiding the contribution of negative labels with extremely low probabilities.
 121 MLLSC Ghiassi et al. (2023) is designed for missing and corrupted labels by leveraging loss
 122 value for true positive or false positive labels. Other involve estimating transition matrix by leverag-
 123 ing label correlation for clean posterior calculation as in Multi-T Li et al. (2022b). iLaCo Xu et al.
 124 (2024b) proposes an instance-level pair correction re-training strategy tailored for noisy multi-label
 125 text classification, while failing to scale to large-scale multimodal datasets due to extra re-training.
 126 BalanceMix Song et al. (2024) is proposed to handle multi-label noise and imbalance via Mixup-
 127 based augmentation; however, it is not directly applicable to multimodal EHR data. Thus, none of
 128 the existing noisy multi-label learning methods considers the case on large-scale multimodal EHR
 129 datasets. Additional discussion on recent work is provided in Appendix A.7. In contrast to the above
 130 methods, we propose an efficient sample-selection-based label correction method in response to all
 131 genres of multi-label noise for multimodal data. By leveraging a patient-level contrastive regular-
 132 ization module, we further extend its adaptability to multimodal EHR data.

133

3 METHODOLOGY

134

3.1 OVERVIEW

135 Overall, the proposed model contains three essential components, as shown in Fig. 1:

136

- 137 • The **Class-Wise Sample Selection Module**: aims to calculate selection criteria Z based on in-
 138 stance dynamics and fit a 2-component Gaussian Mixture Model (GMM) to divide samples into
 139 three categories, which are clean sets, uncertain sets, and noisy sets, preparing for correction at
 140 the next stage.
- 141 • The **Correction Module**: aims to correct the observed noisy label leveraging both label corre-
 142 lation and the probability of being a noisy label from the mixture model.
- 143 • The **Patient-Level Contrastive Learning Module**: aims to generate a robust multimodal repre-
 144 sentation by adding patient-level contrastive regularization loss.

145

3.2 PROBLEM FORMULATION

146 The multi-label learning task of multimodal data is formally defined as follows. Assuming there is a
 147 noiseless dataset $\mathcal{D} = \{(X_i, Y_i, P_i, S_i)\}_{i=1}^N$, where N is the number of instances, $X_i = \{x_i^m\}_{m \in M}$
 148 represents the input data of instance i from modality m , from a set of modalities M . $Y_i = \{y_i^l\}_{l=1}^L$,
 149 where L represents total number of classes; $y_i^l = 1$ represents the presence of class label l for
 150 instance i as ground truth; $y_i^l = 0$ otherwise. S_i denotes the unique stay identifier corresponding
 151 to instance i . P_i denotes the patient identifier associated with the same instance. In practice, the
 152 ground-truth label sets often contain substantial label noise, leading to a noisy dataset defined as
 153 $\tilde{\mathcal{D}} = \{(X_i, \tilde{Y}_i, P_i, S_i)\}_{i=1}^N$ where $\tilde{Y}_i = \{\tilde{y}_i^l\}_{l=1}^L$ is the observed noisy label set. Our *objective* is to
 154 design a robust model f^* to minimize the empirical risk of the model prediction sets \hat{Y}_i with respect
 155 to the latent true label sets Y_i , rather than the noisy label sets \tilde{Y}_i .

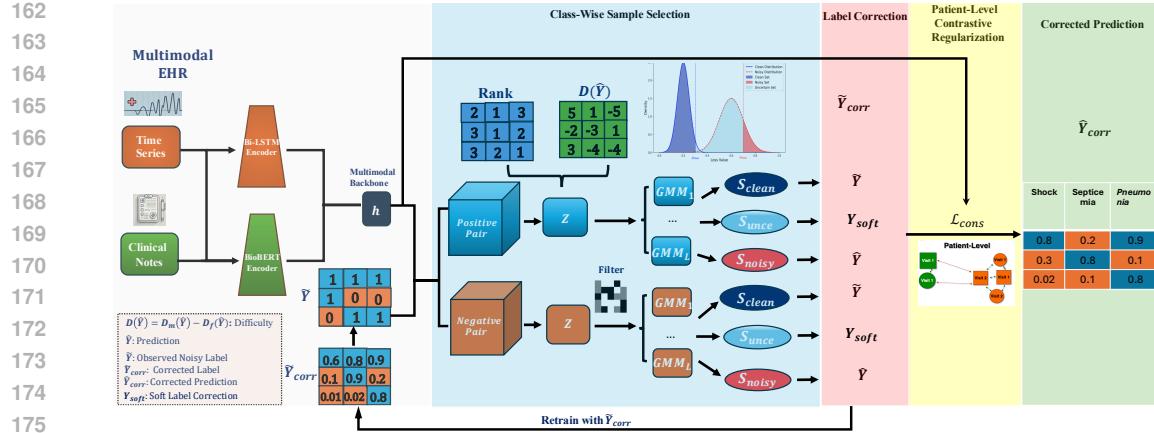


Figure 1: Overall architecture of MIRACL

3.3 CLASS-WISE SAMPLE SELECTION STRATEGY

3.3.1 MEMORIZATION AND FORGETTING IN NOISY MULTI-LABEL LEARNING

To better distinguish clean and noisy pairs at the instance-pair level without relying on interference of noisy label dependencies, we define the memorization difficulty $D_m(\hat{y}_i^l)$ and forgetting difficulty $D_f(\hat{y}_i^l)$, based on the observation that clean instance-label pairs are typically easier to memorize and harder to forget Hu et al. (2023). To estimate how easy or difficult a label is to learn, we track how often it is memorized and then forgotten during training. For each instance x_i and label \hat{y}_i^l (predicted value for label l), we define the overall difficulty $D(\hat{y}_i^l)$ as:

$$D(\hat{y}_i^l) = D_m(\hat{y}_i^l) - D_f(\hat{y}_i^l), \quad (1)$$

where $D_m(\hat{y}_i^l) = \sum_{t=1}^T |\Delta_m^{(t)}(\hat{y}_i^l)|$ as memorization difficulty over the total number of training epochs T , $D_f(\hat{y}_i^l) = \sum_{t=1}^T |\Delta_f^{(t)}(\hat{y}_i^l)|$ as forgetting difficulty, $\Delta_m^{(t)}(\hat{y}_i^l)$ is an indicator function that equals 1 if label \hat{y}_i^l was *incorrectly predicted at epoch $t-1$ but correctly predicted at epoch t* — representing a memorization event. *Conversely*, $\Delta_f^{(t)}(\hat{y}_i^l)$ equals 1 if \hat{y}_i^l was *correctly predicted at epoch $t-1$ but incorrectly predicted at epoch t* — representing a forgetting event. Clean instance-label pairs typically exhibit lower $D_m(\hat{y}_i^l)$, indicating they are memorized quickly and stably, whereas noisy pairs tend to have higher memorization difficulty. By focusing on the transition dynamics of individual label predictions, the overall difficulties provide a label-wise estimation of noise.

Selection Metric Considering the inter-dependencies inherent in multi-label learning, the rank of an instance has been shown to effectively capture inter-label relationships without being significantly disrupted by noisy instance-label pairs Xu et al. (2024b). Motivated by this, we introduce a multi-label selection metric $Z(\hat{y}_i^l)$ for the i -th instance and l -th label, which satisfies two key properties: 1) Leveraging reliability from a single-label perspective; 2) Identifying noisy signals by capturing inter-label dependencies through instance-level prediction dynamics. The selection metric is defined as,

$$Z(\hat{y}_i^l) = \alpha \text{Rank}(\hat{y}_i^l) + (1 - \alpha)(D_m(\hat{y}_i^l) - D_f(\hat{y}_i^l)), \quad (2)$$

where α balances the reliance on ranking-based selection versus memorization-forgetting difficulty. We set $\alpha = 0.5$ to balance the contribution of both signals. $\text{Rank}(\hat{y}_i^l)$ is the rank of label confidence from model predictions using the rank function $\text{Rank}(\cdot)$, which is highly indicative of clean positive labels. A higher $Z(\hat{y}_i^l)$ score suggests that label \hat{y}_i^l is more likely to be corrupted, enabling the model to dynamically filter out noisy labels.

Sample Selection To allow the model to apply distinct correction strategies based on the estimated label reliability, we use three-way partitioning to improve robustness under varying noise levels. For this task, we model the normalized selection metric \tilde{Z} per-class and per-label using GMM,

216 $2 \times L$ in total. This allows us to statistically separate samples, with each component modeling
 217 clean or noisy samples for that category. First, we normalize the distribution Z (Eq. 2) respectively,
 218 using $\tilde{Z}^{lc} = \frac{Z^{lc} - \min(Z^{lc})}{\max(Z^{lc}) - \min(Z^{lc}) + \epsilon}$, to ensure the distribution values fall in the range from 0 to 1. l
 219 denotes the index of label; $c \in \{0, 1\}$ indicates the binary value of a class label; ϵ is set as $1e^{-6}$
 220 to prevent zero division errors. We partition samples into clean, uncertain, and noisy sets using
 221 the mean of each component based on empirical observation and Lu & He (2022). To avoid hand-
 222 crafted thresholds that may not generalize across noise levels, we then adopt a thresholding strategy
 223 inspired by Huang et al. (2022).
 224

225 Specifically, for each label l and the value of the class label c , we model the normalized selection
 226 score \tilde{Z}^{lc} using a bimodal GMM. Let μ_{clean}^{lc} and μ_{noisy}^{lc} denote the mean values of the two mixture
 227 components, with $\mu_{\text{clean}}^{lc} < \mu_{\text{noisy}}^{lc}$. Based on these thresholds, we further classify normalized selec-
 228 tion score set $\mathcal{S} = \{\tilde{Z}^{lc}\}$ into three subsets:
 229

$$\begin{aligned}\mathcal{S}_{\text{clean}} &= \{\tilde{Z}^{lc} \mid \tilde{Z}^{lc} \leq \mu_{\text{clean}}^{lc}\}, \\ \mathcal{S}_{\text{unce}} &= \{\tilde{Z}^{lc} \mid \mu_{\text{clean}}^{lc} < \tilde{Z}^{lc} < \mu_{\text{noisy}}^{lc}\}, \\ \mathcal{S}_{\text{noisy}} &= \{\tilde{Z}^{lc} \mid \tilde{Z}^{lc} \geq \mu_{\text{noisy}}^{lc}\}.\end{aligned}\quad (3)$$

234 Pairs with selection score falling below μ_{clean}^{lc} (in $\mathcal{S}_{\text{clean}}$) are treated as clean and used directly for
 235 training, while those above μ_{noisy}^{lc} (in $\mathcal{S}_{\text{noisy}}$), as well as uncertain samples in between (in $\mathcal{S}_{\text{unce}}$), are
 236 handled by tailored noise mitigation strategies.

237 To reduce computational overhead and ensure reliable fitting across all $2 \times L$ GMMs, we **fit GMMs**
 238 **per epoch**², which both accelerates training and provides more diverse samples for stable conver-
 239 gence.

241 3.4 JOINT LABEL CORRECTION

243 Two types of noise occur in noisy multi-label learning: false positive noise and false negative noise.
 244 To address these issues, we have designed dedicated correction strategies for each. We refer to a set
 245 of instance-label pairs with negative/positive labels as *negative/positive pairs*.

246 **Clean Set:** Pairs with scores in $\mathcal{S}_{\text{clean}}$, which are likely to be clean, the model should improve its
 247 trustworthiness by using the original label without performing any label correction.

248 **Uncertain Set:** Pairs with scores in $\mathcal{S}_{\text{unce}}$, we apply soft label correction by interpolating between
 249 the model’s prediction and the original label, inspired by Arazo et al. (2019a). The interpolation
 250 weight is derived from the uncertainty score U^{lc} based on the class-wise GMM. Specifically,
 251

$$U^{lc} = \frac{\tilde{Z}^{lc} - \mu_{\text{clean}}^{lc}}{\mu_{\text{noisy}}^{lc} - \mu_{\text{clean}}^{lc} + \epsilon}, \quad (4)$$

254 where U^{lc} is clipped in the range $[0, 1]$. We then define soft label correction as:
 255

$$Y_{\text{soft}}^{lc} = U^{lc} \cdot \hat{Y}^{lc} + (1 - U^{lc}) \cdot \tilde{Y}^{lc}. \quad (5)$$

257 which is the expectation of the ground truth label for a particular uncertain sample. A lower un-
 258 certainty score means the label is highly likely to be the original annotation, and vice versa. This
 259 strategy is particularly effective in handling samples within the ambiguous decision boundary, al-
 260 lowing the model to dynamically adjust the impact of clean and predicted labels during training.

261 **Noisy Set:** For pairs with scores in $\mathcal{S}_{\text{noisy}}$, the model should trust the prediction and perform soft
 262 label correction.

263 **Negative Pairs:** Real-world datasets often contain many true negative pairs, which can significantly
 264 distract the model from accurately identifying false negative cases, as illustrated in Xu et al. (2024b).
 265 In addition to label correction, we apply a filtering mechanism to retain correlated negative labels
 266 against positive labels. This filtered dataset \mathcal{Z}^- helps retain informative negative pairs while also
 267 improving computational efficiency. Specifically, we define the filtered score set \mathcal{Z}^- as:

$$\mathcal{Z}^- = \{\tilde{Z}^{lc} \mid \mathbf{S} > \tau\}, \mathbf{S} = \tilde{\mathbf{Y}} \mathbf{C} \quad (6)$$

²Computational Analysis is provided in Appendix A.6

270 where \mathbf{S} reflects how strongly each label is supported by correlated labels in the prediction space, τ
 271 is the correlation coefficient threshold, \mathbf{C} is the correlation matrix between the observed labels that
 272 captures how often label k co-occurs with label j (Appendix D). The corrected label for negative
 273 pairs, $\tilde{Y}_{\text{corr}}^{l0}$ is defined as follows:
 274

$$\tilde{Y}_{\text{corr}}^{l0} = \begin{cases} \tilde{Y}^{l0}, & \tilde{Z}^{l0} \in \mathcal{S}_{\text{clean}} \cap \mathcal{Z}^- \\ \textcolor{blue}{Y}_{\text{soft}}^{l0}, & \tilde{Z}^{l0} \in \mathcal{S}_{\text{unce}} \cap \mathcal{Z}^- \\ \hat{Y}^{l0}, & \tilde{Z}^{l0} \in \mathcal{S}_{\text{noisy}} \cap \mathcal{Z}^- \end{cases} \quad (7)$$

275 where \hat{Y}^{lc} represents the model prediction for label l and the observed class c .
 276

277 **Positive Pairs:** Due to the shortage of positive pairs, we propose to consider all positive pairs and
 278 correct positive pairs based on the criteria if the selection metric \tilde{Z}^{lc} is less than the mean of the
 279 smaller mixture of that particular class μ_{clean}^{lc} . The corrected labels for positive pairs $\tilde{Y}_{\text{corr}}^{l1}$ are:
 280

$$\tilde{Y}_{\text{corr}}^{l1} = \begin{cases} \tilde{Y}^{l1}, & \tilde{Z}^{l1} \in \mathcal{S}_{\text{clean}} \\ \textcolor{blue}{Y}_{\text{soft}}^{l1}, & \tilde{Z}^{l1} \in \mathcal{S}_{\text{unce}} \\ \hat{Y}^{l1}, & \tilde{Z}^{l1} \in \mathcal{S}_{\text{noisy}} \end{cases} \quad (8)$$

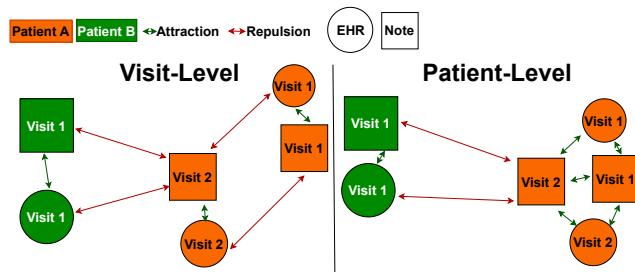
289 3.5 CROSS-MODAL CONTRASTIVE REGULARIZATION

290
 291 Contrastive learning has proven ef-
 292 fective for learning robust multi-
 293 modal representations by pulling to-
 294 gether positive pairs and pushing
 295 apart negative ones Li et al. (2022a).
 296 To avoid confusion, we note that
 297 the term *positive/negative pair* here
 298 refers to cross-modal representations
 299 of the same instance. A key challenge
 300 in multimodal EHRs lies in defining
 301 what constitutes a positive pair. A
 302 common strategy— Visit-Level con-
 303 trastive learning — treats different
 304 modalities (e.g., structured EHR and
 305 clinical notes) from the same hos-
 306 pital visit as positives, and data from all
 307 other visits, even from the same pa-
 308 tient, as negatives. As shown on the
 309 left side of Fig. 2, this enforces align-
 310 ment only within a single visit, ignor-
 311 ing the longitudinal nature of patient
 312 records. It fails to capture
 313 stable patient identity across admis-
 314 sions and cannot leverage cross-visit
 315 evidence to resolve noise.
 316

317 3.5.1 PATIENT-LEVEL MULTIMODAL CONTRASTIVE REGULARIZATION

318 To address this, we propose a Patient-Level Multimodal Contrastive Loss, which softly aligns all
 319 representations from the same patients — across visits and modalities — into a shared embedding
 320 space. Within a mini-batch, we define positive and negative pairs based on *patient identity*. For an
 321 anchor (e.g., an EHR embedding \mathbf{h}_i from patient P_A), its positive set $P(i)$ includes: 1) its cross-
 322 modal counterpart from the same visit (e.g., a note embedding), and 2) all other representations from
 323 P_A , regardless of modality or visit. All representations from any other patients P_B form the negative
 324 pairs.

325 **Contrastive Loss:** We apply this contrastive loss on latent embeddings extracted from modality-
 326 specific encoders: a bidirectional LSTM Graves et al. (2005) to model sparse and temporal depen-
 327 dencies in multivariate EHR sequences, and a pretrained BioBERT Lee et al. (2019) for capturing
 328 domain-specific semantics from clinical notes. This allows our model to learn cross-modal and
 329 cross-visit consistency even under noisy supervision.



326 Figure 2: Conceptual illustration of Patient-Level vs. Visit-
 327 Level contrastive learning. While a Visit-Level approach
 328 (left) only aligns modalities within a single visit, our Patient-
 329 Level strategy (right) correctly leverages patient identity to
 330 group all representations from the same patient (orange),
 331 while separating them from a different patient (green).

We adapt the SCL Li et al. (2022a) to encourage patient-level alignment across modalities and visits. Specifically, we concatenate the latent representations from both modality-specific encoders—structured EHR ($\mathbf{h}^{(E)}$) and clinical notes ($\mathbf{h}^{(N)}$)—into a unified set: $\mathbf{H} = [\mathbf{h}_1^{(E)}, \dots, \mathbf{h}_B^{(E)}, \mathbf{h}_1^{(N)}, \dots, \mathbf{h}_B^{(N)}]$ along with their corresponding patient identifiers, where B is the batch size. The contrastive loss $\mathcal{L}_{\text{cons}}$ for an anchor \mathbf{h}_i is then defined as:

$$\mathcal{L}_{\text{cons}} = -\frac{1}{|P(i)|} \sum_{p \in P(i)} \log \frac{\exp(\text{sim}(\mathbf{h}_i, \mathbf{h}_p)/\tau_{\text{temp}})}{\sum_{k \neq i} \exp(\text{sim}(\mathbf{h}_i, \mathbf{h}_k)/\tau_{\text{temp}})}, \quad (9)$$

where $P(i)$ denotes the set of all other representations in the batch that share the same patient ID as \mathbf{h}_i ; $\text{sim}(\cdot, \cdot)$ denotes cosine similarity; and τ_{temp} is a temperature scaling factor. This loss encourages all embeddings derived from the same patients — across modalities and visits — to cluster in latent space, forming a stable, identity-preserving representation that supports downstream noise correction.

The overall training pipeline of MIRACL, consisting of a warm-up phase and a correction phase, is detailed in Appendix A.4.

Table 2: Comparison of performance on MIMIC-IV Phenotyping test dataset under different noise conditions (ρ_+ , ρ_-). The evaluation metric is average mAP with standard deviation (in bracket) in the last epoch across 3 runs. The best average results are highlighted in **bold**. *, **, and *** indicate $p < 0.05$, $p < 0.01$, and $p < 0.001$.

Model	Symmetric Flip Noise (%)		Asymmetric Flip Noise (%)				Balanced Noise (%)	
	(20,20)	(40,40)	(0,20)	(0,40)	(20,0)	(40,0)	(20,4.48)	(40,8.96)
ASL	0.501(0.001)	0.377(0.026)	0.511(0.004)	0.471(0.003)	0.472(0.003)	0.448(0.006)	0.474(0.002)	0.458(0.011)
Focal	0.184(0.000)	0.182(0.000)	0.184(0.002)	0.184(0.001)	0.188(0.003)	0.189(0.001)	0.185(0.002)	0.185(0.001)
GCE	0.523(0.002)	0.411(0.007)	0.538(0.002)	0.497(0.005)	0.514(0.003)	0.446(0.005)	0.514(0.006)	0.469(0.002)
MLLSC	0.196(0.011)	0.202(0.009)	0.202(0.005)	0.202(0.005)	0.207(0.012)	0.200(0.006)	0.197(0.006)	0.199(0.011)
MultiT	0.522(0.000)	0.391(0.008)	0.546(0.004)	0.487(0.007)	0.555(0.008)	0.539(0.009)	0.546(0.003)	0.517(0.003)
MedFuse	0.433(0.014)	0.296(0.001)	0.461(0.009)	0.418(0.009)	0.484(0.001)	0.477(0.002)	0.471(0.007)	0.399(0.013)
M3Care	0.432(0.001)	0.368(0.001)	0.444(0.001)	0.434(0.001)	0.454(0.000)	0.449(0.001)	0.449(0.001)	0.436(0.001)
FlexCare	0.510(0.004)	0.369(0.020)	0.542(0.003)	0.513(0.008)	0.554(0.005)	0.542(0.006)	0.548(0.001)	0.510(0.004)
MIRACL	0.540(0.002)***	0.439(0.012)**	0.560(0.004)***	0.539(0.006)*	0.569(0.003)	0.557(0.001)*	0.564(0.002)***	0.537(0.001)**

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets: In this study, we utilize three datasets derived from MIMIC-III Johnson et al. (2016) and MIMIC-IV Johnson et al. (2023a;b), which include two multi-label learning sub-task datasets Phenotyping for MIMIC-III PHE and MIMIC-IV PHE, and MIMIC-IV DIA (Appendix C). We split each dataset into training and test sets using an 8:2 ratio **on a patient-wise basis**. We introduce [artificial noise to the training dataset only, while keeping the test set unmodified](#).

Noisy Label Generation: Following prior work Xu et al. (2024b), we simulate three types of label noise to assess model robustness under controlled settings, governed by a noise ratio ρ . They are 1) *Symmetric Noise*: Each label is flipped with a uniform probability ρ (i.e., $\rho_+ = \rho_- = \rho$), where ρ_+ represents the probability of flipping a label from 1 to 0, and vice versa for ρ_- ; 2) *Asymmetric Noise*: Labels are flipped with different probabilities for positive and negative pairs ($\rho_+ \neq \rho_-$); 3) *Balanced Flip Noise*: As defined in Xu et al. (2024b), this method ensures a similar number of flips for both positive and negative instances: $\rho_+ = \rho$, $\rho_- = \frac{L_{avg}}{L - L_{avg}}\rho_+$, L_{avg} represents the average number of positive instance-label pairs per dataset.

Baselines: We compare our approach to several baseline models for noisy multi-label learning from two categories: 1) *Multimodal multi-label healthcare models*: **M3Care** Zhang et al. (2022), **MedFuse** Hayat et al. (2022), **FlexCare** Xu et al. (2024a); 2) *Noisy multi-label methods* (built upon the FlexCare Xu et al. (2024a) backbone): **Focal Loss (Focal)** Lin et al. (2017), **Asymmetric Focal Loss (ASL)** Ridnik et al. (2021a), **Generalized Cross-Entropy (GCE)** Zhang & Sabuncu (2018), **MLLSC** Ghiassi et al. (2023), **MultiT** Li et al. (2022b).

Evaluation Metric: Consistent with the previous literature Xu et al. (2024b), we train the model on the *noisy* training set and report the *mean and standard deviation* of mean average precision

(mAP) over three independent runs on the *clean* test set. We evaluate model robustness based on the average performance at the *final training epoch*. We have applied one-sided Student's *t*-tests against the second best baseline (Appendix C).

Hyperparameter Configuration: Appendix A.5.

Table 3: Comparison of performance on MIMIC-III Phenotyping test dataset under different noise conditions (ρ_+ , ρ_-). The evaluation metric is average mAP with standard deviation (in bracket) in the last epoch across 3 runs.

Model	Symmetric Flip Noise (%)		Asymmetric Flip Noise (%)			Balanced Noise (%)	
	(20,20)	(40,40)	(0,20)	(0,40)	(20,0)	(40,0)	(20,3.95)
ASL	0.462(0.002)	0.316(0.012)	0.487(0.001)	0.450(0.001)	0.408(0.005)	0.321(0.004)	0.431(0.004)
Focal	0.165(0.000)	0.166(0.001)	0.166(0.001)	0.166(0.001)	0.166(0.001)	0.166(0.001)	0.166(0.001)
GCE	0.457(0.006)	0.306(0.031)	0.481(0.003)	0.434(0.007)	0.444(0.005)	0.326(0.032)	0.454(0.004)
MLLSC	0.162(0.010)	0.155(0.002)	0.157(0.007)	0.157(0.001)	0.158(0.005)	0.161(0.011)	0.158(0.008)
MultiT	0.452(0.007)	0.309(0.006)	0.482(0.001)	0.423(0.002)	0.493(0.003)	0.474(0.005)	0.481(0.005)
MedFuse	0.331(0.003)	0.252(0.001)	0.376(0.005)	0.326(0.001)	0.421(0.004)	0.400(0.015)	0.390(0.009)
M3Care	0.382(0.001)	0.316(0.002)	0.392(0.001)	0.379(0.000)	0.405(0.003)	0.401(0.002)	0.401(0.001)
FlexCare	0.441(0.006)	0.298(0.016)	0.476(0.000)	0.436(0.008)	0.491(0.007)	0.476(0.005)	0.477(0.004)
MIRACL	0.469(0.006)***	0.279(0.009)	0.498(0.004)***	0.471(0.006)***	0.511(0.002)***	0.497(0.001)***	0.504(0.002)***
							0.475(0.001)***

4.2 COMPARATIVE EVALUATION

MIMIC-IV PHE: As shown in Table 2, MIRACL achieves statistically significant, strong, and consistent mAP performance across various noise conditions, outperforming other methods by over 2%. This consistent performance demonstrates MIRACL's robustness under all noise types. Notably, MIRACL achieves the largest relative improvements under symmetric noise, outperforming the best baseline by over 3.6% at 40% corruption. Under asymmetric and balanced noise, MIRACL remains the top performer, with stable margins of 1.5%, reflecting its reliability across label corruption.

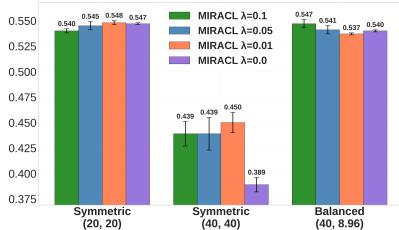


Figure 3: Impact of λ_{cons} on MIMIC-IV.

MIMIC-III PHE: As shown in Table 3, MIRACL demonstrates consistently strong performance in a wide range of noise configurations on MIMIC-III. While MIRACL experiences a substantial drop in performance under the higher noise level of Sym. 40%, this is expected given the fixed hyperparameter setup used across datasets. Fig. 3 further illustrates that MIRACL becomes more sensitive to the contrastive regularization strength λ_{cons} under extreme noise. Despite this, MIRACL continues to outperform all baselines in these challenging settings and achieves competitive results even without tuning λ_{cons} , highlighting its robustness and practical generalizability.

4.3 ABLATION STUDIES

In this section, we empirically evaluate the contributions of different components of our model by ablation study. We select Symmetric (20, 20), Asymmetric (0, 20), and Balanced (20, 4.48) noise as representative cases to assess the effectiveness of different model components. As shown in Table 4, Patient-Level Contrastive Regularization (+ Con. Reg.) yields the largest performance boost, particularly under higher noise ratios, confirming its central role in learning robust representations. Label correction further improves performance, with Rank-based filtering outperforming Difficulty-based selection. The full MIRACL model consistently achieves the best performance, demonstrating the complementary strengths of contrastive regularization and class-aware noise correction.

Table 4: Ablation study of MIRACL under MIMIC-IV.

MIRACL Variant	(0,20)	(20,20)	(20,4.48)
Baseline	0.542 ± 0.003	0.510 ± 0.004	0.548 ± 0.001
+ Con. Reg.	0.553 ± 0.001	0.534 ± 0.004	0.557 ± 0.001
+ Correction	/	/	/
w/ Loss only	0.550 ± 0.002	0.530 ± 0.004	0.563 ± 0.002
w/ Mems only	0.557 ± 0.004	0.535 ± 0.004	0.561 ± 0.002
w/ Rank only	0.559 ± 0.004	0.539 ± 0.006	0.561 ± 0.001
MIRACL	0.560 ± 0.004	0.540 ± 0.002	0.564 ± 0.002

432 4.3.1 PATIENT-LEVEL CONTRASTIVE LEARNING ANALYSIS
433

434 We observe that the performance gain from contrastive regularization (Con. Reg.) is most pro-
435 nounced under high-noise conditions, as shown in Fig. 3. For instance, under Sym. 40% noise,
436 increasing λ_{cons} from 0.0 to 0.05 substantially improves mAP, suggesting that contrastive signals be-
437 come increasingly valuable as label supervision degrades. This is because, when ground-truth labels
438 are unreliable, our patient-level contrastive loss provides an alternative training signal by leveraging
439 structural consistency across modalities and visits. Notably, the performance curve shows a clear
440 upward trend as λ_{cons} increases from 0.0 to 0.05 under high noise level, after which it plateaus or
441 slightly declines. In contrast, in low-noise settings (e.g., Sym. 20%), the effect of λ_{cons} is relatively
442 mild, reflecting that corrected labels already offer strong supervision. These observations highlight
443 the role of contrastive regularization as an effective fallback mechanism under severe label noise.
444

445 4.3.2 CORRECTION LABELS ANALYSIS
446

447 Fig. 4 illustrates the effectiveness of our label correction strat-
448 egy by tracking test accuracy trends over 30 training epochs un-
449 der Sym. 20% noise on MIMIC-IV phenotyping. The blue line
450 indicates accuracy on clean labels, orange indicates accuracy on
451 noisy labels after correction by MIRACL, and green indicates ac-
452 curacy on noisy labels without any correction. Notably, the ac-
453 curacy of corrected noisy (orange) consistently and substantially out-
454 performs its uncorrected counterpart (green) throughout training,
455 highlighting the critical role of our correction pipeline in denois-
456 ing supervision. This performance gap demonstrates that MIR-
457 ACL’s GMM-based filtering and class-aware correction effectively
458 recover useful signal from noisy instance-label pairs. Furthermore,
459 the accuracy on clean data (blue) steadily improves as noisy super-
460 vision improves, indicating that our correction not only rescues noisy labels, but also stabilizes
461 overall learning by preventing error propagation from corrupted labels.
462

463 4.3.3 SELECTION METRIC ANALYSIS
464

465 We analyze the distributions of the selection
466 metrics for MIMIC-IV (Fig. 5). An effective
467 metric should clearly separate clean from
468 noisy pairs. In Table 4, we find that while
469 Overall Difficulty (Fig. 5c) excels at isolat-
470 ing clean pairs at the individual instance-
471 label level based on their learning dynamics.
472 Conversely, Rank (Fig. 5b) implicitly cap-
473 tures inter-label dependencies, as the model
474 learns to assign correlated ranks to clinically
475 related conditions. Although the BCE loss
476 (Fig. 5a) aligns with the small-loss criterion
477 (pairs with small loss tend to be clean Song
478 et al. (2019)), it exhibits similarly low losses
479 in later epochs, making it increasingly dif-
480 ficult to distinguish them from clean ones
481 as training progresses (Appendix B). There-
482 fore, we propose a Holistic Metric (Z) that
483 fuses these complementary signals. As shown in Fig. 5d, this fusion of pair-level dynamics and
484 instance-level context yields a distinctly bimodal distribution with significantly improved separation
485 between clean and noisy pairs, providing a robust foundation for our GMM-based selection.
486

487 5 CONCLUSION
488

489 In conclusion, we present **MIRACL**, a unified framework that robustly addresses multi-label noise
490 in multimodal EHRs. We introduce a patient-level contrastive regularization loss to support cross-

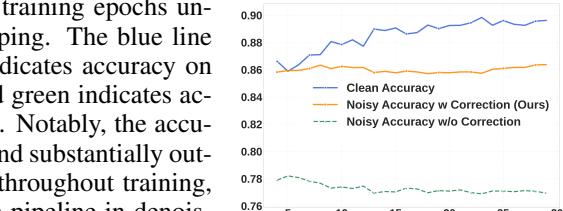


Figure 4: MIMIC-IV (Sym. 20%).

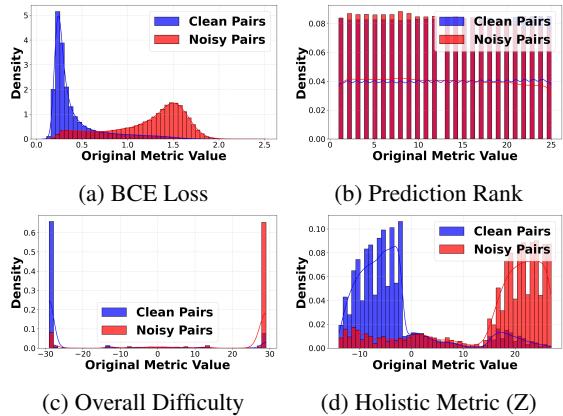


Figure 5: Metric Distribution (Sym. 20% Noise, MIMIC-IV)

9

486 modal and cross-visit learning, along with a novel selection metric that integrates the strengths of
487 instance-level and rank-based learning to more effectively distinguish clean from noisy instance-
488 label pairs. By fitting class-wise GMMs and jointly training with corrected soft labels, MIRACL
489 achieves state-of-the-art performance on the MIMIC datasets. In future work, we plan to ex-
490 plore cross-modal attention mechanisms to further improve label reliability and extend MIRACL
491 to datasets with additional modalities.

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540 REFERENCES
541

542 Eric Arazo, Diego Ortego, Paul Albert, Noel E. O’Connor, and Kevin McGuinness. Unsupervised
543 label noise modeling and loss correction. In Arazo et al. (2019a), pp. 312–321. URL <http://dblp.uni-trier.de/db/conf/icml/icml2019.html#ArazoOAOM19>.

545 Eric Arazo, Diego Ortego, Paul Albert, Noel E. O’Connor, and Kevin McGuinness. Unsupervised
546 label noise modeling and loss correction. In Arazo et al. (2019a), pp. 312–321. URL <http://dblp.uni-trier.de/db/conf/icml/icml2019.html#ArazoOAOM19>.

548 Pengfei Chen, Ben Ben Liao, Guangyong Chen, and Shengyu Zhang. Understanding and utilizing
549 deep neural networks trained with noisy labels. In *International Conference on Machine Learn-
550 ing*, pp. 1062–1070, 2019.

552 Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
553 contrastive learning of visual representations. In Hal Daumé III and Aarti Singh (eds.), *Pro-
554 ceedings of the 37th International Conference on Machine Learning*, volume 119 of *Proceed-
555 ings of Machine Learning Research*, pp. 1597–1607. PMLR, 13–18 Jul 2020. URL <https://proceedings.mlr.press/v119/chen20j.html>.

557 Yuanhong Chen, Fengbei Liu, Hu Wang, Chong Wang, Yuyuan Liu, Yu Tian, and Gustavo Carneiro.
558 Bomd: Bag of multi-label descriptors for noisy chest x-ray classification. In *Proceedings of
559 the IEEE/CVF International Conference on Computer Vision (ICCV)*, pp. 21284–21295, October
560 2023.

562 Amirmasoud Ghiassi, Robert Birke, and Lydia.Y Chen. Multi label loss correction against missing
563 and corrupted labels. In Emtilay Khan and Mehmet Gonen (eds.), *Proceedings of The 14th Asian
564 Conference on Machine Learning*, volume 189 of *Proceedings of Machine Learning Research*,
565 pp. 359–374. PMLR, 12–14 Dec 2023. URL <https://proceedings.mlr.press/v189/ghiassi23b.html>.

567 Alex Graves, Santiago Fernández, and Jürgen Schmidhuber. Bidirectional lstm networks for im-
568 proved phoneme classification and recognition. In *Proceedings of the 15th International Con-
569 ference on Artificial Neural Networks: Formal Models and Their Applications - Volume Part II,
570 ICANN’05*, pp. 799–804, Berlin, Heidelberg, 2005. Springer-Verlag. ISBN 3540287558.

571 Bo Han, Quanming Yao, Xingrui Yu, Gang Niu, Miao Xu, Weihua Hu, Ivor Wai-Hung Tsang, and
572 Masashi Sugiyama. Co-teaching: Robust training of deep neural networks with extremely noisy
573 labels. In *Neural Information Processing Systems*, 2018.

575 Hrayr Harutyunyan, Hrant Khachatrian, David C. Kale, Greg Ver Steeg, and Aram Galstyan. Mul-
576 titask learning and benchmarking with clinical time series data. *Scientific Data*, 6(1):96, 2019.
577 ISSN 2052-4463. doi: 10.1038/s41597-019-0103-9. URL <https://doi.org/10.1038/s41597-019-0103-9>.

579 Nasir Hayat, Krzysztof J. Geras, and Farah E. Shamout. Medfuse: Multi-modal fusion with
580 clinical time-series data and chest x-ray images. In Zachary Lipton, Rajesh Ranganath, Mark
581 Sendak, Michael Sjoding, and Serena Yeung (eds.), *Proceedings of the 7th Machine Learn-
582 ing for Healthcare Conference*, volume 182 of *Proceedings of Machine Learning Research*, pp.
583 479–503. PMLR, 05–06 Aug 2022. URL <https://proceedings.mlr.press/v182/hayat22a.html>.

585 Chuanyang Hu, Shipeng Yan, Zhitong Gao, and Xuming He. Mild: Modeling the instance learning
586 dynamics for learning with noisy labels. In Edith Elkind (ed.), *Proceedings of the Thirty-Second
587 International Joint Conference on Artificial Intelligence, IJCAI-23*, pp. 828–836. International
588 Joint Conferences on Artificial Intelligence Organization, 8 2023. doi: 10.24963/ijcai.2023/92.
589 URL <https://doi.org/10.24963/ijcai.2023/92>. Main Track.

591 Yingsong Huang, Bing Bai, Shengwei Zhao, Kun Bai, and Fei Wang. Uncertainty-aware learning
592 against label noise on imbalanced datasets. *Proceedings of the AAAI Conference on Artificial
593 Intelligence*, 36(6):6960–6969, Jun. 2022. doi: 10.1609/aaai.v36i6.20654. URL <https://ojs.aaai.org/index.php/AAAI/article/view/20654>.

594 Alistair Johnson, Tom Pollard, Steven Horng, Leo Anthony Celi, and Roger Mark. Mimic-iv-note:
 595 Deidentified free-text clinical notes. *MIMIC-IV*, 2023a.
 596

597 Alistair EW Johnson, Tom J Pollard, Lu Shen, Li-wei H Lehman, Mengling Feng, Mohammad
 598 Ghassemi, Benjamin Moody, Peter Szolovits, Leo Anthony Celi, and Roger G Mark. Mimic-iii, a
 599 freely accessible critical care database. *Scientific data*, 3:160035, 2016. doi: 10.1038/sdata.2016.
 600 35. URL <https://www.nature.com/articles/sdata201635>.

601 Alistair EW Johnson, Nandan Jethani, Lu Shen, Patrick Phillips, Zhi Lu, Tom J Pollard,
 602 Benjamin Moody, Mengling Feng, Leo Anthony Celi, and Roger G Mark. Mimic-iv,
 603 a freely accessible electronic health record dataset. *Scientific data*, 10(1):1–8, 2023b.
 604 doi: 10.1038/s41597-023-01914-7. URL <https://www.nature.com/articles/s41597-023-01914-7>.
 605

606 Swaraj Khadanga, Karan Aggarwal, Shafiq Joty, and Jaideep Srivastava. Using clinical notes
 607 with time series data for ICU management. In Kentaro Inui, Jing Jiang, Vincent Ng, and Xi-
 608 aojun Wan (eds.), *Proceedings of the 2019 Conference on Empirical Methods in Natural Lan-
 609 guage Processing and the 9th International Joint Conference on Natural Language Processing
 610 (EMNLP-IJCNLP)*, pp. 6432–6437, Hong Kong, China, November 2019. Association for Com-
 611 putational Linguistics. doi: 10.18653/v1/D19-1678. URL <https://aclanthology.org/D19-1678/>.
 612

613 Jinyuk Lee, Wonjin Yoon, Sungdong Kim, Donghyeon Kim, Sunkyu Kim, Chan Ho So, and Jae-
 614 woo Kang. BioBERT: a pre-trained biomedical language representation model for biomedical
 615 text mining. *Bioinformatics*, 09 2019. ISSN 1367-4803. doi: 10.1093/bioinformatics/btz682.
 616 URL <https://doi.org/10.1093/bioinformatics/btz682>.
 617

618 Shikun Li, Xiaobo Xia, Shiming Ge, and Tongliang Liu. Selective-supervised contrastive learning
 619 with noisy labels. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
 620 Recognition (CVPR)*, pp. 316–325, June 2022a.
 621

622 Shikun Li, Xiaobo Xia, Hansong Zhang, Yibing Zhan, Shiming Ge, and Tongliang Liu. Es-
 623 timating noise transition matrix with label correlations for noisy multi-label learning. In
 624 S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), *Advances in
 625 Neural Information Processing Systems*, volume 35, pp. 24184–24198. Curran Associates, Inc.,
 626 2022b. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/98f8c89ae042c512e6c87e0e0c2a0f98-Paper-Conference.pdf.
 627

628 Yuhao Li, Ling Luo, and Uwe Aickelin. Dynamical label augmentation and calibration for noisy
 629 electronic health records. In *Pacific-Asia Conference on Knowledge Discovery and Data Mining*,
 630 pp. 478–489. Springer, 2025.
 631

632 Tsung-Yi Lin, Priya Goyal, Ross B. Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense
 633 object detection. *2017 IEEE International Conference on Computer Vision (ICCV)*, pp. 2999–
 634 3007, 2017.
 635

636 Yangdi Lu and Wenbo He. Selc: Self-ensemble label correction improves learning with noisy labels.
 637 *IJCAI*, 2022.
 638

639 Thao Minh Nguyen Phan et al. Medfuse: Multimodal ehr data fusion with masked lab-test modeling
 640 and large language models. *arXiv preprint arXiv:2407.12309*, 2024.
 641

642 Tal Ridnik, Emanuel Ben Baruch, Nadav Zamir, Asaf Noy, Itamar Friedman, Matan Protter, and Lih
 643 Zelnik-Manor. Asymmetric loss for multi-label classification. In *ICCV* Ridnik et al. (2021a),
 644 pp. 82–91. ISBN 978-1-6654-2812-5. URL <http://dblp.uni-trier.de/db/conf/iccv/iccv2021.html#RidnikBZNFPZ21>.
 645

646 Tal Ridnik, Emanuel Ben Baruch, Nadav Zamir, Asaf Noy, Itamar Friedman, Matan Protter, and Lih
 647 Zelnik-Manor. Asymmetric loss for multi-label classification. In *ICCV* Ridnik et al. (2021a),
 648 pp. 82–91. ISBN 978-1-6654-2812-5. URL <http://dblp.uni-trier.de/db/conf/iccv/iccv2021.html#RidnikBZNFPZ21>.

648 Hwanjun Song, Minseok Kim, Dongmin Park, and Jae-Gil Lee. Prestopping: How does early
 649 stopping help generalization against label noise? *ArXiv*, abs/1911.08059, 2019.
 650

651 Hwanjun Song, Minseok Kim, and Jae-Gil Lee. Toward robustness in multi-label classification:
 652 a data augmentation strategy against imbalance and noise. In *Proceedings of the Thirty-Eighth*
 653 *AAAI Conference on Artificial Intelligence and Thirty-Sixth Conference on Innovative Applica-*
 654 *tions of Artificial Intelligence and Fourteenth Symposium on Educational Advances in Artificial*
 655 *Intelligence*, AAAI'24/IAAI'24/EAAI'24. AAAI Press, 2024. ISBN 978-1-57735-887-9. doi:
 656 10.1609/aaai.v38i19.30157. URL <https://doi.org/10.1609/aaai.v38i19.30157>.
 657

658 Zifeng Wang, Zhenbang Wu, Dinesh Agarwal, and Jimeng Sun. MedCLIP: Contrastive learn-
 659 ing from unpaired medical images and text. In Yoav Goldberg, Zornitsa Kozareva, and Yue
 660 Zhang (eds.), *Proceedings of the 2022 Conference on Empirical Methods in Natural Lan-*
 661 *guage Processing*, pp. 3876–3887, Abu Dhabi, United Arab Emirates, December 2022. Asso-
 662 ciation for Computational Linguistics. doi: 10.18653/v1/2022.emnlp-main.256. URL <https://aclanthology.org/2022.emnlp-main.256>.
 663

664 Muhao Xu, Zhenfeng Zhu, Youru Li, Shuai Zheng, Yawei Zhao, Kunlun He, and Yao Zhao. Flex-
 665 care: Leveraging cross-task synergy for flexible multimodal healthcare prediction. In *Proceedings*
 666 *of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining*, pp. 3610–
 667 3620, 2024a.

668 Pengyu Xu, Mingyang Song, Linkaida Liu, Bing Liu, Hongjian Sun, Liping Jing, and Jian Yu. Noisy
 669 multi-label text classification via instance-label pair correction. In Kevin Duh, Helena Gomez,
 670 and Steven Bethard (eds.), *Findings of the Association for Computational Linguistics: NAACL*
 671 *2024*, pp. 1446–1458, Mexico City, Mexico, June 2024b. Association for Computational Lin-
 672 *guistics*. doi: 10.18653/v1/2024.findings-naacl.93. URL <https://aclanthology.org/2024.findings-naacl.93>.
 673

674 J. Yang, H. Triendl, A. A. S. Soltan, M. Prakash, and D. A. Clifton. Addressing label noise for elec-
 675 tronic health records: insights from computer vision for tabular data. *BMC Medical Informatics*
 676 *and Decision Making*, 24(1):183, Jun 2024. doi: 10.1186/s12911-024-02581-5.
 677

678 Xianghao Zhan et al. Reliability-based cleaning of noisy training labels with inductive conformal
 679 prediction in multi-modal biomedical data mining. *arXiv preprint arXiv:2309.07332*, 2023.
 680

681 Chaohe Zhang, Xu Chu, Liantao Ma, Yinghao Zhu, Yasha Wang, Jiangtao Wang, and Junfeng
 682 Zhao. M3care: Learning with missing modalities in multimodal healthcare data. In *Proceed- *683 *ings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining*, KDD
 684 '22*, pp. 2418–2428, New York, NY, USA, 2022. Association for Computing Machinery. ISBN
 685 9781450393850. doi: 10.1145/3534678.3539388. URL <https://doi.org/10.1145/3534678.3539388>.
 686*

687 Zhili Zhang and Mert R Sabuncu. Generalized cross entropy loss for training deep neural networks
 688 with noisy labels. *Advances in Neural Information Processing Systems*, 31:8778–8788, 2018.
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701

702 CONTENTS OF APPENDIX
703

704	A Experimental Setup & Implementation Details	15
705	A.1 Prediction Tasks	15
706	A.2 Dataset and Preprocessing	15
707	A.3 Baseline Description	15
708	A.4 Overall Training Procedure	16
709	A.5 Model Implementation and Hyperparameter	16
710	A.6 Computational Analysis	18
711	A.7 Other Related Works	18
712	B Additional Analysis and Visualizations	18
713	B.1 Selection Metric Analysis	18
714	B.2 Sensitivity Analysis for GMM initialization	19
715	B.3 Bimodal Assumption Verification	19
716	C Full Quantitative Results & Checklist	20
717	C.1 MIMIC-IV Diagnosis Experiment:	20
718	C.2 Statistical Testing	20
719	D Technical Details of Label Correlation Matrix	21

730 **Reproducibility Statement.** We have taken multiple steps to ensure the reproducibility of this
 731 work. All datasets used (MIMIC-III/IV) are publicly available under credentialed access, and we
 732 provide a complete description of preprocessing and cohort construction in Appendix A.2. Details
 733 of our proposed model, training protocol, and hyperparameters are included in Appendix A.4 and
 734 Appendix A.5. To facilitate replication of our experiments, we will release the full source code
 735 and configuration files in the supplementary materials through an anonymous GitHub repository
 736 <https://github.com/anon-coder-def/MIRACL>. Upon acceptance, the complete code
 737 will be open-sourced and made publicly available on GitHub. We also report results across mul-
 738 tiple random seeds and provide ablation studies in Appendix A.5 and Sec 4.3, ensuring that the
 739 conclusions are robust to implementation choices.

740 **LLM Usage Statement.** We used a general-purpose large language model (OpenAI ChatGPT;
 741 accessed Aug–Sep 2025) strictly as a writing assistant. Concretely, it suggested grammar and style
 742 edits, helped rephrase sentences for clarity and brevity, and assisted with minor L^AT_EX formatting
 743 (e.g., equation alignment, table spacing). The LLM did *not* contribute to research ideation, prob-
 744 lem formulation, method design, theoretical results, experimental setup, code implementation, data
 745 analysis, or the writing of technical content such as proofs and related work. All scientific claims,
 746 algorithms, and results were authored and verified by the authors, who take full responsibility for
 747 the content. No non-public code, proprietary data, or patient-level information were provided to the
 748 LLM. The LLM is not listed as an author. This disclosure complies with the conference policy on
 749 LLM usage.

750
751
752
753
754
755

756 **A EXPERIMENTAL SETUP & IMPLEMENTATION DETAILS**
757758 **A.1 PREDICTION TASKS**
759760 • **Phenotyping(PHE):** A multi-label classification problem that classifies which of 25 acute care
761 conditions are present in a given patient ICU stay record.
762 • **Diagnosis(DIA):** A multi-label classification problem that predicts 14 diagnosis conditions.
763764 **A.2 DATASET AND PREPROCESSING**
765766 **A.2.1 DATASET DOWNLOAD**
767768 Please check our GitHub repository <https://github.com/anon-coder-def/MIRACL> for
769 more details. You will first need to request access to download MIMIC dataset.
770771 **A.2.2 PREPROCESSING**
772773 Due to the limited number of multimodal multi-label learning datasets, we choose 3 EHR-based
774 datasets to further validate our approach.
775776 • **MIMIC-IV (PHE, DIA)** Johnson et al. (2023b;a) Phenotyping, Diagnosis: We use the same pre-
777 processing procedure as Xu et al. (2024a) for MIMIC-IV.
778 • **MIMIC-III (PHE)** Johnson et al. (2016): We use the same preprocessing procedure as Harutyun-
779 yan et al. (2019) for EHR. For clinical notes, we adapt the Khadanga et al. (2019) to extract clinical
780 notes and use a maximum length of 512 for each.
781782 Table 5: Statistics of the Multimodal Multi-Label dataset, TS refers to time series, T refers to
783 Clinical Notes.
784

Task	Prediction Task	Modality	# Records	L	L_{avg}
MIMIC-IV PHE	Clinical Phenotype	$\{TS, T\}$	59,798	25	4.575
MIMIC-IV DIA	Clinical Diagnosis	$\{TS, T\}$	132,576	14	2.246
MIMIC-III PHE	Clinical Phenotype	$\{TS, T\}$	41,904	25	4.126

785 **A.3 BASELINE DESCRIPTION**
786787 **Baselines:** We use FlexCare Xu et al. (2024a) as the backbone model for noisy multi-label ap-
788 proaches and compare our approach to several baseline models with same hyperparameter setting:
789790 • **Focal Loss (Focal)** Lin et al. (2017): Addresses class imbalance by focusing more on hard-to-
791 classify examples.
792 • **Asymmetric Focal Loss (ASL)** Ridnik et al. (2021b): Modifies Focal Loss to better handle label
793 imbalance in multi-label settings by assigning different weights to relevant and irrelevant labels.
794 • **Generalised Cross-Entropy (GCE)** Zhang & Sabuncu (2018): A robust loss function designed
795 for noisy multi-label classification, combining properties of mean absolute error (MAE) and cross-
796 entropy (CE) for better noise tolerance.
797 • **MLLSC** Ghiasi et al. (2023): Handles missing and corrupted labels by leveraging loss values for
798 both true-positive and false-positive labels to improve model robustness.
799 • **MultiT** Li et al. (2022b): Utilises label correlations to estimate a transition matrix for noisy multi-
800 label learning, effectively aligning observed labels with true labels to mitigate label noise.
801802 We also compare our approach against existing multimodal healthcare model:
803804 • **M3Care** Zhang et al. (2022): Proposes an end-to-end multimodal framework that addresses miss-
805 ing modalities in healthcare data by imputing missing modalities information from similar pa-
806 tients.
807

- **MedFuse** Hayat et al. (2022): A lightweight and flexible multimodal model that projects each modality (e.g., time-series EHR, medical images) into a shared latent space using modality-specific encoders, by a LSTM fusion-based module
- **FlexCare** Xu et al. (2024a): A flexible multimodal multitask framework that decomposes parallel task prediction into asynchronous single-task outputs, uses task-agnostic representation learning with covariance regularization across modalities, and integrates these via a task-guided hierarchical fusion module to support multimodal multi-label EHR prediction.

818 A.4 OVERALL TRAINING PROCEDURE

820 A.4.1 WARM-UP PHASE:

821 As demonstrated by Arazo et al. (2019b), cross-entropy loss distribution naturally fits a mixture
 822 model with theoretical justification. Similarly, in the multi-label setting, the binary cross-entropy
 823 (BCE) loss $\mathcal{L}_{\text{bce}} = -(\tilde{Y} \cdot \log(\hat{Y}) + (1 - \tilde{Y}) \cdot \log(1 - \hat{Y}))$. We treat $\mathcal{L}_{\text{cons}}$ as a regularization term
 824 and incorporate it into the final objective:

$$826 \mathcal{L}_{\text{warmup}} = \mathcal{L}_{\text{bce}} + \lambda_{\text{cons}} \cdot \mathcal{L}_{\text{cons}}, \quad (10)$$

827 where λ_{cons} is a weighting coefficient controlling the strength of the contrastive regularization.

829 A.4.2 CORRECTION PHASE:

830 We fit the computed selection scores to Gaussian Mixture Models from the last epoch over the entire
 831 dataset. We then perform Label correction based on the sample selection mechanism derived from
 832 the GMMs. We train using the corrected BCE loss $\mathcal{L}_{\text{corr}} = \mathcal{L}_{\text{bce}}(\tilde{Y}_{\text{corr}}, \hat{Y})$ for the remainder of the
 833 training period: At the beginning of training, the model relies more on the corrected loss to mitigate
 834 the influence of label noise. As training progresses and the model learns more robust representations,
 835 the weights gradually shifts towards the standard BCE loss, balancing the contributions of both
 836 components dynamically.

837 Mathematically, the weighted loss $\mathcal{L}_{\text{weighted}}$ is defined as:

$$838 \mathcal{L}_{\text{weighted}} = \beta_t \mathcal{L}_{\text{corr}} + (1 - \beta_t) \mathcal{L}_{\text{bce}} + \lambda_{\text{cons}} \cdot \mathcal{L}_{\text{cons}}, \quad (11)$$

839 where T represents max epoch, β_t increases linearly with epoch t that transitions smoothly from
 840 an initial value $\beta_0 = 1$ to a final value $\beta_f = 0.5$ for stabilising the final stages of training in label
 841 correction framework Arazo et al. (2019b). The detailed algorithm is shown below in Algorithm 1.

$$843 Y_{\text{soft}}^{lc} = U^{lc} \cdot \hat{Y}^{lc} + (1 - U^{lc}) \cdot \tilde{Y}^{lc}. \quad (12)$$

$$845 \tilde{Y}_{\text{corr}}^{l0} = \begin{cases} \tilde{Y}^{l0}, & \tilde{Z}^{l0} \in \mathcal{S}_{\text{clean}} \cap \mathcal{Z}^- \\ 846 Y_{\text{soft}}^{l0}, & \tilde{Z}^{l0} \in \mathcal{S}_{\text{unc}} \cap \mathcal{Z}^- \\ 847 \hat{Y}^{l0}, & \tilde{Z}^{l0} \in \mathcal{S}_{\text{noisy}} \cap \mathcal{Z}^- \end{cases}, \quad (13)$$

848 where $c = 0$ indicates the observed negative class; \hat{Y}^{l0} represents model prediction for label l and
 849 observed class 0.

$$851 \tilde{Y}_{\text{corr}}^{l1} = \begin{cases} \tilde{Y}^{l1}, & \tilde{Z}^{l1} \in \mathcal{S}_{\text{clean}} \\ 852 Y_{\text{soft}}^{l1}, & \tilde{Z}^{l1} \in \mathcal{S}_{\text{unc}} \\ 853 \hat{Y}^{l1}, & \tilde{Z}^{l1} \in \mathcal{S}_{\text{noisy}} \end{cases}, \quad (14)$$

855 where $c = 1$ indicates the observed positive class; \hat{Y}^{l1} represents model prediction for label l and
 856 observed class 1; Y_{soft}^{lc} denotes the expected soft label refined by the uncertainty-aware correction
 857 strategy (see Equation 12).

859 A.5 MODEL IMPLEMENTATION AND HYPERPARAMETER

861 All experiments are performed on the High-Performance Computing infrastructure using PyTorch
 862 1.11.0 and an NVIDIA A100 GPU. To maintain fairness in comparisons, we apply consistent hy-
 863 perparameter settings and neural network architecture across all experiments. Early stopping is not
 used, as we assume the unavailability of a clean validation set, reflecting real-world conditions.

864 **Algorithm 1** MIRACL: Multi-modal Instance Relabelling And Correction for multi-Label noise

```

865 1: Input: Multi-label Dataset  $\mathcal{D}$ , learning rate  $\eta$ , max epochs  $T$ , warmup time  $t_{warmup}$ 
866 2: Output: Trained Model  $M$ 
867 3: Initialise model  $M$ 
868 4: for epoch  $t = 1$  to  $T$  do
869 5:   if  $t \leq t_{warmup}$  then
870 6:     Update  $\mathcal{L}_{\text{warmup}}$ 
871 7:   else
872 8:     Calibrate  $\tilde{Y}$  using Equation (13), (14)
873 9:     Update  $\mathcal{L}_{\text{weighted}}$  with  $\tilde{Y}_{\text{corr}}$  by Equation (11)
874 10:   end if
875 11:   if  $t \geq t_{warmup}$  then
876 12:     for  $l = 1$  to  $C$  do
877 13:       for  $c = 0$  to  $1$  do
878 14:         Fit GMM $^{lc}$ , select  $\mathcal{S}_{\text{clean}}$ ,  $\mathcal{S}_{\text{unc}}$ ,  $\mathcal{S}_{\text{noisy}}$ 
879 15:       end for
880 16:     end for
881 17:   end if
882 18: end for
883 19: return Trained Model  $M$ 
884
885
```

885 A.5.1 IMPLEMENTATION DETAIL

886 Each baseline model is trained independently with the same hyperparameter settings. Each model
 887 is trained for 30 epochs using the Adam optimizer, with an initial learning rate of 10^{-3} scheduled
 888 via cosine annealing ($T_{\text{max}} = 10$, $\eta_{\text{min}} = 0$), batch size of 128, a warm-up period of 5, a correlation
 889 threshold of $\tau = 0.02$, a regularization strength coefficient $\lambda_{\text{cons}} = 0.1$, and a selection metric
 890 coefficient of $\alpha = 0.5$. For each noise type, experiments are repeated three times with three dif-
 891 ferent random seeds = {30, 40, 100}. To prevent overfitting to corrected labels, we apply a weight
 892 decay parameter of $1e^{-5}$ when initiating label correction. The noise ratios are defined as follows:
 893 $\rho_{-}, \rho_{+} \in \{0.2, 0.4\}$ for Symmetric; Asymmetric Flip Noise $\rho_{-}, \rho_{+} \in \{0, 0.2, 0.4\}$; Balanced
 894 Noise $\rho_{+} = \rho \in \{0.2, 0.4\}$, $\rho_{-} = \{0.0448, 0.0896\}$ respectively for MIMIC-IV phenotyping,
 895 $\rho_{-} = \{0.0395, 0.0790\}$ for MIMIC-III phenotyping and $\rho_{-} = \{0.0382, 0.0764\}$ for diagnosis.
 896

897 A.5.2 BASELINE SETTING

898 We use FlexCare Xu et al. (2024a) as the backbone model for noisy multi-label approaches and
 899 compare our approach to several baseline models with same hyperparameter setting:
 900

- 901 • **FlexCare** Xu et al. (2024a): layers=4, expert_k=2, expert_total=10, hidden_dim = 128, ehr_dim =
 902 76, max-length = 512
- 903 • **Focal Loss (Focal)** Lin et al. (2017): Focusing parameter $\gamma = 2.0$, Alpha-balancing weight
 904 $\alpha = 0.25$
- 905 • **Asymmetric Focal Loss (ASL)** Ridnik et al. (2021b): Negative focusing parameter $\gamma_{-} = 4.0$,
 906 Positive focusing parameter $\gamma_{+} = 1.0$, Probability margin (clipping) $m = 0.05$,
- 907 • **Generalised Cross-Entropy (GCE)** Zhang & Sabuncu (2018): Default parameters, designed to
 908 be robust to noise.
- 909 • **MLLSC** Ghiasi et al. (2023): Positive threshold $\tau_{\text{pos}} = 0.55$, Negative threshold $\tau_{\text{neg}} = 0.6$,
 910 Margin $m = 1.0$, Gamma $\gamma = 2.0$
- 911 • **MultiT** Li et al. (2022b): Default parameters, designed to perform loss correction based on esti-
 912 mated transition matrix \hat{T} .
- 913 • **M3Care** Zhang et al. (2022): hidden_dim = 128, ehr_dim = 76, dropout = 0.1
- 914 • **MedFuse** Hayat et al. (2022): hidden_dim = 128, ehr_dim = 76, dropout = 0.1

918
919 Table 6: Computation time comparison for different models under Sym. 20% condition. Computation
920 time (h) refers to the time for a single run

921	Model Name	922 Computation Time (h)
923	MedFuse	3.108
924	MultiT	3.979
925	M3Care	3.118
926	FlexCare	3.884
	MIRACL (Ours)	4.104

927 928 A.6 COMPUTATIONAL ANALYSIS 929

930
931 Despite incorporating $L \times 2$ Gaussian Mixture Model (GMM) for dynamic sample selection, MIR-
932 ACL does not introduce significant computational since it does not rely on re-training strategy
933 against corrected labels. As shown in Table 6, its total training time remains comparable to other
934 advanced baselines. This efficiency stems from our design choice to fit the GMM once *per epoch*
935 ***rather than per batch***, and only after the warm-up phase, which amortizes the cost and avoids redundant
936 computation. This demonstrates that MIRACL achieves robust noise correction with gradual
937 increase in training time. **Notably, most of the time complexity stems from the underlying Flex-**
938 **Care backbone shared by MIRACL, rather than the noise modeling module itself.**

939 A.7 OTHER RELATED WORKS 940

941 Label noise under EHR is gaining more attention recently. Initial efforts in addressing single-
942 label noise underlying a neighbor consistency regularization approach in unimodal EHR Yang et al.
943 (2024). MEDFuse Phan et al. (2024) presents a LLM-enhanced multimodal EHR fusion framework
944 with masked lab-test modeling. While their method emphasizes imputation and masked recovery
945 with LLMs, our framework instead targets label denoising with a model-agnostic backbone, offering
946 complementary contributions. Zhan et al. (2023) introduces a reliability-based cleaning method
947 using inductive conformal prediction, which shares our goal of identifying trustworthy samples
948 in noisy multimodal contexts. However, MIRACL further integrates label ranking and modality-
949 specific difficulty into the sample selection pipeline. Li et al. (2025) dynamically augments and
950 calibrates labels in EHRs by modeling temporal uncertainty under time series data. In contrast,
951 MIRACL performs static and progressive correction via joint relabeling, and explicitly accounts for
952 cross-modal inconsistencies rather than purely temporal calibration. In the image domain, BoMD
953 Chen et al. (2023) introduces descriptor-based re-labeling for noisy multi-label classification in chest
954 X-rays. While BoMD focuses on image-noise structure, our work addresses multimodal fusion with
955 textual and temporal signals and supplements with patient-level contrastive regularization during
956 correction.

957 Contrastive learning offers a compelling solution by enforcing alignment through multimodal in-
958 stance or class-level objectives. While supervised contrastive learning (SCL) Chen et al. (2020)
959 has shown strong performance, recent efforts extend it into noisy Li et al. (2022a) and medical
960 domains Wang et al. (2022). However, there is still a critical gap: no prior work has adapted patient-
961 level contrastive learning for the unique pairing of structured EHRs and clinical notes, nor has it
962 been investigated as a mechanism to mitigate label noise by leveraging longitudinal patient context.

963 B ADDITIONAL ANALYSIS AND VISUALIZATIONS 964

965 B.1 SELECTION METRIC ANALYSIS 966

967 Figure 6 presents a comparative analysis of BCE loss, ranking, and overall difficulty across training
968 epochs for clean and noisy instance-label pairs under symmetric (40%, 40%) label noise. Among
969 the three, memorization-based metrics (Fig. 1c) demonstrate the strongest discriminative power during
970 the early training phase (e.g., epochs 0–40), where the curves for clean and noisy pairs—both
971 positive and negative—are clearly separable. This behavior aligns with the prior observation that
972 deep networks tend to fit clean samples earlier.

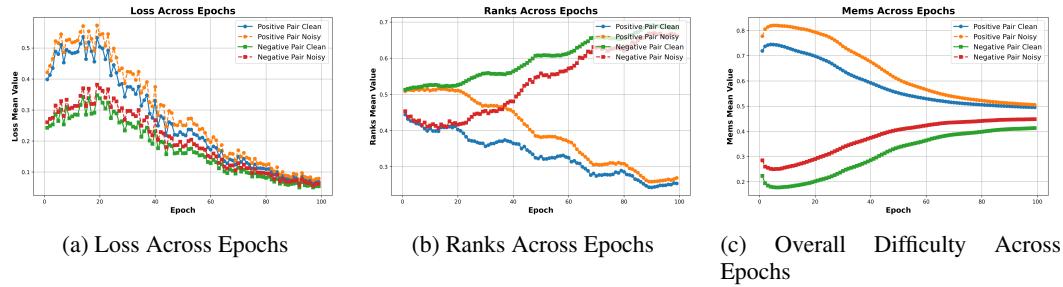


Figure 6: Comparison of metrics such as BCE Loss, Ranks, and Overall Difficulty across 100 training epochs using the Vanilla FlexCare model under 5% of MIMIC-Phenotyping Dataset with Symmetric (20%, 20%) flip noise.

Table 7: Statistical comparison of MIRACL vs. second-best baseline under each noise setting (based on test mAP over 3 runs) on MIMIC-IV phenotyping.

Noise Type (ρ_+, ρ_-)	Second-best	p-value	Significance
(20,20)	GCE	0.00082	***
(40,40)	GCE	0.00288	**
(0,20)	MultiT	0.00807	**
(0,40)	FlexCare	0.01233	*
(20,0)	MultiT	0.05908	
(40,0)	FlexCare	0.03163	*
(20,4.48)	FlexCare	0.00002	***
(40,8.96)	MultiT	0.00367	**

In contrast, ranking-based indicators (Fig. 1b) become more stable and reliable in later training stages (after epoch 50), consistently assigning higher ranks to clean positive labels while maintaining a steady gap between clean and noisy pairs. This suggests that rank-based selection becomes more robust once the model has formed high-confidence predictions.

These observations validate our two-stage design: leveraging difficulty metric in the early phase to identify clean pairs based on learning dynamics, and adopting rank-based metrics in the later phase to exploit the model’s matured confidence estimates.

B.2 SENSITIVITY ANALYSIS FOR GMM INITIALIZATION

GMM does have some dependence on initialization, but in our setting the effect is very small. We evaluated the symmetric-20 initializations and observed only minor fluctuations in performance. The coefficient of variation (CV) across runs is below 1 (mAP: 0.61%, F1: 0.73%, F1_class: 0.98%), and the score ranges are narrow (e.g., mAP varies from 0.5433 to 0.5499). These results show that the selection scores form a stable bimodal structure, so different GMM initializations lead to nearly identical clean/noisy assignments. The small run-to-run variance suggests that GMM initialization does not materially affect MIRACL’s robustness.

B.3 BIMODAL ASSUMPTION VERIFICATION

Fig. 7 illustrates the selection-metric distributions and GMM fits for the five rarest phenotypes in MIMIC-IV under Sym. 20% setting. These conditions represent the most challenging scenarios for identifying clean versus noisy samples due to extremely low prevalence and high label imbalance. For each phenotype—Acute cerebrovascular disease, Acute myocardial infarction, Gastrointestinal hemorrhage, Other upper respiratory disease, and Pleurisy/Pneumothorax/Pulmonary collapse—the empirical density displays a distinct two-mode structure. The dominant mode corresponds to easy-to-learn (clean) samples with low selection scores, while a secondary, smaller mode captures harder or potentially noisy samples.

1026 Table 8: Statistical comparison of MIRACL vs. second-best baseline under each noise setting (based
 1027 on test mAP over 3 runs) on MIMIC-III phenotyping.

1029	1030	1031	1032	1033	1034	1035	1036	1037	1038	1039	1040	1041	1042
Noise Type (ρ_+, ρ_-)	Second-best	<i>p</i> -value	Significance							Metric	Mean \pm Std	CV	Range
(20,20)	ASL	0.00610	**							mAP	0.5468 \pm 0.0033	0.61%	0.5433–0.5499
(40,40)	ASL	0.98795								F1	0.5794 \pm 0.0042	0.73%	0.5755–0.5839
(0,20)	ASL	0.00057	***							F1_Class	0.4349 \pm 0.0043	0.98%	0.4305–0.4390
(0,40)	ASL	0.00068	***										
(20,0)	MultiT	0.00328	**										
(40,0)	FlexCare	0.01053	*										
(20,3.95)	MultiT	0.00771	**										
(40,7.90)	MultiT	0.01376	*										

1043 Table 9: Stability of MIRACL under different GMM initialization seeds. The table reports the mean,
 1044 standard deviation, coefficient of variation (CV), and value range across five runs. The low standard
 1045 deviations and CV (< 1% for all metrics) indicate that MIRACL’s GMM-based selection is highly
 1046 robust to initialization.

1047
 1048
 1049
 1050 Across all five cases, the fitted 2-component GMMs clearly separate these two regimes with strong
 1051 component separation, consistent BIC improvements, and silhouette scores around 0.68. These
 1052 results provide empirical evidence that the bimodal assumption underlying MIRACL’s class-aware
 1053 correction remains valid even for rare phenotypes with severe class imbalance.

1055 C FULL QUANTITATIVE RESULTS & CHECKLIST

1058 C.1 MIMIC-IV DIAGNOSIS EXPERIMENT:

1059 While MIRACL demonstrates state-of-the-art performance on the phenotyping task, our results from
 1060 Table 10 show that it does not consistently outperform M3Care in the diagnosis setting. This dis-
 1061crepancy is attributable to the distinct architectural priorities of the two models in the face of extreme
 1062 modality missingness. The diagnosis dataset suffers from severe data sparsity, with 76.3% of time-
 1063 series and 32.6% of clinical notes absent. M3Care is explicitly designed to handle this challenge
 1064 through robust modality-specific pathways and dropout mechanisms. In contrast, MIRACL’s core
 1065 strength lies in leveraging cross-modal signals for label noise correction. When one or both modal-
 1066 ities are frequently absent, MIRACL’s ability to cross-reference evidence is fundamentally limited,
 1067 reducing its advantage. Nevertheless, MIRACL consistently ranks as the second-best model across
 1068 most noise configurations, indicating strong generalization despite missing data. This analysis un-
 1069derscores that robustness to label noise and robustness to missing modalities are distinct challenges,
 1070 and MIRACL is highly specialized for the former. Future work could explore hybrid architectures
 1071 that combine MIRACL’s sophisticated label correction with M3Care’s proven robustness to missing
 1072 data.

1075 C.2 STATISTICAL TESTING

1076 We perform one-sided Student’s *t*-tests (across 3 runs) comparing MIRACL to the second-best base-
 1077 line under each noise condition on MIMIC-III (Table 8) Phenotyping and MIMIC-IV Phenotyping
 1078 (Table 7). Significance is marked in the table using *, **, and ***, indicating $p < 0.05$, $p < 0.01$, and
 1079 $p < 0.001$, respectively. All tests compare test mAP scores under the same seeds.

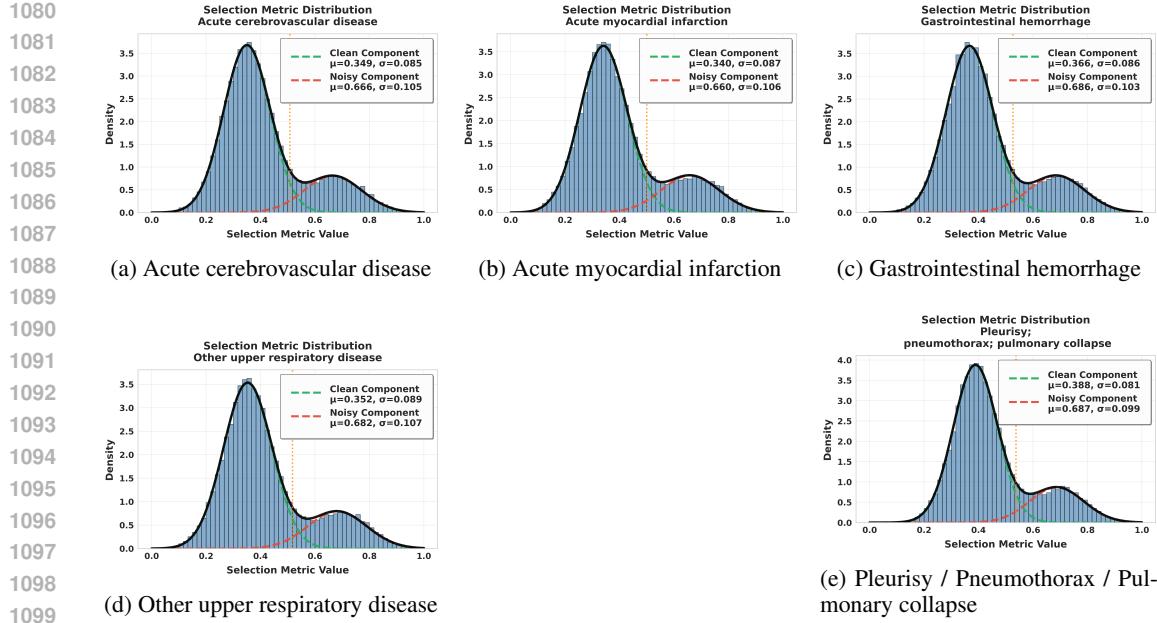


Figure 7: Selection metric distributions and 2-component GMM fits for the five rarest phenotypes in MIMIC-IV under Symm. 20% setting. All cases show a clear bimodal structure separating easy-to-learn (clean) and hard-to-learn (noisy) regimes, supporting the GMM assumption used in MIRACL’s class-aware correction module.

Table 10: Comparison of performance on MIMIC-IV Diagnosis test dataset under different noise conditions (ρ_+ , ρ_-). The evaluation metric is average mAP with standard deviation (in bracket) in the last epoch across 3 runs.

Model	Symmetric Flip Noise (%)		Asymmetric Flip Noise (%)			Balanced Noise (%)		
	(20,20)	(40,40)	(0,20)	(0,40)	(20,0)	(40,0)	(20,3.82)	(40,7.64)
ASL	0.207(0.006)	0.197(0.004)	0.221(0.003)	0.211(0.004)	0.198(0.010)	0.197(0.013)	0.202(0.010)	0.196(0.005)
Focal	0.18(0.000)	0.167(0.011)	0.18(0.000)	0.174(0.011)	0.173(0.012)	0.167(0.011)	0.167(0.011)	0.18(0.000)
GCE	0.193(0.006)	0.193(0.003)	0.208(0.004)	0.195(0.007)	0.193(0.004)	0.189(0.003)	0.19(0.001)	0.193(0.002)
MLLSC	0.157(0.007)	0.154(0.002)	0.153(0.002)	0.157(0.006)	0.159(0.006)	0.159(0.006)	0.157(0.006)	0.159(0.006)
MultiT	0.2(0.004)	0.193(0.003)	0.218(0.006)	0.195(0.002)	0.23(0.001)	0.22(0.016)	0.214(0.021)	0.196(0.009)
M3Care	0.219(0.000)	0.206(0.000)	0.222(0.000)	0.22(0.000)	0.224(0.000)	0.223(0.000)	0.224(0.000)	0.22(0.000)
MedFuse	0.208(0.001)	0.195(0.001)	0.214(0.002)	0.212(0.001)	0.218(0.004)	0.217(0.001)	0.216(0.003)	0.209(0.001)
FlexCare	0.194(0.007)	0.194(0.004)	0.214(0.009)	0.212(0.010)	0.231(0.001)	0.219(0.017)	0.209(0.013)	0.198(0.008)
MIRACL	0.219(0.000)	0.207(0.002)	0.223(0.001)	0.22(0.001)	0.228(0.001)	0.225(0.001)	0.225(0.002)	0.219(0.001)

D TECHNICAL DETAILS OF LABEL CORRELATION MATRIX

We construct the label correlation matrix $\mathbf{C} \in \mathbb{R}^{L \times L}$ using label co-occurrence statistics across the training set. Each entry $C_{k,j}$ reflects the normalized co-occurrence frequency between label k and label j , defined as:

$$C_{k,j} = \begin{cases} 0, & k = j \\ \frac{\sum_{i=1}^N \tilde{Y}_{i,k} \cdot \tilde{Y}_{i,j}}{\sum_{b=1}^L \sum_{i=1}^N \tilde{Y}_{i,k} \cdot \tilde{Y}_{i,b}}, & k \neq j \end{cases}$$

where $\tilde{Y}_{i,j} \in \{0, 1\}$ indicates whether the j -th label is assigned to the i -th instance. The row normalization ensures that each row of \mathbf{C} sums to 1, facilitating a probabilistic interpretation of inter-label dependency.