
Attack tolerant fault diagnosis based on unknown
input interval observer
1st Qidong Liu, 2nd Yue Long†, 3rd Tie-Shan Li

School of Automation Engineering
University of Electronic Science and Technology of China

Chengdu, China
longyue@uestc.edu.cn

Abstract—For cyber-physical systems that are adversely af-
fected by actuator attacks, faults, and disturbances, this paper
proposes a secure and robust fault estimator designed for real-
time detection and estimation of potential fault signals, laying
the groundwork for subsequent secure fault tolerance strategies.
Specifically, the designed fault estimator integrates the features
of unknown input observers and interval observers, enabling it
to decouple disturbance signals and generate upper and lower
bounds for the fault signal even in the presence of actuator
attacks. Through mathematical derivation, linear solvable condi-
tions have been provided that ensure the stability of the nominal
error system, non-negativity of the error system matrix, and
robustness of the system under attack. Finally, a set of simulation
experiments demonstrates the effectiveness of this fault diagnosis
method.

Index Terms—Resilient fault diagnosis, unknown input interval
observer, actuator attack.

I. INTRODUCTION

In recent years, with the advancement of 3C technology, the
influence of the cyber domain has been continuously expand-
ing, leading to an increase in the scale of networked systems
and enhancements in system functionalities. Cyber-Physical
System (CPS), representing the core of the next generation of
technology, have emerged as a focal point of research. Unlike
traditional control systems, CPS not only integrate computing
units with physical entities closely but also emphasize the
interconnectivity among devices, thereby enhancing system
adaptability, scalability, and productivity. Significant achieve-
ments have been realized in various domains such as smart
grids, smart healthcare, and intelligent transportation systems
[1], [2]. However, the capabilities of CPS for intelligent
perception, decision-making, and analysis rely on the deep
integration of cyber and physical spaces, which not only
increases system complexity but also introduces a plethora of
risks. The safety and reliability of engineering systems are of
paramount importance for CPS due to the interactive nature
of systems that could potentially spread anomalies from a
single node across the entire network, leading to severe conse-
quences. Therefore, a deep understanding of potential threats
to CPS and the design of corresponding anomaly detection
and response strategies are indispensable components in the
development of CPS.
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One of the novel challenges that CPS face is cyber-attacks,
which often manipulate the network layer to impact the real
world [3], [4]. These attacks include, but are not limited to,
denial of service, spoofing, and channel availability attacks.
While encryption and decryption methods in IT technology are
effective in preventing information tampering, they inevitably
reduce the efficiency of network communications and fail
to fully exploit the interactive information between physical
devices and the network. Consequently, reliance solely on
IT technology is insufficient to ensure the secure and stable
operation of CPS in the face of cyber-attacks.

Current research on CPS under cyber-attacks focuses on
several key areas. Firstly, system security analysis is em-
phasized [5], encompassing vulnerability assessments and the
creation of perfect attack signals. Moreover, attention is given
to secure state estimation [6], where the aim is to develop in-
formation filtering mechanisms that can swiftly and accurately
calculate the most precise state estimates from contaminated
sensor data. Furthermore, the focus shifts to resilient control
strategies [7], which leverage incomplete or corrupted output
or state information, utilizing feedback and compensation
mechanisms to ensure the system’s availability and maintain
the integrity of its functionalities. Undertaking research and
development in these critical areas of CPS is thus imperative,
as it underpins the necessity to enhance their resilience and
functionality in the face of cyber threats.

However, it is important to note that, as an integration
of previously complex systems, CPS are also subject to
adverse effects from traditional threats such as multi-source
disturbances, system failures, or sensor faults [8], [9]. How to
maintain the safety of the system in the presence of multiple
threats like faults and attacks simultaneously is an issue that
cannot be overlooked. Some research exists on this topic such
as [10]–[13]. Specifically, [10] investigates anomaly detection
mechanisms in CPS confronted with multiple attacks and
faults, while [11] focuses on fault estimation problem under
intermittent DoS attacks. Additionally, [12] studies secure
fault-tolerant control problem when coping with sparse sens-
ing attacks, and [13] explores fault-tolerant control strategies
during multi-channel DoS attacks, illustrating the varied and
crucial efforts to enhance CPS security. However, there is a
relative scarcity of work addressing fault estimation in CPS
under the influence of unknown forms of actuator attacks.



Inspired by the aforementioned work, this paper extends
research on state estimation by exploring the fault estimation
issue through unknown input interval observer (UIIO). The
main contribution of this study is the introduction of an en-
hanced UIIO designed for precise fault signal estimation under
simultaneous faults, cyber-attacks, and system disturbances. It
delineates the upper and lower bounds for the fault signals
while not requiring consideration of the specific forms of
actuator attacks, providing a robust basis for advancing secure
control methodologies.

The remainder of the article provides an analysis and
presents linear solvable conditions that ensure the stability,
robustness, and non-negative characteristics of the augmented
error system’s matrix. Moreover, a set of simulation results
confirm the viability of the suggested approach.

II. PROBLEM STATEMENT

A. Fuzzy CPS

Consider the following discrete-time fuzzy system subject
to actuator attack, disturbance and fault

x(k + 1) =

ν∑
h=1

ϕh(y(k))[Ahx(k) +Bh1u
a(k)

+Bdd(k) +Bfhf(k)]

y(k) =

ν∑
h=1

ϕh(y(k))[Cx(k) +Dfhf(k)],

(1)

where x(k) ∈ Rn and y(k) ∈ Rm denotes vector of system
state and output signal. ua(k) is the actuator input suffer
from actuator attack and other additional signals include the
decoupled disturbance and fault represented by d(k) ∈ Rd and
f(k) ∈ Rf , respectively. Ah, Bh1, Bd, Bfh, C and Df are
known constant matrices.

Consider that the output space is divided as [14], then (1)
can be rewritten as

x(k + 1) =
∑
i∈O2

ϕi(y)[Aix(k) +Bi1u
a(k)

+Bdd(k) +Bfif(k)]

y(k) =
∑
i∈O2

ϕi(y)[Cx(k) +Dfif(k)], g ∈ O1, y(k) ∈ Sg.

(2)
where ϕi(y) = ϕi(y(k)) > 0,

∑
i∈O2(g)

ϕi(y) = 1 and Sg

is the separation and g ∈ O1. f(k) involves actuator fault
and sensor fault with forward difference ∆f(k). Let x̄(k) =
[x(k); f(k)], u(k) = ua(k) − a(k) with a−(k) ≤ a(k) ≤
a+(k) then we have

x̄(k + 1) =
∑
i∈O2

ϕi(y)[Āix̄(k) + B̄i1u
a(k)

+B̄dd(k) + B̄d2id2(k)],

y(k) =
∑
i∈O2

ϕi(y)[C̄ix̄(k)]

(3)

where Āi =

[
Ai Bfi

0 (1− θ)I

]
, B̄i1 =

[
Bi1

0

]
, B̄d =

[
Bd

0

]
,

C̄i =
[
C Dfi

]
, B̄d2i =

[
0; I

]
, d2(k) = θf(k) + ∆f(k),

0 < |θ| < 1.
Remark 1. Given the unknown capabilities of attackers

posing threats to CPS, this article makes no assumptions
regarding the forms of C-A attacks considered, meaning that
it does not confine its scope to previously identified types
such as deception attacks, denial-of-service attacks, etc. On
the other hand, from the perspective of system architecture, it
is often possible to obtain extreme information about actuator
mechanisms, such as the maximum angle of a rudder or the
maximum power of an engine. Hence, it is logical to presume
the availability of information on a+(k) and a−(k).

Remark 2. In order to equip the designed UIIO with the
capability to estimate faults, this study integrates the scalar
θ into its framework, leveraging the methodology outlined in
[15].

B. Unknown Input Interval Observer

The designed UIIO is capable, on one hand, of isolating
disturbance signals, and on the other hand, of utilizing the
bound information of the actuator attack signals to estimate
fault signals, even in the presence of actuator attacks.



z̄+(k + 1) =
∑
i∈O2

ϕi(y)[T̄ (Āi ˆ̄x
+(k) + B̄1iu(k))

+ K̄+
h (ŷ+(k)− y(k)) + J̄+

h (ˆ̄x+(k)− ˆ̄x−(k))

+ B̌2iď2(k) + B̌1iǎ(k)]

z̄−(k + 1) =
∑
i∈O2

ϕi(y)[T̄ (Āi ˆ̄x
−(k) + B̄1iu(k))

+ K̄−
h (ŷ−(k)− y(k))− J̄−

h (ˆ̄x+(k)− ˆ̄x−(k))

+ B̂2iď2(k) + B̂1iǎ(k)]

(4)



ˆ̄x+(k)− H̄y(k) = z̄+(k)

ˆ̄x−(k)− H̄y(k) = z̄−(k)

ŷ+(k) =
∑
i∈O2

ϕi(y)[C̄
+
i
ˆ̄x+(k)− C̄−

i
ˆ̄x−(k)]

ŷ−(k) =
∑
i∈O2

ϕi(y)[C̄
+
i
ˆ̄x−(k)− C̄−

i
ˆ̄x+(k)]

(5)

where B̌1i = [(T̄ B̄1i)
+ − (T̄ B̄1i)

−], B̌2i = [(T̄ B̄2i)
+ −

(T̄ B̄2i)
−], B̂1i = −B̌1i, B̂2i = −B̌2i, ǎ(k) = [a+(k); a−(k)],

ď2(k) = [d+2 (k); d
−
2 (k)].

Define e+(k) = ˆ̄x+(k) − x̄(k), e−(k) = x̄(k) − ˆ̄x−(k).
Upon computing the forward difference for e+(k) and e−(k),
it follows that if conditions like

[
I 0

]
=

[
H̄ T̄

] [C̄i 0
I B̄d

]
(6)



can be satisfied, then following equations are obtained

e+(k + 1) =
∑
i∈O2

ϕi(y)[(T̄ Āi + K̄+
h C̄+

i + J̄+
h )e+(k)

+ (J̄+
h + K̄+

h C̄+
i )e−(k)

+ B̌1iǎ(k)− T̄ B̄1ia(k) + B̌2iď2(k)− T̄ B̄2id2(k)],

e−(k + 1) =
∑
i∈O2

ϕi(y)[(T̄ Āi + K̄−
h C̄+

i + J̄−
h )e−(k)

+ (J̄−
h + K̄−

h C̄−
i )e+(k)

+ T̄ B̄1ia(k)− B̂1iǎ(k) + T̄ B̄2id2(k)− B̂2iď2(k)]
(7)

r+(k) =
∑
i∈O2

ϕi(y)[C̄
+
i e+(k) + C̄−

i e−(k)]

r−(k) =
∑
i∈O2

ϕi(y)[C̄
+
i e−(k) + C̄−

i e+(k)]
(8)

Lemma 1. For system (2), the condition for the existence of
UIIO (4)(5) that is with property (6) is given as

1) rank(C̄iB̄d)= rank(B̄d),
2) (C̄i, T̄ Āi) is a detectable pair.

and H̄ and T̄ can be calculated by[
T̄ H̄

]
=

[
I 0

]
B+ A

(
I −BB†) (9)

where A is an arbitrary matrix and B =

[
I B̄d

C̄i 0

]
.

As stated in [16, Lemma 2, Lemma 3], condition

B̌1iǎ(k)− T̄ B̄1ia(k) ≥ 0, T̄ B̄1ia(k)− B̂1iǎ(k) ≥ 0,

B̌2iď2(k)− T̄ B̄2id2(k) ≥ 0, T̄ B̄2id2(k)− B̂2iď2(k) ≥ 0.
(10)

can be satisfied.

Let ẽ =

[
e+

e−

]
, d̃ =

[
d̃1
d̃2

]
, r̃ =

[
r̃1
r̃e

]
, r̃1 =

[
r+

r−

]
, r̃e =[

e+f
e−f

]
, d̃1 =

[
a− a−

a+ − a

]
, d̃2 =

[
d2 − d−2
d+2 − d2

]
, Cf = [0, 0, I], e+f =

Cfe
+, e−f = Cfe

−, then we have:
ẽ(k + 1) =

∑
i∈O2

ϕi(y)[Ãiẽ(k) + B̃did̃(k)]

r̃(k) =
∑
i∈O2

ϕi(y)[C̃iẽ(k)]
(11)

where Ãi =

[
T̄ Āi + K̄+

h C̄+
i + J̄+

h J̄+
h + K̄+

h C̄−
i

J̄−
h + K̄−

h C̄−
i T̄ Āi + K̄−

h C̄+
i + J̄−

h

]
,

B̃T
di =

[
B̃T

1i

B̃T
d2i

]
B̃1i =

[
(T̄ B̄1i)

+ (T̄ B̄1i)
−

(T̄ B̄1i)
− (T̄ B̄1i)

+

]
, B̃2i =[

(T̄ B̄2i)
+ (T̄ B̄2i)

−

(T̄ B̄2i)
− (T̄ B̄2i)

+

]
, C̃T

i =

[
C̄+T

i C̄−T
i CT

f 0

C̄−T
i C̄+T

i 0 CT
f

]
.

The main idea of fault estimation is to design the UIIO such
that

1) Nominal error system is Schur stable and and possesses
a Metzler system matrix.

2) System (11) is with finite frequency (FF) H∞ perfor-
mance index σ for disturbance d̃(k) ∈ l2[0,∞).

Remark 3. As stated by [16, Lemma 2], submatrices T̄ Āi+
K̄+

h C̄+
i + J̄+

h ≥ 0 ,J̄+
h + K̄+

h C̄−
i ≥ 0 and J̄−

h K̄−
h + C̄−

i ≥ 0,

T̄ Āi + K̄−
h C̄+

i + J̄−
h ≥ 0, indicates that observers (7) and (8)

function as an UIIO for system (2).
Remark 4. The purpose of designing the UIIO in this paper

is to enable the estimation of fault signals, thereby facilitating
compensatory control based on these estimations. Therefore,
the additional term incorporated into the second condition r̃(k)
represents the error between the actual fault signal f(k) and
its estimated values Cf ˆ̄x

+(k), Cf ˆ̄x
−(k).

III. MAIN RESULTS

This section will provide linear solvable conditions that
can ensure three aspects of performance: system stability,
robustness, and the non-negativity of each element in the
system matrix.

A. Stability Analysis

This subsection specifies the sufficient conditions to achieve
stability for system (11) via Linear Matrix Inequalities (LMI).
Theorem 1. System (11) is schur stable for all h, j ∈ O1 i ∈
O2(h) if there exist positive definite matrices Psh = PT

sh ≻ 0,
Msh, and matrices ˜̄K+

h , ˜̄K−
h , ˜̄J+

h , ˜̄J−
h such that

[
Psj1 −He{Mh1} ∗

Psj2 Psj3 −He{Mh2}

]
∗[

Ni11
˜̄J−T
h + C̄−T

i
˜̄K−T
h

˜̄J+T
h + C̄−T

i
˜̄K+T
h Ni12

]
−
[
Psh1 ∗
Psh2 Psh3

]


≺ 0
(12)

where
NT

i11 − ˜̄J+
h = Mh1T̄ Āi +

˜̄K+
h C̄+

i ,

NT
i12 − ˜̄J−

h = Mh2T̄ Āi +
˜̄K−
h C̄+

i .
(13)

Proof: Under the zero-initial condition,considering the aug-
ment system (11) when d̃(k) = 0, and selecting the following
Lyapunov functional Vs(k) = ẽ(k)TPshẽ(k) with

∆Vs(k) = Vs(k + 1)− Vs(k)

=

[∑
i∈O2

(Ãiẽ(k))
ẽ(k)

]T [
Psj 0
0 −Psh

] [∑
i∈O2

(Ãiẽ(k))
ẽ(k)

]
.

(14)
Thus ∆Vs(k) ≺ 0 can be ensured when[∑

i∈O2
(Ãi)

I

]T [
Psj 0
0 −Psh

] [∑
i∈O2

(Ãi)
I

]
≺ 0.

Based on the Projection Lemma [16], ∆Vs(k) ≺ 0 is true
if and only if a matrix Msh exists such that[

Psj 0
0 −Psh

]
+He

{[
−I∑

i∈O2
(Ãi)

] [
Msh

0

]T}
≺ 0. (15)

Let Msh = blockdiag{Mh1,Mh2},
[
K̄+T

h J̄−T
h

J̄+T
h K̄−T

h

]
MT

sh =[
˜̄K+T
h

˜̄J−T
h

˜̄J+T
h

˜̄K−T
h

]
, then (12) can be obtained. Conversely,

demonstrating the system’s stability is straightforward when
(12) holds, thereby concluding the proof.



B. Robustness of Error System

This subsection explores the FF H∞ performance of system
(11). The premise is that the additive disturbance/attack signal
operates within a low-frequency domain, as delineated in prior
studies. Consequently, a theorem is presented herein.
Theorem. 2 Given the matrices γ1, γ2, γ3, γ4, the defined
interval augmentation error system (11) is with finite frequency
H∞ norm σ for every h, j ∈ O1 and i ∈ O2(h), provided that
there exist matrices Prh ≻ 0, Prj ≻ 0, Qrh ≻ 0, Mrh ≻ 0,
˜̄K+
h , ˜̄K−

h , ˜̄J+
h , ˜̄J−

h meeting the condition that −Prj ∗ ∗
Qrh − ΓMrh Rrh ∗

0 (B̃di)
TMT

rhΓ
T −σ2I

 ≺ 0 (16)

where Rrh = Prh − 2 cos(ιd)Qrh + C̃T
i C̃i + Ni2, Prj =[

Prj1 ∗
Prj2 Prj3

]
, Mrh = Msh, Ni2 =

[
Ni21 ∗
Ni22 Ni23

]
,

Ni21 = He{Ni11γ
T
1 + ( ˜̄J−T

h + C̄−T
i

˜̄K−T
h )γT

2 },

Ni22 = ( ˜̄J+T
h + C̄−T

i
˜̄K+T
h )γT

1 +Ni12γ
T
2

+ γ3N
T
i11 + γ4(

˜̄J−T
h + C̄−T

i
˜̄K−T
h )T ,

Ni23 = He{Ni12γ
T
4 + ( ˜̄J+T

h + C̄−T
i

˜̄K+T
h )γT

3 }.

Proof: As indicated by [16, Theorem 1], the condition
below ensures that the error system (11) achieves an LF H∞
index σ.[

S1

I1

]T
ΩL

[
S1

I1

]
+

[
S2

I2

]T [
I 0
0 −σ2I

] [
S2

I2

]
≺ 0 (17)

where S1 =
[∑

i∈O2
(Ãi)

∑
i∈O2

(B̃di)
]
, S2 =[∑

i∈O2
(C̃i) 0

]
, I1 = [I 0], I2 = [0 I].

Rewriting (17) we haveS1

I1
I2

T −Prj ∗ ∗
Qrh Prh − 2 cos(ιd)Qrh + C̃T

i C̃i ∗
0 0 −σ2I

S1

I1
I2


≺ 0

(18)
According to the Projection Lemma, 18 holds iff Mrh exists

that fulfills condition

∑
i∈O2

−Prj ∗ ∗
Qrh Prh − 2 cos(ιd)Qrh + C̃T

i C̃i ∗
0 0 −σ2I


+He


−I

ÃT
i

B̃T
di

MT
rh

[
0 ΓT 0

]
 ≺ 0

(19)

where ΓT =

[
γT
1 γT

3

γT
2 γT

4

]
. Selecting Mrh =

[
Mh1 ∗
0 Mh2

]
then

(16) can be obtained, which completes the proof.

C. Conditions to Ensure Ãi ≥ 0

It is crucial to verify that Ãi is a Metzler matrix. This
subsection outlines how to ensure Ãi ≥ 0.

Theorem 3. Ãi ≥ 0 can be achieved if there are matrices
k̄hp, khp, jhpq , j̄hpq , Mh1 = diag{mh11, . . . ,mh1ñ}, Mh2 =
diag{mh21, . . . ,mh2ñ} such that

mh1pgipq + k̄hpc̄iq + j̄hpq ≥ 0,

mh2pgipq + khpc̄iq + jhpq ≥ 0,

j̄hpq + k̄hpciq ≥ 0, jhpq + khpciq ≥ 0,

h ∈ O1, i ∈ O2(h), p, q = 1, 2, . . . , ñ, ñ = n+ f.

(20)

Proof: Let (T̄ Āi) = (gipq)ññ, C̄+
i = [c̄i1, . . . , c̄iñ],

C̄−
i = [ci1, . . . , ciñ], K̄+

h = [k̄1h1; . . . ; k̄1hñ], K̄−
h =

[k1h1, . . . , k1hñ], J̄−
h = (J−

hpq)ññ, J̄+
h = (J+

hpq)ññ, recall-
ing that T̄ Āi + K̄+

h C̄+
i + J̄+

h ≥ 0, J̄+
h + K̄+

h C̄−
i ≥ 0,

J̄−
h + K̄−

h C̄−
i ≥ 0, T̄ Āi + K̄−

h C̄+
i + J̄−

h ≥ 0, and these
inequations can be rewritten as

T̄ Āi + K̄+
h C̄+

i + J̄+
h = (gipq + l+hipq + J+

hpq)ññ ≥ 0,

T̄ Āi + K̄−
h C̄+

i + J̄−
h = (gipq + l−hipq + J−

hpq)ññ ≥ 0,

J̄+
h + K̄+

h C̄−
i = (J+

hpq + k̄1hpciq)ññ ≥ 0,

J̄−
h + K̄−

h C̄−
i = (J−

hpq + k1hpciq)ññ ≥ 0,

(21)

where l+hipq = k̄1hpc̄iq , l−hipq = k1hpc̄iq . Then Ãi ≥ 0 can be
transformed into

gipq + l+hipq + J+
hpq ≥ 0, gipq + l−hipq + J−

hpq ≥ 0,

J+
hpq + k̄1hpciq ≥ 0, J−

hpq + k1hpciq ≥ 0.
(22)

Due to the presence of coupled terms in Theorem 1 and
Theorem 2, and the introduction of new variables Mrh, it is
not straightforward to directly solve for K+

h , K−
h , J+

h , and J−
h .

Consequently, adjustments as follows are necessary. Denoting

˜̄K+
h = Mh1K̄

+
h = [k̄h1; . . . ; k̄hñ],

˜̄K−
h = Mh2K̄

−
h = [kh1; . . . ; khñ],

˜̄J+
h = Mh1J̄

+
h = [̄jhpq]ñ∗ñ,

˜̄J−
h = Mh2J̄

−
h = [jhpq]ñ∗ñ,

multiplying the first and the third inequations of (21) with
Mh1 and multiplying the second and the forth inequations of
Mh2 from the left respectively, thereby transforming (22) into
(20), which concludes the proof.

By addressing the optimization problem outlined as

min σ

s.t. (12), (16), (20)
(23)

then gain matrices can subsequently be derived from[
K̄+T

h J̄−T
h

J̄+T
h K̄−T

h

]
=

[
˜̄K+T
h

˜̄J−T
h

˜̄J+T
h

˜̄K−T
h

]
MT

sh

−1
. (24)

IV. EXAMPLE

This section validates the fault estimator derived from The-
orems 1, 2, and 3, focusing on its ability to estimate two types
of fault signals and its capability to track the system output.
To demonstrate the efficacy of the fault estimation approach
designed based on unknown input interval observer, the same
fuzzy system model as referenced in [16] is utilized. While
the system matrix and measurement matrix remain consistent,



modifications are exclusively applied to the gain matrices for
the input, the disturbance and fault signals as detailed below:

Bd =

[
−1
0.2

]
, B11 = B21 = · · · = B1 =

[
1
0

]
,

Bf1 = Bf2 = · · · = Bf =

[
0.12
−0.18

]
,

Df1 = Df2 = · · · = Df =
[
0.29

]
.

Firstly, the form of the disturbance signal is set as d(k) =
0.5 sin(10k), the true control command is u(k) = 0.1x(k),
and the C-A attack is a(k) = 0.3 cos(0.5k) + 0.1 sin(15k).
Secondly, assuming two types of fault signals f(k), the upper
and lower bounds of the attack signal, a+(k) and a−(k), and
the upper and lower bounds of the fault difference information,
d+2 (k) and d−2 (k), are specified as follows:

f1(k) =


0.02(k − 25), k ∈ [25, 50],

0.5− 0.02(k − 50) k ∈ [51, 75],

0 others,

f2(k) =

{
0.5sin(0.1π(k − 25))e0.01(25−k) k ∈ [25, 75],

0 others,

a+(k) = 0.7, a−(k) = −0.7,

d+2 (k) = 0.5(2d2(k) + | sin(k)|e(−0.05k)),

d−2 (k) = 0.5(2d2(k)− | sin(k)|e(−0.05k)).

Next, the effects of fault estimation and output tracking under
two different scenarios (corresponding to two distinct types of
faults) will be presented.

Scenario 1. When the system is adversely affected by
faults, disturbances, and attack signals simultaneously, the
performance of the fault estimator designed in this paper
is illustrated in Figure 1. It can be observed that due to
significant difference in the prior information of the fault, the
fault estimation error is considerable within the time interval
k ∈ [0, 20] and thereafter, it gradually converges to a smaller
range. Similarly, the tracking values of the system output can
also maintain satisfactory performance as shown in Figure 2.

Scenario 2. As shown in Figures 3 and 4, despite the system
state is affected by fault signals f2, yet the designed UIIO is
still capable of stabilizing the error interval on both sides of
0, ensuring the accuracy of the observation interval. Similarly,
due to the lack of precision in the prior information of the
fault difference, the initial error is significant but gradually
converges to a smaller interval.

It is important to note that in both sets of simulation results,
the estimation error curves are very similar, due to the error
system not being affected by system disturbances. In summary,
when faced with two types of system fault signals, even though
the state of the system is affected, the estimator designed based
on the UIIO can still successfully estimate the fault signals
within a certain period.

V. CONCLUSION

To enhance the reliability and safety of systems, this paper
investigates the fault estimation issue for fuzzy CPSs under
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Fig. 1. Fault estimation performance and estimation error for f1(k)
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Fig. 2. Tracking performance and error of y(k) under the influence of f1(k)
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Fig. 3. Fault estimation performance and estimation error for f2(k)
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Fig. 4. Tracking performance and error of y(k) under the influence of f2(k)

the simultaneous influence of disturbances, faults, and actuator
attacks, leading to the design of a fault estimator based on
the UIIO. Specifically, this estimator is capable of decoupling
disturbance signals, tolerating actuator attacks, and generating
bounds for the fault signal interval. Through analysis, linear
solvable conditions for deriving the estimator gains have been
presented. Finally, the effectiveness of the designed estimator
was validated using two different fault signals.
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