
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DISCRETE DIFFUSION FOR BUNDLE CONSTRUCTION

Anonymous authors
Paper under double-blind review

ABSTRACT

As a central task in product bundling, bundle construction aims to select a subset
of items from huge item catalogs to complete a partial bundle. Existing methods
often rely on the sequential construction paradigm that predicts items one at a
time, nevertheless, this paradigm is fundamentally unsuitable for the essentially
unordered bundles. In contrast, the non-sequential construction paradigm models
bundle as a set, while it still faces two dimensionality curses: the combination
complexity is exponential to the catalog size and bundle length. Accordingly, we
identify two technical challenges: 1) how to effectively and efficiently model the
higher-order intra-bundle relations with the growth of bundle length; and 2) how
to learn item embeddings that are sufficiently discriminative while maintaining a
relatively smaller search space other than the huge item set.
To address these challenges, we propose DDBC, a Discrete Diffusion model for
Bundle Construction. DDBC leverages a masked denoising diffusion process to
build bundles non-sequentially, capturing joint dependencies among items without
relying on certain pre-defined order. To mitigate the curse of large catalog size,
we integrate residual vector quantization (RVQ), which compresses item embed-
dings into discrete codes drawn from a globally shared codebook, enabling more
efficient search while retaining semantic granularity. We evaluate our method on
real-world bundle construction datasets of music playlist continuation and fash-
ion outfit completion, and the experimental results show that DDBC can achieve
more than 100% relative performance improvements compared with state-of-the-
art baseline methods. Ablation and model analyses further confirm the effective-
ness of both the diffusion backbone and RVQ tokenizer, where the performance
gain is more significant for larger catalog size and longer bundle length. Our code
is available at https://anonymous.4open.science/r/DDBC-44EE.

1 INTRODUCTION

Product bundling has been a pervasive business strategy, which originates from conventional retail-
ing, evolves to e-commerce, and is further adopted by generic online services, such as music and
video streaming (Chang et al., 2020). A product bundle is a set of relevant items assembled to satisfy
users’ needs (e.g., games, outfits, playlists, meal kits) (Sun et al., 2024) and promote sales regard-
ing sellers’ pursuit. Bundle construction, i.e., select a subset of items from the large item pools to
build an entire bundle or complete a partial bundle, is the first and foremost problem among various
bundle-centric studies, such as personalized bundle recommendation (Ma et al., 2022).

Existing studies, either specifically designed for bundle construction (Han et al., 2017; Bai et al.,
2019; Gong et al., 2019; Deng et al., 2021) or general sequential recommendation (Kang &
McAuley, 2018; Sun et al., 2019), have a fatal yet ever-overlooked flaw: most of them are based
on a sequential construction paradigm, i.e., predict the next item only rather than all the items in
the entire bundle, however, such a sequential construction paradigm is essentially not suitable for
bundle construction. Intuitively, a bundle is not a sequence of user’s interacted items, and a user is
not necessarily to follow a certain sequential order to consume the items within a bundle 1. Thereby,
sequential dependencies barely exist between consecutive items in a bundle, and sequential models
bring marginal benefits to bundle construction. Delving deep into the technical foundations, con-
sider N as the total number of items (item catalog size) and k as the bundle length (number of items

1Some bundles may have a sequential order by design, while here we focus on the general scenarios.

1

https://anonymous.4open.science/r/DDBC-44EE

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

within a bundle), the theoretical space of modeling a bundle as a sequence is the permutation, i.e.,
P (N, k), while modeling it as a set by relaxing the sequential constraint will significantly downgrade
the space to the combination, i.e., C(N, k). Nonetheless, simply discarding the sequential construc-
tion paradigm, e.g., existing non-sequential construction methods (Tomasi et al., 2024; Yang et al.,
2024), only partially addresses the problem, since the space of the combination is still exponential
to item catalog size N and bundle length k, which we call the two dimensionality curses.

These two dimensionality curses induce two technical challenges: First, bundle construction requires
to model the intra-bundle relations, such as similarity, compatibility, composability, etc., among any
possible combinations of items, e.g., pair-wise, tripartite, and quaternary (Chang et al., 2020). Thus,
how to effectively and efficiently preserve these higher-order relations, considering that the com-
plexity increases exponentially with the linear growth of k, remains the first key challenge. Second
and more seriously, the item catalogs, from which we draw items to build the bundle, are often
huge. For example, N could be tens of thousands or even millions on some online platforms such as
Spotify or Amazon. Conventional approaches typically leverage one embedding for each item (Ma
et al., 2024c), consequently, it is highly difficult to navigate through the huge candidate space and
precisely pick the desired item for a certain bundle. Therefore, how to learn item embeddings that
are sufficiently discriminative regarding different bundling functions while maintaining a relatively
small search space poses the second technical challenge.

To tackle the above two challenges, we propose a method that leverages Discrete Diffusion for
Bundle Construction, named as DDBC. Specifically, to model the higher-order intra-bundle item
relations, we introduce diffusion model as the backbone to replace the previous sequential or non-
sequential solutions. Basically, the diffusion model features with a non-sequential construction
paradigm, where it picks items according to the learned strategies regarding the entire bundle struc-
ture instead of following a certain pre-defined left-to-right sequential order. In terms of the second
challenge caused by huge item catalog size, we leverage the residual vector quantization tokenizer
(RVQ) to quantize the continuous item embedding into multiple discrete codes (Rajput et al., 2023).
The codes of each item are selected from a globally shared codebook that is significantly smaller
than the original item set, remarkably relaxing the dimensionality curse caused by N . By integrat-
ing the RVQ tokenizer into the diffusion backbone, we design our discrete diffusion model DDBC.
Concretely, we treat a complete bundle b̄ as the clean state at t=0; at each forward step we randomly
mask a subset of positions, eventually reaching an all-[MASK]. The training objective is to learn the
reverse denoising dynamics pθ(bt−1 | bt, t). During inference, given a partial bundle with unknown
slots marked [MASK], we iteratively denoise until the bundle is fully recovered. Importantly, ran-
dom masking exposes the model to rich contexts during training, thereby approximating the joint
distribution modeling over bundle items and providing the flexibility to accommodate different de-
coding priors. Also, the item codes learned by RVQ have different levels of semantic granularity,
therefore, the diffusion model can learn the bundling strategy more fine-grainedly.

Our contributions include: (1) We emphasize bundle construction should follow a non-sequential
construction paradigm and instantiate it with a masked denoising process. (2) We operate the diffu-
sion model in a vector-quantized discrete space using RVQ, which relaxing the dimensionality curse
caused by huge item catalog size. (3) We provide extensive and detailed empirical evidence that
our approach outperforms baselines in bundle construction, with benefits especially pronounced on
larger bundles and larger item catalogs. Comprehensive ablation and model studies further verify
the contribution of each component.

2 RELATED WORK

We review three lines of literature most relevant to our work: bundle construction, generative rec-
ommendation, and discrete diffusion models.

Bundle construction is the task of selecting a subset of items from the large item pools to build an
entire bundle or complete a partial bundle. It typically comprises two parts: (1) an encoder for users,
items, and bundles, and (2) a bundle generator. On the encoder side, early advances fuse semantics
feature (often via multimodal encoders e.g., Elizalde et al. (2023)/Li et al. (2023)) with collaborative
signals (Sarwar et al., 2001; He et al., 2020) to learn stronger item embeddings (Ma et al., 2022;
2024a;c;b; Salganik et al., 2024). However, these encoders do not directly capture bundle-level
structure; semantically similar items may still not co-occur, whereas real user-constructed bundles

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

balance relevance, exhibit diversity, and maintain complementarity (Sun et al., 2024). Most bundle
generators still follow a sequential construction paradigm (Chen et al., 2019; Bai et al., 2019; Chang
et al., 2021; Deng et al., 2021; Liu et al., 2025; Han et al., 2017), however, the item order within
a bundle does not necessarily reflect how users construct or consume bundles. Relying on a fixed
order can introduce unnecessary order bias and harm generalization by overfitting to dataset-specific
sequences (Yang et al., 2024). Several non-sequential approaches have been proposed. Wei et al.
(2022) predicts all bundle items in parallel with a contrastive non-auto-regressive decoder, but it
relies on predefined templates and fixed object types. Tomasi et al. (2024) uses a continuous-space
diffusion model but only accepts text prompts as input. Yang et al. (2024) outputs an order-agnostic
set in one shot; however, it lacks explicit intra-bundle relations interactions during generation. More
importantly, all of these works generate bundles from scratch and do not address partial-bundle
completion. Our approach targets this gap via discrete masked denoising, completing the missing
items in an order-agnostic manner.

Generative recommendation is a paradigm that reframes recommendation as generating target
item IDs rather than full-rank retrieving. (Wu et al., 2024; Li et al., 2024a) The line originates from
generative retrieval (Rajput et al., 2023): using residual vector quantization (?Lee et al., 2022),
items are quantized into multiple semantic IDs from coarse to fine, and an auto-regressive decoder
generates these IDs conditioned on context. Subsequent work extends this paradigm to multimodal
settings (Liu et al., 2024) and LLM backbones (Zheng et al., 2024; Zhai et al., 2025). As previously
discussed, sequential construction paradigm is not suitable for bundling tasks; accordingly, we retain
the multiple semantic-ID idea but replace AR backbone with a discrete diffusion model.

Diffusion models learn to generate data by inverting a forward noise process; in continuous spaces
they have been widely used for images, audio, and trajectories (Ho et al., 2020; Janner et al., 2022;
Kong et al., 2021; Liu et al., 2023; Yang et al., 2022). For discrete data, diffusion extends to cate-
gorical tokens by corrupting symbols (often to an absorbing [MASK]) and denoising to reconstruct
them (Austin et al., 2021; Sahoo et al., 2024). Within recommendation, diffusion has largely been
applied to sequential next-item prediction, operating on item latent embedding space (Wang et al.,
2023; Yang et al., 2023; Li et al., 2024b), while discrete diffusion remains comparatively underex-
plored (Lin et al., 2024; Ju et al., 2025). In this work, we adopt an MDLM-style discrete diffusion
backbone and leverage its order-agnostic nature to better model bundles. To the best of our knowl-
edge, we are the first to study bundle construction with discrete diffusion.

3 METHOD

Our framework consists of two key components: (1) RVQ to discretize item embeddings, and (2)
a DDM that operates over the code tokens for full bundle construction. The overall architecture is
illustrated in Figure 1.

3.1 PROBLEM FORMULATION

Let I = {i1, i2, . . . , iN} denote the item catalog and B = {b1,b2, . . . ,bM} the collection of
bundles, where N and M denote the number of items and bundles, respectively. Each bundle b ∈ B
is set of items, b = {ij1 , ij2 , . . . , ij|b|}, {j1, . . . , j|b|} ⊆ [N], |b| ≥ 2. Each item i ∈ I is mapped
by a feature extractor to a latent vector E(i), where the feature often encapsulates semantic signals
and collaborative-filtering signals depending on the datasets. We formulate the bundle construction
task as: for a bundle b̄, given a non-empty partial bundle (a subset of the entire bundle) bx ⊆ b̄,
predict the rest part of the bundle (the complementary item set) by = b̄ \ bx.

3.2 RESIDUAL QUANTIZATION OF ITEM EMBEDDINGS

To make masked discrete diffusion feasible on large catalogs, we first discretize continuous item
embeddings into a compact, hierarchical code space via RVQ. We apply an L-level RVQ to obtain
a tuple of discrete code indices z(i) = (z(1)(i), . . . , z(L)(i)). The last level is a dedup code that
carries no semantics and acts purely as an auto-increment field to ensure a one-to-one mapping
from a code tuple back to a unique item ID. Formally, z(ℓ)(i) ∈ {1, . . . , Cℓ} indexes a codeword in

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Bundle
Mask Discrete Diffusion Modeling IllustrationItem Tokenization

3

131

274

412

19

192

288

413

31

145

310

465

7

164

258

501

RVQ

Diffusion Transformers Denoiser θ

boi boi boi eosbos

t

3 131 274 412 19 192 288 413 7 164 258 501

boi boi boi eos

<m>

3 131 274 19 192 288 164<m> <m> <m> 258 501

boi boi eos131 274 19 288 164<m> <m> <m> 258<m> <m>

boi boi boibos 3 131 274 412 19 192 288 413 7 164 258 501

<m> boi eos131 19<m> <m> <m> 258<m> <m><m><m><m>

<m> <m> <m> <m><m> <m><m><m><m><m> <m> <m>

boi 31 145 310 465

boi 145<m> 310 465

145<m> 310 <m>

boi 31 145 310 465

<m> <m>

<m> <m><m> <m>

<m>145Encoder

boi boi boibos 3 131 274 412 19 192 288 413 boi <m><m> <m> <m><m> <m><m> <m>

boi

boi

boi

boi

boi

boi eos

boi

boi

bos

bos

bos

bos boi

eos

boi boi boibos 3 131 274 412 19 192 288 413 boi <m><m> <m><m><m> <m> eos

boi boi boibos 3 131 274 412 19 192 288 413 boi <m> <m><m><m> eos

boi boi boibos 3 131 274 412 19 192 288 413 boi <m><m> eos

boi boi boibos 3 131 274 412 19 192 288 413 boi eos7 164 258 50131 145 310 465

31

31

31 7465145

145

164

258

258

258

Training

Inference

Item codes Flag token <m> Mask token

？ ？ ？ ？

？ ？
465

items to predictinput partial bundle

t = 0

t = t1

t = t2

t = t3

t = T

t' = T'

t' = t'1

t' = t'2

t' = t’3
t' = 0

𝑖𝑖1 𝑖𝑖2 𝑖𝑖3 𝑖𝑖4

𝑖𝑖1 𝑖𝑖2 𝑖𝑖3 𝑖𝑖4

𝑖𝑖1 𝑖𝑖2 𝑖𝑖3 𝑖𝑖4

Quantizer

full bundle �𝑏𝑏

𝑏𝑏𝑥𝑥 �𝑏𝑏𝑦𝑦

0<t1<t2<t3<T 0<t'3<t'2<t'1<T'Forward corruption Reverse denoising

𝑖𝑖1 𝑖𝑖2 𝑖𝑖3 𝑖𝑖4

Figure 1: The overall framework of DDBC. The left side illustrates the item tokenization process
via RVQ. The right side visualizes the training and inference stages of the masked discrete diffusion
modeling. To be noted, we only show the forward process of the training stage, of which the back-
ward process is just a reverse of the forward and omitted for simplicity.

codebook C(ℓ) = {e(ℓ)1 , . . . , e
(ℓ)
Cℓ

} ⊂ Rd. Let the residual be r(0) = E(i) and, for ℓ = 1, . . . , L− 1,

z(ℓ)(i) = arg min
c∈{1,...,Cℓ}

∥∥r(ℓ−1) − e(ℓ)c

∥∥2
2
, r(ℓ) = r(ℓ−1) − e

(ℓ)

z(ℓ)(i)
. (1)

The reconstruction uses only the semantic codebooks: Ê(i) =
∑L−1

ℓ=1 e
(ℓ)

z(ℓ)(i)
. Early codebooks

capture coarse semantics; later residual codebooks refine details, inducing semantic smoothness
among similar items. We train the codebooks with an RVQ loss that combines a reconstruction term
and a codebook commitment term:

LRVQ =
∥∥E(i)− Ê(i)

∥∥2
2
+ β

L−1∑
ℓ=1

(∥∥ sg[r(ℓ−1)]− e
(ℓ)

z(ℓ)(i)

∥∥2
2
+

∥∥r(ℓ−1) − sg[e
(ℓ)

z(ℓ)(i)
]
∥∥2
2

)
, (2)

where sg[·] denotes stop-gradient and β balances the commitment loss. We use a straight-through
estimator for the discrete assignment; codebooks are updated via gradient descent. For a bundle
b = {i1, . . . , i|b|}, RVQ yields a token matrix Z(0) ∈ N|b|×L with entries zjℓ ∈ {1, . . . , Cℓ}; the
j-th row contains the L codes representing item ij .

Among many quantization strategies, we choose RVQ for three reasons. (1) Vocabulary compres-
sion. Its theoretical capacity is

∏L
ℓ=1 Cℓ, enabling a small per-level vocabulary to index a very large

item universe. (2) Denser supervision. Each item contributes L code tokens; at level ℓ, a code
typically aggregates roughly N/Cℓ items (for N total items), so code-level supervision is markedly
denser than item-ID supervision. We quantify the increase in effective supervision in Section 4. (3)
Coarse-to-fine granularity of semantics. Hierarchical residual codebooks perform implicit cluster-
ing at multiple granularities, which benefits downstream denoising. Additionally, when a candidate
set is available in real applications, the finest semantic level and the disambiguation index may be
unnecessary at inference time: one can decode with fewer RVQ levels and map prefixes to candidate
items via an inverted index over code prefixes. We study this design choice in Section 4.

3.3 MASKED DISCRETE DIFFUSION OVER CODE TOKENS

We cast bundle construction as a masked discrete denoising process. In contrast to sequential con-
struction paradigm, this formulation avoids imposing any arbitrary order on the items and instead
allows the model to leverage the full set context in an order-agnostic manner. Importantly, our dis-
crete diffusion does not directly impose a set-invariant objective: items are still flattened into a list
and we do not explicitly enforce permutation invariance. Nevertheless, it serves as a good approx-
imation to set modeling: at each training step, the already-revealed context and the positions to be
revealed are randomized, providing rich, position-agnostic supervision so that the learned features

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

do not rely on absolute positions. To realize this idea, we adopt a discrete diffusion framework with
an absorbing-mask corruption mechanism. The key components are: an input tokenization design
for bundles, a forward corruption process that incrementally masks tokens, a bidirectional Trans-
former as the reverse denoiser, and an order-agnostic inference procedure with token-level validity
constraints.

Input tokenization for bundles. We serialize a bundle by inserting <boi> before each item and
wrapping with <bos> and <eos>. Let zj,ℓ denote the ℓ-th code token of item j (j=1, . . . , |b|,
ℓ=1, . . . , L). We use exactly two index sets:

Ωflag = {<bos>, <boi>, <eos>}, Ωcode = {(j, ℓ) : j = 1, . . . , |b|, ℓ = 1, . . . , L}. (3)

Tokens in Ωflag are never masked; corruption and prediction operate only on zj,ℓ with (j, ℓ) ∈ Ωcode.

Forward corruption. We use an absorbing-mask Markov chain as in masked discrete diffusion. At
each step t ∈ {1, . . . , T}, each currently unmasked token zj,ℓ with (j, ℓ) ∈ Ωcode is independently
replaced by [MASK] with probability βt ∈ (0, 1):

q
(
z
(t)
j,ℓ = u

∣∣∣ z(t−1)
j,ℓ = u

)
= 1− βt, q

(
z
(t)
j,ℓ = [MASK]

∣∣∣ z(t−1)
j,ℓ ̸= [MASK]

)
= βt, (4)

for any token value u ̸= [MASK], with the absorbing condition q(z
(t)
j,ℓ = [MASK] | z

(t−1)
j,ℓ =

[MASK]) = 1 and independence across (j, ℓ). Let αt =
∏t

s=1(1− βs) be the survival probability.
The closed-form transition from t=0 to t is:

q
(
z
(t)
j,ℓ = v | z(0)j,ℓ = u

)
= αt 1[v = u] + (1− αt)1[v = [MASK]], (5)

i.e., after t steps a token either survives with probability αt or is masked with probability 1− αt.

Reverse denoising. A bidirectional Transformer θ is trained to predict the original token values
from a corrupted sequence. At inference, it produces a categorical distribution for each masked
position conditioned on the current noisy tokens, the timestep t:

pθ
(
z
(0)
j,ℓ | C(t), t

)
∈ ∆Cℓ−1, where ∆Cℓ−1 ≜ { p ∈ [0, 1]Cℓ : 1⊤p = 1 }. (6)

Following common practice in Sahoo et al. (2024), we use the “simple” reconstruction objective that
trains pθ to predict the original token z

(0)
j,ℓ directly from a state Z(t) corrupted at a random timestep t.

Crucially, tokens that are unmasked, either because they belong to bx or because they have already
been generated in a previous step, are treated as clamped observations; they are never masked again
and remain fixed in all subsequent steps. This mechanism enables the model to unmask items in any
order during generation, without ever overwriting a code once it’s decided. 2

Training objective. Let Mt ⊆ Ωcode be the set of positions masked by the forward process at step
t. The discrete diffusion variational objective reduces to a weighted masked-token cross-entropy:

LNELBO = Et∼U{1,...,T} EMt

∑
(j,ℓ)∈Mt

− log pθ
(
z
(0)
j,ℓ | Z(t), t

)
. (7)

Inference. We model bundle construction as iterative denoising of a partially masked token matrix.
Let the observed set be bx and the unknown complementary set be by with |by| items. Denote
by Ωx the positions (including all RVQ levels) that belong to items in bx, by Ωy the positions that
belong to items in by , and by Ωflag. We construct an input sequence by flattening tokens row-wise
and inserting <boi> before each item’s L tokens to mark boundaries. Formally, the initial state Z
is:

zu = 1[u ∈ Ωx ∪ Ωflag]xu + 1[u ∈ Ωy][MASK]. (8)

Here, xu represents the given token at position u, with Ωflag kept unmasked so the model knows item
segmentation. The tokens of bx remain clamped throughout. After decoding, a predicted item îj is
obtained by mapping its token tuple back to the catalog or to a reconstruction Êj =

∑L−1
ℓ=1 .

2While diffusion can be extended to allow re-masking to revise earlier decisions, we do not enable that
option here and leave it to future work.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Token-validation constraints. At generation time, we constrain the model’s predictions to ensure
that each set of L code tokens corresponds to a valid item from the catalog. Formally, for each
position (j, ℓ) (code level ℓ of item j), we restrict the predicted token to the prefix-consistent subset
V(ℓ)

valid

(
j; zj,<ℓ

)
⊆ {1, . . . , Cℓ} and set the logits of any token not in V(ℓ)

valid(j; zj,<ℓ) to −∞ before
the softmax, thereby preventing the model from selecting an invalid code combination. This valida-
tion step ensures that the generated code tuples always decode to legitimate items, which is crucial
for maintaining recommendation feasibility.

4 EXPERIMENT

4.1 EXPERIMENTAL SETTINGS.

Model settings. We use CLHE (Ma et al., 2024c) as the item encoder, i.e., E(i) = CLHE(i).
Unless otherwise noted, our RVQ uses L = 4 levels with fixed per-level codebook size Cℓ ≡ C;
the diffusion horizon is T = ℓ (L + 1), where the per-item token length (including the boundary
marker) is denoted by ℓ. We utilize a lightweight DDiT architecture for our Diffusion backbone,
with 6 transformer blocks, each with a hidden size of 64 and 8 self-attention heads. The model
operates with a linear noise scheduler α(t) = 1− t. All experiments are performed on four NVIDIA
A40 GPUs, and all models are trained in 20,000 steps.

Datasets. Following prior research on bundle construction Ma et al. (2024c); Liu et al. (2025), we
evaluate on two representative datasets, Spotify (Chen et al., 2018) and POG (Chen et al., 2019).
Unlike these works, our discrete diffusion model currently requires a fixed number of tokens per in-
stance, so we truncate bundles to a target length. For the Spotify playlist dataset, we create three sub-
sets by capping playlist length at 30/60/90 items (Spotifyk=30,60,90). For the POG fashion dataset,
whose average bundle length is small, we start from its denser variant and derive a fixed-length
version with four items (denoted POGk=4). Unless noted, the input-predict ratio of the bundle,
|bx| : |by|, are set as 1 : 1, see Table 2 for other settings. Samples shorter than the target length
are dropped. Each dataset is split into train/validation/test with non-overlapping bundles. We also
perform data augmentation by swapping items within the bundle, and the details are describe in
Appendix B.

Candidate size. To standardize candidate pool, we set a candidate ratio ρ and construct a shortlist
C of size ρ |by| by augmenting the ground-truth targets with randomly sampled non-targets: C =
by ∪ Random(ρ−1) |by|

(
I \ b

)
. Unless otherwise stated, we fix ρ = 100 in all experiments.

4.2 BASELINES.

We consider both non-sequential and sequential construction methods as baselines. To be fair, all
the baselines use the same item features, i.e., pre-trained embeddings via CLHE (Ma et al., 2024c).

Non-sequential construction methods. They input the partial bundle bx and predict all the items
in the complementary set at once. CLHE (Ma et al., 2024c): A method that leverages contrastive
learning and hierarchical encoder to learn item and bundle representations. To be noted, CLHE was
not originally designed to predict all the items in the complementary set, while it follows the typical
top-k recommendation paradigm and evaluation protocol. We re-evaluate it against our metrics that
are pertinent to entire bundle construction. BundleNAT (Yang et al., 2024): A non-auto-regressive
generator that predicts a set of items in one shot using preference/compatibility signals. It was
originally used for the task of personalized bundle recommendation instead of bundle construction,
we adapt it for our task by removing the user inputs.

Sequential construction methods. They follow an auto-regressive construction strategy: initialize
s0 = bx; for j = 0, . . . , |by| − 1, choose îj = argmaxi/∈sj π(i | sj) and update sj+1 = sj ∪ {̂ij}
until |s|by|| = |b̄|. Bi-LSTM (Han et al., 2017): It uses bi-directional LSTM to model the bundle
as a sequence. SASRec (Kang & McAuley, 2018): A Transformer-based sequential recommender
trained for next-item prediction. TIGER (Rajput et al., 2023): It generates items as discrete semantic
token sequences with an auto-regressive decoder. BundleMLLM (Liu et al., 2025): It finetunes a
multimodal LLM for bundle construction. Its original evaluation is based on the multiple-choice
question protocol since it is impossible to input all the candidate items as input due to context

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Overall performance comparison between our DDBC and baselines. ”%Improv.” denotes
the relative improvement over the strongest baseline. Best in bold, second best underlined.

Model (A/beam) Spotifyk=30 Spotifyk=60 Spotifyk=90 POGk=4

F1 ↑ Jacc ↑ OAS ↑ F1 ↑ Jacc ↑ OAS ↑ F1 ↑ Jacc ↑ OAS ↑ F1 ↑ Jacc ↑ OAS ↑
CLHE 0.071 0.039 0.373 0.100 0.054 0.446 0.119 0.065 0.486 0.140 0.096 0.446
Bi-LSTM 0.124 0.071 0.489 0.062 0.034 0.430 0.047 0.025 0.426 0.035 0.024 0.390
SASRec 0.070 0.043 0.318 0.089 0.054 0.310 0.050 0.029 0.285 0.169 0.114 0.468
TIGER 0.093 0.053 0.329 0.129 0.076 0.413 0.123 0.070 0.480 0.213 0.157 0.546
BundleNAT 0.153 0.090 0.454 0.101 0.056 0.438 0.095 0.052 0.446 0.145 0.097 0.462
BundleMLLM 0.046 0.024 0.296 0.045 0.024 0.324 0.052 0.027 0.355 0.070 0.047 0.322

DDBC 0.282 0.178 0.618 0.296 0.185 0.668 0.287 0.177 0.684 0.139 0.098 0.526
%Improv. + 84.3% 97.8% 26.4% 129.5% 143.4% 49.8% 133.3% 152.9% 40.7% – – –

limitation of LLMs. Even though this setting is easier than our all-ranking setting, to be simple, we
follow this paradigm and set the candidate set as 20.

To be noted, many other recommendation models can be adapted as baselines by following the
paradigm of either the sequential or non-sequential construction. For example, the baselines im-
plemented in Ma et al. (2024c): MultiDAE (Wu et al., 2016), MultiVAE (Liang et al., 2018), Hy-
pergraph (Yu et al., 2022), and Transformer (Wei et al., 2023), etc. or the other advanced sequen-
tial recommendation models. However, we do not include them because they either underperform
CLHE or not highly relevant to the bundle scenario. We implement the most relevant and strongest
baselines to the best of our knowledge, and more baselines could be implemented upon request.

4.3 EVALUATION METRICS

We report retrieval-based metrics F1 and Jaccard (Jacc) (Manning et al., 2008; Ding et al., 2023), as
well as a latent-space similarity-based metric OAS (Salton et al., 1975). Higher F1, Jacc, and OAS

indicate better performance. Let b̂y denote the set of predicted items, these metrics are calculated
by:

F1 :=
2PR

P +R
, Jacc :=

|b̂y ∩ by|
|b̂y ∪ by|

, OAS :=
1

|by|
max
M

∑
(α,β)∈M

cos
(
E(α), E(β)

)
, (9)

where P =
|b̂y∩by|

|b̂y|
, R =

|b̂y∩by|
|by| , and M is the optimal matching between items in b̂y and by

and cos(·, ·) denotes cosine similarity. Previous methods in bundle construction use popular next-
item recommendation metrics, such as recall, ndcg, or hit rate (Ma et al., 2024c). However, these
metrics are not suitable in the scenario of full bundle construction, which needs to assess the quality
of the predicted entire item set instead of single item. Therefore, we propose these three metrics
to collaboratively measure the performance of bundle construction, offering a comprehensive and
consistent benchmark setting for future studies.

4.4 OVERALL PERFORMANCE COMPARISON

Table 1 shows the overall performance of DDBC compared with baseline methods. First, among
the baselines, BundleNAT and TIGER achieve the strongest performance. These results respec-
tively highlight two key component of our model: the non-sequential construction paradigm and the
advantages of discretizing items into multiple codes. Second, on the Spotify dataset series, DDBC
clearly outperforms all baselines, achieving a 153% improvement in Jacc on Spotifyk=90. Moreover,
the performance gain of DDBC becomes more pronounced as the bundle sequence length increases.
These results demonstrate that DDBC effectively captures the higher-order intra-bundle item rela-
tions, particularly for long-sequence bundles with rich structural dependencies. Third, on POGk=4,
our model does not outperform TIGER. In fact, since we only predict two items, the task, to some
extent reduces to a next-item prediction scenario, where auto-regressive methods such as TIGER
have a clear advantage.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Effect of input-predict ratio on Spotifyk=60. Best in bold, second best underlined.

Model 5/55 10/50 30/30 45/15
F1 ↑ Jacc ↑ OAS ↑ F1 ↑ Jacc ↑ OAS ↑ F1 ↑ Jacc ↑ OAS ↑ F1 ↑ Jacc ↑ OAS ↑

BundleNAT 0.106 0.059 0.443 0.128 0.072 0.463 0.101 0.056 0.438 0.084 0.046 0.359
SASRec 0.119 0.070 0.425 0.131 0.078 0.442 0.089 0.054 0.310 0.095 0.055 0.315
TIGER 0.087 0.050 0.365 0.100 0.059 0.381 0.129 0.076 0.413 0.154 0.091 0.426

DDBC 0.237 0.144 0.637 0.268 0.164 0.664 0.296 0.185 0.668 0.260 0.161 0.614
Improv. + 99.2% 105.7% 43.8% 104.6% 110.3% 43.4% 129.5% 143.4% 52.5% 68.8% 76.9% 44.1%

Table 3: Effect of candidate ratio on Spotifyk=60. Best in bold, second best underlined.

Model ρ=10 ρ=20 ρ=50 ρ=100
F1 ↑ Jacc ↑ OAS ↑ F1 ↑ Jacc ↑ OAS ↑ F1 ↑ Jacc ↑ OAS ↑ F1 ↑ Jacc ↑ OAS ↑

BundleNAT 0.266 0.163 0.508 0.210 0.124 0.485 0.153 0.088 0.464 0.101 0.056 0.438
SASRec 0.292 0.194 0.519 0.200 0.126 0.474 0.200 0.126 0.475 0.089 0.054 0.310
TIGER 0.191 0.151 0.326 0.107 0.080 0.295 0.108 0.081 0.296 0.129 0.076 0.413

DDBC 0.599 0.447 0.763 0.503 0.355 0.727 0.380 0.250 0.689 0.296 0.185 0.668
Improv. + 105.1% 130.4% 47.0% 139.5% 181.7% 49.9% 90.0% 98.4% 45.1% 129.5% 143.4% 52.5%

4.5 MODEL STUDY

Effect of input-predict ratio. We conduct experiments with different input-predict ratio on
Spotifyk=60 and report results in Table 2. We observe that DDBC outperforms all baselines across
different partial bundle sizes and exhibits a relatively consistent performance, demonstrating its ro-
bustness in scenarios with limited known items. Specifically, when the known partial bundles are
small (e.g., 5/55, 10/50, 30/30), DDBC achieves substantial improvements over the best baseline
by 106%, 110%, 143% on Jaccard, respectively. Although the performance gap narrows down as
the number of input items grow, our method continues to maintain a leading position. These re-
sults highlight that DDBC is capable of generating coherent and distribution-aware bundles even
when only a small subset of items is provided, validating the effectiveness of our masked denoising
formulation and the discrete diffusion mechanism.

Effect of candidate ratio. In addition, we report the results for DDBC and the baselines under dif-
ferent candidate ratios in Table 3. The results indicate that while the absolute values of the evaluation
metrics fluctuate as the candidate ratio (ρ) increases, the relative improvements of DDBC over all
baselines remain consistently substantial. Interestingly, among baselines, when ρ increases, TIGER
start to bypass other baselines on F1 and Jacc (ρ=100). This can be attributed to the fact that RVQ
allows precise reconstruction of item IDs, implying the advantages of using RVQ. These findings
highlight the adaptability of DDBC under varying candidate pool sizes, demonstrating its ability to
maintain strong bundle representations even when the retrieval space becomes more challenging.

Figure 2: Illustration of the model efficiency com-
parison. The x-axis is parameter size (millions),
y-axis is inference time (milliseconds per bundle),
and the bubble radius corresponds to overall per-
formance (larger is better).

Efficiency analysis. We record the inference
time and paremeter size of DDBC and the base-
line methods, as reported in Figure 2, where
the circle radius indicates each model’s overall
performance. The inference time is measured
on Spotifyk=60. Specifically, although Bi-
LSTM has fast inference and smallest param-
eters, its performance is not competitive (see
Table 1). DDBC is highly parameter-efficient,
containing only 0.79M parameters, and is sig-
nificantly smaller than other baselines. More-
over, DDBC’s inference speed is comparable
to the one-shot generation method BundleNAT
and faster than all other baseline models; in par-
ticular, it is substantially faster than BundleM-
LLM, which relies on interactions with large
language models.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

4.6 ABLATION STUDY

Key components. To further evaluate the effectiveness of key components of our model, we conduct
ablation experiments (Table 4) to assess the contribution of each design choice in DDBC. Consider-
ing the resource and time overhead imposed by the extremely large vocabulary in Spotify (254,155),
performing ablation studies without RVQ would be prohibitively expensive. Therefore, we adopt
Spotifyk = 30, the shortest sequence setting, as a more practical benchmark for these experiments.

Table 4: Ablation study of key components.

Variant F1 Jacc OAS

Our proposed DDBC 0.166 0.092 0.620
w/o RVQ 0.028 0.015 0.556
w/o boi token 0.116 0.063 0.536
w/o data augmentation 0.152 0.084 0.598
w/o token validity filter 0.163 0.090 –

We study how each component contributes to
performance: hierarchical (coarse-to-fine) de-
coding, token validity filter, boi token, data aug-
mentation, we also investigate how different
RVQ depth affect performance. We derive the
following insights. (1) Removing RVQ results
in a dramatic performance drop. We encode
items using their IDs and initialize their embed-
dings with CLHE features, results in a dramatic
drop in both F1 and Jaccard. This demonstrates
RVQ mitigates the dimensionality curse due to N , which is crucial as it permits dense supervi-
sion. (2) Discarding the boi token leads to a performance decline. Since Diffusion’s generation
lacks inherent sequence, integrating the boi token is necessary to guide the model with positional
information. (3) Data augmentation shows beneficial for modeling. The results of training on the
original dataset show a slight performance reduction in this case, and simple data augmentation
remains significant for diffusion modeling because it explicitly provides richer input context. (4)
The token validity filter remains essential to guarantee the validity of the generated bundles, despite
its removal leading to only a marginal decrease in performance. We evaluated the necessity of the
token validity filter during inference. While removing the filter resulted in only a marginal decrease
in overall performance, the invalid ratio concurrently rose to 2.5%. Therefore, the filter remains
essential to guarantee the validity of the generated bundles.

Table 5: Effect of RVQ levels.

ℓ ∈ F1 Jacc OAS

{1} 0.096 0.051 0.555
{1, 2} 0.122 0.066 0.591
{1, 2, 3} 0.148 0.081 0.590
Our proposed DDBC
{1, 2, 3, 4} 0.166 0.092 0.620

Effect of RVQ depth. To investigate the impact of the item
embedding quantization level on model performance as dis-
cussed in method section,with a fixed 4 levels RVQ, we train
DDBC with utilizing different levels of RVQ. We report the re-
sults in Table 5. As the number of RVQ levels used increases,
the model captures increasingly finer-grained item informa-
tion, leading to substantial improvements in all the evaluation
metrics. We state that the current setting represents a favorable
trade-off between the representational capacity and compres-
sion ratio of RVQ.

5 CONCLUSION

We recast bundle construction with a masked discrete diffusion model that progressively resolves
unknown items in an order-agnostic manner. Conceptually, the formulation address the dual di-
mensionality curses: (i) it removes spurious ordering, reducing the search space from permutations
to combinations, preserves fine-grained, higher-order item relations, and (ii)shrinks the effective
search space by mapping items to codes drawn from a globally shared codebook. Empirically, cou-
pling DDM with RVQ yields consistent gains over prior sequential and non-sequential construction
baselines, with especially strong improvements as bundle length grows.

Discussion. Our current instantiation assumes fixed-length bundles, learning when to stop (i.e.,
variable-length completion and principled halting criteria) remains open. Personalization is medi-
ated by frozen encoders for user–item signals and item semantics; introducing explicit condition-
ing into the diffusion process (e.g., context features, or user instruction) could yield user-specific
bundling. The RVQ design space (e.g., number of levels, codebook sizes, and training regimes)
deserves further study to balance identifiability, compression, and semantic smoothness. Finally,
diffusion schedules and inference policies merit deeper optimization: adaptive timestep schedules,
selective re-masking strategies, and entropy-guided decoding may improve sample efficiency and
robustness.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

We affirm compliance with the ICLR Code of Ethics. Our study addresses bundle construction (e.g.,
playlists and fashion outfits) and uses publicly available research datasets and splits released by prior
work; no personally identifiable information (PII) or sensitive attributes are collected, inferred, or
released. The inputs consist of item identifiers and non-sensitive metadata, and our models operate
on discretized representations without accessing user profiles. Any code and models we release will
be for research use only and will not include copyrighted media or proprietary assets.

REPRODUCIBILITY STATEMENT

We make our method reproducible by specifying the full training and evaluation pipeline, including
the RVQ configuration, diffusion horizon, architecture, schedulers, and all hyperparameters. We pro-
vide an anonymized repository https://anonymous.4open.science/r/DDBC-44EE,
including the implementation of our model as well as the evaluation scripts for F1, Jaccard, and
OAS. Upon publication, we plan to release checkpoints (where licenses permit) to reproduce all
main and ablation results.

REFERENCES

Jacob Austin, Daniel D. Johnson, Jonathan Ho, Daniel Tarlow, and Rianne van den Berg. Structured
denoising diffusion models in discrete state-spaces. In NeurIPS, pp. 17981–17993, 2021.

Jinze Bai, Chang Zhou, Junshuai Song, Xiaoru Qu, Weiting An, Zhao Li, and Jun Gao. Personalized
bundle list recommendation. In WWW, pp. 60–71, 2019.

Jianxin Chang, Chen Gao, Xiangnan He, Depeng Jin, and Yong Li. Bundle recommendation with
graph convolutional networks. In SIGIR, pp. 1673–1676. ACM, 2020.

Jianxin Chang, Chen Gao, Xiangnan He, Depeng Jin, and Yong Li. Bundle recommendation and
generation with graph neural networks. TKDE, 35(3):2326–2340, 2021.

Ching-Wei Chen, Paul Lamere, Markus Schedl, and Hamed Zamani. Recsys challenge 2018: Auto-
matic music playlist continuation. In RecSys, 2018.

Wen Chen, Pipei Huang, Jiaming Xu, Xin Guo, Cheng Guo, Fei Sun, Chao Li, Andreas Pfadler,
Huan Zhao, and Binqiang Zhao. Pog: personalized outfit generation for fashion recommendation
at alibaba ifashion. In KDD, pp. 2662–2670, 2019.

Qilin Deng, Kai Wang, Minghao Zhao, Runze Wu, Yu Ding, Zhene Zou, Yue Shang, Jianrong Tao,
and Changjie Fan. Build your own bundle-a neural combinatorial optimization method. In ACM
Multimedia, pp. 2625–2633, 2021.

Yujuan Ding, P. Y. Mok, Yunshan Ma, and Yi Bin. Personalized fashion outfit generation with user
coordination preference learning. Inf. Process. Manag., 60(5):103434, 2023.

Benjamin Elizalde, Soham Deshmukh, Mahmoud Al Ismail, and Huaming Wang. Clap learning
audio concepts from natural language supervision. In ICASSP, pp. 1–5. IEEE, 2023.

Yu Gong, Yu Zhu, Lu Duan, Qingwen Liu, Ziyu Guan, Fei Sun, Wenwu Ou, and Kenny Q. Zhu.
Exact-k recommendation via maximal clique optimization. In KDD, pp. 617–626. ACM, 2019.

Xintong Han, Zuxuan Wu, Yu-Gang Jiang, and Larry S. Davis. Learning fashion compatibility with
bidirectional lstms. In ACM Multimedia, pp. 1078–1086. ACM, 2017.

Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, and Meng Wang. Lightgcn:
Simplifying and powering graph convolution network for recommendation. In SIGIR, pp. 639–
648, 2020.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In NeurIPS,
2020.

10

https://anonymous.4open.science/r/DDBC-44EE

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Michael Janner, Yilun Du, Joshua B. Tenenbaum, and Sergey Levine. Planning with diffusion for
flexible behavior synthesis. In ICML, volume 162 of Proceedings of Machine Learning Research,
pp. 9902–9915. PMLR, 2022.

Zheng Ju, Honghui Du, Elias Z. Tragos, Neil Hurley, and Aonghus Lawlor. Diffgr: A discrete
diffusion-based model for personalised recommendation by reconstructing user-item bipartite
graphs. In ECIR (3), volume 15574 of Lecture Notes in Computer Science, pp. 246–254. Springer,
2025.

Wang-Cheng Kang and Julian J. McAuley. Self-attentive sequential recommendation. In ICDM, pp.
197–206. IEEE Computer Society, 2018.

Zhifeng Kong, Wei Ping, Jiaji Huang, Kexin Zhao, and Bryan Catanzaro. Diffwave: A versatile
diffusion model for audio synthesis. In ICLR. OpenReview.net, 2021.

Doyup Lee, Chiheon Kim, Saehoon Kim, Minsu Cho, and Wook-Shin Han. Autoregressive image
generation using residual quantization. In CVPR, pp. 11523–11532, 2022.

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image
pre-training with frozen image encoders and large language models. In ICML, pp. 19730–19742,
2023.

Lei Li, Yongfeng Zhang, Dugang Liu, and Li Chen. Large language models for generative recom-
mendation: A survey and visionary discussions. In LREC/COLING, pp. 10146–10159. ELRA
and ICCL, 2024a.

Zihao Li, Aixin Sun, and Chenliang Li. Diffurec: A diffusion model for sequential recommendation.
ACM Trans. Inf. Syst., 42(3):66:1–66:28, 2024b.

Dawen Liang, Rahul G Krishnan, Matthew D Hoffman, and Tony Jebara. Variational autoencoders
for collaborative filtering. In WWW, pp. 689–698, 2018.

Xiao Lin, Xiaokai Chen, Chenyang Wang, Hantao Shu, Linfeng Song, Biao Li, and Peng Jiang.
Discrete conditional diffusion for reranking in recommendation. In WWW (Companion Volume),
pp. 161–169. ACM, 2024.

Han Liu, Yinwei Wei, Xuemeng Song, Weili Guan, Yuan-Fang Li, and Liqiang Nie. Mmgrec:
Multimodal generative recommendation with transformer model. CoRR, abs/2404.16555, 2024.

Haohe Liu, Zehua Chen, Yi Yuan, Xinhao Mei, Xubo Liu, Danilo Mandic, Wenwu Wang, and
Mark D. Plumbley. Audioldm: Text-to-audio generation with latent diffusion models. In
Proceedings of the 40th International Conference on Machine Learning, volume 202 of Pro-
ceedings of Machine Learning Research, pp. 21450–21474. PMLR, 2023. URL https:
//proceedings.mlr.press/v202/liu23f.html.

Xiaohao Liu, Jie Wu, Zhulin Tao, Yunshan Ma, Yinwei Wei, and Tat-Seng Chua. Fine-tuning
multimodal large language models for product bundling. In KDD (1), pp. 848–858. ACM, 2025.

Yunshan Ma, Yingzhi He, An Zhang, Xiang Wang, and Tat-Seng Chua. Crosscbr: Cross-view
contrastive learning for bundle recommendation. In KDD, pp. 1233–1241, 2022.

Yunshan Ma, Yingzhi He, Xiang Wang, Yinwei Wei, Xiaoyu Du, Yuyangzi Fu, and Tat-Seng Chua.
Multicbr: Multi-view contrastive learning for bundle recommendation. ACM Transactions on
Information Systems, 42(4):1–23, 2024a.

Yunshan Ma, Yingzhi He, Wenjun Zhong, Xiang Wang, Roger Zimmermann, and Tat-Seng Chua.
CIRP: cross-item relational pre-training for multimodal product bundling. In ACM Multimedia,
pp. 9641–9649. ACM, 2024b.

Yunshan Ma, Xiaohao Liu, Yinwei Wei, Zhulin Tao, Xiang Wang, and Tat-Seng Chua. Leveraging
multimodal features and item-level user feedback for bundle construction. In WSDM, pp. 510–
519, 2024c.

11

https://proceedings.mlr.press/v202/liu23f.html
https://proceedings.mlr.press/v202/liu23f.html

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. Introduction to information
retrieval. Cambridge University Press, 2008.

Shashank Rajput, Nikhil Mehta, Anima Singh, Raghunandan Hulikal Keshavan, Trung Vu, Lukasz
Heldt, Lichan Hong, Yi Tay, Vinh Q. Tran, Jonah Samost, Maciej Kula, Ed H. Chi, and Mahesh
Sathiamoorthy. Recommender systems with generative retrieval. In NeurIPS, 2023.

Subham S. Sahoo, Marianne Arriola, Yair Schiff, Aaron Gokaslan, Edgar Marroquin, Justin T. Chiu,
Alexander Rush, and Volodymyr Kuleshov. Simple and effective masked diffusion language
models. In NeurIPS, 2024.

Rebecca Salganik, Xiaohao Liu, Yunshan Ma, Jian Kang, and Tat-Seng Chua. LARP: language
audio relational pre-training for cold-start playlist continuation. In KDD, pp. 2524–2535. ACM,
2024.

Gerard Salton, Anita Wong, and Chung-Shu Yang. A vector space model for automatic indexing.
Commun. ACM, 18(11):613–620, 1975.

Badrul Munir Sarwar, George Karypis, Joseph A. Konstan, and John Riedl. Item-based collaborative
filtering recommendation algorithms. In WWW, pp. 285–295. ACM, 2001.

Fei Sun, Jun Liu, Jian Wu, Changhua Pei, Xiao Lin, Wenwu Ou, and Peng Jiang. Bert4rec: Sequen-
tial recommendation with bidirectional encoder representations from transformer. In CIKM, pp.
1441–1450. ACM, 2019.

Meng Sun, Lin Li, Ming Li, Xiaohui Tao, Dong Zhang, Peipei Wang, and Jimmy Xiangji
Huang. A survey on bundle recommendation: Methods, applications, and challenges. CoRR,
abs/2411.00341, 2024.

Federico Tomasi, Francesco Fabbri, Mounia Lalmas, and Zhenwen Dai. Diffusion model for slate
recommendation. CoRR, abs/2408.06883, 2024.

Wenjie Wang, Yiyan Xu, Fuli Feng, Xinyu Lin, Xiangnan He, and Tat-Seng Chua. Diffusion rec-
ommender model. In SIGIR, pp. 832–841. ACM, 2023.

Penghui Wei, Shaoguo Liu, Xuanhua Yang, Liang Wang, and Bo Zheng. Towards personalized
bundle creative generation with contrastive non-autoregressive decoding. In SIGIR, pp. 2634–
2638. ACM, 2022.

Yinwei Wei, Xiaohao Liu, Yunshan Ma, Xiang Wang, Liqiang Nie, and Tat-Seng Chua. Strategy-
aware bundle recommender system. In SIGIR, pp. 1198–1207, 2023.

Likang Wu, Zhi Zheng, Zhaopeng Qiu, Hao Wang, Hongchao Gu, Tingjia Shen, Chuan Qin, Chen
Zhu, Hengshu Zhu, Qi Liu, Hui Xiong, and Enhong Chen. A survey on large language models
for recommendation. World Wide Web (WWW), 27(5):60, 2024.

Yao Wu, Christopher DuBois, Alice X. Zheng, and Martin Ester. Collaborative denoising auto-
encoders for top-n recommender systems. In WSDM, pp. 153–162. ACM, 2016.

Ling Yang, Zhilong Zhang, Yang Song, Shenda Hong, Runsheng Xu, Yue Zhao, Yingxia Shao,
Wentao Zhang, Ming-Hsuan Yang, and Bin Cui. Diffusion models: A comprehensive survey of
methods and applications. CoRR, abs/2209.00796, 2022.

Wenchuan Yang, Cheng Yang, Jichao Li, Yuejin Tan, Xin Lu, and Chuan Shi. Non-autoregressive
personalized bundle generation. Inf. Process. Manag., 61(5):103814, 2024.

Zhengyi Yang, Jiancan Wu, Zhicai Wang, Xiang Wang, Yancheng Yuan, and Xiangnan He. Generate
what you prefer: Reshaping sequential recommendation via guided diffusion. In NeurIPS, 2023.

Zhouxin Yu, Jintang Li, Liang Chen, and Zibin Zheng. Unifying multi-associations through hyper-
graph for bundle recommendation. Knowledge-Based Systems, 255:109755, 2022.

Jianyang Zhai, Zi-Feng Mai, Chang-Dong Wang, Feidiao Yang, Xiawu Zheng, Hui Li, and
Yonghong Tian. Multimodal quantitative language for generative recommendation. In ICLR,
2025.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Bowen Zheng, Yupeng Hou, Hongyu Lu, Yu Chen, Wayne Xin Zhao, Ming Chen, and Ji-Rong Wen.
Adapting large language models by integrating collaborative semantics for recommendation. In
ICDE, pp. 1435–1448. IEEE, 2024.

A THE USE OF LARGE LANGUAGE MODELS

We used large language models (e.g., ChatGPT 5, Claude) as an assistive tool for writing polish
(grammar, phrasing, and LaTeX formatting), troubleshooting LaTeX errors, and scaffolding non-
critical scripts (plotting and small utilities). LLMs did not contribute novel scientific ideas, data
collection, or result selection, and any code snippets suggested by an LLM were reviewed, rewritten
where necessary, and validated by the authors. All technical claims, mathematical formulations,
and empirical results are the authors’ responsibility. LLMs are not listed as authors and have no
authorship rights.

B IMPLEMENTATION DETAILS

Dataset statistics. The statistics for the datasets used in our experiments are summarized in Table
6. All Spotify series dataset share a large item catalog size (N) of 254,155, with a massive candidate
space. Density Spotifyk=30 > Spotifyk=60 > Spotifyk=90. Conversely, the POGk=4 dataset features
a substantially smaller item catalog size (N) of 31,217 and contains a more consistent number of
bundles across the splits (e.g., Mtrain = 29, 704). This variation in item catalog size and bundle
count allows for a comprehensive evaluation of our method’s scalability and performance under
different data density conditions.

Data augmentation. To improve the model’s robustness and prevent the bundle overfit to the default
sequential item order of the bundle, we employ a data augmentation strategy based on item swap-
ping. Specifically, for each original item sequence, we performed a series of adjacent item swaps
on a copy of the sequence. For the POG dense dataset, we set swap ratio 0.8, and for the Spotify
datasets, we used swap ratio 0.4. Subsequently, we randomly sampled a fixed-length subsequence
(sequence length) from the perturbed sequence, creating a new augmented training instance. This
data augmentation is an enhancement to the diffusion model, fulfilling the non-sequential modeling
objective while countering the potential issue of overfitting to the certain given sequential order in
the bundle.

Over-retrieval. To standardize the evaluation of generative models which can produce multiple
possible outputs, we employ an Over-Retrieval Strategy. This strategy aggregates the results from
multiple generation attempts, effectively forming the union B̂y used in the retrieval-based metrics.
For generative sampling models, we evaluate performance under a varying number of attempts b ∈
{1, 5, 10, 20, 50} (denoted as Multiple Sampling, MS). For auto-regressive baselines that use beam
search, we report the results using beam width b ∈ {1, 3, 5, 10, 20, 50}, mapping the beam width to
the number of attempts (K = b) for a fair comparison of computational cost.

Table 6: Dataset statistics. N is the catalog size (total number of items in the dataset); Mtrain/val/test
are the number of bundles in train/val/test sets.

Dataset N Mtrain Mval Mtest

Spotifyk=30 254,155 321,929 1,374 2,744
Spotifyk=60 254,155 253,358 798 1,582
Spotifyk=90 254,155 188,618 463 969
POGk=4 31,217 29,704 1,303 2,521

Input tokenization for bundles (details). Given b = {i1, . . . , i|b|} with item codes z(ij) =
(zj,1, . . . , zj,L), the serialized sequence is
x = (<bos>, <boi>, z1,1, . . . , z1,L, <boi>, z2,1, . . . , z2,L, . . . , <boi>, z|b|,1, . . . , z|b|,L, <eos>).

(10)
Its length is U = 2 + |b|(L+1). Define the index map for item j and level ℓ:

u(j, 0) = 1 + (j−1)(L+1) + 1, u(j, ℓ) = u(j, 0) + ℓ, ℓ ∈ {1, . . . , L}. (11)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Algorithm 1 RVQ-ENCODE for an item embedding

Require: Item embedding E(i) ∈ Rd; semantic codebooks {C(1), . . . , C(L−1)}with C(ℓ) = {e(ℓ)
c }Cℓ

c=1 ⊂ Rd;
dedup indexer DEDUP(i) ∈ {1, . . . , CL}

Ensure: Code indices z(i) = (z(1)(i), . . . , z(L)(i)) and reconstruction Ê(i)

1: r← E(i); Ê ← 0d

2: for ℓ = 1 to L− 1 do ▷ semantic levels
3: z(ℓ)(i)← argmin

c∈{1,...,Cℓ}
∥r− e

(ℓ)
c ∥22 (tie-break: smallest index)

4: Ê ← Ê + e
(ℓ)

z(ℓ)(i)
; r← r− e

(ℓ)

z(ℓ)(i)

5: end for
6: z(L)(i)← DEDUP(i) ▷ non-semantic dedup level
7: return z(i), Ê(i) = Ê

Algorithm 2 Constraint-aware order-agnostic decoding (inference)

Require: Observed item set bx; index maps u(j, ℓ) and INVIDX(u) → (j, ℓ); code-domain valid sets
{V(ℓ)

valid(j; zj,<ℓ)}; diffusion model pθ; horizon T

Ensure: Clean token matrix Z(0) and completed bundle b̂
1: Initialize Z with tokens for Ωx and for Ωflag; set zu←[MASK] for all u ∈ Ωy

2: while there exists u ∈ Ωy with zu = [MASK] do
3: Choose a timestep t ∈ {1, . . . , T} (e.g., t=T−s+1 at step s, or by a schedule)
4: for all u ∈ Ωy with zu = [MASK] do
5: (j, ℓ)← INVIDX(u)

6: π ← pθ(· | Z(t)=Z, t) categorical over {1, . . . , Cℓ} (no [MASK])
7: mask out invalids: π[c]← 0 for c /∈ V(ℓ)

valid(j; zj,<ℓ); π ← π/
∑

c π[c]
8: P (u)← π
9: end for

10: Select a reveal set S ⊆ {u ∈ Ωy : zu = [MASK]} (e.g., top-k by maxP (u), lowest-entropy, or
reveal ratio η)

11: for all u ∈ S do
12: decode: zu ← argmaxP (u) (or sample with temperature/top-p)
13: clamp: zu stays unmasked thereafter
14: end for
15: end while
16: Z(0)←Z
17: return Z(0), b̂ via îj = CODE2ITEM

(
zj,1:L

)
for all j

We then specify exactly two sets:

Ωflag = {1, U} ∪ {u(j, 0) }|b|j=1, Ωcode = {u(j, ℓ) : j = 1, . . . , |b|, ℓ = 1, . . . , L }. (12)

By construction, Ωflag ∩ Ωcode = ∅ and Ωflag ∪ Ωcode = [U]. Positions in Ωflag are never masked;
corruption and prediction operate only on Ωcode (including the dedup level ℓ=L).

RVQ encoding pseudocode. We elucidate the pseudocode in Algorithm 1, specifying the encoding
for an item embedding.

Evaluation metric setting. To quantify the similarity between pPredict and pTarget, we compute the
pairwise similarity S(ti, t̂j) for all tracks ti ∈ pTarget and tj ∈ pPredict. This setup forms a bipartite
graph, where the nodes correspond to tracks in the two playlists, and the edge weights represent
their pairwise similarity scores. The total similarity is defined as the Optimal Weighted Bipartite
Matching:

M∗ = argmax
M

∑
(ti,tj)∈M

S(ti, tj), (13)

where M is a bijective mapping between pTarget and pPredict.

Hungarian algorithm. We employ the Hungarian algorithm to solve the optimal matching problem.
The steps are detailed with pseudocode format in Algorithm 3.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Algorithm 3 OAS via Hungarian Algorithm (maximize sum of cosine similarities)

Require: Predicted set b̂y = {̂i1, . . . , în̂} (duplicates removed); ground-truth set by = {i1, . . . , in}; embed-
dings E(·)

Ensure: Optimal matching M ⊆ {1, . . . , n̂} × {1, . . . , n} and OAS

1: build similarity: S ∈ Rn̂×n with S[a, b]← cos
(
E(̂ia), E(ib)

)
2: m← max(n̂, n)

3: build square cost: C̃ ∈ Rm×m ▷ convert max-sim to min-cost
4: for a = 1 to m do
5: for b = 1 to m do
6: if a ≤ n̂ and b ≤ n then
7: C̃[a, b]← 1− S[a, b] ▷ cost ∈ [0, 2] since cos ∈ [−1, 1]
8: else
9: C̃[a, b]← 1 ▷ dummy pairs have similarity 0

10: end if
11: end for
12: end for
13: row reduction: C̃[a, ·]← C̃[a, ·]−minb C̃[a, b] for all a
14: column reduction: C̃[·, b]← C̃[·, b]−mina C̃[a, b] for all b
15: repeat
16: Cover all zeros in C̃ by the minimum number of horizontal/vertical lines
17: if (#lines < m) then
18: ∆← min{C̃[a, b] : C̃[a, b] is uncovered}
19: Subtract ∆ from every uncovered entry
20: Add ∆ to every doubly-covered entry
21: (singly-covered entries unchanged)
22: end if
23: until #lines = m
24: extract assignment: find m independent zeros (no two share a row/column) to form an optimal assignment

M̃ ⊆ {1, . . . ,m}2

25: restrict to real items: M ← {(a, b) ∈ M̃ : a ≤ n̂, b ≤ n}
26: Ssum ←

∑
(a,b)∈M S[a, b]

27: OAS← Ssum

n
▷ denominator is |by| = n

28: return M , OAS

C ADDITIONAL RESULTS

Comparison across datasets using Jaccard. We compare the results crosss datasets using Jaccard
with multiple attempts. As Table 7 shows, among the established baselines, BundleNAT generally
achieves the best Jaccard performance across the Spotify datasets. This suggests that BundleNAT’s
non-auto-regressive architecture is particularly effective at generating relevant set-based results com-
pared to the sequential models. What’s more, our proposed method, DDBC, consistently and sig-
nificantly outperforms all baselines across every dataset and attempt level. On Spotifyk=30 , the
DDBC model achieves a Jaccard@1 of 0.164, nearly doubling the performance of the best baseline
(BundleNAT at 0.090). This performance gap confirms the efficacy and advanced capability of our
model, especially when generating predictions with multiple attempts.

Table 7: Comparison across datasets using Jaccard with A ∈ {1, 5, 20}. Best in bold, second best
underlined.

Model (A/beam) Spotifyk=30 Spotifyk=60 Spotifyk=90 POGk=4

Jacc@1 Jacc@5 Jacc@20 Jacc@1 Jacc@5 Jacc@20 Jacc@1 Jacc@5 Jacc@20 Jacc@1 Jacc@5 Jacc@20

CLHE .009 .005 .002 .008 .004 .002 .007 .003 .001 .059 .048 .020
SASRec .043 .023 .009 .054 .030 .013 .029 .013 .005 .114 .066 .024
TIGER .053 .028 .011 .076 .036 .013 .070 .034 .013 .157 .094 .038

BundleNAT .090 .076 .033 .056 .055 .027 .052 .052 .026 .097 .055 .023

DDBC .164 .130 .053 .185 .137 .055 .177 .132 .054 .098 .073 .032

Latent-space quality. To better explore the latent-space quality of the items generated by our
method, we report the OAS metric at A = 50, as shown in Table 8. For the Spotify dataset series,

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

when the bundle length (k) increases from 30 to 90, the latent-space quality improves substantially
and stable. Specifically, the average OAS decreases consistently from 0.397 (Spotifyk=30) to 0.338
(Spotifyk=60) and finally to 0.315 (Spotifyk=90). Since a lower OAS score indicates lower distance
and higher similarity, this trend suggests that our method has an improved capacity to model longer
bundles.

Table 8: Latent-space quality at A=50. We report the {min, avg,max, var} OAS over test bundles,
corresponding to minimal, average, maximal, and variance, respectively.

Dataset min avg max var

Spotifyk=30 0.477 0.603 0.717 0.003

Spotifyk=60 0.582 0.662 0.733 0.001

Spotifyk=90 0.625 0.685 0.738 0.001

POGk=4 0.246 0.525 0.791 0.018

Additional ablation study results. We report ablation study results on Spotifyk=30 (A=1 or A=10)
in Table 9. The results obtained at A=10 are consistent with those observed at A=1. (1) The Residual
Vector Quantization (RVQ) component exhibits to be absolutely indispensable. This result confirms
the substantial mechanism of RVQ to mitigate the dimensionality curse caused by the huge item cat-
alog size (N). (2) The boi token could provide positional guidance and improve latent space quality
largely. Removing the boi token results in a significant performance degradation. (3) Simple data
augmentation (item swapping) proves to be a beneficial technique for enhancing order-agnostic mod-
eling and improving model robustness by mitigating overfitting to specific bundle arrangements. (4)
Although the Token Validity Filter yields only a marginal performance improvement, its inclusion
remains necessary to guarantee the validity of the generated bundles during inference.

Table 9: Ablation study on Spotifyk=30 (A=1 vs. A=10). “Proposed” is our model DDBC; each of
the other variants changes exactly one component that is removed from the proposed method.

Variant A=1 A=10

F1 ↑ Jacc ↑ OAS ↑ F1 ↑ Jacc ↑ OAS ↑
Our proposed DDBC 0.282 0.178 0.618 0.166 0.092 0.620

w/o RVQ 0.021 0.011 0.557 0.028 0.015 0.556
w/o token validity filter 0.276 0.173 – 0.163 0.090 –
w/o boi token 0.176 0.104 0.538 0.116 0.063 0.536
w/o data augmentation 0.254 0.158 0.599 0.152 0.084 0.598

16

	Introduction
	Related Work
	Method
	Problem Formulation
	Residual Quantization of Item Embeddings
	Masked Discrete Diffusion over Code Tokens

	Experiment
	Experimental Settings.
	Baselines.
	Evaluation Metrics
	Overall Performance Comparison
	Model Study
	Ablation Study

	Conclusion
	The Use of Large Language Models
	Implementation Details
	Additional Results

