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ABSTRACT

One of the main motivations of studying continual learning is that the problem
setting allows a model to accrue knowledge from past tasks to learn new tasks
more efficiently. However, recent studies suggest that the key metric that con-
tinual learning algorithms optimize, reduction in catastrophic forgetting, does not
correlate well with the forward transfer of knowledge. We believe that the con-
clusion previous works reached is due to the way they measure forward transfer.
We argue that the measure of forward transfer to a task should not be affected by
the restrictions placed on the continual learner in order to preserve knowledge of
previous tasks. Instead, forward transfer should be measured by how easy it is to
learn a new task given a set of representations produced by continual learning on
previous tasks. Under this notion of forward transfer, we evaluate different con-
tinual learning algorithms on a variety of image classification benchmarks. Our
results indicate that less forgetful representations lead to a better forward transfer
suggesting a strong correlation between retaining past information and learning
efficiency on new tasks. Further, we found less forgetful representations to be
more diverse and discriminative compared to their forgetful counterparts.

1 INTRODUCTION

Continual learning aims to improve learned representations over time without having to train from
scratch as more data or tasks become available. This objective is especially relevant in the context of
large scale models trained on massive scale data, where training from scratch is prohibitively costly.
However, the standard stochastic gradient descent (SGD) training, relying on the IID assumption of
data, results in a severely degraded performance on old tasks when the model is continually updated
on new tasks. This phenomenon is referred to as catastrophic forgetting (McCloskey & Cohen,
1989; Goodfellow et al., 2016) and has been an active area of research (Kirkpatrick et al., 2016;
Lopez-Paz & Ranzato, 2017; Mallya & Lazebnik, 2018). Intuitively, the reduction in catastrophic
forgetting allows the learner to accrue knowledge from the past, and use it to learn new tasks more
efficiently – either using less training data, less compute, better final performance or any combi-
nation thereof. This phenomenon of efficiently learning new tasks using previous information is
referred to as forward transfer.

Catastrophic forgetting and forward transfer are often thought of as competing desiderata of contin-
ual learning where one has to strike a balance between the two depending on the application at hand
(Hadsell et al., 2020). Specifically, Wolczyk et al. (2021) recently studied the interplay of forgetting
and forward transfer in the robotics context, and found that many continual learning approaches
alleviate catastrophic forgetting at the expense of forward transfer. This is indeed unavoidable if the
capacity of the model is less than the amount of information we intend to store. However, assuming
that the model has sufficient capacity to learn all the tasks simultaneously, as in multitask learning,
one might think that a less forgetful model could transfer its retained knowledge to future tasks when
they are similar to past ones.

∗Work done while interning at DeepMind.
†JC and AC contributed equally.
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Figure 1: Comparing average forgetting with average forward transfer for different continual learn-
ing methods using random initialization on the Split CIFAR-100 benchmark. FOMAML has less
forgetting and thus better forward transfer.

In this work, therefore, we argue for looking at the trade-off between forgetting and forward transfer
in the right perspective. Typically, forward transfer is measured as the learning accuracy on a task
after the continual learner has already made training updates from the task (Wolczyk et al., 2021;
Chaudhry et al., 2019a; Lopez-Paz & Ranzato, 2017). However, since such training updates are
usually modified to preserve performance on previous tasks (e.g. EWC (Kirkpatrick et al., 2016)),
a competition arises between maximizing learning accuracy and mitigating catastrophic forgetting.
Therefore, we argue for a measure of forward transfer that is unconstrained from any training mod-
ifications made to preserve previous knowledge. We propose to use auxiliary evaluation of contin-
ually trained representations as a measure of forward transfer which is separate from the continual
training of the model. Specifically, at the arrival of a new task, we fix the representations learned on
the previous task and evaluate them on the new task. This evaluation is done by learning a temporary
classifier using a small subset of data from the new task and measuring performance on the test set
of the task. The continual training on the new task then proceeds with the updates to the representa-
tions (and the classifier) with the full training dataset of the task. We note that this notion of forward
transfer removes the tug of war between forgetting the previous tasks and transfer to the next task,
and it is with this notion of transfer that we ask the question are less forgetful representations more
transferable?

We analyze the interplay of catastrophic forgetting and forward transfer on several supervised con-
tinual learning benchmarks and algorithms. For this work, we restrict ourselves to the task-based
continual learning setting, where task information is assumed at both train and test times as it makes
the aforementioned evaluation based on auxiliary classification at fixed points easily interpretable.
Our results demonstrate that a less forgetful model in fact transfers better (cf. Figure 1). We find
this observation to be true for both randomly initialized models as well as for models that are ini-
tialized from a pre-trained model. We further analyse the reasons of this better transferability and
find that less forgetful models result in more diverse and easily separable representations making it
easier to learn a classifier head on top. We note that with these results, we want to emphasize that
the continual learning community should look at the trade-off between forgetting and forward trans-
fer in the right perspective. The learning accuracy based measure of forward transfer is useful for
end-to-end learning on a fixed benchmark and it creates a trade-off between forgetting and forward
transfer as rightly demonstrated by Hadsell et al. (2020); Wolczyk et al. (2021). However, in the
era of foundation models where pretrain-then-finetune is a dominant paradigm and where one often
does not know a priori the tasks where a foundation model will be finetuned, a measure of forward
transfer that looks at the capability of a backbone model to be finetuned on several downstream tasks
is perhaps a more apt measure.

The rest of the paper is organized as follows. In Section 2, we describe the training and evaluation
setups considered in this work. In Section 3, we provide experimental details followed by the
main results of the paper. Section 4 lists down most relevant works to our study. We conclude with
Section 5 providing some hints to how the findings of this study can be useful for the future research.
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Figure 2: Illustration of continual learning and k-shot evaluation process. We continuously train the feature
extractor and the classification head on a task sequence T1, . . . , TN . Θj◦Φj is the model obtained after training
on Tj . To evaluate the forward transfer of Φj , we use linear probing on k-shot samples from the next task Tj+1

to learn a classifier Θ̂ and then evaluate the accuracy of Θ̂ ◦ Φj on the test set Dte
j+1 from the task Tj+1.

2 PROBLEM SETUP AND METRICS

We consider a supervised continual learning setting consisting of a sequence of tasks T =
{T1, · · · , TN}. A task Tj is defined by a dataset Dj = {(xi, yi, ti)

nj

i=1}, consisting of nj

triplets, where x ∈ X , y ∈ Y , and t ∈ T are input, label and task id, respectively. Each
Dj = {Dtr

j ,Dval
j ,Dte

j } consists of train, validation and test sets. At a given task ‘j’, the learner
may have access to all the previous tasks’ datasets {Di}i<j , but it will not have access to the future
tasks. We define a feed-forward neural network consisting of a feature extractor Φ : X 7→ RD

and a task-specific classifier Θj : RD × T 7→ Yj , that implements an input to output map-
ping fj = (Θj ◦ Φ) : X × T 7→ Yj . The neural network is trained by minimizing a loss
ℓj : fj(X ,T) × Yj 7→ R+ using stochastic gradient descent (SGD) (Bottou, 2010). While we
consider image classification tasks and use cross-entropy loss for each task, the approach would be
applicable to other tasks and loss functions as well.

The learner updates a shared feature extractor (Φ) and task-specific heads (Θj) throughout the con-
tinual learning experience. After training on each task ‘i’, we measure the performance of the learner
on all the tasks observed so far. Let Acc(i, j) be the accuracy of the model on Dte

j after the feature
extractor is updated with Ti. We define the average forgetting metric at task ‘i’ similar to (Lopez-Paz
& Ranzato, 2017):

Fgti =
1

i− 1

i−1∑
j=1

Acc(i, j)− Acc(j, j).

The average forgetting metric (∈ [−1, 1]) throughout the continual learning is then defined as,

AvgFgt =
1

N − 1

N∑
i=2

Fgti. (1)

A negative value of Fgti indicates that the learner has lost performance on the previous tasks, and
the more negative AvgFgt is the more forgetful the representations are of the previous knowledge.

Forward Transfer through K-Shot Probing We measure forward transfer in terms of how easy it
is to learn a new task given continually trained representations. The easiness is measured by learning
a linear classifier on top of the fixed representations using a small subset of the data of the new task
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(refer to Figure 2 for illustration). Specifically, let Sk
j+1

k∼ Dtr
j+1 denote a sample consisting of ‘k’

examples per class from Dtr
j+1, and let Φj be the representations obtained after training on task ‘j’

(see the bottom blob of Figure 2). Let Θ̂ be the temporary (linear) classifier head learned on top
of fixed Φj using Sk

j+1. We measure the accuracy of this temporary classifier on the test set of task
‘j+1’ and denote it as Fwtk

j . This is called the forward transfer of learned representations Φj to the
next task ‘j+1’. The average forward transfer throughout the continual learning is then defined as,

AvgFwtk =
1

N − 1

N−1∑
j=1

Fwtk
j . (2)

We note that linear probing is an auxiliary evaluation process where model updates during evaluation
remain distinct from the updates made by the continual learner while observing a task sequence.
Contrary to this, in most prior works (Wolczyk et al., 2021; Lopez-Paz & Ranzato, 2017), forward
transfer is measured after the continual learner has made updates on the task. Such updates typically
restrict the learning on current task to alleviate catastrophic forgetting on the previous tasks. This
causes the learner to perform worse on the current task compared to a learner that is not trying to
mitigate catastrophic forgetting. We sidestep this dilemma by separating the updates made by the
continual learner on a new task from the temporary updates made during auxiliary evaluation on a
copy of the model. We also note that similar to linear probing, one could finetune the whole model,
including the representations, during the auxiliary evaluation. The main argument is to decouple the
notion of forward transfer from modifications made by the continual learning algorithm to preserve
knowledge of the previous tasks.

Feature Diversity In addition to AvgFgt (Equation 1) and AvgFwtk (Equation 2), we also
measure how diverse and easily separable the features of our trained models are for analyzing the
transferability of the representations. Specifically, let Ψj ∈ Rm×D be the feature matrix computed
using the feature extractor Φj (obtained after training on task ‘j’) on the ‘m’ test examples of task
‘j+1’. Let Ψc

j be a sub-matrix constructed by collecting the rows of Ψj that belong to class ‘c’.
Similar to (Wu et al., 2021; Yu et al., 2020), we define the feature diversity score of Φj as

FDivj = log |αΨ⊤
j Ψj + I| −

Cj∑
c=1

log |αjΨ
c
j
⊤Ψc

j + I|,

where |·| is a matrix determinant operator, α = D/(mϵ2), αj = D/(mjϵ
2), ϵ = 0.5, and Cj denotes

the number of classes for task ‘j’. The average feature score throughout the continual learning
experience is then defined as,

AvgFDiv =
1

N − 1

N−1∑
j=1

FDivj . (3)

The intuition behind using this score is that features that enforce high inter-class separation and
low intra-class variability should make it easier to learn a classifier head on top leading to a better
transfer to next tasks.

3 EXPERIMENTS & RESULTS

3.1 SETUP

We now briefly describe the experimental setup including the benchmarks, approaches and training
details. More details can be found in Appendix A. After the experimental details, we provide the
main results of the paper.

Benchmarks

• Split CIFAR-10: We split CIFAR-10 dataset (Krizhevsky et al., 2009) into 5 disjoint sub-
sets corresponding to 5 tasks. Each task has 2 classes.
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• Split CIFAR-100: We split CIFAR-100 dataset (Krizhevsky et al., 2009) into 20 disjoint
subsets corresponding to 20 tasks. Each task has 5 classes.

• CIFAR-100 Superclasses: We split CIFAR-100 dataset into 5 disjoint subsets correspond-
ing to 5 tasks. Each task has 20 classes from 20 superclasses in CIFAR-100 respectively.

• CLEAR: This is a continual image classification benchmark by Lin et al. (2021), built from
YFCC100M (Thomee et al., 2016) images, containing the evolution of object categories
from years 2005-2014. There are 10 tasks each containing images in chronological order
from years (2005-2014). We consider both CLEAR10 (consisting of 10 object classes) and
CLEAR100 (consisting of 100 object classes) variants of the benchmark.

• Split ImageNet: We split ImageNet (Russakovsky et al., 2015) dataset into 100 disjoint
subsets corresponding to 100 tasks. Each task has 10 classes.

For all the benchmarks, except split ImageNet, we considered continual learning from a randomly
initialized model as well as from a pre-trained ImageNet model. For split ImageNet, we only con-
sidered continual learning from a randomly initialized model.

Approaches 1

Below we describe the approaches considered in this work. Except for the independent baseline, all
other baselines reuse the model i.e. continue training the same model used for the previous tasks.

• Independent (IND): Trains a model from an initial model (either random initialized or
pre-trained) on each task independently.

• Finetuning (FT): Trains a single model on all the tasks in a sequence, one task at a time.

• Linear-Probing-Finetuning (LP-FT): LP-FT (Kumar et al., 2021) is the same as FT ex-
cept that before each task training, we first learn a task-specific classifier Θ for the task via
linear probing and then train both the feature extractor Φ and the classifier Θ on the task to
reduce the feature drift.

• Multitask (MT): Trains the model on the data from both the current and previous tasks
using the multitask training objective (equation 6 in Appendix). The data of previous tasks
is used as an auxiliary loss while learning on the current task.

• Experience Replay (ER): Uses a replay buffer M = ∪N−1
i=1 Mi when learning on the task

sequence, where Mi stores m examples per class from the task Ti. It trains the model
on the data from both the current task and the replay buffer when learning on the current
task using an ER training objective (equation 7 in Appendix) (Chaudhry et al., 2019b).
There are two main differences between MT and ER: (1) MT uses all the data from the
previous tasks while ER only uses limited data from the previous tasks; (2) MT chooses
the coefficient for the auxiliary loss via cross-validation while ER always set it to be 1.

• AGEM: Projects the gradient when doing the SGD updates so that the average loss on the
data from the episodic memory does not increase (Chaudhry et al., 2019a). The episodic
memory stores m examples per class from each task.

• FOMAML: First-order MAML (FOMAML) is a meta-learning approach proposed by Finn
et al.. We modify FOMAML such that it can be used in the continual learning setting. Sim-
ilar to MT, FOMAML uses all the data from the previous tasks when learning the current
task. The training objective of FOMAML aims to enable knowledge transfer between dif-
ferent batches from the same task. The learning algorithm for FOMAML is provided in
Appendix A.2.

Architecture and Training details. We use ResNet50 (He et al., 2016) architecture as the feature
extractor Φ on all benchmarks. On CLEAR10 and CLEAR100, we use a single classification head
Θ that is shared by all the tasks (single-head architecture) while on other benchmarks, we use a
separate classification head Θi for each task Ti (multi-head architecture). We use SGD to update
the model parameters and use cosine learning rate scheduling (Loshchilov & Hutter, 2016) to adjust
the learning rate during training. For LP-FT, we use a base learning rate of 0.001 while for other

1The EWC (Kirkpatrick et al., 2016) results are in Appendix Table 6.

5



Published as a conference paper at ICLR 2023

0.30

0.25

0.20

0.15

0.10

0.05

0.00

av
er

ag
e 

fo
rg

et
tin

g

Split CIFAR-10 with Random_init

Method
FT
AGEM (m=50)
ER (m=50)
MT
FOMAML

5 10 20 100
k

0.50

0.55

0.60

0.65

0.70

0.75

0.80

av
er

ag
e 

fo
rw

ar
d 

tra
ns

fe
r

Split CIFAR-10 with Random_init
Method
IND
FT
AGEM (m=50)
ER (m=50)
MT
FOMAML

0.04

0.05

0.06

0.07

0.08

0.09

0.10

av
er

ag
e 

fo
rg

et
tin

g

CLEAR100 with Random_init
Method
AGEM (m=5)
FT
ER (m=5)
MT
FOMAML

(a) Average Forgetting (↑ better)

5 10 20 40
k

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

av
er

ag
e 

fo
rw

ar
d 

tra
ns

fe
r

CLEAR100 with Random_init

Method
IND
ER (m=5)
AGEM (m=5)
FT
MT
FOMAML

(b) Average Forward Transfer (↑ better)

Figure 3: Comparing average forgetting with average forward transfer for different continual learning methods
using random initialization on the Split CIFAR-10 and CLEAR100 benchmarks.

baselines, we use a base learning rate of 0.01. When using a random initialization as the initial
model f0, on split CIFAR-10, split CIFAR-100 and CIFAR-100 superclasses, we train the model
for 50 epochs per task while on CLEAR10, CLEAR100 and Split ImageNet, we train the model for
100 epochs per task. When using a pre-trained model as the initial model f0, on all benchmarks,
we train the model for 20 epochs per task as we found it sufficient for training convergence. For
CLEAR10 and CLEAR100, the results are averaged over 5 different runs with different random
seeds each corresponding to a different network initialization, where the task order is fixed. For
other benchmarks, the results are averaged over 5 different runs, where each run corresponds to a
different random ordering of tasks. The results are reported as averages and 95% confidence interval
estimates of these 5 runs. For k-shot linear probing, we use SGD with a fixed learning rate of 0.01.
We train the classifier head Θ̂ for 100 epochs on the k-shot dataset Sk

j+1 as we found it sufficient for
training convergence. On CLEAR100, we consider k ∈ {5, 10, 20, 40} while on other benchmarks,
we consider k ∈ {5, 10, 20, 100}.

3.2 RESULTS

LESS FORGETFUL REPRESENTATIONS TRANSFER BETTER

We assess the compatibility between forgetting and transferability through AvgFgt and AvgFwtk

metrics described in Section 2. Figures 1 and 3 show these two metrics for Split CIFAR-100,
Split-CIFAR10 and CLEAR100, respectively when the continual learning experience begins from
a randomly initialized model (the comparison on the other benchmarks is provided in the Ap-
pendix B.1). It can be seen from the figures that if a model has less average forgetting, the corre-
sponding model representations have a better K-shot forward transfer. For example, on all the three
benchmarks visualized in the figures, FOMAML and MT tend to have the least amount of average
forgetting. Consequently, the AvgFwtk of these two baselines is higher compared to all the other
baselines, for all the values of k considered in this work. Note that the ranking of other methods
in terms of correspondence between forgetting and forward transfer is roughly maintained as well.
This shows that when continual learning experience begins from a randomly initialized model, re-
taining the knowledge of the past tasks or forgetting less on those tasks is a good inductive bias for
forward transfer.
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Figure 4: Comparing average forgetting with average forward transfer for different continual learning meth-
ods that train the model from a pre-trained ImageNet model on the Split CIFAR-10 and Split CIFAR-100
benchmarks. We also show the accuracy of the models on the upsteam ImageNet data. Since CIFAR-10 and
CIFAR-100 images have different image resolution than that of ImageNet images, we need to resize the Ima-
geNet test images from 224× 224 to 32× 32 in order to get meaningful accuracy of the models trained on the
Split CIFAR-10 and Split CIFAR-100 benchmarks on the upstream ImageNet data (although the accuracy of
the pre-trained model on the resized ImageNet test images is significantly reduced).

Recently, Mehta et al. (2021) showed that pre-trained models tend to forget less, compared to ran-
domly initialized models, when trained on a sequence of tasks. We build upon this observation
and ask if forgetting less on both the upstream (pre-trained) task, and downstream tasks improve
the transferability of the representations? Figure 4 shows the comparison between forgetting (left)
and forward transfer (middle) on Split CIFAR-10 and Split CIFAR-100 when the continual learning
experience begins from a pre-trained model (the comparison on the other benchmarks is provided
in the Appendix B.1). It can be seen from the figure that except for LP-FT, less forgetting is a
good indicator of a better forward transfer. In order to understand, why LP-FT has a better forward
transfer, compared to FOMAML and MT, despite having higher forgetting on the continual learning
benchmark at hand, we evaluate the continually updated representations on the upstream data (test
set of ImageNet). The evaluation results are given in the right plot of Figure 4. From the plot, it
can be seen that LP-FT has retained better upstream performance (relatively speaking) compared to
the other baselines. This follows our general thesis that retaining ‘previous knowledge’, evidenced
here by the past performance on both the upstream and downstream tasks, is a good inductive bias
for forward transfer. If instead of freezing the representations and just updating the classifier, we
finetune the whole model in the auxiliary evaluation, the less forgetful representations still transfer
better (refer to Appendix B.5).

In order to aggregate the metrics across different methods and to see a global trend between for-
getting and forward transfer, we compute the Spearman rank correlation between AvgFgt and
AvgFwtk. Table 1 shows the correlation values for different values of ‘k’ for both randomly initial-
ized and pre-trained models. It can be seen from the table that most of the entries are above 0.5 and
statistically significant (p < 0.01) showing that reducing forgetting improves the forward transfer
across the board.

LESS FORGETFUL REPRESENTATIONS ARE MORE DIVERSE

We now look at what makes the less forgetful representations amenable for better forward trans-
fer. We hypothesize that less forgetful representations maintain more diversity and discrimination
in the features making it easy to learn a classifier head on top leading to better forward transfer.
To measure this diversity of representations, we look at the feature diversity score AvgFDiv, as
defined in Equation 3, and compare it with the average forgetting score AvgFgt. Table 2 shows
the results on different benchmarks and approaches. It can be seen from the table that, for randomly
initialized models, less forgetting, evidenced by higher AvgFgt score, generally leads to repre-
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Dataset Random Init Pretrain
k = 5 k = 10 k = 20 k = 5 k = 10 k = 20

Split CIFAR-10 0.64 0.56 0.65 0.68 0.66 0.58
Split CIFAR-100 0.92 0.88 0.91 0.86 0.86 0.88
CIFAR100 Superclasses 0.3 (0.11) 0.4 (0.03) 0.4 (0.03) 0.16 (0.40) 0.46 (0.01) 0.62
CLEAR10 0.7 0.65 0.73 0.43 (0.02) 0.37 (0.04) 0.64
CLEAR100 0.58 0.59 0.53 0.83 0.8 0.81
Split ImageNet 0.85 0.85 0.79 - - -

Table 1: Spearman correlation between AvgFgt and AvgFwtk for different k, which computes the correla-
tion over different settings (different training methods and random runs). p-values are shown in parenthesis if
greater than or equal to 0.01.

Dataset Method Random Init Pre-trained
AvgFgt ↑ AvgFDiv ↑ AvgFgt ↑ AvgFDiv ↑

Split
CIFAR-10

FT -28.18 ± 2.97 35.59 ± 10.52 -29.01 ± 7.97 60.18 ± 36.35
LP-FT - - -3.39 ± 1.06 171.41 ± 13.41
ER (m=50) -9.18 ± 1.50 37.33 ± 14.66 -7.15 ± 1.97 66.18 ± 35.74
AGEM (m=50) -13.77 ± 2.38 35.79 ± 16.34 -19.26 ± 5.01 60.77 ± 41.80
MT -3.88 ± 5.86 36.88 ± 13.21 -4.83 ± 5.56 86.88 ± 21.82
FOMAML -0.75 ± 1.39 45.52 ± 7.82 -1.40 ± 0.61 65.26 ± 10.36

Split
CIFAR-100

FT -25.83 ± 2.43 224.27 ± 3.63 -24.33 ± 4.19 263.31 ± 27.46
LP-FT - - -4.46 ± 0.46 332.10 ± 2.97
ER (m=20) -9.44 ± 1.11 225.95 ± 2.38 -9.19 ± 0.28 281.31 ± 3.59
AGEM (m=20) -18.70 ± 1.00 224.46 ± 2.93 -20.05 ± 3.12 260.01 ± 20.32
MT -9.35 ± 4.96 225.33 ± 4.62 -7.93 ± 4.04 277.14 ± 8.31
FOMAML -3.05 ± 0.98 225.87 ± 5.31 -4.40 ± 0.20 271.56 ± 7.45

CIFAR-100
Superclasses

FT -14.45 ± 1.02 458.73 ± 12.99 -13.51 ± 0.56 599.29 ± 13.65
LP-FT - - -2.66 ± 0.53 702.43 ± 4.10
ER (m=5) -11.33 ± 1.79 463.78 ± 7.86 -11.36 ± 1.44 600.23 ± 23.86
AGEM (m=5) -12.28 ± 0.84 459.65 ± 14.52 -12.11 ± 0.76 594.70 ± 27.51
MT -1.30 ± 4.02 465.47 ± 7.84 -5.50 ± 3.65 601.38 ± 16.92
FOMAML 1.99 ± 0.76 470.27 ± 5.17 -1.24 ± 0.44 620.66 ± 10.34

CLEAR10

FT 0.93 ± 1.01 76.72 ± 1.70 0.14 ± 0.42 265.72 ± 1.08
LP-FT - - 0.87 ± 0.11 281.78 ± 0.34
ER (m=10) 1.79 ± 0.24 76.76 ± 1.62 -0.05 ± 0.23 263.89 ± 0.82
AGEM (m=10) 2.03 ± 0.86 76.00 ± 1.79 -0.01 ± 0.19 266.36 ± 1.02
MT 4.49 ± 0.99 79.01 ± 1.41 0.77 ± 0.51 265.25 ± 1.49
FOMAML 4.49 ± 0.56 77.98 ± 1.27 0.84 ± 0.34 262.88 ± 1.28

CLEAR100

FT 5.06 ± 0.29 179.47 ± 1.01 -0.03 ± 0.13 441.22 ± 0.50
LP-FT - - 1.52 ± 0.07 488.94 ± 0.71
ER (m=5) 5.53 ± 0.24 181.39 ± 1.56 0.34 ± 0.18 440.48 ± 0.79
AGEM (m=5) 4.94 ± 0.36 179.12 ± 1.03 0.04 ± 0.14 441.26 ± 0.27
MT 8.65 ± 0.96 186.16 ± 3.31 1.56 ± 0.15 444.38 ± 0.41
FOMAML 9.21 ± 0.12 184.38 ± 1.58 1.55 ± 0.16 440.30 ± 0.71

Split
ImageNet

FT -54.62 ± 2.26 271.98 ± 0.96 - -
ER (m=10) -27.56 ± 0.63 289.18 ± 3.99 - -
AGEM (m=10) -50.53 ± 1.58 274.07 ± 1.20 - -
MT -16.79 ± 0.69 274.88 ± 2.13 - -
FOMAML -10.58 ± 0.69 305.63 ± 5.59 - -

Table 2: Comparing AvgFgt with AvgFDiv. The numbers for AvgFgt are percentages. Bold numbers are
superior results.

sentations that have higher AvgFDiv score. Similarly, on pre-trained models, methods with lower
overall forgetting between the upstream and downstream tasks, such as LP-FT, leads to the highest
AvgFDiv score. These results suggest that less forgetful representations tend to be more diverse
and discriminative.

4 RELATED WORKS

Continual Learning (also known as Life-long Learning) (Ring, 1995; Thrun, 1995) aims to learn a
model on a sequence of tasks that has good performance on all the tasks observed so far. However,
SGD training, relying on IID assumption of data, tends to result in a degraded performance on older
tasks, when the model is updated on new tasks. This phenomenon is known as catastrophic forget-
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ting (McCloskey & Cohen, 1989; Goodfellow et al., 2014) and it has been a main focus of continual
learning research. There are several methods that have been proposed to alleviate catastrophic for-
getting, ranging from regularization-based approaches (Kirkpatrick et al., 2016; Aljundi et al., 2018;
Nguyen et al., 2018; Zenke et al., 2017), to methods based on episodic memory (Lopez-Paz & Ran-
zato, 2017; Chaudhry et al., 2019a; Aljundi et al., 2019; Hayes et al., 2018; Riemer et al., 2019;
Rolnick et al., 2018; Prabhu et al., 2020) to the algorithms based on parameter isolation (Yoon et al.,
2018; Mallya & Lazebnik, 2018; Wortsman et al., 2020; Mirzadeh et al., 2021b; Farajtabar et al.,
2020). Besides the algorithmic innovations to reduce catastrophic forgetting, recently some works
looked at the role of training regimes (Mirzadeh et al., 2020) and network architectures (Mirzadeh
et al., 2021a; 2022) for understanding the catastrophic forgetting phenomenon.

While a learner that reduces catastrophic forgetting tries to preserve the knowledge of the past tasks,
often what is more important is to utilize the accrued knowledge to learn new tasks more efficiently,
a phenomenon known as forward transfer (Lopez-Paz & Ranzato, 2017; Chaudhry et al., 2019a).
In most existing works, the forward transfer to a task is measured as the learning accuracy of the
task after training on the task is finished. Hadsell et al. (2020) and Wolczyk et al. (2021) argued that
continual learning methods that avoid catastrophic forgetting do not improve the forward transfer,
in fact, sometimes the catastrophic forgetting is reduced at the expense of the forward transfer (as
measured by the learning accuracy). This begs the question whether reducing catastrophic forget-
ting is a good objective for continual learning research or should the community shift focus on the
forward transfer as there seems to be a tug of war between the two?

Contrary to previous work, here, we take an auxiliary evaluation perspective to forward transfer
where instead of asking whether reducing forgetting on previous tasks, during training on the current
task, improves the current task learning, we ask whether a learner that has less forgetting on previous
tasks, results in network representations that can quickly be adapted to new tasks? We argue that
this mode of measuring forward transfer decouples the notion of transfer from the restricted updates
on the current task employed by a continual learner to avoid forgetting on previous tasks. To the
best of our knowledge, most similar to our work is Javed & White (2019); Beaulieu et al. (2020)
who also looked at the network representations in the context of continual learning. But they took a
converse perspective – arguing that learning transferable representations via meta-learning alleviates
catastrophic forgetting.

5 CONCLUSION

We are interested in understanding how to continuously accrue knowledge for sample efficient learn-
ing of downstream tasks. Similar to some previous works, here we question what effect alleviating
catastrophic forgetting has on the efficiency of learning new tasks. However, by contrast, we study
forward transfer by the auxiliary evaluation of continually trained representations learned through
the course of training on a sequence of tasks. To this end, we evaluated several training algorithms
on a sequence of tasks and find that our forward transfer metric is highly correlated with the amount
of knowledge retention (i.e. less negative forgetting score), indicating that forgetting less may serve
as a good inductive bias for forward transfer.

The question of how to accrue knowledge from the past tasks to learn new tasks more efficiently
is ever more relevant with the recent advancements in the large scale models trained using internet
scale data, aka foundation models, where we would want to avoid initialization from scratch to save
computation time. Our suggested measure of forward transfer, that evaluates continually trained
representations, also fits nicely in the context of comparing generalization of different large scale
models, where a model that can transfer to multiple downstream tasks is preferred. We are in the
era of discovering new capabilities of models, as new capabilities emerge with larger scale. The
extrapolation of our findings could mean that a less forgetful foundation model – where forgetting
is evaluated on the upstream data – should be preferred over a forgetful model, as the former could
transfer better to downstream tasks. This serves as a useful model selection mechanism which can
be further explored in future research.
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Supplementary Material
Is Forgetting Less a Good Inductive Bias for Forward Transfer?

A EXPERIMENTAL DETAILS

A.1 DATASETS

We describe the details of the datasets used in this paper below:

CIFAR-10. The CIFAR-10 dataset (Krizhevsky et al., 2009) consists of 60,000 32x32 color
images in 10 classes, with 6,000 images per class. There are 50,000 training images and 10,000
test images. We reserve 10,000 training images as the validation data. So the training set used has
40,000 images. We split the CIFAR-10 dataset into 5 disjoint subsets to create the Split CIFAR-10
benchmark. Split CIFAR-10 has 5 tasks corresponding to the 5 disjoint subsets and each task has
2 classes. During training, we apply random cropping and random horizontal flip to the training
images.

CIFAR-100. The CIFAR-100 dataset (Krizhevsky et al., 2009) is just like the CIFAR-10, except
it has 100 classes containing 600 images each. There are 500 training images and 100 testing images
per class. The 100 classes in the CIFAR-100 are grouped into 20 superclasses. Each image comes
with a “fine” label (the class to which it belongs) and a “coars” label (the superclass to which it be-
longs). We reserve 10,000 training images as the validation data. So the training set used has 40,000
images. We use the CIFAR-100 dataset to create two benchmarks Split CIFAR-100 and CIFAR-
100 Superclasses. The split CIFAR-100 benchmark is created by splitting the CIFAR-100 dataset
into 20 disjoint subsets corresponding to 20 tasks. Each task in Split CIFAR-100 has 5 classes.
The CIFAR-100 Superclasses benchmark is created by splitting the CIFAR-100 dataset into 5 dis-
joint subsets corresponding to 5 tasks. Each task in CIFAR-100 Superclasses has 20 classes from
20 superclasses respectively. For both Split CIFAR-100 and CIFAR-100 Superclasses benchmarks,
during training, we apply random cropping and random horizontal flipping data augmentations to
the training images.

CLEAR. CLEAR (Lin et al., 2021) is the first continual image classification benchmark dataset
with a natural temporal evolution of visual concepts in the real world that spans a decade (2005-
2014). It contains two continual learning benchmark CLEAR10 and CLEAR100. The original
CLEAR10 has 33,000 training images and 5,500 test images with 10 tasks and 11 classes (including
a BACKGROUND class). We Remove the BACKGROUND class and reserve 5,000 training images
as the validation data. So the training set used has 25,000 images and the test set used has 5,000
images. The original CLEAR100 has 99,963 training images and 50,000 test images with 10 tasks
and 100 classes. We reserve 19,991 training images as the validation data. So the training set used
has 79,972 images. Each task in CLEAR10 (or CLEAR100) contains images from a certain year
(2005-2014). For both CLEAR10 and CLEAR100 benchmarks, we resize the images to 224× 224
and use random cropping and random horizontal flipping data augmentations during training.

ImageNet. ILSVRC 2012, commonly known as “ImageNet” (Russakovsky et al., 2015) is a
large scale image dataset with 1,000 classes organized according to the WordNet hierarchy. It has
1,281,167 training images and 50,000 validation images with labels. It also has 100,000 test im-
ages but without labels. We use the validation images as the test set and reserve 300,000 training
images (300 images per class) as the validation set. So the training set used contains 981,167 im-
ages. We split the ImageNet dataset into 100 disjoint subsets corresponding to 100 tasks. Each
task has 10 classes. During training, we use random cropping and random horizontal flipping data
augmentations. To reduce computational cost, we resize the images to 64× 64.

A.2 BASELINES

We consider the following approaches for leaning on a sequence of tasks T1, . . . , TN . Except for
the independent baseline, all other baselines reuse the model (i.e.) continue training the same model
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used for the previous tasks. Specifically, when learning on the task Ti (i > 1), the continual learning
method will use the model fi−1 learned on the previous task Ti−1 as an initialization for the model
fi, which we call model reusing. For the first task T1 training, the continual learning method will
initialize the model by an initial model f0 (either a random intialization or a pre-trained model).

Independent (IND). The IND baseline learns on each task independently. That is when learning
on the task Ti, it will train the model from an initial model (either a random initialization or a
pre-trained model) using the Empirical Risk Minimization (ERM) objective:

min
fi

E(x,y,t)∼Di
ℓi(fi(x, t), y) (4)

We use the IND baseline as a reference to see how well we can learn on a task without learning on
other tasks in the task sequence.

Finetuning (FT). Finetuning is a simple baseline for continual learning. It trains a single model
on all the tasks in a sequence. When training the model fi on the current task Ti, it doesn’t use the
data from the previous tasks. It uses the ERM objective (equation 4) to train the model fi on the
current task Ti only.

Linear-Probing-Finetuning (LP-FT). Linear-Probing-Finetuning (Kumar et al., 2021) is the
same as the Finetuning baseline except that before each task training, we first learn a task-specific
classifier Θ for the task via linear probing and then train both the feature extractor Φ and the classi-
fier Θ on the task. That is when learning on the current task Ti, we have a two-stage training process.
In the first stage, we train the classifier Θi while fixing the feature extractor Φi via the ERM training
objective:

min
Θi

E(x,y,t)∼Di
ℓi(fi(x, t), y; Θi,Φi) (5)

In the second stage, we train both the classifier Θi and the feature extractor Φi via the ERM training
objective (equation 4). We only use LP-FT in the setting where the initial model f0 is a pre-trained
model.

Multitask (MT). The Multitask baseline trains the model on the data from both the current task
and the previous tasks when learning on the current task Ti. It uses the following multitask training
objective:

min
Φi,{Θj}i

j=1

E(x,y,t)∼Di
ℓi(fi(x, t), y; Θi,Φi) + λ · E1≤j<iE(x,y,t)∼Dj

ℓj(fj(x, t), y; Θj ,Φi) (6)

It trains a shared feature extractor Φi and task-specific classifiers {Θj}ij=1 for the tasks T1, . . . , Ti.
The hyperparameter λ is chosen from the set {1.0, 0.1, 0.01} based on the average learning accuracy
across tasks on the validation set.

Experience Replay (ER). The ER baseline uses a replay buffer M = ∪N−1
i=1 Mi when learning

on the sequence of tasks, where Mi stores examples from the task Ti. In our work, we restrict the
replay buffer M to store only m examples per class from each task. The training objective used by
ER is:

min
Φi,{Θj}i

j=1

E(x,y,t)∼Di
ℓi(fi(x, t), y; Θi,Φi) + E1≤j<iE(x,y,t)∼Mj

ℓj(fj(x, t), y; Θj ,Φi) (7)

AGEM. AGEM is a continual learning method proposed by Chaudhry et al.. Similar to ER,
AGEM also uses a replay buffer (or an episodic memory) M = ∪N−1

i=1 Mi, where Mi stores only
m examples per class from the task Ti. While learning the task Ti, the training objective of AGEM
is:
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min
fi

E(x,y,t)∼Di
ℓi(fi(x, t), y) (8)

s.t. E(x,y,t)∼Mi−1
1

ℓt(fi(x, t), y) ≤ E(x,y,t)∼Mi−1
1

ℓt(fi−1(x, t), y) (9)

where Mi−1
1 = ∪i−1

j=1Mj . The corresponding optimization problem is:

min
g̃

1

2
∥g − g̃∥22 s.t. g̃T gref ≥ 0 (10)

where g is a gradient computed using a batch randomly sampled from the current task to solve
the objective (equation 8), gref is a gradient computed using a batch randomly sampled from the
episodic memory Mi−1

1 , and g̃ is a projected gradient that we will use to update the model. When
the gradient g violates the constraint (equation 9), it is projected via:

g̃ = g − gT gref
gTrefgref

gref (11)

FOMAML. MAML is a meta-learning approach proposed by Finn et al.. Since there are some
differences in the meta-learning setting and the continual learning setting (e.g. meta-learning algo-
rithms assume that there is a task distribution where we can sample tasks from it while in the con-
tinual learning setting, we don’t have such a task distribution), we cannot directly use the MAML
algorithm proposed in Finn et al. (2017). We then modify MAML such that it can be used in the
continual learning setting. While learning on the task Ti, the training objective we want to solve is:

min
fi

EB∼Di
ℓi(B; fi) + λ · Ej∈[i]EBin

j,1,...,B
in
j,b,B

out
j ∼Dj

ℓj(B
out
j ; f

(b)
i,j ) (12)

where [i] = {1, 2, . . . , i}, B ∼ Di means sampling a batch B from Di and

f
(b)
i,j = Ub(B

in
j,1, . . . , B

in
j,b; fi) (13)

Here, Ub(B1, . . . , Bb; f) is a model obtained by applying b gradient update steps on the model f
using b batches B1, . . . , Bb. If we use standard SGD for Ub and the learning rate is α, then we have

f
(0)
i,j = fi, f

(q)
i,j = f

(q−1)
i,j − α · ∇

f
(q−1)
i,j

ℓj(B
in
j,q; f

(q−1)
i,j ), q = 1, . . . , b (14)

The training objective aims to find a model such that it achieves small error on the current task Ti

and after several gradient update steps on some batches from a seen task Tj (j ∈ [i]), the updated
model can achieve small error on other batches from the task Tj . So we want to find a model that
can enable knowledge transfer between different batches from the same task.

Solving the objective (equation 12) requires computing the second-order gradients, which might
be expensive. However, we can use the idea of first-order MAML (FOMAML) proposed in Finn
et al. (2017), which ignores the second derivative terms, to solve the objective. The algorithm of
FOMAML is presented in Algorithm 1. In our experiments, we simply set α = β and c = 1. On
Split ImageNet, we set b = 1 while on other benchmarks, we set b = 2.

A.3 ARCHITECTURE AND TRAINING DETAILS

Architecture. We use ResNet50 (He et al., 2016) architecture as the feature extractor Φ on all
benchmarks by default. On CLEAR10 and CLEAR100, we use a single classification head Θ that
is shared by all the tasks (single-head architecture) while on other benchmarks, we use a separate
classification head Θi for each task Ti (multi-head architecture).
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Algorithm 1 FIRST-ORDER MAML (FOMAML)

Require: A model fi−1 after training on the previous task Ti−1, a learning rate α for inner-update, a learning
rate β for outer-update, the number of previous tasks c used for each training step, the number of gradient
update steps b for the inner-update and the number of training steps n for the outer-update.

1: fi ← fi−1

2: Randomly sample a batch B from the current task Ti, i.e., B ∼ Di

3: G← ∇fiℓi(B; fi)
4: for p = 1, 2, . . . , n do
5: Randomly select c indices from the set {1, 2, . . . , i− 1} without replacement as a set Ip.
6: I ← Ip ∪ {i}
7: for j ∈ I do
8: fi,j ← fi
9: for q = 1, 2, . . . , b do

10: Randomly sample a batch Bin
j,q from Dj .

11: Apply an inner-update step: f (q)
i,j ← f

(q−1)
i,j − α · ∇

f
(q−1)
i,j

ℓj(B
in
j,q; f

(q−1)
i,j ).

12: end for
13: Randomly sample a batch Bout

j from Dj .
14: G← G+∇

f
(q)
i,j

ℓj(B
out
j ; f

(q)
i,j )

15: end for
16: Apply an outer-update step: fi ← fi − β ·G
17: end for
18: return fi.

Continual Learning Training Details. We use Stochastic Gradient Decent (SGD) for training
models. We use cosine learning rate scheduling (Loshchilov & Hutter, 2016) to adjust the learning
rate during training. Suppose the base learning rate is r and the number of training steps for each
task is n. Then for each task training, at training step t, the learning rate for the SGD update is
r · cos tπ

2n . For LP-FT, we use a base learning rate of 0.001 while for other baselines, we use a base
learning rate of 0.01. on split CIFAR-10, split CIFAR-100 and CIFAR-100 superclasses, we use a
batch size of 64. On CLEAR10 and CLEAR100, we use a batch size of 128. On Split ImageNet,
we use a batch size of 256. When using a random initialization as the initial model f0, on split
CIFAR-10, split CIFAR-100 and CIFAR-100 superclasses, we train the model for 50 epochs per
task while on CLEAR10, CLEAR100 and Split ImageNet, we train the model for 100 epochs per
task. When using a pre-trained model as the initial model f0, on all benchmarks, we train the model
for 20 epochs per task as we found it sufficient for training convergence. For LP-FT, we perform
the linear probing for 10 epochs per task. These training hyper-parameters are chosen based on the
average learning accuracy across tasks on the validation set.

K-Shot Linear Probing Training Details. We use Stochastic Gradient Decent (SGD) with a
fixed learning rate of 0.01 for linear probing. We train the classifier head Θ̂ for 100 epochs on the
k-shot dataset Sk

j+1 as we found it sufficient for training convergence. On CLEAR100, the set of
values we consider for k is {5, 10, 20, 40} while on other benchmarks, the set of values we consider
for k is {5, 10, 20, 100}. For each k, we use a batch size of min(k · c, 50), where c is the number of
classes in the task. We don’t apply any data augmentations to the training images during the k-shot
linear probing.

A.4 HYPER-PARAMETERS SELECTION

In this section, we discuss how we select the hyper-parameters.

Continual Learning Training. For different baselines, the shared hyper-parameters are the batch
size, the learning rate and the number of training epochs. We do not tune the batch size, but set it to
be a fixed number for each benchmark. For the learning rate and the number of training epochs, we
choose them based on the average learning accuracy across tasks on the validation data. The range
of the learning rate that we consider is {0.1, 0.01, 0.001, 0.0001}. We found that setting the learning
rate to be 0.01 leads to the best average learning accuracy for all the baselines except LP-FT. For
LP-FT, we found that setting the learning rate to be 0.001 leads to better average learning accuracy.
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We set the number of training epochs to be a sufficiently large number such that the average learning
accuracy doesn’t improve as we increase the number of epochs further. For all the baselines, we
pick a fixed number of training epochs such that all methods converge for each benchmark setting.

K-shot Linear Probing Training. The hyper-parameters are the batch size, the learning rate and
the number of training epochs. For each k, we just set the batch size to be min(k · c, 50) and do
not tune it. Note that K-shot linear probing is a convex optimization problem. Thus, the number of
training epochs will not affect the results across baselines as long as we train for a sufficient number
of epochs. We found that 100 epochs were more than sufficient for all the baselines to converge for
K-shot linear probing. Also, the learning rate will not affect the results much as long as we pick a
reasonable one. Therefore, we simply fix the learning rate to be 0.01.

B ADDITIONAL EXPERIMENTAL RESULTS

B.1 COMPARING FORGETTING AND FORWARD TRANSFER

In the main paper, we give results for comparing forgetting and forward transfer on some bench-
marks. In this section, we provide additional results for comparing forgetting and forward transfer
on other benchmarks. Figure 5 shows the results where we use a random initialization and Figure 6
shows the results where we use a pre-trained model. We can see that the claims made in Section 3.2
still hold here.

B.2 EVALUATING AVERAGE ACCURACY AND AVERAGE LEARNING ACCURACY

In this section, we report results for traditional continual learning metrics Average Accuracy and
Average Learning Accuracy. The Average Accuracy is defined as:

AvgAcc =
1

N

N∑
j=1

Acc(N, j).

While the Average Learning Accuracy is defined as:

AvgLAcc =
1

N

N∑
j=1

Acc(j, j).

The results are reported in Table 3.

B.3 ABLATION STUDY ON THE MODEL ARCHITECTURE

We want to see whether our claims about forgetting and forward transfer also hold when we use
a different architecture. Thus, on split CIFAR-10, split CIFAR-100, and CIFAR-100 Superclasses
benchmarks, we also report results in Figure 7 for using ResNet18 as the model architecture. We
only show results for using random initialization since we don’t have pre-trained ResNet18 model
on ImageNet. From the results, we can see that our claim that less forgetting is a good inductive bias
for forward transfer still holds.

B.4 CORRELATION BETWEEN AVERAGE FORGETTING AND AVERAGE FEATURE DIVERSITY
SCORE

In order to aggregate the metrics across different approaches and to see a global trend between
forgetting and feature diversity, we compute the Spearman rank correlation between the AvgFgt
and AvgFDiv. Table 4 shows the correlation values for randomly initialized models. From the
results, we can see that for randomly initialized models, AvgFgt and AvgFDiv generally have
positive correlations.
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Figure 5: Comparing average forgetting with average forward transfer for different continual learning methods
using random initialization on the CIFAR-100 Superclasses, CLEAR10 and Split ImageNet benchmarks.

B.5 FORWARD TRANSFER THROUGH K-SHOT FINE-TUNING

We also evaluate forward transfer through k-shot fine-tuning (i.e., we fine-tune the entire model
including the feature extractor Φj and the classifier Θ̂ on the k-shot samples Sk

j+1). The train-
ing hyper-parameters are the same as those of k-shot linear probing, except that to avoid over-
fitting while fine-tuning the whole network, we perform cross-validation for the learning rate and
the number of training epochs using the validation set. The learning rate is chosen from the set
{0.01, 0.001} while the number of training epochs is chosen from the set {10, 50, 100}. When
using random initialization, the results on the Split CIFAR-10, Split CIFAR-100, and CIFAR-100
Superclasses benchmarks are shown in Figure 8 while the results on the CLEAR10, CLEAR100
and Split ImageNet benchmarks are shown in Figure 9. When using a pre-trained model as initial-
ization, the results on the Split CIFAR-10, Split CIFAR-100, CIFAR-100 Superclasses, CLEAR10
and CLEAR100 benchmarks are shown in Figure 10.

In order to aggregate the metrics across different approaches and to see a global trend between for-
getting and forward transfer, we compute the Spearman rank correlation between the AvgFgt and
AvgFwtk for the k-shot fine-tuning evaluation. Table 5 shows the correlation values for different
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Figure 6: Comparing average forgetting with average forward transfer for different continual learning meth-
ods that train the model from a pre-trained ImageNet model on the CIFAR-100 Superclasses, CLEAR10 and
CLEAR100 benchmarks. We also show the accuracy of the models on the upsteam ImageNet data. Since
CIFAR-100 images have different image resolution than that of ImageNet images, we need to resize the Ima-
geNet test images from 224× 224 to 32× 32 in order to get meaningful accuracy of the models trained on the
CIFAR-100 Superclasses benchmark on the upstream ImageNet data. On CLEAR10 and CLEAR100 bench-
marks, since their images have the same image resolution as the ImageNet images, we don’t need to resize the
ImageNet test images when evaluating the upstream accuracy.

values of ‘k’ for both randomly initialized and pre-trained models. It can be seen from the table
that most of the entries are above 0.5 and statistically significant (p < 0.01) showing that reducing
forgetting improves the forward transfer across the board.

From the results, we can see that less forgetting generally leads to better forward transfer. Thus, our
claim that less forgetting is a good inductive bias for forward transfer still holds.

B.6 ABLATION STUDY ON THE REPLAY BUFFER SIZE

For the Experience Replay (ER) baseline, we perform experiments on the Split CIFAR-100 and
CIFAR-100 Superclasses benchmarks to study the effect of the replay buffer size on the AvgFgt
and AvgFwtk metrics. The results when using random initialization are shown in Figure 11 while
the results when using a pre-trained model as initialization are shown in Figure 12. From the
results, we can see that increasing m usually leads to less forgetting and thus more forward transfer.
Therefore, our claim that less forgetting is a good inductive bias for forward transfer still holds.

B.7 RESULTS FOR EWC AND VANILLA L2 REGULARIZATION

In this section, we provide some results for the EWC method (Kirkpatrick et al., 2016) and the
vanilla L2 regularization (a variant of EWC where the fisher information matrix is replaced with an
identity matrix) using ResNet18 as the model architecture with random initialization on the Split
CIFAR-10 benchmark. For λ in EWC, we consider the range {10, 50, 100, 200} and select the best
one based on the performance on the validation data. For λ in vanilla L2 regularization, we con-
sider the range {10, 1, 0.1, 0.01} and select the best one based on the performance on the validation
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Dataset Method Random Init Pretrain
AvgAcc AvgLAcc AvgAcc AvgLAcc

Split
CIFAR-10

FT 62.69 ± 5.24 91.38 ± 1.44 67.56 ± 14.62 95.75 ± 1.02
LP-FT - - 92.64 ± 1.15 95.46 ± 0.13
ER (m=50) 85.56 ± 2.46 91.70 ± 1.53 90.41 ± 1.26 95.90 ± 0.35
AGEM (m=50) 81.74 ± 3.14 91.59 ± 1.14 80.22 ± 5.51 95.88 ± 1.09
MT 89.70 ± 5.37 92.68 ± 0.80 91.48 ± 4.32 96.14 ± 0.08
FOMAML 92.77 ± 0.40 93.45 ± 0.71 94.61 ± 0.50 96.06 ± 0.45

Split
CIFAR-100

FT 57.47 ± 3.11 81.31 ± 0.93 67.96 ± 1.90 89.64 ± 0.79
LP-FT - - 85.33 ± 0.59 90.27 ± 0.32
ER (m=20) 72.91 ± 1.19 81.00 ± 0.42 81.51 ± 1.00 89.82 ± 0.20
AGEM (m=20) 64.02 ± 0.84 81.35 ± 0.75 71.77 ± 1.59 89.24 ± 1.34
MT 73.90 ± 5.08 82.15 ± 0.36 82.74 ± 5.11 90.33 ± 0.38
FOMAML 79.79 ± 0.57 82.36 ± 0.57 85.36 ± 1.13 89.63 ± 0.64

CIFAR100
Superclasses

FT 56.76 ± 0.94 68.92 ± 0.78 70.25 ± 0.78 81.55 ± 0.38
LP-FT - - 78.88 ± 0.47 81.22 ± 0.53
ER (m=5) 60.43 ± 2.37 68.63 ± 1.60 72.43 ± 0.99 81.36 ± 0.25
AGEM (m=5) 59.28 ± 0.52 69.42 ± 0.67 71.79 ± 0.79 81.60 ± 0.25
MT 68.43 ± 3.50 69.54 ± 1.37 77.28 ± 3.19 81.77 ± 0.18
FOMAML 71.48 ± 1.82 69.86 ± 2.00 80.11 ± 0.45 81.03 ± 0.26

CLEAR10

FT 71.18 ± 0.42 70.19 ± 0.19 93.64 ± 0.48 93.87 ± 0.21
LP-FT - - 95.27 ± 0.05 94.70 ± 0.11
ER (m=10) 72.92 ± 0.63 71.16 ± 0.24 94.12 ± 0.22 94.15 ± 0.27
AGEM (m=10) 71.76 ± 0.67 70.22 ± 0.75 93.81 ± 0.27 94.00 ± 0.13
MT 77.68 ± 0.68 73.69 ± 0.54 95.04 ± 0.64 94.53 ± 0.26
FOMAML 78.51 ± 0.47 74.41 ± 0.47 95.16 ± 0.22 94.63 ± 0.24

CLEAR100

FT 52.38 ± 0.21 47.27 ± 0.25 86.47 ± 0.10 86.29 ± 0.12
LP-FT - - 89.56 ± 0.04 88.22 ± 0.06
ER (m=5) 53.16 ± 0.47 46.99 ± 0.40 87.25 ± 0.18 86.49 ± 0.07
AGEM (m=5) 52.35 ± 0.25 47.25 ± 0.41 86.56 ± 0.16 86.26 ± 0.18
MT 59.58 ± 1.56 50.94 ± 0.55 89.56 ± 0.12 87.96 ± 0.13
FOMAML 60.99 ± 0.54 52.09 ± 0.67 89.42 ± 0.12 87.78 ± 0.06

Split
ImageNet

FT 13.42 ± 0.54 72.19 ± 0.41 - -
ER (m=10) 43.42 ± 3.50 69.71 ± 0.40 - -
AGEM (m=10) 16.82 ± 1.30 71.71 ± 0.47 - -
MT 54.68 ± 4.13 73.58 ± 0.50 - -
FOMAML 59.73 ± 4.58 71.85 ± 1.28 - -

Table 3: Results for average accuracy AvgAcc and average learning accuracy AvgLAcc. All numbers are
percentages.

Dataset Spearman Correlation
Split CIFAR-10 0.33 (0.10)
Split CIFAR-100 0.31 (0.13)
CIFAR100 Superclasses 0.38 (0.06)
CLEAR10 0.46 (0.02)
CLEAR100 0.80
Split ImageNet 0.81

Table 4: Spearman correlation between AvgFgt and AvgFDiv, which computes the correlation over different
settings (different training methods and random runs). Here, we use random initialization as the initial model.
p-values are shown in parenthesis if greater than or equal to 0.01.

data. Experimenting with EWC on larger models and longer benchmarks is computationally very
expensive. The comparison of EWC with FT and vanilla L2 regularization is given in Table 6. It
can be seen from the table that less forgetting leads to better forward transfer. Thus, our claim that
less forgetting is a good inductive bias for forward transfer still holds.
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Figure 7: Comparing average forgetting with average forward transfer for different continual learning methods
using random initialization on the Split CIFAR-10, Split CIFAR-100 and CIFAR-100 Superclasses benchmarks.
Here, we use ResNet18 as the model architecture.

C DISCUSSION

C.1 RELATEDNESS OF TASKS AND OUR CONCLUSIONS

We note here that task relatedness bears significant effect on the relationship between forgetting and
forward transfer. The benchmarks that we considered in this work either have very similar tasks
(CLEAR10/100), where the same classes are observed over a 10 years period, or unrelated tasks
(Split CIFAR10/100, ImageNet), where disjoint classes are observed in each task. In both cases,
less forgetting improved the forward transfer, although for more similar tasks the improvement is
more significant as intuitively expected. We did not observe that “unrelatedness” of tasks leads
to negative transfer. However, if tasks were negatively related to begin with then less forgetting
would intuitively lead to negative transfer. But in our experience negatively related tasks are very
rare and in practical machine learning systems many tasks can learn from each other (which is the
basis of transfer learning, multitask learning, etc.). We would like to emphasize that the point of
the paper is precisely to show that when tasks are somewhat related, and observed in a continual
setting, less forgetting improves forward transfer. It is in this setting that some of the previous
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Figure 8: Comparing average forgetting with average forward transfer for different continual learning methods
using random initialization on the Split CIFAR-10, Split CIFAR-100 and CIFAR-100 Superclasses benchmarks.
Here, we evaluate the forward transfer through k-shot fine-tuning.

works (Hadsell et al., 2020; Wolczyk et al., 2021) concluded that less forgetting does not improve
end-to-end forward transfer. We show here that even on such tasks less forgetting improves the
representational measure of forward transfer.
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Figure 9: Comparing average forgetting with average forward transfer for different continual learning methods
using random initialization on the CLEAR10, CLEAR100 and Split ImageNet benchmarks. Here, we evaluate
the forward transfer through k-shot fine-tuning.

Dataset Random Init Pretrain
k = 5 k = 10 k = 20 k = 5 k = 10 k = 20

Split CIFAR-10 0.49 0.5 0.49 0.64 0.57 0.51
Split CIFAR-100 0.92 0.93 0.83 0.87 0.88 0.86
CIFAR100 Superclasses 0.16 (0.40) 0.24 (0.20) 0.28 (0.14) 0.28 (0.13) 0.33 (0.07) 0.38 (0.04)
CLEAR10 0.68 0.68 0.68 0.18 (0.34) 0.25 (0.18) 0.53
CLEAR100 0.6 0.59 0.61 0.87 0.87 0.83
Split ImageNet 0.86 0.81 0.83 - - -

Table 5: Spearman correlation between AvgFgt and AvgFwtk
∗ for different k, which computes the corre-

lation over different settings (different training methods and random runs). Here, AvgFwtk
∗ is defined like

AvgFwtk, but instead of using k-shot linear probing for evaluation, we use k-shot fine-tuning evaluation (i.e.,
fine-tuning the entire model). p-values are shown in parenthesis if greater than or equal to 0.01.
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Figure 10: Comparing average forgetting with average forward transfer for different continual learning meth-
ods that train the model from a pre-trained ImageNet model on the Split CIFAR-10, Split CIFAR-100, CIFAR-
100 Superclasses, CLEAR10 and CLEAR100 benchmarks. We also show the accuracy of the models on the
upsteam ImageNet data. Here, we evaluate the forward transfer through k-shot fine-tuning.

Method AvgFgt ↑ AvgFwtk (k=10) AvgFwtk (k=20) AvgFwtk (k=100)
FT -32.06 ± 4.27 71.57 ± 1.87 74.89 ± 2.72 79.14 ± 2.06
Vanilla L2 Reg. (λ = 0.01) -26.41 ± 3.02 72.68 ± 2.28 76.58 ± 2.73 80.88 ± 1.92
EWC (λ = 100) -21.99 ± 3.51 74.27 ± 2.09 77.00 ± 2.03 81.98 ± 0.93

Table 6: Results for EWC and Vanilla L2 Regularization using ResNet18 as the model architecture with
random initialization on the Split CIFAR-10 benchmark. λ is a hyper-parameter that controls the regularization
strength of EWC and Vanilla L2 Regularization. The numbers are percentages.
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Figure 11: Comparing average forgetting with average forward transfer for the ER method with different re-
play buffer sizes using random initialization on the Split CIFAR-100 and CIFAR-100 Superclasses benchmarks.
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Figure 12: Comparing average forgetting with average forward transfer for the ER method with different
replay buffer sizes that trains the model from a pre-trained ImageNet model on the Split CIFAR-100 and
CIFAR-100 Superclasses benchmarks.
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