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ABSTRACT
In the field of machine learning, continual learning is a crucial
concept that allows models to adapt to non-stationary data distri-
butions. However, most of the existing works focus on uni-modal
settings and ignore the multi-modal data. In this paper, to enable
neural networks better understand diverse modalities in real-world
scenario, we investigate continual learning for two typical vision-
language applications, i.e. retrieval and grounding. Instead of con-
ventional exemplar-based methods, we leverage the pre-trained
transformer model (e.g. CLIP/GLIP) and the prompt technique to
tackle this problem. Under this scheme, we identify two critical lim-
itations in existing methods: (1) Unfamiliarity across tasks, which
prevents task-specific prompts from achieving forward propagation;
and (2) Heterogeneity between modalities, which makes it difficult
to guarantee a consistent optimization direction for prompts of
different modalities. To overcome these constraints, we design His-
torical Prompt Calibration that includes two objectives to calibrate
prompts. First, the intra-modal relevance estimation helps encode
sufficient task-specific information for prompts, with the help a rel-
evance estimator developed for recognizing task relevance. Second,
the inter-modal consistency alignment enhances the agreement
of the two modality-specific prompts in the current task by con-
trasting them with the prompts from previous tasks. We evaluate
the superiority of our strategy over state-of-the arts methods by
four vision-language applications, including two retrieval tasks
(i.e. image- and video-text retrieval) and two grounding tasks (i.e.
referring expression comprehension and segmentation).

CCS CONCEPTS
• Information systems → Multimedia and multimodal re-
trieval.

KEYWORDS
Continual learning, multi-modal, prompt, retrieval, grounding

1 INTRODUCTION
Continual learning, the ability to learn sequentially from a continu-
ous data stream, is a fundamental requirement for intelligent sys-
tems to work effectively in the real world. Numerous methods have
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been proposed to tackle this problem. Regularization-based meth-
ods [1, 2, 22, 55] regularize key parameters during continual learn-
ing, which is simple but limited in some challenging applications.
Replay-based and architecture-based methods are more effective,
which save a small set of examples in a memory [7, 33, 41, 43, 46]
and learn separated parameters for each task [17, 23, 53] respec-
tively. While promising, these two methods are still limited due to
the requirement for extra memory space and large amount of addi-
tional parameters. Recently, prompt-based methods [12, 40, 49, 50]
has gained popularity, which adapt the pre-trained models to con-
tinuous tasks by learning task-specific prompt tokens for each
individual task. This method has been demonstrated to be highly ef-
fective with minimal parameter tuning, leading to increased interest
and research in this field.

Despite the remarkable progress made in addressing the con-
tinual learning problem, the majority of existing works have been
limited to uni-modal tasks such as image classification [50] and
fake detection [48]. This is a significant drawback in modern so-
ciety where multi-modal data is ubiquitous, spanning a range of
modalities such as vision, language, sound, and more. Therefore, it
is imperative to expand the current research in continual learning
to support the diverse modalities.

In this paper, we strive to advance deep learning in real-world
scenarios by tackling the multi-modal challenge in continual learn-
ing. We focus on two major and common modalities, i.e. vision
and language, and study the continual learning in two representa-
tive applications: retrieval and grounding. In light of the efficiency
of prompt technique as well as the recent success of multi-modal
pre-training models, we can seamlessly follow the prompt-based
pipeline to develop our research.

However, existing prompt-based methods have limitations for
continual learning and incorporating another modality poses more
difficulty. As illustrated in Figure 1, we observe two inevitable
challenges: (1) Unfamiliarity across tasks. Before diving into the
multi-modal property, we note previous studies [48, 50] merely
focus on avoiding catastrophic forgetting while ignore the forward
transfer . They typically learn independent prompts for each task,
which fails to leverage the knowledge from past tasks for efficient
learning of new tasks. (2) Heterogeneity between modalities. The
two-stream architecture [25, 38, 44] is a typical vision-language
transformer model that applies two separate transformers to en-
code each modality. Directly learning modality-specific prompt for
each encoder may not ensure the consistent optimization for these
prompts.

Based on the aforementioned discussions, we propose Historical
Prompt Calibration, a novel strategy to explicitly calibrate task-
wise and modality-wise prompt relation by learning from history
knowledge. First, to alleviate the task unfamiliarity, we design intra-
modal relevance estimation that encourages prompts to be more
closely related to the current task by leveraging prompts of past

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Figure 1: Two critical challenges: Unfamiliarity across tasks and Heterogeneity between modalities.
tasks. This technique involves developing a relevance estimator
on the pre-trained model to discern whether the input prompt cor-
responds to the current task, where the positive samples are the
learnable prompts of the current task and the negative samples are
sampled from frozen prompts of the previous tasks. This objective
help improves the quality of the prompt, because it explicitly forces
each task-specific prompt group to be distinctive from others and
hence enable them preserve much task-specific information. Sec-
ond, to bridge the gap between modalities, we present inter-modal
consistency alignment to enhance consistency between two modal
prompts within the same task. This approach employs contrastive
learning to ensure the agreement between two modal features that
are encoded under prompt guidance of the current task can surpass
all other combinations, where either modal feature is encoded by
historical prompts. By similarly utlizing historical prompts in a
cross-modal manner, we can enhance the cross-modal alignment
to a greater extent.

To validate the effectiveness of our proposed approach, we con-
duct the extensive experiments on four important vision-language
applications, including image-text retrieval, video-text retrieval,
referring expression comprehension and segmentation. Our com-
prehensive evaluation reveals that our HPC approach can deliver
state-of-the-art results, underscoring its impressive power.

2 RELATEDWORKS
Continual Learning. Existing approaches to continual learning
can be categorized into three main groups: (1) Replay-based meth-
ods [6, 7, 14, 20, 33, 41–43, 46] store a subset of data from pre-
vious tasks for future rehearsal via experience replay, represen-
tation consolidation or constrained optimization. The data can
be either stored directly or synthesized by generative models.(2)
Regularization-based methods [1, 2, 22, 55] enforce constraints
on parameter changes to mitigate interference with prior tasks.
(3) Architecture-based methods [17, 23, 53] learn separate sets of
parameters dedicated to individual tasks. Despite their promises,
replay-based methods suffer from diminishing performance with
smaller buffers and raise data privacy concerns [5], the regularized
methods struggle to achieve satisfactory performance in challeng-
ing settings [41, 51] and the architecture-basedmethods [19] require

substantial amount of additional parameters. Recently, the prompt-
based methods are investigated [12, 50], which leverage learnable
prompt parameters upon pre-trained models to encode knowledge
more succinctly and hence avoid memory consumption. Following
this paradigm, we establish our base framework upon S-Prompt [48]
and further explore continual learning for vision-language retrieval
and grounding.

Visual-Language Transformer.With the remarkable progress
in language tasks [4, 39, 47], the transformer architecture is also
being rapidly transferred to the field of computer vision [8, 10]. Re-
cently, pretraining visual-language transformer [16, 25, 35, 37, 38,
45, 58] has yielded substantial improvements across various down-
stream tasks, e.g. visual question answering, image captioning [58],
and referring image comprehension [25]. The large-scale models
demonstrate extremely powerful capabilities of multi-modal pre-
training. Among them, the single-stream architecture [16, 24, 37, 44]
employs a single transformer to jointly model a pair of text and
image, while the two-stream architecture [25, 38, 45] applies two
transformers to separately learn the representations of the text and
the image, respectively. In this work, we primarily leverage the
two-stream architecture transformers as our modal encoders.

Prompt Technique. The prompt technique is initially applied in
the NLP (Natural Language Processing) domain and subsequently
adapted to vision and vision-language models. The fundamental
concept behind prompt technique is to learn a function thatmodifies
input texts or images, enabling language or image models to acquire
additional task-related information [30]. A variety of prompting
methods have emerged, including notable contributions such as [3,
12, 15, 18, 27, 50, 56, 57]. For example, [27] employs prefix-tuning
to prompt the pre-trained language model. VPT [18] introduces
a small number of learnable parameters into the input space of
Vision Transformers (ViT) [11] and Swin Transformers (Swin) [32],
outperforming full fine-tuning in many cases while also reducing
storage costs. CoOp [56] incorporates prompts into the input of the
vision encoder for the vision-language model. Recent work [48–50]
exploit the prompt technique for continual learning in uni-modal
applications. S-Prompts [48] introduces learnable prompts into the
input space of both the visual and text encoder within a vision-
language model. However, these methods fail to realize the task-
wise and modality-wise connection for prompts, thereby falling
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short in addressing the challenges of continuous vision-language
retrieval and grounding.

3 HISTORICAL PROMPT CALIBRATION
3.1 Problem Formulation
Our research focus on the problem of continual learning for vision-
language retrieval and grounding. In this problem, the model is
required to learn knowledge from a series of tasks (i.e. input data),
ultimately evolving into a universal expert capable of handling
all tasks. Formally, the model learns tasks 𝑇 = {𝑇 1,𝑇 2, ...,𝑇𝑘 } in
a sequential manner, where 𝐾 denotes the total number of tasks.
Each task 𝑇𝑘 is associated with data D𝑘 from different or even
highly heterogeneous contents. At task 𝑇𝑘 , the model receives the

incoming data D𝑘 =

{
𝑞𝑘
𝑖
, 𝑣𝑘
𝑖
, 𝑎𝑘
𝑖

}𝑁𝑘

𝑖=1
where 𝑞𝑘

𝑖
, 𝑣𝑘
𝑖
is the 𝑖-th input

language modality and visual modality (e.g. image/video) from task
𝑘 respectively, and 𝑎𝑘

𝑖
is the corresponding label, (e.g. 𝑎𝑘

𝑖
∈ {0, 1}

for image-text retrieval and 𝑎𝑘
𝑖
= (𝑥,𝑦, ℎ,𝑤) for referring expres-

sion comprehension), and 𝑁𝑘 is the total number of samples at task
𝑇𝑘 . In order to prioritize data privacy and minimize memory con-
sumption, we adhere to the exemplar-free setting, which prohibits
the utilization of previously seen data during both training and
inference stages.

Conventional continual learning methods have long been classi-
fied into task-, class-, and domain-incremental settings according
to various task transition environments. However, the domain of
continual vision-language retrieval and grounding introduces a
heightened level of complexity, defying straightforward categoriza-
tion. In our research, we delineate the notion of continuous tasks
based on distinct semantic contents, such as "human", "animal"
and "food". Besides, we follow the class- and domain-incremental
settings, where the identity of the task remains unknown during
test time, posing a more common and formidable challenge.

3.2 Base Framework for Continual VL Retrieval
and Grounding

In this section, we first build a simple but effective framework with
existing prompt-based approaches [48, 50] to serve as our baseline
for continuous vision-language retrieval and grounding.

In the base framework, we adopt the pre-trained multi-modal
transformer model, such as the CLIP [38] or GLIP [25], as the fea-
ture extractor. These pre-trained transformer can be simplified to
consist of a language encoder 𝜙𝑞 (·) and a vision encoder 𝜙𝑣 (·),
while the rest components such as interaction module are omitted
here for clarity. Throughout the training process, we keep these
models frozen to preserve their learned representations. To tailor
these models for downstream vision-language applications, we in-
troduce a trainable downstream head𝐻 (·) on top of the pre-trained
transformer. The head is designed to be relatively lightweight to
fully leverage the potential of large pre-trained model. Concretely,
for image-text retrieval, the head comprises a single MLP layer
for each encoder output, as the feature similarity can be directly
calculated. For video-text retrieval, the head further incorporates a
mean-pooling layer on the vision side to aggregate the clip-level fea-
tures. For referring expression comprehension and segmentation,

we follow [26] to build the head as a simple multi-modal trans-
former model with a one-layer encoder, two-layer decoders, and an
MLP layer to obtain center coordinates or several fully-connected
convolutional layers to derive segmentation masks.

Prompt Design. Following previous works [48], for each task
𝑇𝑘 , we use an independent set of continuous learnable parameters
𝑃𝑘 ∈ R𝐿×𝐷 as a part of inputs to the pre-trained encoder, where
𝐿 ∈ R and 𝐷 ∈ R indicate the prompt’s length and embedding
dimension respectively. To incorporate the prompt, we extend the
embedding of any single modality input from task𝑇𝑘 as 𝑥 = [𝑥, 𝑃𝑘 ],
where 𝑥 ∈ {𝑞, 𝑣} denotes the original input tokens of the vision or
language modality. This extended embedding is then fed into the
transformer blocks. When trained on a new task 𝑇𝑘+1, a new inde-
pendent set of prompts 𝑃𝑘+1 is added. Hence, learning all the tasks
sequentially results in a task-wise prompt pool 𝑃 = {𝑃1, 𝑃2, ..., 𝑃𝐾 },
where 𝑃𝑘 ∈ R𝐿×𝐷 is a single set of prompts of task𝑇𝑘 , and 𝐾 is the
total number of tasks. Since we have separate encoders for vision
and language, we also build two modality-specific prompt pools
𝑃𝑣 = {𝑃𝑣,𝑘 }𝐾

𝑘=1 and 𝑃𝑞 = {𝑃𝑞,𝑘 }𝐾
𝑘=1.

Downstream Training. Given the extended embedding 𝑞 and
𝑣 , we computed encoded features by 𝑞 = 𝜙𝑞 (𝑞) and 𝑣 = 𝜙𝑣 (𝑣).
Then we input these features into the downstream head and ob-
tain the problem-specific output 𝑜 , where 𝑜 = 𝐻 (𝑞, 𝑣). At task
𝑇𝑘 , we develop the problem-specific loss Lbase = Lproblem (𝑜𝑘 , 𝑎𝑘 ),
whereLproblem corresponds to the contrastive loss for two retrieval
tasks [38], the L1 loss for referring expression comprehension and
the dice loss for referring expression segmentation [25]. During
training, only the parameters of the prompt and the downstream
head are updated while the remaining parameter are kept frozen.

Inference.During inference, since we learn independent prompt
groups for each task, we need to identify which prompt group
should be leveraged for the input test data. Here we follow S-
Prompts [48] to apply K-Means to store the data centriods of each
task during training, and use K-NN to search for the nearest centroid
of the given test feature, so as to identify its corresponding prompt
group during inference. This simple strategy can work generally
well in our experiments.

3.3 Intra-modal Relevance Estimation
As shown in Figure 2, we introduce intra-modal relevance estima-
tion (IRE) for both vision and language encoders, where we leverage
the task relevance within each modality to optimize prompts.

The objective of IRE is to learn a binary classifier to judge
whether the input prompt is relevant or irrelevant to the data of
current task 𝑇𝑘 . Inspired by BERT [9], we insert a special token
[REL] to obtain the extended embedding as 𝑥 = [𝑥, 𝑃𝑘 , [REL]],
where 𝑥 ∈ {𝑞, 𝑣}. Then we input 𝑥 to the transformer encoder and
obtain the encoded features 𝑥 ∈ {𝑞, 𝑣}. By adding a linear layer on
the output corresponding to the token [REL], we calculate a scalar
representing the logits 𝑅. To estimate the relevance, we regard the
prompt 𝑃𝑘 that corresponds to the current 𝑇𝑘 as the positive in-
stances (i.e. relevant pairs) and construct negative instances (i.e.
irrelevant pairs) by randomly substituting 𝑃𝑘 with one of the his-
torical prompts 𝑃𝑖 from past tasks 𝑇 𝑖 , where 0 ≤ 𝑖 < 𝑘 . The full
intra-modal relevance estimation is performed using a binary-cross
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Figure 2: The framework of Historical Prompt Calibration.

entropy loss:
LIRE = −log𝑅+ − log(1 − 𝑅−), (1)

where 𝑅+ and 𝑅− are the logits of relevant and irrelevant pairs
respectively. As we employ two distinct encoders for the vision and
language modalities, we perform relevance estimation separately
for each modality.

For the initial task 𝑇 1, as no previous tasks exist, we only apply
the loss Lbase. As we progress to the second task 𝑇 2, we introduce
the IRE loss LIRE and update both the special token [REL] and
the linear layer. For subsequent tasks 𝑇 𝑖 where 𝑖 > 2, we fix the
special token [REL] and update the linear layer with a momentum
way. This step is key to learn effective prompt representations that
contain much task-specific information, since the relevance estima-
tion also suffers the catastrophic forgetting problem and continuous
updating the token or linear layer will lead to severe forgetting of
previous relevance knowledge. Instead, we fix the token to preserve
the initial relevance information and slowly update the linear layer
to avoid rapid forgetting. In this process, the prompt parameters
of the current task can be gradually distinctive from the previous
ones and therefore be more task-specific.

3.4 Inter-modal Consistency Alignment
We design inter-modal consistency alignment (ICA) to uniformly
guide the optimization of prompts across modalities, as illustrated
in Figure 2.

The objective of ICA is to perform contrastive learning over the
encoded cross-modal features generated from current and histori-
cal prompts. Given the input data 𝑣𝑘 , 𝑞𝑘 and the prompt 𝑃𝑣,𝑘 , 𝑃𝑖,𝑘

that are associated with the current task 𝑇𝑘 , we can calculate the
encoded features 𝑣𝑘 , 𝑞𝑘 and utilize the problem-specific loss Lbase
to learn cross-modal alignment. However, relying solely on the
data from the current task during training can limit the potential
for achieving optimal alignment between the features 𝑣 and 𝑞, as
presented in 1.

Hence, we adopt the contrastive scheme by integrating the his-
torical prompts to construct negative pairs, which can regularize

the learning for current prompts. Concretely, given 𝑣𝑘 and 𝑞𝑘 as
the positive pair, we can generate 2 × (𝑘 − 1) negative instances
{𝑣𝑖,−}𝑘−1

𝑖=1 and {𝑞𝑖,−}𝑘−1
𝑖=1 by replacing the prompt 𝑃𝑣,𝑘 and 𝑃𝑞,𝑘 with

the previous prompts 𝑃𝑣,𝑖 and 𝑃𝑞,𝑖 where 𝑖 < 𝑘 . Then we develop
a contrastive alignment loss to pull each modal feature 𝑣𝑘 and 𝑞𝑘
close to each other while push them apart from all other negative
instances {𝑞𝑖,−}𝑘−1

𝑖=1 and {𝑣𝑖,−}𝑘−1
𝑖=1 . On the language side, the loss

can be given by:

Llang
ICA = − log

exp(𝑞𝑘 ·𝑣𝑘/𝜏)
exp(𝑞𝑘 ·𝑣𝑘/𝜏) +∑𝑘−1

𝑖=1 exp(𝑞𝑡 ·𝑣𝑖,−/𝜏)
, (2)

where 𝜏 is a temperature parameter [13] set to 0.1. The loss Lvis
ICA

on the vision side can be obtain similarly. The full loss LICA =

Llang
ICA + Lvis

ICA.
The training process of the inter-modal consistency alignment

follows a similar pattern to intra-modal relevance estimation, which
starts from the second task as it requires the preparation of historical
tasks. By utilizing the samemodal features with prompts of different
tasks, our constructed contrastive samples can more effectively
enhance the consistency of cross-modal features, and ensure that
this enhancement comes from the prompt corresponding to the
task, thereby calibrating the cohesive optimization direction of the
prompt.

3.5 Training
We combine the problem-specific loss and two proposed calibration
loss to train the model, i.e.,

LHPC = 𝜆1Lbase + 𝜆2LIRE + 𝜆3LICA, (3)

where 𝜆1, 𝜆2 and 𝜆3 are set to 1.0, 0.1, 0.1 to balance the three
losses. As our above discussion, we introduce two calibration losses
exclusively after the initial task. It is important to note that our HPC
paradigm is solely incorporated into the training process, ensuring
that it has no impact on the inference speed or runtime efficiency.
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4 EXPERIMENTS
In this section, we elaborate the experiment setting, performance
evaluation of the proposed method, ablation study, in-depth anal-
ysis and hyper-parameter analysis. Additional dataset details and
implementation details are provided in the supplementary materi-
als.

4.1 Experiment Setting
Task and Dataset.We perform experiments on four mainstream
vision-language tasks, including two retrieval tasks and two ground-
ing tasks:

• Image-text Retrieval: We select MS-COCO [29] for evalua-
tion and divide it into 12 tasks based on content categories,
e.g. person, vehicle, animal, etc.

• Video-text Retrieval: We select MSR-VTT [52] for evaluation
and divide into 10 tasks based on content categories, e.g.
news, movie, sports, etc.

• Referring Expression Comprehension:We select RefCOCO [54]
for evaluation and divide into 12 tasks based on content cat-
egories as MS-COCO.

• Referring Expression Segmentation: Similar to the compre-
hension task, we select RefCOCO [54] for evaluation and
divide into the same 12 tasks.

The former two tasks focus on global-level alignment while the
latter two are more difficult with local-level grounding. To generate
separate tasks for continual learning for the image-text retrieval, we
use the "category" annotation in original dataset to define 12 tasks,
as shown in Table 1. To generate separate tasks for continual learn-
ing for the video-text retrieval, we use the "category" annotation in
original dataset to define 10 tasks, as shown in Table 2. We evaluate
the referring expression comprehension and segmentation on this
dataset via its box-level and mask-level annotations respectively.
Similar to MS-COCO, we adopt the same division split in Table 1.

Table 1: Task division in Coco-based datasets.

Person Vehicle Outdoor Animal Accessory Sport
Kitchen Food Furniture Electronic Appliance Indoor

Table 2: Task division in MSR-VTT dataset.

News Movie Sports Cooking Traffic
Animation Music Animal Kids Beauty

Metric. Under the settings where the task boundaries are un-
known and each task has an associated test set, we follow previous
works [33, 50] to adopt two widely-used metrics, i.e., average accu-
racy and forgetting. Specifically, for two retrieval tasks, we report
the accuracy as R@K (Recall at K) that calculates the percentage
of test samples for which the correct result is found in the top-K
retrieved points to the query sample. For two grounding tasks, we
compute the accuracy as mIoU (Mean Intersection-over-Union) by
the averaging over the IoU of each testing sample where IoU is the
intersection area divided by the total union area. To better reflect
the computational cost of methods, we also report the number of
parameters that need to be tuned.

ImplementationDetails. For input data, all the training images
or video frames are resized to 240 x 240 and 320 x 320 for retrieval

and grounding tasks, respectively. For model selection, we follow
the prompt-based pipeline to select two powerful and widely-used
pre-trained transformer models as encoders: CLIP(ViT-B/16) [38]
for retrieval tasks and GLIP-T [25] for grounding tasks. For prompt
design, we adopt the deep prompt [18] to insert prompt for all
encoder layers. In CLIP, the prompt length is set to 16 and 12 for
language and vision encoders, respectively. In GLIP, the prompt
length is set to 12 and 20 for language and vision encoders, respec-
tively. To train our model, we use the Adam optimizer with the
cosine scheduler.

We adopt Adam optimizer with a momentum of 0.9 and a cosine
annealing scheduler [34]. For image-text retrieval, we train the
model for 5 epochs for each task. The batch size is 128. The learning
rate is set to 0.05 and 0.01 for prompt tokens and the head, respec-
tively. For video-text retrieval, we train the model for 10 epochs
for each task. The batch size is 24. The learning rate is set to 0.01
and 0.0001 for prompt tokens and the head, respectively. The head
structure is the same as [36]. For referring expression comprehen-
sion and segmentation, we train the model for 20 and 10 epochs for
each task, respectively. The batch size is 16. The learning rate is set
to 0.001 and 0.0001 for prompt tokens and the head, respectively.
The head structure is the same as [26].

4.2 Performance Evaluation
Methods. We compare the proposed HPC strategy with the fol-
lowing state-of-the-art methods for continual learning, which can
be divided into three groups: (1) Replay-based method. The replay-
head is the naive sequential fine-tuning approach with the pre-
trained model frozen. The replay-all instead fine-tunes pre-trained
model weights as well. (2) Regularization-based methods includ-
ing EWC [22], LwF [28]. (3) Prompt-based methods including Dy-
Tox [12], L2P [50], S-Prompts [48], DualPrompt [49], MaPLe [21]
and DCP [31]. Specifically, L2P and S-Prompts extract features us-
ing the uni-encoder, whereas DualPrompt, MaPLe and DCP take
into account the interactions between modalities during feature ex-
traction. As these methods are designed for uni-modal application,
we extend them by separately applying their strategy on two modal
encoders. To compare fairly, we use the same pre-trained model
(i.e., CLIP/GLIP) for all compared methods as well as ours. The full
implementations details of baselines are shown in the appendix.

Baseline Implementation. For all baselines, we adopt the same
base network as our HPC that consists of pre-trained CLIP or GLIP.
(1) For replay-based methods, we simply maintain a extra mem-
ory space to store the training samples from the previous tasks,
where the memory size is set to 50 or 100 samples per task. (2) For
regularization-based methods EWC [22] and LwF [28], we adopt
the same hyper-parameter setting as reported in their work. (3)
For prompt-based methods: In DyTox [12], we use 3 Self-Attention
Blocks and 1 Task-Attention Block for retrieval, and 1 Self-Attention
Blocks and 1 Task-Attention Block for grounding, where all have 8
attention heads. To transfer the task-specific classifier in original
classification problem, we also design task-specific structure by
keeping separate MLP layers for different tasks in retrieval and
separate MLP layer/fully-convolutional layers for different tasks in
referring expression comprehension/segmentation. In L2P [50], we
set the prompt pool size to 20/10, and the number of key selection
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Table 3: Performance Evaluation on Image-Text Retrieval Task. Bold: best results of exemplar-free methods, Underline: second best results
of exemplar-free methods. Upper-bound: supervised finetuning on the i.i.d. data of all tasks, which is usually regarded as the upper bound
performance[50].

Method Buffer size Text Retrieval Image Retrieval Param (↓)
R@1 (↑) R@5 (↑) Forget(↓) R@1 (↑) R@5 (↑) Forget(↓)

Replay-all 50/class 36.24 55.49 32.65 29.72 55.28 30.35 100%
Replay-all 100/class 43.51 63.21 24.19 34.54 62.61 24.43 100%
Replay-head 50/class 39.60 58.82 28.59 35.04 60.68 23.12 0.25%
Replay-head 100/class 48.24 66.39 15.46 36.39 64.39 14.80 0.25%

EWC [22] 0/class 29.24 41.60 31.08 29.36 53.56 24.71 0.25%
LWF [28] 32.19 50.06 27.44 32.01 58.37 21.20 0.25%

DyTox [12]

0/class

49.83 70.64 20.13 38.54 63.79 16.87 5.68%
L2P [50] 57.94 78.26 12.14 43.17 69.38 10.39 1.94%

S-Prompts [48] 63.90 87.95 6.52 49.82 78.85 5.73 5.36%
DualPrompt [49] 64.48 88.09 5.89 50.39 79.12 5.04 2.71%

MaPLe [21] 64.92 89.27 6.04 51.67 80.83 5.79 7.43%
DCP [31] 64.03 89.56 6.22 50.21 81.14 6.13 10.35%
HPC (ours) 65.94 90.51 4.21 52.61 82.03 3.86 2.72%

Upper-bound 68.19 92.71 - 54.83 85.54 - 2.72%

Table 4: Performance Evaluation on Video-Text Retrieval Task. Bold: best results of exemplar-free methods, Underline: second best results
of exemplar-free methods. Upper-bound: supervised finetuning on the i.i.d. data of all tasks, which is usually regarded as the upper bound
performance[50].

Method Buffer size Text Retrieval Video Retrieval Param (↓)
R@1 (↑) R@5 (↑) Forget(↓) R@1 (↑) R@5 (↑) Forget(↓)

Replay-all 50/class 22.15 42.23 23.06 24.38 44.92 25.17 100%
Replay-all 100/class 24.20 44.73 20.49 25.26 46.11 22.36 100%
Replay-head 50/class 26.13 50.33 12.20 30.41 52.62 12.42 0.25%
Replay-head 100/class 28.03 54.28 9.84 32.13 55.39 10.11 0.25%

EWC [22] 0/class 17.66 32.49 16.26 18.43 34.51 17.44 0.25%
LWF [28] 22.57 41.32 11.38 23.64 42.58 12.96 0.25%

DyTox [12]

0/class

30.34 57.03 11.08 34.22 58.90 11.44 5.68%
L2P [50] 34.80 59.62 9.25 37.24 62.56 9.63 1.94%

S-Prompts [48] 36.41 64.33 7.39 39.15 66.72 8.14 5.36%
DualPrompt [49] 38.02 66.21 6.63 40.72 69.38 6.44 2.71%

MaPLe [21] 38.92 66.43 5.21 42.15 70.28 5.83 7.43%
DCP [48] 38.08 66.87 5.64 41.58 69.14 7.59 10.35%
HPC (ours) 39.41 67.56 4.92 42.39 71.49 5.11 2.72%

Upper-bound - 42.74 70.39 - 45.60 74.85 - 2.72%

to 5/5 for vision and language modality. For DualPrompt [49], the
sharable prompt length is set to 16 and 12 for language and vision
encoders in CLIP, respectively, and is set to 6 and 10 for language
and vision encoders in GLIP. For S-Prompts [48], MaPLe [21], and
DCP [31] we adopt the same parameter setting as our HPC, i.e. the
prompt length is set to 16 and 12 for language and vision encoders
in CLIP, respectively; the prompt length is set to 12 and 20 for
language and vision encoders in GLIP, respectively.

Results of Retrieval Tasks. The results of two retrieval tasks
are shown in Table 3 and 4. It demonstrates that our proposed
HPC method significantly outperforms the other exemplar-free
methods, e.g. S-Prompts, DualPrompt. HPC slightly outperforms
MaPLe and DCP with fewer additional parameters. We also find
the proposed HPC methods’ forgetting degrees are much less than
those of the others. An interesting point is that the replay-based
methods achieve limited performance. We argue the reason is that
the limited data in each task restrict the retrieval learning since
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Table 5: Performance Evaluation on Two Vision-Language Grounding Tasks. Bold: best results of exemplar-free methods, Underline: second
best results of exemplar-free methods. Upper-bound: supervised finetuning of HPC on the i.i.d. data of all tasks, which is usually regarded as
the upper bound performance[50].

Method Buffer size Referring Expression Comprehension Referring Expression Segmentation

mIoU (↑) Forget (↓) Param (↓) mIoU (↑) Forget (↓) Param (↓)
Replay-all 50/class 64.60 14.39 100% 56.37 12.16 100%
Replay-all 100/class 68.71 8.34 100% 60.05 8.83 100%
Replay-head 50/class 40.19 10.35 2.39% 42.18 11.82 3.61%
Replay-head 100/class 42.35 9.64 2.39% 44.24 10.39 3.61%

EWC [22] 0/class 45.83 23.89 2.39% 48.30 26.12 3.61%
LWF [28] 51.06 17.56 2.39% 53.74 21.33 3.61%

DyTox [12]

0/class

57.53 19.81 3.55% 50.67 18.61 5.71%
L2P [50] 64.46 11.02 2.59% 55.37 13.55 3.80%

S-Prompts [48] 68.54 7.32 3.39% 60.17 8.70 5.58%
DualPrompt [49] 66.39 10.74 2.82% 59.51 10.14 4.03%

MaPLe [21] 69.81 8.17 8.54% 63.37 8.96 10.23%
DCP [31] 67.49 9.72 10.28% 62.21 9.45 12.56%
HPC (ours) 71.04 5.36 3.04% 64.32 5.89 4.25%

Upper-bound - 78.35 - 3.04% 70.56 - 4.25%

Table 6: Ablation studies of our Historical Prompt Calibration method.

Task Metrics HPC HPC(w/o. IRE) HPC(w/o. ICA) HPC(IRE w/o. estimator) HPC(ICA w/o. contrastive)

Image-Text Retrieval
TextR@1 ↑ 65.94 64.79 64.13 65.03 64.22

Forget ↓ 4.21 4.89 5.35 4.64 5.05

Referring Image
Segmentation

mIoU ↑ 64.32 63.24 62.51 63.28 61.89

Forget ↓ 5.89 6.73 7.60 6.94 8.24

Table 7: Performance Comparison on Grounding Tasks with Complex Downstream Head. The value in bracket denotes the original results.

Method Referring Expression Comprehension Referring Expression Segmentation

mIoU Param mIoU Param

L2P [50] 63.33(64.46) 7.98(2.39) 53.60(55.37) 9.07(3.80)
DualPrompt [49] 64.71(66.39) 8.20(2.82) 56.65(59.51) 9.28(4.03)

HPC (ours) 70.83(71.04) 8.36(2.82) 64.16(64.32) 9.44(4.25)

it requires large contrastive samples, thereby making the model
biased. This can explain the fact that freezing the pre-trained model
and only tune the head can bring better performance. Instead, our
method only fine-tune the prompt parameter and avoid wasting the
pre-trained model’s knowledge. The inferior performance of other
prompt-based methods might be due to the less transfer learning
capability of their dependent prompt learning on heterogeneous
tasks and modalities.

Results of Grounding Tasks. The results of two challenging
grounding tasks are summarized in Table 5. We can find HPC still
surpass most exemplar-free methods. Different from the retrieval,
we observe the replay-based method is effective and tuning all
model can bring further gains. While these methods can reach
closer to our method, it requests a large memory overhead that

increases linearly with the class number for the storage of class-
wise exemplars and it also requires a large amount of parameters
for tuning. Besides, we notice our method brings more remarkable
gains in segmentation than comprehension. We argue the reason
is that segmentation is more difficult and designed with complex
downstream head, which indirectly poses a greater obstacle for
continual learning. This fact again validates the superiority of our
method.

4.3 Ablation Study
We conduct ablation studies of Calibrate Prompt and show the
results in Table 6. First, we develop two overall ablated methods
HPC (w/o. IRE) and HPC (w/o. ICA) by discarding the intra-modal
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relevance estimation and inter-modal consistency alignment re-
spectively. The results demonstrate that the two calibration tasks
can both help improve the model performance in continuous tasks,
showing our method can effectively calibrate prompt for the pre-
trained transformer.

Besides, we further explore detailed design by generating two
ablation methods HPC (IRE w/o. estimator) and HPC (ICA w/o. con-
trastive). The HPC (IRE w/o. estimator) leverages the contrastive
loss to enlarge the gap between prompt groups of different tasks
instead of our estimator on the transformer model. The HPC (ICA
w/o. contrastive) directly enhances the cross-modal alignment with-
out contrasting to historical prompts. The results indicate that our
design is effective, since the estimator can leverage the discrimina-
tive power of pre-trained model and the contrastive loss can better
achieve cross-modal alignment by utilizing historical information.

4.4 In-depth Analysis
Sensitivity to Downstream Head. We validate the robustness of
our method by replacing the lightweight task-specific head with
more complex one. We consider the challenging grounding tasks
and follow [26] to build a 12 layer multi-modal transformer architec-
ture and introduce cross-modal interaction mechanism. From the
results shown in Table 7, we can clearly observe that all methods
suffer performance degradation since the complex neural network
of downstream head lead to more severe forgetting. However, our
method still outperforms all other methods, validating it can pro-
mote the pre-trained encoder to obtain more generalizable features
for even complex downstream structure and alleviate the latent
forgetting of it.

Performance with Task Number. To study the correlation
between the effect of our method and the number of tasks, we
visualize the accuracy curves with the incremental tasks in Figure 3.
It can be seen that the gap between our HPC method and other
methods continues to grow with the input of the task. This fact is
because that our intra-modal relevance estimation and inter-modal
consistency alignment can leverage the historical information of
previous tasks to improve the learning of current and upcoming
tasks. Compared with S-Prompts that builds independent prompt
pools, our method can explicitly utilize the knowledge of each past
task, thus bringing a more direct improvement.

(a) Image-Text Retrieval (b) Referring Expression Segmentation

Figure 3: Performance with Task Number.

Effectiveness of the temperature parameter.We explore the
effect of the temperature parameter 𝜏 , which is a crucial hyper-
parameter in loss LICA of inter-model consistency alignment. We
set the value of 𝜏 to [0.01, 0.1, 0.2, 0.5, 1.0] and display the results in

Figure 4. We observe that the performance of our method decreases
when the temperature is too small or too large. The optimal temper-
ature value is around 0.1. This indicates a proper temperature value
can promote feature learning, which is consistent with previous
studies [13].

(a) Image-Text Retrieval (b) Referring Expression Segmentation

Figure 4: Impact of Temperature Parameter 𝜏 .

Training Stability. Further, we draw the three loss curve that
corresponds to downstream task, IRE and ICA respectively during
training. It is visually apparent in Figure 5 that the two losses LIRE
and LICA converge at a faster rate than the primary task loss Lbase,
reaching its order of magnitude within one percent. Hence, our
proposed strategy will not impede the training of the primary task,
but instead enables prompt calibration in the early training stage,
leading to more effective prompt representations for continual
learning.

(a) Image-Text Retrieval (b) Referring Expression Segmentation

Figure 5: Training loss curve of our HPC method.

5 CONCLUSIONS
In this work, we investigate the continual learning for vision-
language retrieval and grounding tasks. Inspired by the recent
success of pre-trained multi-modal transformer and the prompt
technique, we adopt the prompt-based pipeline to solve this prob-
lem. To solve two critical limitations, i.e. the unfamiliarity across
tasks and the heterogeneity between modalities, we propose Histor-
ical Prompt Calibration. First, we design a intra-modal relevance es-
timation task to help prompt encode more task-specific information
by distinguishing the previous prompts of historical tasks, which is
achieved by a relevance estimator on top of the pre-trained encoder.
Second, we develop a inter-modal consistency alignment train-
ing to enhance cross-modal alignment by contrasting one modal
features with another modal features, where contrastive samples
are generated by prompts of current and previous tasks. In two
vision-language retrieval tasks and two vision-language grounding
tasks, HPC shows superior performance over the state-of-the-art
methods.
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