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ABSTRACT

Articulated objects exist widely in the real world. However, previous 3D genera-
tive methods for unsupervised part decomposition are unsuitable for such objects,
because they assume a spatially fixed part location, resulting in inconsistent part
parsing. In this paper, we propose PPD (unsupervised Pose-aware Part Decom-
position) to address a novel setting that explicitly targets man-made articulated
objects with mechanical joints, considering the part poses. We show that category-
common prior learning for both part shapes and poses facilitates the unsupervised
learning of (1) part decomposition with non-primitive-based implicit representa-
tion, and (2) part pose as joint parameters under single-frame shape supervision.
We evaluate our method on synthetic and real datasets, and we show that it out-
performs previous works in consistent part parsing of the articulated objects based
on comparable part pose estimation performance to the supervised baseline.

1 INTRODUCTION

Humans are capable of recognizing complex shapes by decomposing them into simpler semantic
parts. Researchers have shown that infants learn to group objects into semantic parts using the
location, shape, and kinematics as a cue (Spelke et al., 1995; Slater et al., 1985; Xu & Carey, 1996).
Moreover, even very young infants can learn to reason about kinematics using non-sequential single
frames (Shirai & Imura, 2014; Kourtzi & Kanwisher, 2000). Although humans can naturally achieve
such reasoning, it is challenging for machines, particularly in the absence of a rich supervision.

Generative part decomposition and abstraction methods have a long-standing history in computer
vision (Roberts, 1963; Binford, 1971). Learning to represent complex target shapes with simpler
part components has a wide range of applications, such as structure modeling (Mo et al., 2020;
Roberts et al., 2021) and unsupervised 3D part parsing (Chen et al., 2020; Paschalidou et al., 2021;
Tulsiani et al., 2017). Previous studies have mainly focused on non-articulated objects. Because they
exploit the consistent part location as a cue to group shapes into semantic parts, these approaches
are unsuitable for decomposing articulated objects when considering the kinematics of dynamic
part locations. In contrast, there exist discriminative approaches targeting man-made articulated
objects for part segmentation, in addition to part pose estimation from single-frame input. However,
they require explicit supervision, such as segmentation labels and joint parameters (Yi et al., 2018;
Xiang et al., 2020; Li et al., 2020). Removing the need for such expensive supervision has been an
important step toward more human-like representation learning (Becker & Hinton, 1992).

In this study, as a novel problem setting, we investigate the generative part decomposition task for
man-made articulated objects with mechanical joints, considering part poses as part kinematics,
in an unsupervised fashion. Specifically, we consider the revolute and prismatic parts with a 1
degree-of-freedom joint state as the part kinematics because they cover most of the kinematic types
that common man-made articulated objects have (Xiang et al., 2020; Abbatematteo et al., 2020;
Michel et al., 2015). This task aims to learn consistent part parsing as a generative shape abstraction
approach similar to (Chen et al., 2019b) for man-made articulated objects with various part poses
from single-frame shape observation. An overview is shown in Figure 1. This task expands the target
of the current generative part decomposition’s applications to articulated objects in novel ways, such
as part pose consistent part segmentation and part pose estimation. To realize the task, we identify
the two challenges; (1) for pose-aware part decomposition, the model must consider the kinematics
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Figure 1: (Left) Even through independent observations, infants can build a mental model of the
articulated object for part parsing based on its kinematics. (Middle) Likewise, we propose an unsu-
pervised generative method that learns to parse the single-frame, unstructured 3D data of articulated
objects and predict the part-wise implicit fields as well as their part poses as joint parameters. (Right)
Our approach outperforms the previous works in consistent part parsing for articulated objects.

Part
segmentation

Part pose
estimation Generative Unsupervised

ANSCH (Li et al., 2020) X X
NASA (Deng et al., 2020b) X X

Nueral Parts (Paschalidou et al., 2021) X X X
Ours X X X X

Table 1: Overview of the previous works. We regard a method as unsupervised if the checked tasks
can be learned only via shape supervision during training.

between possibly distant shapes to group them as a single part and (2) has to disentangle the part
poses from shape supervision. A comparison with previous studies is presented in Table 1.

To address these challenges, we propose PPD (unsupervised Pose-aware Part Decomposition) that
takes an unsegmented, single-frame point cloud with various underlying part poses as an input. PPD
reconstructs part-wise shapes transformed using the estimated joint parameters as the part poses. We
train PPD as an autoencoder using single-frame shape supervision. PPD employs category-common
decoders to capture category-specific rest-posed part shapes and joint parameters. Learning to trans-
form the rest-posed shapes properly disentangles shape and pose, and (2) restricting the position of
the parts by the joint parameters forces shapes in distant space that share the same kinematics to be
recovered as the same part. We also propose a series of losses, including an adversarial loss, to regu-
larize the learning process. Furthermore, we employ non-primitive-based part shape representation
and utilize deformation by part poses to induce part decomposition, in contrast to previous works
that employ primitive shapes and rely on its limited expressive power as an inductive bias.

Our contributions are summarized as follows: (1) We propose a novel unsupervised generative part
decomposition method for man-made articulated objects based on part kinematics. (2) We show that
the proposed method learns a non-primitive-based implicit field as the decomposed part shapes and
the joint parameters as the part poses, using single-frame shape supervision. (3) We also demonstrate
that the proposed method outperforms previous generative part decomposition methods in terms of
semantic capability (parsimonious shape representation, consitent part parsing and interpretability of
recovered parts) and show comparable part pose estimation performance to the supervised baseline.

2 RELATED WORKS

Existing unsupervised generative part decomposition studies mostly assume non-articulated objects
in which the part shapes are in a fixed 3D location (Tulsiani et al., 2017; Paschalidou et al., 2020;
Chen et al., 2019b; 2020; Deng et al., 2020a; Kawana et al., 2020), or also targeting human body
and hand shapes without considering part pose (Paschalidou et al., 2021). They induce part decom-
position by limiting the expressive power of the shape decoders by employing learnable primitive
shapes. Closest work of ours is BAE-Net (Chen et al., 2019b), whose main focus is consistent part
parsing by generative shape abstraction. It also employs a non-primitive-based implicit field as the
part shape representation, similar to ours. However, it still limits the expressive power of the shape
decoder using MLP with only three layers. In contrast, our approach assumes parts to be dynamic
with the consistent kinematics and induces part decomposition through rigid transformation of the
reconstructed part shapes with the estimated part poses to make the decomposition pose-aware.

A growing number of studies have tackled the reconstruction of category-specific, natural articulated
objects with a particular kinematic structure, such as the human body and animals. Representative
works rely on the use of category-specific template models as the shape and pose prior (Loper et al.,
2015; Zuffi et al., 2017; Bogo et al., 2016; Zuffi et al., 2019; Kulkarni et al., 2020). Another body
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Figure 2: Model overview. To infer implicit field Ô based on part poses {Bi}Ni=1 and part-wise
implicit fields {Ôi}Ni=1, the category-common decoders F p,c and {F s,ci }Ni=1 capture pose biases and
shape priors, the instance-dependent decoders F p,z and {F s,zi }Ni=1 infer target specific components.

of works reconstruct target shapes without templates, such as by reconstructing a part-wise implicit
field given a part pose as an input (Deng et al., 2020b) or focusing on non-rigid tracking of the seen
samples (Božič et al., 2021). In contrast, our approach focuses on man-made articulated objects with
various kinematic structures. Our approach learns the shape and pose prior during training, without
any part pose information either as supervision or input, and is applicable to unseen samples.

In discriminative approaches, a number of studies have focused on the inference of the part seg-
mentation of the input point cloud and part poses as joint parameters (Li et al., 2020; Xiang et al.,
2020; Abbatematteo et al., 2020) targeting man-made articulated objects. These approaches require
expensive annotations, such as part labels and ground-truth joint parameters. Moreover, they require
category-specific prior knowledge of the kinematic structure. In contrast, our model is based on gen-
erative approach and is category agnostic. Moreover, it only requires shape supervision during train-
ing. A very recent work (Huang et al., 2021) assumes an unsupervised setting where multi-frame,
complete shape point clouds are available for both input and supervision signals during training and
inference. Whereas our approach assumes a single-frame input and shape supervision, it also works
with partial shape input during inference. Note that, in this study, the purpose of part pose estima-
tion is, as an auxiliary task, to facilitate consistent part parsing. It is not our focus to outperform the
state-of-the-art supervised approaches in part pose estimation.

3 METHODS

In our approach, the goal is to represent an articulated object as a set of semantically consistent
part shapes based on their underlying part kinematics. We represent the target object shape as an
implicit field that can be evaluated at an arbitrary point x ∈ R3 in 3D space as O : R3 → [0, 1],
where {x ∈ R3 |O(x) = 0} defines the outside of the object, {x ∈ R3 |O(x) = 1} the inside, and
{x ∈ R3 |O(x) = 0.5} the surface. Given a point cloud I ∈ RPe×3 as an input, we approximate
the object shape using a composite implicit field Ô that is decomposed into a collection of N parts,
where Pe is a number of points in the point cloud. The i-th part has an implicit field Ôi : R3 ×
RPe×3 → [0, 1] as part shape and part pose Bi ∈ SE(3). We ensure that O is approximated as
O(x) ≈ Ô(x | I, {Bi}Ni=1) through the losses.

An overview of PPD is shown in Figure 2. PPD employs an autoencoder architecture, and is trained
under single category setting. Given a point cloud I , the encoder derives the disentangled shape
latent vector zs and the pose latent vectors zp and zp,c. Category-common pose decoder F p,c cap-
tures joint parameter biases given zp,c. Instance-dependent pose decoder F p,z models residual joint
parameters to the biases given zp. The part-wise category-common shape decoder F s,ci captures
category-common shape prior. Given zs and conditioned by F s,ci , instance-dependent shape de-
coder F s,zi infers residual shape details of the target shape to decode a part-wise implicit field Ôi.
We discuss the details about F p,z and F p,c in Section 3.1, and F s,zi and F s,ci in Section 3.2.

3.1 PART POSE REPRESENTATION

We characterize part pose Bi by its part kinematic type yi ∈ {fixed, prismatic, revolute} and joint
parameters. Each yi is manually set as a hyperparameter. The joint parameters consist of the joint
direction ui ∈ R3 with the unit norm and joint state si ∈ R+. Additionally, the ”revolute” part has
the pivot point qi ∈ R3. We refer to the joint direction and pivot point as the joint configuration.
For the ”fixed” part, we set Bi as an identity matrix because no transformation is applied. For the
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”prismatic” part, we define Bi = T (siui), where T (·) represents a homogeneous translation matrix
given the translation in R3, and si and ui represent the translation amount and direction, respectively.
For the ”revolute” part, we set Bi = T (qi)R(si,ui), where R(·) denotes a homogeneous rotation
matrix given the rotation representation, and si and ui represent the axis-angle rotation around
the axis ui by angle si. In human shape reconstruction methods using template shape, its pose
is initialized to be close to the real distribution to avoid the local minima (Kanazawa et al., 2018;
Kulkarni et al., 2020). Inspired by these approaches, we parametrize the joint direction as [ui; 1] =
R(ri)[ei; 1], where ei is a constant directional vector with the unit norm working as the initial joint
direction as a hyperparameter and ri ∈ R3 represents the Euler-angle representation working as a
residual from the initial joint direction ei. This allows us to manually initialize the joint direction in
a realistic distribution through ei by initializing ri = 0. Figure 3 illustrates the joint parameters.

Figure 3: Geometric relationship be-
tween the joint parameters.

Based on our observations, we assume that the joint con-
figuration has a category-common bias, while the joint
state strongly depends on each instance. This is because
the location of each part and the entire shape of an object
can constrain the possible trajectory of the parts, which is
defined by the joint configuration. To illustrate this idea,
we propose to decompose the joint configuration into a
category-common bias term and an instance-dependent
residual term denoted as ri = rci + rzi and qi = qci + qzi ,
respectively. We employ the category-common pose decoder F p,c(qt(zp,c)), which outputs {rci | i ∈
Ap} and {qci | i ∈ Ar}, where Ap = {i ∈ [N ] | yi 6= fixed}, Ar = {i ∈ [N ] | yi = revolute}, zp,c
denotes a pose latent vector, and qt(·) is a latent vector quantization operator following VQ-VAE
(Razavi et al., 2019). The operator qt(·) outputs the nearest constant vector cp to the input latent vec-
tor zp,c among theNqt candidates. Instead of using a single constant vector, the model selects a con-
stant vector among multiple constant vectors to capture the discrete, multi-modal category-common
biases. We also employ an instance-dependent pose decoder F p,z(zp) that outputs {si | i ∈ Ap},
{rzi | i ∈ Ap}, and {qzi | i ∈ Ar}. We constrain the possible distribution of the joint configuration
around the category-common bias by the loss function explained in Section 3.3. This constraint in-
centivizes the model to reconstruct the instance-dependent shape variation by the joint state, which
constrains the part location along the joint direction. This kinematic constraint biases the model to
represent the shapes having the same kinematics with the same part. Because the previous works
(Kawana et al., 2020; Deng et al., 2020a; Paschalidou et al., 2019) do not impose such a constraint on
the part localization, learned part decomposition is not necessarily consistent under different poses.

3.2 PART SHAPE REPRESENTATION

We propose a non-primitive-based part shape representation that is decomposed into the category-
common shape prior and instance-dependent shape details. We employ MLP-based decoders to
model a part-wise implicit field. We capture the category-common shape prior using the category-
common shape decoder F s,ci : R3 → R. Because F s,ci does not take a latent vector from the encoder,
it learns an input-independent, rest-posed part shape template as the category-common shape prior.
We also employ an instance-dependent shape decoder F s,zi : R3×Rd → R to capture the additional
instance-dependent shape details conditioned with the shape prior, where d is the dimension of the
shape latent vector zs. Given F s,ci and F s,zi , we formulate a part-wise implicit field Ôi as follows:

Ôi(x | I) = σ(F s,zi (x, zs)Ôci (x)) (1)

where σ(·) represents the sigmoid function and Ôci (x) = σ(F s,ci (x)). For brevity, we omit I in Ôi
and simply denote it as Ôi(x). Given the part poses {Bi}Ni=1 as part-wise locally rigid deformation,
we formulate Ô as the composition of {Ôi}Ni=1 defined as Ô(x | I,B) = maxi{Ôi(B−1i x)}. As in
the piecewise rigid model of (Deng et al., 2020b), coordinate transformation B−1i x realizes locally
rigid deformation by Bi of the part-wise implicit field by querying the rest-posed indicator. Note
that, although we set the maximum number of parts N , the actual number of parts used for recon-
struction can change; it is possible that some parts do not contribute to the reconstruction because
of the max operation or simply because Ôi < 0.5 for all 3D locations. In Equation 1, we experi-
mentally found that conditioning F s,zi by Ôci through multiplication rather than addition effectively
prevents F s,zi from deviating largely from F s,ci . This regularization induces the unsuperivsed part
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decomposition. Considering reconstructing the target shape by single i-th part, since the multiplica-
tion makes it difficult to output shapes that deviating largely from the category-common prior shape,
the large shape variations of target shapes are expressed by Bi regarded as the global pose of the
reconstructed shape. However, the datasets’ large shape variations in target shapes are due to the
various local poses of multiple part shapes. Therefore, the large shape variations of target shapes
cannot be expressed only by the single part and its part pose Bi. Thus, as an inductive bias of the
unsupervised part decomposition, the model is incentivized to use a composition of multiple parts
to express the shape variations due to various local part poses. In the learning process, the model
first tries to reconstruct the target shapes with a single part; then with multiple parts. Lastly, it starts
to deform each part to express the shape variations. During the learning process, the part poses are
disentangled from the shape supervision to transform the part shapes in a way that minimizes the
reconstruction loss. For the visualization of the learning process of part decomposition, see Figure
12 in the Appendix.

3.3 TRAINING LOSSES

Shape losses. To learn the shape decoders, we minimize the reconstruction loss using the standard
binary cross-entropy loss (BCE) defined as:

Lrec = λrecBCE(Ô, O) + λcrecBCE(Ôc, O) (2)

where Ôc(x |B) = maxi{Ôci (B
−1
i x)}, and λrec and λcrec are the loss weights. The second term in

Equation 2 is essential for stable training; it facilitates fast learning of {F s,ci }Ni , so that {F s,zi }Ni can
be correctly conditioned in the early stage of the training process. Moreover, because we consider
the locally rigid deformation of the shape, the volumes of the shape before and after the deformation
should not be changed by the intersection of parts; we formulate this constraint as follows:

Lvol = λvol(Ex[relu(max
i
{F s,zi (B−1i x, zs)})]− Ex[relu(max

i
{F s,zi (x, zs)})])2 (3)

Joint parameter losses. For the joint parameters qi and ri, we prevent an instance-dependent
term from deviating too much from the bias term, we regularize them by the loss:

Ldev = λdev

(
1

Nr

∑
i∈Ar

‖qzi ‖+
1

Np

∑
i∈Ap

‖rzi ‖
)

(4)

where Nr = |Ar|, Np = |Ap|, and λdev is the loss weight. Moreover, we propose a novel regu-
larization loss that constrains the pivot point with the implicit fields. We assume that the line in 3D
space, which consists of the pivot point and joint direction, passes through the reconstructed shape.
The joint should connect at least two parts, which means that the joint direction anchored by the
pivot point passes through at least two reconstructed parts. We realize this condition as follows:

Lloc =
λloc
Nr

∑
i∈Ar

(
min
x∈Sgt

‖qi − x‖+
1

2

(
min
x∈Si
‖qi − x‖+ min

x∈Si,j
‖qi − x‖

))
(5)

where Sgt = {x ∈ R3 |O(x) = 1}, Si = {x ∈ R3 | Ôi(B−1i x) > 0.5}, Si,j = {x ∈
R3 | Ôj(B−1j x) > 0.5, j ∈ Ar \ i}, and λloc is the loss weight. Note that Lloc is self-regularizing
and not supervised by the ground-truth part segmentation. See Figure 13 in the Appendix for an
illustration of Lloc. To reflect the diverse part poses, we prevent the joint state si from degenerat-
ing into a static state. In addition, to prevent the degeneration of multiple decomposed parts from
representing the same revolute part, we encourage the pivot points to be spread. We realize these
requirements by the loss defined as:

Lvar =
1

Np

∑
i∈Ap

(
λvars

stdB(si)
+ λvarq

∑
j∈Ar\i

exp
(
− ‖qi − qj‖

v

))
(6)

where stdB(·) denotes the batch statistics of the standard deviation, v is a constant that controls the
distance between pivot points, and λvars and λvarq are the loss weights. Lastly, following the loss
proposed in (Razavi et al., 2019), the pose latent vector zp,c is optimized by the loss:

Lvq = ‖zp,c − sg(cp)‖ (7)

where sg denotes an operator stopping gradient on the backpropagation.
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Adversarial losses. Inspired by human shape reconstruction studies (Chen et al., 2019a; Pavllo
et al., 2019), we employ the adversarial losses from WGAN-GP (Gulrajani et al., 2017) to regularize
the shape and pose in the realistic distribution. The losses are defined as:

Ladvd = λadvd(Ex̃∼Pg [D(x̃)]− Ex∼Pr [D(x)]) + Ex̂∼Px̂

[
(‖∇x̂D(x̂)‖ − 1)

2
]

(8)

Ladvg = λadvg (−Ex̃∼Pg [D(x̃)]) (9)

where D(·) is a discriminator; x̃ is a sample from the reconstructed shapes Pg transformed by
the estimated joint configuration and randomly sampled joint state s̃i ∼ Uniform(0, hi), with the
maximum motion amount hi treated as a hyperparameter; x is a sample from the ground-truth shapes
Pr; x̂ is a sample from Px̂, which is a set of randomly and linearly interpolated samples between x̂
and x; and λadvg and λadvd are the loss weights. As an input to D, we concatenate the implicit field
and corresponding 3D points to create a 4D point cloud, following (Kleineberg et al., 2020).

3.4 IMPLEMENTATION DETAILS

We use the Adam solvers (Kingma & Ba, 2014) with a learning rate of 0.0001 to optimize the losses:
Ltotalg = Lrec+Lvol+Lvq+Ldev +Lloc+Lvar+Ladvg (sum of Equations 2, 3, 7, 4, 5, 6, and 9)
and Ltotald = Ladvd (Equation 8), with a batch size of 18. For the input, we use the complete shape
point cloud with 4096 points sampled from the surface of the target shape, unless otherwise noted.
For the ground-truth implicit field, we use 4096 coordinate points and their corresponding indicator
values. We set the loss weights as follows: λrec = 0.01, λcrec = 0.001, λdev = 0.1, λvars = 0.1,
λloc = 100, λvarq = 0.01, λvol = 1000, λadvg = 0.65, and λadvd = 0.35. We set v = 0.01 in Lvar
and Nqt = 4 for qt(·). For hi in Ladvd , we set to π

2 and 0.4 the ”revolute” and ”prismatic” parts,
respectively. Note that we experimentally found that it does not constrain the model to predict si
larger than hi to reconstruct the target shape. Because we do not impose any geometric constraints
on the part shapes, we set the number of parts for each part kinematics yi as its maximum number
in the datasets plus an additional one part for over-parameterization. The detail of the datasets is
explained in Section 4. We set N = 8, which consists of one ”fixed” part, three ”revolute” parts,
and four ”prismatic” parts. For the initial joint direction ei, for each ”revolute” part, we set it to the
(+z, −z, +y) directions, and for each ”prismatic” part, we set it to the +x direction. We use the
same hyperparameter for all categories, without assuming the category-specific knowledge. We train
our network in two stages following (Chen et al., 2020): first, we train it on an implicit field of 163

grids and then on 323 grids. During the training, the max operation is substituted with LogSumExp
for gradient propagation to each shape decoder. See Appendix B for further training details.

Network architecture. We use the PointNet (Qi et al., 2017)-based architecture from (Mescheder
et al., 2019) as an encoderE and the one from (Shu et al., 2019) as a discriminatorD. Our shape de-
coders {F s,ci }Ni=1 and {F s,zi }Ni=1 are MLP with sine activation (Sitzmann et al., 2020) for a uniform
activation magnitude suitable for propagating gradients to each shape decoder. For the category-
common pose decoder F p,c, we use two separate networks of MLP, namely, F p,cr and F p,cq . For
the instance-dependent pose decoder F p,z , we employ MLP with a single backbone having multiple
output branches. See Appendix A for further architectural details.

4 EXPERIMENTS

Datasets. Following the recent articulated pose estimation study (Li et al., 2020), we evaluate our
method on five categories with various joint configurations from two synthetic datasets: Motion
dataset (Wang et al., 2019) for the oven, eyeglasses, laptop, and washing machine categories, and
SAPIEN dataset (Xiang et al., 2020) for the drawer category. Each category has a fixed number
of parts with the same kinematic structure. We generate 100 instances with different poses per
sample, generating 24k instances in total. We divide the samples into the training and test sets
with a ratio of approximately 8:2. We also normalize the side length of samples to 1, following
(Mescheder et al., 2019). For further details of the data generation, see Appendix C. To verify the
transferability of our approach trained on synthetic data to real data, we use the laptop category
from RBO dataset (Martı́n-Martı́n et al., 2018) and Articulated Object Dataset (Michel et al., 2015),
which is the intersecting category with the synthetic dataset.
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Drawer Eye-
glasses Oven Laptop Washing

machine mean # of
parts

BAE (Chen et al., 2019b) 6.25* 11.11* 73.06 25.11* 80.30 39.17 1.42/8
BSP (Chen et al., 2020) 66.31 70.69 81.65 76.68 87.92 76.65 27.50/256

NSD (Kawana et al., 2020) 38.39 42.11 74.67 74.44 89.11 63.75 10
NP (Paschalidou et al., 2021) 60.57 64.69 85.41 86.23 74.65 74.31 5

Ours 74.73 66.18 82.07 86.81 95.15 80.99 4.16/8

Table 2: Part segmentation performance in label IoU. Higher is better. The starred numbers indicate
the failure of part decomposition and that only one recovered part represents the entire shape. The
average and the predefined maximum numbers of recovered parts or primitives are shown before and
after the slash, in the last column. Ours uses more than one part on average with the least number.

Baselines. We compare our method with the state-of-the-art unsupervised generative part decom-
position methods with various characteristics: BAE-Net (Chen et al., 2020) (non-primitive-based
part shape representation), BSP-Net (Chen et al., 2020) (primitive-based part shape representa-
tion with part localization by 3D space partitioning), NSD (Kawana et al., 2020) and Neural Parts
(Paschalidou et al., 2021) denoted as NP (primitive-based part shape representation with part local-
ization in R3). For BSP-Net, we train up to 323 grids of the implicit field instead of 643 grids in
the original implementation to match those used by other methods. For NSD and Neural Parts, we
replace its image encoder with the same PointNet-based encoder in our approach. For the part pose
estimation, we use NPCS (Li et al., 2020) as the baseline. NPCS performs part-based registration
by iterative rigid-body transformation, which is a common practice in articulated pose estimation
of rigid objects. Note that NPCS assumes that part segmentation supervision are available during
training and part kinematic type per part is known, which we do not assume in both cases. See
Appendix B.1 for further training details of the baselines.

Metrics. For the quantitative evaluation of the consistent part parsing as a part segmentation task,
we use the standard label IoU, following the previous studies (Chen et al., 2019b; 2020; Deng
et al., 2020a; Kawana et al., 2020). As our method is unsupervised, we follow the standard initial
part labeling procedure using a training set to assign each part a ground-truth label for evaluation
purposes following (Deng et al., 2020a; Kawana et al., 2020). A detailed step can be found in
Appendix D.1. For the part pose evaluation, we evaluate the 3D motion flow of the deformation
from the canonical pose to the predicted pose measured as the endpoint error (EPE) (Yan & Xiang,
2016), which is a commonly used metric for pose estimation of articulated objects (Wang et al.,
2019; Božič et al., 2021). We scale it by 102 in experiment results. Finally, we report F-score,
Chamfer L1 distance and volumetric IoU as the shape reconstruction accuracy metrics evaluated on
the meshified implicit field sampled on 323 grids using marching cubes (Lorensen & Cline, 1987).
We use 100k points for the above three metrics, following (Mescheder et al., 2019; Deng et al.,
2020a).

4.1 SEMANTIC CAPABILITY

We evaluate the semantic capability of our approach in part parsing. As part decomposition ap-
proaches aim to learn 3D structure reasoning with as small a number of ground-truth labels as
possible, it is preferable to obtain the initial manual annotations with as few numbers of shapes as
possible. This requirement is essential for articulated objects, which have diverse shape variations
owing to the different articulations. As our approach is part pose consistent, we only need a minimal
variety of instances for the initial manual labeling. To verify this, we evaluate the part segmentation
performance using only the canonically posed (joint states were all zero) samples in the training
set. See Appendix E.2 for further studies on pose variation for the initial annotation. The evaluation
results are shown in Table 2. We also show the number of parts or primitives that each model uses
in the last column of the table. Our approach outperforms all the previous works on average. The
segmentation results are shown in Figure 4. The same color indicates the same segmentation part.
The grey color of the part segmentation results of BSP-Net indicates that a primitive not labeled in
the initial annotation is chosen to segment the surface area. Visualization procedure can be found in
Appendix D.2. Our model uses a much smaller number of parts than BSP-Net (Chen et al., 2020);
however, it still performs the best. This shows that our model is more parsimonious, and each part
has more semantic meaning in part parsing. For additional visualization of our part segmentation
result, see Appendix E.1. We also visualize the generated part shapes in Figure 5. We can see that
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Figure 4: Visualization of the part segmentation. Mesh re-
construction is shown inside a box. Best viewed in zoom.

Figure 5: Visualization of parts and
primitives. The boxes represent the
parts or primitives used to reconstruct
the semantic parts.

Drawer Eye-
glasses Oven Laptop Washing

machine mean

NPCS (Li et al., 2020)
(Supervised) 1.598 1.087 2.702 0.751 1.594 1.546

Ours
(Unsupervised) 3.452 2.631 3.360 2.546 2.529 2.903

Table 3: Part pose estimation performance in EPE. Lower
is better.

Figure 6: Interpolation in terms of shape
and joint state.

one dynamic part is successfully reconstructed by a single implicit field. This demonstrates the ad-
vantage of using non-primitive-based part shape representation: complicated grouping mechanism
of primitive shapes based on part kinematics is not needed. Also, our part shapes are more semantic
and interpretable than the previous works. Moreover, our part shape representation exhibits the part
shape with disconnected shapes, which the previous single primitive shape cannot express.

Disentanglement between the part shapes and poses. Because our approach disentangles shape
supervision into part shapes and poses, it realizes pose-aware part decomposition. To verify the
learned disentanglement, we visualize the interpolation results of part shapes and joint states as part
poses in Figure 6. In the middle row, we show the shape interpolation between the source and the
target while fixing the joint state si of the source to maintain the same part pose. The shape is
smoothly deformed from the source to the target maintaining the original pose. In the bottom row,
we interpolate the joint state si between the source and the target; the joint state changes from the
source to the target maintaining the shape identity of the source shape. Our model successfully
disentangles the part shapes and poses, unlike previous methods as shown in the top row.

4.2 PART POSE ESTIMATION

To validate whether the predicted part decomposition is based on the reasonable part pose estima-
tion, we quantitatively evaluate the performance. Because we train our model without specifying
a canonically posed shape, we use the estimated deformation between the target instance and the
canonically posed instance of the same sample as the estimated part pose to align with the predic-
tion of the supervised baseline. We present the evaluation results in Table 3. We show the supervised
rigid registration approach NPCS (Li et al., 2020) only as a reference. Our method is comparable
with NPCS, with the same order of performance. Note again that we are not attempting to outper-
form supervised pose estimation methods; rather, we aim to show that our unsupervised approach
can decompose parts based on reasonable part pose estimation. See Appendix F for further results.

4.3 RECONSTRUCTION

We quantitatively validate whether PPD learns a reasonable shape representation rather than de-
generated to ignore a target shape. We use BAE-Net (Chen et al., 2019b) as our baseline because
it also focuses on part parsing through generative shape abstraction, and it also employs the same
non-primitive part shape representation. The results are presented in Table 4. This study focuses on
part parsing based on the challenging part pose estimation, thus persuing the state-of-the-art shape
reconstruction accuracy as in (Chen et al., 2020; Kawana et al., 2020; Paschalidou et al., 2021) is
out of focus. We show their results only as a reference. We can see that PPD outperforms BAE-Net.
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F-score ↑ CD1 ↓ IoU ↑ # of params. # of parts.
BSP (Chen et al., 2020) 51.85 1.471 55.02 443.3 27.50/256

NSD (Kawana et al., 2020) 52.59 1.766 51.32 6.657 10
NP (Paschalidou et al., 2021) 46.35 1.85 43.09 24.43 5

BAE (Chen et al., 2019b) 24.83 3.211 33.67 52.50 1.42/8
Ours 31.87 2.384 36.69 2.149 4.16/8

Table 4: Reconstruction performance. Chamfer L1 distance (CD1) and the number of parameters
(# of params.) are scaled by 102 and 105, respectively. The average and the predefined maximum
numbers of recovered parts or primitives are shown before and after the slash, in the last column.

w/o Lvol w/o Ldev w/o Lloc w/o Lvar w/o Ladvg w/o CS w/o CP w/ all
Label IoU ↑ 72.20 73.21 74.27 65.29 70.14 55.67 71.35 80.99

EPE ↓ 4.362 6.628 9.250 6.676 7.276 8.827 7.219 2.988

Table 5: Ablation study of the losses and the category-common decoders: ”w/o CP” and ”w/o CS”
means disabling the category-common pose decoder and the shape decoders, respectively.

This is because PPD enables the use of a deeper network structure of shape decoders for better ex-
pressive power, and shape decoders are robust to unseen part poses owing to the disentangled part
pose representation. For the further discussion on shape reconstruction, see Appendix G.

4.4 ABLATION STUDIES

We evaluate the effect of the proposed losses and the category-common decoders on part segmen-
tation and part pose estimation. We disable each loss except Lrec and Lvq one at a time. We
also disable the category-common decoders for pose and shape one by one and only use the cor-
responding instance-dependent decoder(s). The results are shown in Table 5. Enabling all losses
and the category-common decoders performs the best. Particularly, disabling the category-common
shape decoders significantly degrades both label IoU and EPE. This indicates that learning category-
common shape prior is essential to perform proper part decomposition and to facilitate part pose
learning, which is the core idea of this study. For further ablation studies, see Appendix H.

4.5 DEPTH MAP INPUT AND REAL DATA

Because PPD’s decoders do not assume a complete shape as an input, it works with depth map input.
Following BSP-Net (Chen et al., 2020), we train a new encoder that takes a depth map captured from
various viewpoints as a partial point cloud and replace the original encoder. We minimize the mean
squared error between the output latent vectors of the original and the new encoders so that their
output are close for the same target shape. The results are shown in Table 6. The depth map input
performs comparably to the complete point cloud input. We also verify that our model trained on
synthetic depth maps reasonably generalizes to real data, as shown in Figure 7.

5 CONCLUSION

We propose a novel unsupervised generative part decomposition method, PPD, for articulated ob-
jects considering part kinematics. We show that the proposed method learns the disentangled repre-
sentation of the part-wise implicit field as the decomposed part shapes and the joint parameters of
each part as the part poses, using single-frame shape supervision. We also show that our approach
outperforms previous generative part decomposition methods in terms of semantic capability and
show comparable part kinematics estimation performance with the supervised baseline. Finally, we
confirm that our model also works on the depth map input and generalizes to real data.

F-score ↑ Label IoU ↑ EPE ↓
Complete 31.42 80.99 2.903

Depth 28.99 80.65 3.203

Table 6: Comparison between the point cloud
input types: complete shape and depth map.

Figure 7: Real depth map input. (Left) RBO
dataset (Martı́n-Martı́n et al., 2018) and (Right)
Articulated Object Dataset (Michel et al., 2015).
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REPRODUCIBILITY STATEMENT

For the reproducibility, this paper includes the detailed description of our network architecture in
Appendix A, implementation details on the hyperparameters in Section 3.4 and additional training
details in Appendix B including model parameter initialization steps. Not only our models, but
we also describe the training details of the baseline models in Appendix B.1. We also report the
detailed steps of the data preparation process for the synthetic datasets in Appendix C. We describe
the further detail on the data split in Appendix C.1 and data generation steps as well as publicly
available source code that we use to generate the data in C.2. For evaluation, we report the steps
for the initial labeling process used to evaluate unsupervised part segmentation results in Appendix
D.1.
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A NETWORK ARCHITECTURE

In this section, we explain the detailed architecture of the proposed network. The network architec-
tures of the neural networks employed in the proposed method are depicted in Figure 8. The squircle
diagram represents tensors, where the first and the second numbers inside the parentheses indicate
the channel and the number of points, respectively. The squircle without the parentheses indicates
the scalar value. For the split operation, N [X,Y ] denotes the split operation of the input tensor to
N number of sliced tensors with X number of channels with Y points. For the square diagrams
with square brackets, the first and the second numbers in the square brackets indicate the input and
output channels, respectively. The green square diagrams indicate multiple identical subnetwork
architectures. Pe denotes the number of points in the input point cloud to encoder E. For the other
notations, see Section 3.

We use the simple PointNet architecture in the author-provided code of (Mescheder et al., 2019)
as the encoder E. For the normalization layer in F p,cr and F p,cq , we have experimentally found
that using instance normalization (Ulyanov et al., 2016) for F p,cr and layer normalization (Ba et al.,
2016) for F p,cq achieves the best performance. For the joint state si, we multiply π to {si | yi =
revolute}. For the discriminator D, we use the architecture based on the PointNet (Qi et al., 2017)
implementation in the author-provided code of (Shu et al., 2019). The weight of each linear layer in
our discriminator is normalized using spectral normalization (Miyato et al., 2018) for stable training.

B TRAINING DETAILS

In this section, we explain the implementation and training details of the proposed models. We train
our models per category with the same hyperparameter configuration described in Section 3.4 for
all categories. For the input, we use the point cloud with 4096 points sampled from the surface
of the target shape during the training. Unless otherwise noted, we use the complete shape point
cloud. We use a batch size of 18. For the ground-truth implicit field, for each sample in a batch, we
use 4096 3D coordinate points and their corresponding indicator values sampled from either 163 or
323 grids, depending on the training stage. This multi-stage training strategy on grids with different
resolutions is inspired by (Chen et al., 2020). We train our network on 163 grids in the first training
stage. In addition, we set ri = rci in the first stage. Then, we set ri = rci + rsi in the second stage.
We determine the number of iterations for each stage according to the reconstruction loss and to
the visualization of the reconstructed shapes on the validation data. It takes 2 to 3 days to train one
model on a single NVIDIA V100 graphics card with 16 GB of GPU memory.

Model parameter initialization. We use a sine function as a nonlinear activation function and the
weight initialization strategy proposed in (Sitzmann et al., 2020) in our shape decoders, as follows:

w ∼ U

(
−
√

6

IN
,

√
6

IN

)
1

30
(10)

where IN is an input channel to a linear layer, U is a uniform distribution, and w is an element of
the weight of a linear layer. For a linear layer that takes 3D coordinates as an input, we do not scale
the weight w by 1

30 .
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Figure 8: The architectures of our networks.

Drawer Eye-
glasses Oven Laptop Washing

machine
Training 24 35 30 73 39

Test 6 7 7 13 6
# of parts (1 3 0) (1 0 2) (1 0 1) (1 0 1) (1 0 1)

Table 7: Number of samples per category in
each data split. Each sample is augmented by
transforming its part pose to generate 100 in-
stances. Numbers in a parethnesis in the last
column indicates the ground truth number of
fixed, prismatic and revolute type parts.

Figure 9: Visualization of the canonically posed
and randomly posed ground-truth meshes of each
category. The colors correspond to the different
ground-truth part labels.

B.1 TRAINING OF THE BASELINE MODELS

In this section, we describe the training details of the baseline methods. We use the author-provided
implementations.

BSP-Net (Chen et al., 2020). Because the models in the author-provided codes of the other part
decomposition baselines (BAE-Net (Chen et al., 2019b) and NSD (Kawana et al., 2020)) are trained
on 323 grids, we also trained BSP-Net on up to 323 grids, compared to the 643 grids in the orig-
inal implementation. For training on the eyeglasses category, we could not successfully train the
model even with different random seeds with the provided training script. After several trials, we
experimentally found that scaling ground-truth indicator values by four for the first 20,000 iterations
produced good initialization of the model. On the basis of this finding, we first pre-trained the model
using the scaled ground-truth indicator values for 20,000 iterations for the eyeglasses category; then,
we trained the model with the provided training script.

NSD (Kawana et al., 2020) and Neural Parts (Paschalidou et al., 2021) The model defined in
the author-provided code takes an RGB image as an input, which is a more challenging setting for 3D
shape reasoning than 3D shape input. We replace the image encoder of the original implementation
with the same PointNet-based encoder used in our approach for a fair comparison.

NPCS (Li et al., 2020). In the experiment described in Section 4.2, we modified the original im-
plementation of NPCS to use complete shape point clouds instead of partial point clouds of the
depth map as an input with training from scratch, to remove the unnecessary performance degrada-
tion caused by pose ambiguity arising from the barely visible articulated part.

C DATA PREPARATION

In this section, we describe our data preparation approach.
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C.1 DATA SPLIT

We split our training and test data according to the per-category data split approach introduced in (Li
et al., 2020). We ensure that the test split contains at least six samples per category, except for the
laptop category; therefore, the average split ratio is approximately 8:2. For the laptop category, we
use 11 samples in the test split to make the split ratio comparable with those of the other categories.
The number of samples in each split per category is presented in Table 7.

C.2 GROUND-TRUTH IMPLICIT FIELD GENERATION

Following (Mescheder et al., 2019), we generate the ground-truth implicit field by the volumetric
fusion of 100 depth images of a mesh object. For the mesh object, we sample 100 instances with
randomly sampled part poses for each sample. For the pose sampling, we uniformly sample the
rotation amount for each joint for the revolute joints. For the revolute joints of all categories except
the eyeglasses category, we sample the rotation amount between 0◦ and 135◦. For the eyeglasses
category, we sample between 0◦ and 90◦. For the prismatic joints of the drawer category, we sample
the translation amount between 0 and the maximum amounts of the joints written in the URDF
files of each sample in the SAPIEN dataset (Xiang et al., 2020). After we sample a part pose for
each instance, we articulate the sample in its canonical pose (the rotation amount and translation
amount were set to 0◦ and 0, respectively) using the sampled motion amount and ground-truth joint
configuration. The canonically posed shape and the randomly posed shape of the same sample are
shown in Figure 9. Finally, we normalize the size and location of the instances following (Mescheder
et al., 2019). Specifically, we normalize the instances with the maximum extent collected from the
instances generated from the same sample.

D PART LABELING PROCEDURE FOR EVALUATION AND PART SEGMENTATION
VISUALIZATION

D.1 PART LABELING PROCEDURE

In this section, we explain the labeling procedure using the ground-truth part labels of the train-
ing samples to evaluate the part segmentation performance, following the same procedure used in
(Kawana et al., 2020; Deng et al., 2020a). First, for each surface point sampled from the ground-
truth part mesh of the instance of the training set, we determine the nearest reconstructed part and
vote for the ground-truth part label of that point. Next, we assign each reconstructed part to the part
label that has the highest number of votes. Finally, for each surface point sampled from the instance
in the test split, we determine the nearest reconstructed part surface and assign the part label of the
reconstructed part.

D.2 PART SEGMENTATION VISUALIZATION

To visualize part segmentation, similar to (Tulsiani et al., 2017), We first measure the distance be-
tween a barycentric point of a ground truth mesh face to the surface of each part. Then we assign a
mesh face the label of the part with the shortest distance to the barycentric point. Lastly, we color
each face according to the obtained label.

E SEMANTIC CAPABILITY

E.1 ADDITIONAL VISUALIZATION OF THE PART SEGMENTATION

We visualize the additional part segmentation results of the proposed approach in Figure 10. Also,
we visualize the part segmentation results given various part poses in Figure 11.

E.2 PART SEGMENTATION USING ALL THE TRAINING SAMPLES

In Section 4.1, we show that our method works most efficiently by requiring instances with only a
limited variety of poses for the initial annotations. In the experiment discussed in Section 4.1, we
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Figure 10: Visualization of the additional part segmentation results of the proposed approach with
various samples. For drawer category, the different between some GT shapes are subtle (e.g., differ-
ence in handle shapes), we pick the three samples with distinct shape difference to avoid confusion.
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Figure 11: Visualization of the part segmentation results given input shapes with various part poses.
Arrows in the figure indicate the ground-truth or predicted joint directions.
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Drawer Eye-
glasses Oven Laptop Washing

machine
mean
(All)

mean
(Canonical)

Diff.
(All - Canonical)

# of
parts

BAE (Chen et al., 2019b) 6.25 11.11 73.01 25.11 80.32 39.16 39.17 -0.01 1.42/8
BSP(Chen et al., 2020) 70.29 74.96 89.40 86.21 95.28 83.23 76.65 6.58 27.50/256

NSD (Kawana et al., 2020) 38.56 44.06 74.63 74.40 89.01 64.13 63.75 0.39 10
NP (Paschalidou et al., 2021) 60.56 64.75 85.33 86.22 74.72 74.32 74.31 0.01 5

Ours 74.83 66.25 82.06 86.80 95.18 81.02 80.99 0.04 4.16/8

Table 8: Part segmentation performance. We use all the instances in the training set to assign a
label to each part as well as to the primitives. ”Canonical” denotes the mean label IoU only using
the canonically posed instances of the training for the label assignment. ”Difference” shows the
performance drop from the setting that uses all the instances in the training set to the setting that
uses only the canonically posed instances. The average and the predefined maximum numbers of
recovered parts or primitives are shown before and after the slash, in the last column. Our method
achieves the same level of the label efficiency with Neural Parts with higher part segmentation
performance.

Figure 12: Visualization of the train-
ing process. The first two rows show
the reconstruction results for target
shapes having the same part shapes
but different part poses. The bot-
tom row shows the number of train-
ing steps.

Drawer Eye-
glasses Oven Laptop Washing

machine mean

BAE (Chen et al., 2019b) 6.25* 11.11* 73.06 25.11* 80.30 39.17
BSP (Chen et al., 2020) 26.62 71.14 85.19 64.41 86.60 66.79

NSD (Kawana et al., 2020) 34.07 60.06 70.09 70.12 62.97 59.46
NP (Paschalidou et al., 2021) 61.10 65.47 77.57 62.73 86.69 70.71

Ours 74.73 66.18 82.07 86.81 95.15 80.99

Table 9: Part segmentation performance in label IoU with
the aligned number of parts for all methods (N = 8). The
starred numbers indicate the failure of part decomposition
and that only one recovered part represents the entire shape.

use canonically posed shapes, visualized in Figure 9, in the training set for the initial annotations.
This section reports the evaluation setting where annotations of all training instances are available
for the initial annotation, which is a favorable setting for the baselines. However, the annotation
cost can be much higher in reality than in the previous setting. The results are shown in Table 8.
Even under this setting favorable for the previous works, our method performs comparably with
the state-of-the-art part decomposition method BSP-Net (Chen et al., 2020) using 256 primitives. It
is not surprising that using many primitives achieves fewer part segmentation errors because, even
when one primitive is inconsistently assigned to the ground-truth part, the impact on the label IoU
is smaller. This is because a smaller portion of the evaluation points becomes erroneous compared
with the model using fewer parts or primitives. Note that our research focuses on representing
ground-truth articulated parts with consistently the same reconstructed parts by considering the part
kinematics, unlike BSP-Net and the other baselines, which can assign different sets of primitives to
the same articulated parts without considering the underlying part pose. To show the effectiveness
of considering the part kinematics, we show the performance drop from using all training instances
to using only the canonically posed instances in the table under the heading ”Difference.” We can
see that our approach has the second best drop with the comparable number with Neural Parts
(Paschalidou et al., 2021), yet higher part parsing performance. This shows that considering the part
kinematics contributes to label efficiency by reducing the necessary initial annotation to perform
well on the unsupervised part segmentation of articulated objects.

E.3 PART SEGMENTATION WITH THE ALIGNED NUMBER OF PARTS

In this experiment we align the predefined maximum number of the parts of the baselines to same as
ours (N = 8) to make the result more comparable. We change the predefined maximum number of
primitives from 256 to 8 for BSP-Net (Chen et al., 2020), from 10 to 8 for NSD (Kawana et al., 2020),
and 5 to 8 for Neural Parts (Paschalidou et al., 2021). Our method outperforms all the baselines on
average with larger margin compared to the result in Table 2 of the main paper. The results are
shown in Table 9. The smaller number of parts worsens NSD and BSP-Net’s performance, and the
opposite applies to Neural Parts.
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Figure 13: Illustration of Lloc in 2D.

Figure 14: Joint parameter estimation performance.
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Drawer Eye-
glasses Oven Laptop Washing

machine mean

# of
assigned parts 1.0 1.0 1.0 1.0 1.0 1.0

Part type
accuracy 89.50 83.25 100.0 92.14 100.0 91.46

Table 10: Evaluation results of the number of assigned
reconstructed parts to the ground-truth parts and the part
type accuracy. ”# of assigned parts” shows the number
of reconstructed parts assigned to the ground-truth parts,
and ”Part type accuracy” shows the percentage of part
kinematic type matches between the ground-truth and the
assigned reconstructed parts. Figure 15: Plot of F-score on average

with various thresholds.

F ADDITIONAL PART POSE EVALUATION

Because we train our model in an unsupervised fashion, through the labeling process described
in Appendix D.1, the part kinematic types of the ground-truth and the assigned reconstructed part
do not necessarily match. Moreover, multiple reconstructed parts may be assigned to one ground-
truth part. Therefore, we choose EPE as the evaluation metric for part pose estimation due to its
kinematic type agnostic property and calculation based on point correspondence between prediction
and ground-truth, rather than part-level correspondence. In this section, as an additional part pose
evaluation, we evaluate the accuracy of joint parameter estimation for “revolute” and “prismatic”
parts. To avoid the problem of part pose evaluation in unsupervised learning described above, we
evaluate the accuracy of joint parameter estimation by considering the prediction is correct when the
following three conditions are all satisfied. (1) One reconstructed part is assigned to one ground-truth
dynamic part. (2) The part kinematic type is the same between the ground-truth and the assigned
reconstructed part. (3) The error of the joint parameters against the ground-truth is less than the error
threshold. This evaluation method is more challenging than EPE because of the influence of (1) and
(2) above, besides the prediction error of the joint parameters. We evaluate joint state accuracy and
joint direction accuracy. Only for the revolute part,

we also evaluate joint axis distance accuracy, defined as the line to line distance between the ground-
truth and the predicted line segments consisting of the pivot point and the joint direction. Figure 14
shows the evaluation results with varying error thresholds. We show the results of NPCS only as a
reference; NPCS is a supervised model and assumes that the part segmentation is available during
training, and the part kinematic types are also known. In contrast, our method learns both part
segmentation and part kinematic type in an unsupervised fashion. Since NPCS does not estimate
the pivot point, we only show the results of our method for joint axis distance accuracy. As for the
joint state, we see reasonable accuracy of 70.80% for revolute parts on average when the threshold
is less than 10 degrees and 79.43% when the threshold is 15 degrees. For the ”prismatic” part
of the drawer, our method outperforms the NPCS when the threshold is less than 0.1. For joint
direction estimation, in three out of five categories (eyeglasses, laptop, and oven), our method is
comparable or outperforming NPCS. In Table 10, we also show the number of reconstructed parts
assigned to the ground-truth parts and the percentage of part kinematic type matches between the
ground-truth and the assigned reconstructed parts. In all categories, the model correctly assigns one
part. Moreover, even without part type supervision, our model successfully predicts correct part
types with high accuracy of 91.46%. Improving the unsupervised learning of joint parameters under
shape supervision is an interesting research direction.

G ADDITIONAL DISCUSSION ON SHAPE RECONSTRUCTION

Due to the space constraint in the main paper, we show category-wise shape reconstuction result in
Table 11. Although it is not our focus to beat the state-of-the-art methods (Chen et al., 2020; Kawana
et al., 2020; Paschalidou et al., 2021) in shape reconstruction accuracy, there are several possible
reasons for the performance gap in shape reconstruction. The first reason is that our method relies
on the challenging part pose estimation for shape reconstruction. Although our method estimates
faithful part pose as evaluated in Section 4.2 and Appendix F, even the small pose error affects shape
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Drawer Eye-
glasses Oven Laptop Washing

machine mean # of
params.

# of
parts.

F-score ↑

BSP (Chen et al., 2020) 40.84 51.21 44.81 65.92 56.46 51.85 443.3 27.50/256
NSD (Kawana et al., 2020) 48.63 50.7 37.56 83.58 42.5 52.59 6.657 10

NP (Paschalidou et al., 2021) 43.50 52.68 31.52 72.21 31.84 46.35 24.43 5
BAE (Chen et al., 2019b) 24.28 26.34 18.52 31.91 23.12 24.83 52.52 1.42/8

Ours 30.97 35.45 28.29 40.19 24.45 31.87 2.149 4.16/8

CD1 ↓

BSP (Chen et al., 2020) 1.637 1.431 1.931 1.015 1.338 1.471 443.3 27.50/256
NSD (Kawana et al., 2020) 1.594 1.642 2.819 0.649 2.128 1.766 6.657 10

NP (Paschalidou et al., 2021) 1.958 1.528 2.533 0.823 2.399 1.848 24.43 5
BAE (Chen et al., 2019b) 2.360 3.918 4.314 1.867 3.595 3.211 52.52 1.42/8

Ours 1.998 2.375 3.135 1.481 2.930 2.384 2.149 4.16/8

IoU ↑

BSP Chen et al. (2020) 49.07 39.84 56.46 64.73 64.99 55.02 443.3 27.50/256
NSD Kawana et al. (2020) 52.57 33.58 46.96 71.97 51.50 51.32 6.657 10

NP (Paschalidou et al., 2021) 44.38 33.19 35.31 64.34 38.21 43.09 24.43 5
BAE Chen et al. (2019b) 40.71 22.12 30.83 45.30 29.41 33.67 52.52 1.42/8

Ours 43.19 22.57 33.27 47.32 37.10 36.69 2.149 4.16/8

Table 11: Reconstruction performance. Chamfer L1 and the number of parameters (# of params.)
are scaled by 102 and 105, respectively. The average and the predefined maximum numbers of
recovered parts or primitives are shown before and after the slash, in the last column.

Label IoU ↑ EPE ↓
w/o Lcrec 51.78 11.884
w/o VQ 72.78 10.772
w/ all 80.99 2.988

Table 12: w/o Lcrec indicates dis-
abling the second term of Equation
2 and w/o indicates disabling use of
multiple constant vectors.

Drawer Eye-
glasses Oven Laptop Washing

machine mean

# of used
consant vectors 3 4 4 3 3 3.4

Table 13: The number of used constant vectors for the
category-common pivot points {qci | i ∈ Ar}. The maxi-
mum number is Nqt = 4.

reconstruction scores, especially for the dynamic part type. In Figure 10, the second sample of the
eyeglasses category and the first sample of the oven category are good examples. Moreover, our
method regularizes instance-dependent shape decoder’s output as described in Section 3.2. This
regularization results in less accurate shape reconstruction constrained by the shape prior than the
state-of-the-art primitive-based shape representations. In Figure 10 for example, in the eyeglasses
category, our model captures the global target shape variation yet struggles to recover the smaller
details such as the front parts. To confirm how much reconstruction error those limitations could
add to the performance gap with the state-of-the-art methods, we also evaluate F-score with various
thresholds ranging from 0.01 to 0.1. Those thresholds can be intepreted as 1% to 10% distance error
threshold for shapes whose side length is normalized to 1. The result is shown in Figure 15. On
the reasonably moderate thresholds (4% to 6 %), our method reaches to the similar performance to
the structured reconstruction methods. Improving reconstruction accuracy can be a important future
work.

H ADDITIONAL ABLATION STUDY

As an additional ablation study, we also verify the effect of the second term of Equation 2 and the use
of multiple constant vectors to model multi-modal category-common biases of joint configuration by
vector quantization (Razavi et al., 2019) discussed in Section 3.1. The results is shown in Table 12.
Disabling the second term of Equation 2 significantly drops the part segmentation performance and
part pose estimation performance. Disabling the multiple constant vectors particularly affects the
part pose estimation performance. Although we have found the category-common joint directions
{rci | i ∈ Ap} tend to be encoded in the single constant vector, we have also found category-common
pivot points {qci | i ∈ Ar} effectively utilizes the multiple constant vectors. We show the number
of used consant vectors of the model reported in Table 2 in the main paper in 13. We can see that
multiple constant latent vectors are used to decode the category-common pivot points.
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