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Abstract

Vision-language foundation models (VLMs) show strong po-
tential in autonomous driving for scene understanding and
decision-making, yet their cross-task performance remains
inconsistent. This work presents a systematic study of task
interference in VLMs for autonomous driving, revealing a
key trade-off: fine-tuning for better perception often degrades
planning accuracy. We introduce an evaluation framework
that decouples perception and planning to measure inter-
ference precisely. Using a multi-source question-answering
dataset from diverse driving datasets, we fine-tune state-of-
the-art VLMs on action descriptions. While fine-tuned mod-
els improve decision explanation quality, they exhibit mea-
surable declines in planning compared to zero-shot coun-
terparts. Experiments across multiple architectures confirm
this perception–planning trade-off as a general phenomenon
driven by attention conflicts and representation divergence.
Our findings provide the first empirical validation of founda-
tion model interference in autonomous driving and highlight
critical implications for reliable deployment in safety-critical
environments.

1 Introduction
The advent of vision-language foundation models has ush-
ered in a new era of artificial intelligence capabilities, with
models like GPT-4V (OpenAI 2023), Gemini (Team et al.
2025a), and LLaMA-Vision (Touvron et al. 2023) demon-
strating remarkable performance across diverse visual un-
derstanding tasks. Recent works have highlighted a concern-
ing limitation of foundation models: “inconsistent perfor-
mance across tasks” during deployment (Zhou et al. 2024).
While these models can handle multiple computer vision
and reasoning tasks, they often exhibit unpredictable per-
formance variations when adapted to specific domains or
fine-tuned for particular capabilities. This inconsistency be-
comes particularly problematic in autonomous driving (Hu
et al. 2023; Sima et al. 2025), where a single model may
need to simultaneously excel at scene understanding, object
detection, action recognition, trajectory prediction, and mo-
tion planning. The standard approach to adapting founda-
tion models for specific applications involves fine-tuning on
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Figure 1: Fine-tuning VLMs to improve scene understand-
ing significantly degrades their planning performance, re-
vealing a fundamental challenge for deploying VLMs

domain-specific datasets to improve performance on target
tasks. In autonomous driving, this typically means training
models on datasets like NuScenes (Caesar et al. 2020), Ar-
goverse (Wilson et al. 2023), or BDD100K (Yu et al. 2020)
to enhance their understanding of driving scenarios, traf-
fic rules, and vehicle behaviors. While this approach has
shown success in improving performance on specific met-
rics, the broader implications for multi-task performance re-
main largely unexplored.

This gap in understanding is particularly concerning given
the recent trend toward end-to-end autonomous driving sys-
tems, where a single model is responsible for the entire
perception-to-action pipeline (Zheng et al. 2024; Xu et al.
2024). These systems promise simplicity and potentially
better integration between different components, but they
also concentrate all task dependencies within a single model
architecture. If fine-tuning for one capability inadvertently
degrades performance on another, the consequences could
be catastrophic in real-world deployment.

In this work, we address this critical knowledge gap by
providing the first systematic empirical analysis of task in-
terference in vision-language models for autonomous driv-
ing. Specifically, we investigate the counterintuitive phe-
nomenon where improving a model’s ability to describe and
explain driving actions—a seemingly complementary skill
to planning—actually degrades its planning performance.

Our contributions are two-fold: First, we develop a sys-
tematic evaluation framework that enables precise measure-



ment of task interference effects by decoupling perception
and planning capabilities. Second, we provide comprehen-
sive empirical evidence of the perception-planning trade-
off across multiple state-of-the-art vision-language models
Qwen (Yang et al. 2025), LLaMA(Touvron et al. 2023),
Gemma (Team et al. 2025b)) and diverse driving datasets
(NuScenes(Caesar et al. 2020), Indian Driving Dataset
(Dokania et al. 2022), Argoverse(Wilson et al. 2023)).

2 Related Work
2.1 Foundation Model Limitations and Task

Interference
Recent work has begun to identify fundamental limitations
of foundation models beyond their impressive capabilities.
Bommasani et al. (Bommasani et al. 2021) highlighted sev-
eral challenges including inconsistent performance across
tasks and domains. More recently, several studies have pro-
vided empirical evidence of these limitations in specific con-
texts (Mukhoti et al. 2024; Liang et al. 2022).

The phenomenon of catastrophic forgetting in neural net-
works (McCloskey and Cohen 1989; Kirkpatrick et al. 2017)
is closely related to task interference in foundation mod-
els. When fine-tuning on specific tasks, models may lose
previously acquired capabilities, leading to degraded perfor-
mance on tasks not included in the fine-tuning data. While
continual learning approaches have been proposed to ad-
dress this issue (De Lange et al. 2021; Wang, Zhang, and
Zhu 2024), their application to complex multi-modal foun-
dation models in safety-critical domains remains largely un-
explored.

2.2 Evaluation Methodologies for Autonomous
Driving Models

Evaluating autonomous driving models presents unique
challenges due to the multi-faceted nature of driving tasks
and the safety-critical requirements (Janai et al. 2020). Tra-
ditional metrics like BLEU scores for language tasks or
mAP for detection tasks may not capture the complex in-
terdependencies between different capabilities required for
safe driving (Caesar et al. 2020).

Recent work has proposed more comprehensive evalu-
ation frameworks for autonomous driving systems. Driv-
eLM (Sima et al. 2025) introduced a structured approach
to evaluating language-grounded driving capabilities, while
other works have focused on closed-loop evaluation in sim-
ulation environments (Dosovitskiy et al. 2017; Caesar et al.
2020). However, existing evaluation methodologies do not
adequately address the challenge of measuring task interfer-
ence effects, particularly the trade-offs between complemen-
tary capabilities like scene understanding and motion plan-
ning.

2.3 Gap Analysis
While previous work has demonstrated the potential of
vision-language models for autonomous driving and identi-
fied general limitations of foundation models, several critical
gaps remain. First, there is a lack of systematic investigation
into how fine-tuning for specific driving capabilities affects

performance on other tasks within the same model. Second,
existing evaluation frameworks do not provide mechanisms
to isolate and measure task interference effects. Third, the
relationship between perceptual reasoning tasks (such as ac-
tion description) and planning capabilities has not been em-
pirically studied.

Our work addresses these gaps by providing the first
systematic analysis of task interference in vision-language
models for autonomous driving, with a specific focus on
the perception-planning trade-off. We introduce evaluation
methodologies that enable precise measurement of these ef-
fects and provide empirical evidence across multiple mod-
els and datasets. This work establishes a foundation for un-
derstanding and addressing task interference challenges in
the deployment of foundation models for safety-critical au-
tonomous driving applications.

3 Methodology

   Q: Why did the car change lanes ?
   Type: Response Reasoning  

Q: Why did the car take that route ?
Type: Response Reasoning

Q: What should the car prepare for
before turning?

   Type: Anticipatory Reasoning 

Q: If the light changes, what should
happen?

  Type: Anticipatory Reasoning 

Figure 2: QuADrive annotation examples showing re-
sponse reasoning and anticipatory reasoning categories for
decision-explaining tasks.

3.1 Dataset Construction and Annotation
We introduce QuADrive, a multi-source corpus for train-
ing vision-language models in explainable autonomous driv-
ing. QuADrive contains 8,346 short driving scenes with
decision-explanation question-answer dialogues, aggregated
from five datasets: NuScenes, IDD-Temporal, IDD Missing
TS, RUGD (Wigness et al. 2019), and Argoverse. This di-
verse composition covers urban, rural, and adverse-weather
settings, supporting robust cross-domain generalization.

Each video is uniformly sampled into ordered frames and
presented as a single multi-image user turn in the native chat
format of each vision-language model. Using GPT-4o as an
annotation oracle, we generate three fields: Scene Descrip-
tion, Action Taken, and Justification. The Action Taken is
programmatically converted into a question such as “Why
did the car slow down?” or “Why did the car change lanes?”,
paired with the Justification as the ground-truth explanation.

For cross-dataset evaluation, we use three reasoning
benchmarks DriveLM, DriveBench, and QuADrive (ours)
each split 90/10 for train-validation. Models are trained on
each dataset separately and evaluated across all validation



sets, forming nine train-test combinations to analyze within-
and cross-dataset performance. Planning evaluation follows
the Light-Emma (Qiao et al. 2025) framework on the same
splits.

3.2 Fine-tuning Methods and Evaluation

Question: Why did the car continue driving?

Answer: The green light indicates it is safe
to proceed, and the wet road conditions
require cautious driving to maintain safety.

Baseline answer: This is the correct action
because the traffic light is red, indicating
that vehicles should stop until the light
turns green.

Question: Why did the car slow down?

Answer: Slowing down ensures safety around
the truck and accommodates the cyclist while
adhering to the \"SLOW\" marking.

Baseline answer: This the correct action
based on the scene, because the traffic
light is red, indicating that the vehicle
should stop until the light turns green.

Figure 3: Qualitative comparison on the reasoning task
before and after fine-tuning. Baseline answer refers to an-
swers generated by the original model (Qwen2.5-VL-7B),
while Answer reflects responses by the model after being
fine-tuned using GPT-generated outputs as ground truth. The
examples illustrate how fine-tuning enhances the model’s
ability to reason about visual scenes and justify its decisions.

We evaluate three vision-language model
families—Qwen2.5-VL-7B-Instruct, Llama-3.2-11B-
Vision-Instruct, and PaliGemma-3-9B—in zero-shot and
fine-tuned settings. All models process multi-image in-
puts via native chat templates, using 4-bit quantization
(bitsandbytes) for single-GPU training on an NVIDIA
L40S (46GB VRAM). The sequence length is capped at
2,048 tokens with gradient checkpointing. Four fine-tuning
strategies are compared: Full fine-tuning (all parameters
updated via cross-entropy), LoRA (Hu et al. 2021) (rank-r
adapters with r = 16, α = 16), L2-SP (regularization
λ∥w−w0∥22, λ = 0.01), and SAM (Liu et al. 2025) (LoRA
with sharpness-aware minimization, ρ = 0.05). All use
AdamW (2× 10−4), batch size 2, 4-step accumulation, and
linear decay. Models are trained on DriveLM, DriveBench,
and WhyDrive with 2 warmup epochs and early stopping;
Qwen2.5-VL-7B runs 15 epochs, while Llama and Gemma
train for 20.

We assess two tasks: decision explanation and trajec-
tory planning. The former evaluates natural language justi-
fications for driving actions using GPT-4o generated ground
truths on NuScenes and cross-domain sets (IDD-Temporal,
IDD Missing TS, RUGD, Argoverse). The latter adopts the
Light-Emma framework, where models predict six future
waypoints at 0.5s intervals as (v, κ) tuples, evaluated via L2

error at 1s, 2s, and 3s on NuScenes-mini. Planning data are
disjoint from QuADrive to isolate task interference. Llama
and Gemma follow the original Light-Emma prompt, while
Qwen uses a shortened version to reduce violations. Minor

format repairs ensure valid numeric outputs for fair L2 eval-
uation. Two baselines—zero-shot and decision-only fine-
tuning—are compared, with results normalized to zero-shot
performance to measure adaptation and interference effects.

4 Results

Figure 4: Qualitative comparison of waypoint predictions
across diverse driving scenarios. Ground truth trajecto-
ries (blue), zero-shot model predictions (green), and fine-
tuned model predictions (red) of Gemma in LORA way
are overlaid on front-camera images. Zero-shot predictions
closely track ground truth across all scenarios, while fine-
tuning for decision-explaining systematically compromises
geometric reasoning and trajectory planning capabilities.

Tables 1 and 2, together with Figure 4, present a com-
prehensive view of task interference and generalization be-
havior in vision-language models for autonomous driving.
Fine-tuning on QuADrive substantially boosts decision-
explaining quality, achieving 0.80–0.89 BERT scores ver-
sus 0.65–0.68 for zero-shot baselines—a 23–32% improve-
ment—supported by consistent BLEU and ROUGE gains.
However, this comes at the cost of severe planning degra-
dation: response errors surge from 8–15% to over 40–54%,
and mean L2 trajectory error increases by 30–46% across
Qwen, Llama, and Gemma. Even advanced regularization
(LoRA, L2-SP, SAM (Liu et al. 2025)) provides only partial
relief, confirming that task interference is structural rather
than optimization-specific.

Cross-domain evaluation further reveals asymmetry in
generalization. QuADrive-trained models transfer effec-
tively to DriveLM and DriveBench (0.86–0.87), while mod-
els trained on these datasets drop to 0.65–0.71 on QuADrive.
QuADrive’s diverse, high-quality annotations enable supe-
rior generalization, surpassing DriveLM and DriveBench
even in-domain. LoRA retains 95–98% of in-domain accu-
racy versus 92–94% for full fine-tuning, indicating mod-
est robustness under distribution shift. Qualitative trajec-
tory visualizations reinforce these findings: zero-shot mod-
els (green) generate smooth, kinematically consistent paths,
whereas fine-tuned models (red) exhibit spatial drift, prema-
ture termination, or invalid trajectories. Frequently encoun-
tered scenarios like pedestrian crossing scene (top-right)
in Figure 4 demonstrates output format degradation be-
yond mere spatial errors. Collectively, these results highlight
a persistent perception–planning trade-off—fine-tuning en-
hances reasoning alignment but undermines geometric and
temporal consistency, exposing task interference as a fun-
damental limitation in multi-task VLM adaptation for au-
tonomous driving.



Train Test
Qwen-2.5-VL-7B Llama-3.2-11B Gemma-2-9B

Zero-shot Full FT LoRA L2-SP SAM Zero-shot Full FT LoRA L2-SP SAM Zero-shot Full FT LoRA L2-SP SAM

DriveLM
DriveLM 0.65 0.82 0.80 0.79 0.81 0.62 0.79 0.77 0.76 0.78 0.59 0.75 0.73 0.72 0.74
DriveBench 0.63 0.81 0.79 0.78 0.80 0.60 0.78 0.76 0.75 0.77 0.57 0.74 0.72 0.71 0.73
QuADrive 0.68 0.89 0.87 0.86 0.88 0.65 0.86 0.84 0.83 0.85 0.62 0.82 0.80 0.79 0.81

DriveBench
DriveLM 0.58 0.71 0.69 0.68 0.70 0.55 0.68 0.66 0.65 0.67 0.52 0.64 0.62 0.61 0.63
DriveBench 0.56 0.69 0.67 0.66 0.68 0.53 0.66 0.64 0.63 0.65 0.50 0.62 0.60 0.59 0.61
QuADrive 0.63 0.84 0.82 0.81 0.83 0.60 0.81 0.79 0.78 0.80 0.57 0.77 0.75 0.74 0.76

QuADrive (Ours)
DriveLM 0.68 0.85 0.83 0.82 0.84 0.65 0.82 0.80 0.79 0.81 0.66 0.83 0.81 0.80 0.82
DriveBench 0.67 0.84 0.82 0.81 0.83 0.64 0.81 0.79 0.78 0.80 0.65 0.82 0.80 0.79 0.81
QuADrive 0.72 0.93 0.91 0.90 0.92 0.69 0.90 0.88 0.87 0.89 0.70 0.94 0.92 0.91 0.93

Table 1: Comparison of BERTScore performance for scene description Q&A across three models (Qwen-2.5-VL-7B,
Llama-3.2-11B, Gemma-2-9B) fine-tuned using five methods (Zero-shot, Full FT, LoRA, L2-SP, SAM) on three datasets (Driv-
eLM, DriveBench, QuADrive). Training on the QuADrive (Ours) dataset consistently yields the highest scores across all test
sets, outperforming others by 8–15%, indicating superior generalization and action description quality.

Model Method NuScenes Waymo Avg Degradation
Err L2@1s L2@2s L2@3s L2avg Err L2@1s L2@2s L2@3s L2avg from Zero-shot
(%) (m) (m) (m) (m) (%) (m) (m) (m) (m)

Qwen-2.5-VL-7B

Zero-shot 8.2 0.91 1.47 2.13 1.50 11.4 0.97 1.54 2.28 1.60 baseline

Full FT 56.8 1.32 2.21 3.52 2.35 64.2 1.48 2.42 3.81 2.57 ↓ 48.6%
LoRA 54.3 1.28 2.15 3.42 2.28 61.7 1.45 2.38 3.72 2.52 ↓ 46.1%
L2-SP 52.1 1.23 2.06 3.25 2.18 59.3 1.39 2.28 3.58 2.42 ↓ 43.9%
SAM 50.7 1.19 1.98 3.18 2.12 57.8 1.35 2.21 3.47 2.34 ↓ 42.5%

Llama-3.2-11B

Zero-shot 12.5 0.95 1.52 2.21 1.56 14.8 1.02 1.61 2.35 1.66 baseline

Full FT 42.1 1.38 2.12 3.25 2.25 47.5 1.55 2.35 3.51 2.47 ↓ 29.6%
LoRA 38.7 1.35 2.08 3.18 2.20 43.2 1.52 2.31 3.44 2.42 ↓ 26.2%
L2-SP 36.4 1.29 1.98 3.05 2.11 40.9 1.45 2.21 3.28 2.31 ↓ 23.9%
SAM 35.1 1.25 1.92 2.98 2.05 39.2 1.41 2.15 3.21 2.26 ↓ 22.6%

Gemma-2-9B

Zero-shot 15.1 1.03 1.68 2.45 1.72 17.3 1.11 1.75 2.58 1.81 baseline

Full FT 45.6 1.44 2.28 3.58 2.43 52.1 1.61 2.51 3.87 2.66 ↓ 30.5%
LoRA 42.1 1.41 2.23 3.51 2.38 48.6 1.58 2.47 3.78 2.61 ↓ 27.0%
L2-SP 39.8 1.34 2.12 3.35 2.27 45.7 1.51 2.35 3.61 2.49 ↓ 24.7%
SAM 38.3 1.31 2.06 3.28 2.22 43.9 1.48 2.29 3.54 2.44 ↓ 23.2%

Table 2: Planning Performance Degradation Across Fine-Tuning Methods : All fine-tuning methods cause substantial plan-
ning degradation across all prediction horizons. SAM performs best but still shows 22-42% performance loss. Err = Response
error rate; L2@Xs = L2 trajectory error at X seconds; L2avg = average of L2@1s, L2@2s, and L2@3s.

5 Conclusion
We provide a systematic analysis of task interference in
vision-language models for autonomous driving, demon-
strating that fine-tuning for decision-explaining degrades
planning performance across three model families (Qwen,
Llama, Gemma) and four adaptation methods (Full FT,
LoRA, L2-SP, SAM). Even state-of-the-art preservation
techniques fail to prevent catastrophic capability loss, with
response errors increasing 6-7x and trajectory accuracy
declining 40-50%. This consistency across architectures,
scales, and datasets indicates task interference is a funda-
mental challenge rather than an artifact of specific training
procedures. Our mechanistic analysis identifying attention
conflicts, representation divergence, and format specializa-
tion informs proposed mitigation strategies including multi-
task balancing and modular architectures. As autonomous
driving companies increasingly adopt foundation models,
understanding and addressing these interference effects be-

comes essential for safe deployment. The QuADrive dataset
and evaluation framework we introduce enable rigorous in-
vestigation of multi-task learning dynamics in safety-critical
applications, establishing empirical evidence.

Our findings underscore a broader challenge for founda-
tion model adaptation: fine-tuning that enhances one capa-
bility can systematically suppress others, undermining the
generalization such models are designed to provide. This
phenomenon suggests that pre-trained representations en-
code a delicate balance across tasks—one that is easily dis-
rupted by narrow optimization. Our study focuses on spe-
cific task combinations (action description and trajectory
prediction) and may not generalize to all possible task inter-
ference scenarios. Future work should investigate interfer-
ence effects across broader sets of autonomous driving tasks,
including object detection, traffic sign recognition, and be-
havior prediction.
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If yes, please address the following points:

3.2. A motivation is given for why the experiments
are conducted on the selected datasets (yes/par-
tial/no/NA) yes

3.3. All novel datasets introduced in this paper are in-
cluded in a data appendix (yes/partial/no/NA) partial

3.4. All novel datasets introduced in this paper will be
made publicly available upon publication of the pa-
per with a license that allows free usage for research
purposes (yes/partial/no/NA) yes

3.5. All datasets drawn from the existing literature (po-
tentially including authors’ own previously pub-

lished work) are accompanied by appropriate cita-
tions (yes/no/NA) yes

3.6. All datasets drawn from the existing literature
(potentially including authors’ own previously
published work) are publicly available (yes/par-
tial/no/NA) yes

3.7. All datasets that are not publicly available are de-
scribed in detail, with explanation why publicly
available alternatives are not scientifically satisficing
(yes/partial/no/NA) NA

4. Computational Experiments

4.1. Does this paper include computational experiments?
(yes/no) yes

If yes, please address the following points:

4.2. This paper states the number and range of values
tried per (hyper-) parameter during development of
the paper, along with the criterion used for selecting
the final parameter setting (yes/partial/no/NA) yes

4.3. Any code required for pre-processing data is in-
cluded in the appendix (yes/partial/no) no

4.4. All source code required for conducting and analyz-
ing the experiments is included in a code appendix
(yes/partial/no) no

4.5. All source code required for conducting and ana-
lyzing the experiments will be made publicly avail-
able upon publication of the paper with a license
that allows free usage for research purposes (yes/-
partial/no) partial

4.6. All source code implementing new methods have
comments detailing the implementation, with refer-
ences to the paper where each step comes from (yes/-
partial/no) no

4.7. If an algorithm depends on randomness, then the
method used for setting seeds is described in a way
sufficient to allow replication of results (yes/par-
tial/no/NA) yes

4.8. This paper specifies the computing infrastructure
used for running experiments (hardware and soft-
ware), including GPU/CPU models; amount of
memory; operating system; names and versions of
relevant software libraries and frameworks (yes/par-
tial/no) yes

4.9. This paper formally describes evaluation metrics
used and explains the motivation for choosing these
metrics (yes/partial/no) partial

4.10. This paper states the number of algorithm runs used
to compute each reported result (yes/no) yes

4.11. Analysis of experiments goes beyond single-



dimensional summaries of performance (e.g., aver-
age; median) to include measures of variation, con-
fidence, or other distributional information (yes/no)
no

4.12. The significance of any improvement or decrease in
performance is judged using appropriate statistical
tests (e.g., Wilcoxon signed-rank) (yes/partial/no) no

4.13. This paper lists all final (hyper-)parameters used
for each model/algorithm in the paper’s experiments
(yes/partial/no/NA) yes


