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Abstract—Total variation based methods are effective models
in magnetic resonance image restoration. For eliminating impulse
noise, an effective way is to use the ℓ0-norm total variation
model. However, the TV image restoration consistently produces
staircase artifacts, particularly at noise levels with high density.
In this paper, we propose a novel MR image restoration model
incorporating fractional-order regularization and filtering meth-
ods. Specifically, the first term employs the ℓ0-norm as the data
fidelity term to effectively eliminate impulse noise. The second
term introduces a fractional-order total variation regularizer,
which preserves structural information while mitigating staircase
artifacts during deblurring. Given its suboptimal performance
in texture detail recovery, we utilize recursive filtering for high-
quality edge-preserving filtering. Finally, we solve the correspond-
ing optimization model by using the alternating direction method
of multipliers. Experimental results demonstrate the effectiveness
of our method in restoring medical images.

Index Terms—Magnetic resonance image restoration, ℓ0-norm,
fractional-order total variation, recursive filtering

I. INTRODUCTION

Magnetic Resonance (MR) Image is a powerful tool used in
the field of medical imaging for the diagnosis and monitoring
of various diseases. However, the quality of MR images can
often be compromised by the presence of impulse noise,
also known as impulse noise. This type of noise appears as
sparsely occurring white and black pixels, and can significantly
degrade the image quality, making it difficult for medical
professionals to interpret the images accurately. Impulse noise
in MR images can be caused by a variety of factors, including
hardware faults, transmission errors, and other interferences.
The challenge lies in developing effective methods to remove
this noise while preserving the important details and edges in
the images.

To remove the impulse noise, a spectrum of approaches
has been explored. Among them, regularization methods and
filtering methods are widely recognized. A cornerstone in
the realm of medical image restoration is the Total vriation
(TV) model, which has demonstrated remarkable efficacy
in denoising, deblurring, segmentation, and superresolution
tasks. However, the TV model encounters limitations when
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confronted with noise in piecewise affine regions, often man-
ifesting as undesirable staircase artifacts. To overcome this
issue, a series of regularization functions has been proposed.
Such as, the High-Order TV method [3], Non-Convex High-
Order TV [4], Fractional-Order TV (FOTV). [5] and [6] are
among the notable advancements, their numerical experiments
showed that their methods alleviated the staircase effect effec-
tively. Besides, [2] proposed the Overlapping Group Sparse
Fractional-Order TV (OGSTV), which has garnered attention
for its refined approach. Besides, [10] proposed an enhanced
ℓ1-NCFOTV method, which promises to elevate the restoration
precision of images afflicted by impulse noise and to diminish
the staircase effect.

In the filtering domain, the Median Filter (MF) and Adaptive
Median Filter (AMF) have been mainstays since the early days
of denoising endeavors. Despite their popularity, these filters
falter under the weight of high noise intensity, prompting the
evolution of more sophisticated filtering techniques such as
Recursive Filtering (RF), Recursive Mean Filtering, A non-
local adaptive mean filter(NAMF) [8] and improved median
filter [9]. Additionally, recursive filtering demonstrates effec-
tive performance in restoring edges.

To effectively remove impulse noise, the ℓ2-norm [1] is
sensitive to outliers and can easily result in unsatisfactory
image restoration, which is commonly used to restore images
degraded by additive Gaussian noise. Furthermore, there has
been a growing interest in using an ℓ1-fidelity term instead
of the ℓ2-fidelity term for image restoration in many literature
such as [11], [12]. The numerical evidence clearly indicates
that the proposed method has made substantial advancements
in its capacity for restoration. While the ℓ1-norm has been
recognized for its considerable benefits in the realms of sparse
signal processing and image restoration, it has been noted
that it might excessively penalize the resulting solution in the
context of impulse noise elimination, as highlighted by [7].

To circumvent this issue, a method for removing impulse
noise using ℓ0 total variation (ℓ0-TV) was proposed in [13].
This method employs the ℓ0-norm for the data fidelity and
uses the proximal alternating direction method of multipliers
for image restoration. The empirical evidence show better
performance than ℓ1-norm based methods. Consequently, this
indicates that ℓ0-norm is suitable for the restoration of images
distorted by impulse noise. The image restoration of the



optimization problem can be depicted as:

min
u

∥o⊙ (Hu− b)∥0 + λϕTV (u), (1)

where u ∈ Rn×m is the desired original clean image, b ∈
Rn×m is the degraded image, λ > 0 is the regularization
parameter, o ∈ {0, 1}n is specified by the user, ⊙ denotes an
elementwise product, H ∈ Rn×n is a linear operator. Another
circumstance, when H = I , the identity operator, it translates
into a denoising issue.

In recent work, the ℓ0-norm has been employed as a data
fidelity criterion for the elimination of impulse noise. [2]
proposed the ℓ0-norm with an OGSTV and MC penalty model,
which can significantly enhance the model’s proficiency in
image restoration, particularly under conditions characterized
by high levels of impulse noise. [14] proposed ℓ0-OGSTV
model effectively diminishes staircasing artifacts and precisely
restores images marred by impulse noise. [15] has successfully
integrated the ℓ0-norm data fidelity term with a nonconvex
generalized regularization approach. This integration enhances
the model’s ability to preserve sharp image contours while
simultaneously reducing staircase artifacts. Collectively, these
models showcase the effectiveness of the ℓ0-norm in restoring
images that have been corrupted by impulse noise.

To the best of our knowledge, the combination of ℓ0-norm
data fidelity, fractional-order total variation and recursive filter-
ing has not been addressed by any of the existing optimization
models. Therefore, this has motivated us to combine them
for the restoration of MR images in medical imaging. In this
article, we focus on addressing the challenge of restoring MR
image in medical imaging that have been degraded by blurred
boundaries and residual noise. The model comprises an ℓ0-
norm data fidelity term to restore images from impulse noise,
a regularizer of Fractional-Order total variation (FOTV) to
eliminate the staircase effects and the recursive filtering (RF)
to improve edge quality significantly. Our method capitalizes
on the strengths of the Forward-Backward Total Variation to
provide superior denoising capabilities, effectively mitigating
the staircasing artifacts. Additionally, the recursive filtering
technique employed not only refines the texture details within
medical images, but also reduces the computational process.
we employ the alternate direction multiplier algorithm to solve
the subproblems. Finally, we conduct numerical experiments
to analyze the effectiveness of our proposed model.

The rest of this article is organized as follows. In Section
2 introduces fundamental ideas and preliminary information
pertinent to the proposed algorithm. In Section 3, We propose
a novel framework aimed at eliminating blur and impulse noise
and derive an efficient algorithm to solve the corresponding
minimization problem. In Section 4, the superiority of the
proposed method is proved by numerical experiments. Finally,
a conclusion is made in Section 5.

II. PRELIMINARIES

In this section, we briefly review a few key components
of the ℓ0-norm fidelity term, the discrete fractional-order

difference, the recursive filtering and the Alternating Direction
Method of Multipliers framework.

A. The ℓ0 Fidelity Term

Initially, we provide an overview of the essential definitions
and characteristics associated with ℓ0-norm fidelity term. In
the expression ∥o⊙ (Hu− f)∥0, the o ∈ {0, 1}n is specified
by the user. Specifically, when oi = 0, it implies the pixel
in position i is an outlier, while when oi = 1, it implies
the pixel in position i is a potential outlier. For this paper,

we set oi =

{
0, ti = umin or umax

1, otherwise
for the salt-and-pepper

impulse noise.
The following lemma, as meticulously outlined in the work

of [13], elucidates the variational formulation that underpins
the ℓ0-norm.

Lemma 1: For any given w ∈ Rn, it holds that

∥w∥0 = min
0≤z≤1

< 1, 1− z >, s.t. z ⊙ |w| = 0, (2)

and z∗ = 1 − sign(|w|) is the unique optimal solution
to problem (2). Here, the standard signum function sign is
employed in component form, and sign(0) = 0.

The result of Lemma 1 implies that the ℓ0-norm minimiza-
tion problem in (1) is equivalent to

min
0≤u,z≤1

< 1, 1− z > +λ ∥∇u∥1

s.t. z ⊙ |o⊙ (Hu− b) | = 0,
(3)

if u∗ is an overall optimal solution of (1), then
(u∗, 1− sign (|Hu∗ − b|)) is overall optimal solution of (3).
In a similar manner, if u∗ is a global Ideal solution of (3),
then (u∗, 1− sign (|Hu∗ − b|)) is an overall optimal solution
of (1). The ability of ℓ0-norm has proven to be remarkably
effective in restoring images, offering superior performance.

B. Fractional-Order Total Variation

Given an image domain Ω ⊂ R2, we discretize it
as a rectangular grid {(xi, yj) : 1 ≤ i ≤ M, 1 ≤ j ≤ N},
Consequently, the image discretized on the Euclidean plane
RM×N , denoted as ui,j = u (xi, yj). Let Cα

0 (Ω) with
α > 0 be the space of α-order continuously differentiable
functions defined on Ω with compact support. Based on the
GL fractional-order derivatives, Thus, the discrete form of
the fractional-order gradient ∇au can be evaluated by

∇αu = [Dα
xu,D

α
y u], (4)

where α is the fractional order and we set 1 ≤ α < 2 in this
paper. where the fractional-order derivatives (Dα

xu), (D
α
y u) ∈

RM×N along the x-axis and the y-axis are approximated by
the {

(Dα
xu)i,j =

∑K−1
k=0 (−1)kCα

k ui−k,j

(Dα
y u)i,j =

∑K−1
k=0 (−1)kCα

k ui,j−k

(5)

In this context, K denotes the quantity of adjacent pix-
els employed to calculate the fractional-order derivative for



each pixel. The coefficients {Cα
k }

K−1
k=0 are given by Cα

k =
Γ(α+1)

Γ(k+1)Γ(α+1−k) with the Gamma function Γ(x). Hence, the
discrete fractional order TV of u is expressed in terms of

∥∇α∥1 =
∑
i,j

(|(Dα
xu)i,j |+

∣∣(Dα
y u)i,j

∣∣), (6)

where (∇α)∗ = (−1)αdivα is the conjugate operator of the
fractional order gradient operator. In the discrete case, the
vector divαp = (p(1), p(2)) ∈ RN×M × RN×M discrete
fractional-order divergence is defined as [6], [17]

(divαp)i,j = (−1)α
K−1∑
k=0

(−1)kCα
k (p

(1)
i+k,j + p

(2)
i,j+k). (7)

Observe that the divergence (7) is the adjoint of the gradient
(4).

C. Recursive Filtering

The first-order recursive filtering (RF) was initially intro-
duced by [16]. Denoting I [u] and J [u] are the noisy image
and the denoising image, respectively. RF computes J [u]
recursively.

J [u] = (1− a)d[u]I [u] + ad[u]J [u− 1] , (8)

where a ∈ [0, 1] is a feedback coefficient, and its implemen-
tation in O(N) time is straight forward. Besides the scalar
constant a = exp(−

√
2/σs) is a user defined parameter

controlling the relative emphasis of I [u] and J [u].

d[u] = 1 +
σs

σr
|I[u]− I[u− 1]| = 1 +

σs

σr
|∇I[u]| , (9)

where σs and σr represent the spatial and range parameters,
respectively. The rapid iteration of the recursion in (8) is
attributed to the pre-computed values from (9) and the inde-
pendent computation of J [u] for each row. For gray images,
one can sequentially perform (8) forward and backward in two
directions. With color images, it’s necessary to iterate through
this operational sequence for each color channel.

As d increases, ad goes to zero, stopping the propagation
chain, thus preserving edges. Furthermore, the expanded re-
cursion of Eq. (8) also elucidates this issue

J [u] =

n∑
ℓ=0

(
ℓ∏

k=0

ad[u−k+1]

)
(1− ad[u−ℓ])I[u− ℓ]. (10)

D. Alternating Direction Method of Mltipliers

The alternative direction method of multipliers (ADMM)
is a computational framework for solving optimization prob-
lems , which is to solve the following constrained separable
optimization problems:

min
u,w

f(u) + g(w) s.t. Au+Bw = d, u, w ∈ χi, i = 1, 2,

(11)
where f(·), g(·) : χi → R are closed convex functions, A,
B ∈ Rl×n are linear transforms, χi → R are nonempty closed

convex sets, and d ∈ Rl is a given vector. For problem (11),
we establish the augmented Lagrangian function

LA(u,w;µ) =f(u) + g(w) + µT (Au+Bw − d)

+
λ

2
||Au+Bw − d||22.

(12)

where µ ∈ Rl is the Lagrange multiplier and λ > 0 is a penalty
parameter which controls the linear constraint. The objective
is to find the saddle point of LA by alternatively minimizing
LA with respect to u, w and µ.

The problem (11) is addressed by presenting the ADMM
algorithm as Algorithm 1.

Algorithm 1 ADMM for minimizing the problem (11).
Input: penalty parameter λ > 0, number of iterations.
Initialize: Initial image u0 = b, counter k = 0, Lagrange
multipliers µ.
Output: Restored image u.

1: For k = 0, compute uk+1, wk+1, µk+1

2: uk+1 = argmin
u

f(u) + λ
2 ||Au+Bwk − d+ µk

λ ||22,

3: wk+1 = argmin
w

g(w) + λ
2 ||Auk+1 +Bw − d+ µk

λ ||22,

4: µk+1 = µk + λ(Auk+1 +Bwk+1 − d),
5: k = k + 1
6: until a stopping criterion is satisfied.

III. THE PROPOSED ALGORITHM

In this part, we first introduce the proposed MR image
restoration model and the corresponding solution methods.
Finally, an ADMM solution framework is provided.

A. Model

The proposed MR image restoration model is as follows

min
0≤u≤1

∥o⊙ (Hu− b)∥0 + λ1 ∥∇αu∥+ λ2ϕ(u), (13)

where ∇αu denotes the fractional-order TV. ϕ denotes the
recursive filtering. λ1 > 0 and λ2 > 0 represent regularization
parameters.

B. Optimization

Using variable splitting, the problem is rephrased as a
constrained optimization problem that follows

min
0<u,v≤1

< 1, 1− v > +λ1||x||+ λ2(z)

s.t.Hu− b = y

v ⊙ |o⊙ y| = 0

∇αu = x, u = z.

(14)



The corresponding augmented Lagrangian functional is given
by

LA(u, v, x, y, z, µv, µx, µy, µz)

=< 1, 1− v > +λ1||x||+ λ2ϕ(z)

+ < v ⊙ o⊙ |y|, µv > +
βv

2
||v ⊙ o⊙ |y|||2

+ < Hu− b− y, µy > +
βy

2
||Hu− b− y||2

+ < ∇αu− x, µx > +
βx

2
||∇αu− x||2

+ < u− z, µz > +
βz

2
||u− z||2,

(15)

where variables µv , µx, µy, and µz are the Lagrange multi-
pliers associated with the constraints of (14). βv, βx, βy , and
βz > 0 are the corresponding penalty parameters. We utilize
the alternating direction method of multipliers [18] to solve
the proposed model (15). According to the ADMM scheme,
we can alternately solve for the following problems.

1) u-subproblem: The u-subproblem

uk+1 = argmin
u

βy

2
||Hu− b− y +

µy

βy
||2

+
βx

2
||∇αu− x+

µx

βx
||2

+
βz

2
||u− z +

µz

βz
||2.

(16)

Based on the first-order optimality conditions, we are tasked
with resolving a system of linear equation

u(βyH
TH + βx(∇α)T∇α)+βz) =

HT (βy(b+ y)− µy)+(∇α)T (βxx− µx) + βz(z − µ),
(17)

where µ = µz

βz
, considering u with periodic boundary con-

straints. Due to the circulant and circulant blocks (BCCB)
structure, matrices (∇α)T∇α and HTH can be diagonalized
by 2D discrete fast Fourier transforms (FFT ). Therefore,
solving for u can be efficiently solved using 2D FFT and
2D FFT inverse operations. The process for acquiring the
optimal u is outlined as follows

uk+1 = F−1

(
F(κ)

F [βyHTH + βx(∇α)T (∇α) + βz]

)
, (18)

where κ = HT (βy(b+y)−µy)+(∇α)T (βxx+µx)+βz(z−µ),
F and F−1 represent the Fourier transform and its inverse.

2) v-subproblem: The v subproblem can be written as

vk+1 = argmax
v

⟨1, 1− v⟩+ < v ⊙ o⊙ |yk|, µv
k >

+
βv

k

2
||v ⊙ o⊙ |yk|||2.

(19)

The v-subproblem in (19) is equivalent to

vk+1 = argmax
v

1

2
βvo⊙ yk ⊙ yk ⊙ v2

+ v
(
µk
v ⊙ o⊙

∣∣∣yk
∣∣∣− 1

)
,

(20)

therefore, projection method is engaged to find the solution

vk+1

vk+1 = min

(
1,max

(
0,−

µk
v ⊙ o⊙

∣∣yk
∣∣− 1

βvo⊙ yk ⊙ yk

))
. (21)

This subproblem mentioned is a projection onto a convex set,
ensuring that the pixel values of the restored image remain
within the range of 0 to 1.

3) y-subproblem: Solving the y-subproblem involves em-
ploying a soft thresholding technique coupled with a shrink
operator. The formula is presented as follows

yk+1 = argmax
y

< vk+1 ⊙ o⊙ |y|, µv
k > +

βv

2
||vk+1 ⊙ o⊙ |y|||2

+ < Huk+1 − b− y, µy
k > +

βy

2
||Huk+1 − b− y||2,

(22)

Eq. (22) holds equivalence to Eq. (23)

yk+1 = argmax
y

βy

2

∥∥∥∥∥y −

(
Huk+1 − b+

µk
y

βy

)∥∥∥∥∥
2

+
βv

2

∥∥∥∥vk+1 ⊙ o⊙ |y|+ µk
v

βv

∥∥∥∥2 ,
(23)

By expanding(23) and discarding the constant terms, we can
rewrite (23) as

yk+1 = argmin
y

1

2

∥∥∥∥∥∥∥y −
βy(Huk+1 − b+

µk
y

βy
)

βy + βv(vk+1 ⊙ o)2

∥∥∥∥∥∥∥
2

+
vk+1 ⊙ o⊙ µk

v

βy + βv(vk+1 ⊙ o)2
⊙ |y|,

(24)

The minimizer is determined through the application of a four-
dimensional shrinkage operator Simplify Eq. (24), we get

yk+1 = shrink

βy(Huk+1 − b+
µk
y

βy
)

βy + βv(vk+1 ⊙ o)2
,

vk+1 ⊙ o⊙ µk
v

βy + βv(vk+1 ⊙ o)2

 ,

(25)

where shrink(s, γ) = sgn(s)⊙max {∥s∥1 − γ, 0} , and sgn(·)
denotes the signum function.

4) x-subproblem: Variable x in (26) isupdated by solving
the following problem:

xk+1 = argmin
x

βx

2

∥∥∥∥x−
(
∇αuk+1 +

µx

βx

)∥∥∥∥2 + λ1||x||. (26)

With the aid of the previously mentioned shrinkage operator,
the x-subproblem can be directly tackled.

5) z-subproblem: The z-subproblem is a recursive filtering
issue, with the specific form as follows

zk+1 = argmin
z

βz

2
∥z − (u+ µ)∥+ λ2ϕ(z), (27)

we define ϑ =
√

λ2

βz
and z̃(k) = u + µ, substitute it into Eq.

(27).
zk+1 = argmin

z

1

2ϑ2

∥∥∥z − z̃(k)
∥∥∥+ ϕ(z), (28)



(a) abdomen (b) pelvic (c) sacroiliac (d) head (e) ankle (f) mrcp

Fig. 1: MR images used for the experiments.

where z̃(k) donates the ‘blurry’ image, (28) minimizes the
residue between z̃(k) and the ‘clean’ image z by employing
the prior ϕ(z).

Expanding on this insight, [19] proposed that the ADMM
algorithm can be executed without the prior speciffication of
ϕ. Consequently, we may utilize recursive filtering for the
resolution of (28). denoted by ϕ

zk+1 = ϕϑ

(
z̃(k)

)
. (29)

Finally, the Lagrange multipliers are updated by the follow-
ing 

µk+1
x = µk

x + βx(∇αuk+1 − xk+1)

µk+1
y = µk

y + βy(Huk+1 − b− yk+1)

µk+1 = µk
z +

(
uk+1 − zk+1

)
µk+1
v = µk

v + βv

(
vk+1 ⊙ o⊙

∣∣yk+1
∣∣)

(30)

Algorithm 2 solving the minimization problem (13).
Input: Regularization parameter λ2 > 0, α, penalty param-
eters βx, βy, βz, βv > 0, number of iterations. Initialize:
Initial image u0 = b, counter k = 0, Lagrange multipliers
µx, µy, µ, µv .
Output: Restored image u.

1: for k = 0 to number of iterations do
2: // Solve the subproblems:
3: Compute uk+1 according to Eq. (18)
4: Compute vk+1 according to Eq. (19)
5: Compute yk+1 according to Eq. (22)
6: Compute xk+1 according to Eq. (26)
7: Compute zk+1 according to Eq. (28)
8: // Update the Lagrange multipliers:
9: Lagrange multipliers according to Eq. (30)

10: // Check stopping criterion:

11: if ∥uk+1−uk∥
2

∥uk∥2
≤ 1× 10−4 then

12: break
13: end if
14: end for

Our method is systematically presented in Algorithm 2.
Additionally, there are two remarks that are worth noting
regarding this algorithm.

Remark 1: When α = 1, The fractional-order TV degrades
to the conventional TV, then the Eq. (26) reduces to the

conventional total variation regularization issue. In the ex-
perimental section, we provide an in-depth analysis of how
the value of α impacts the noise reduction capabilities of our
proposed model.

Remark 2: When ϕ (u) = ∥u∥TV (the total variation norm),
then the Eq. (28) is a canonical total variation-based image
denoising task [20].

IV. NUMERICAL EXPERIMENTS

In this section, we exhibit experimental results that verify
the effectiveness of our proposed method for image restoration.
The real MR test images are shown in Fig 1. The experiment is
under Windows 10 and MATLAB R2019b operating system,
and the CPU is i5-8250U. The restored image quality was
assessed through the peak signal-to-noise ratio (PSNR) and
the structural similarity index (SSIM) [19]. Higher PSNR and
SSIM values indicate better image quality.

Our experiments employed a relative error-based stopping
criterion for the algorithm.

RelError =
∥uk+1 − uk∥

∥uk∥
≤ 1× 10−4 (31)

where uk+1 and uk are the restored image at the current iterate
and previous iterate respectively.

A. Parameter Selection

The performance of the model is influenced by a number
of primary parameters, including the fractional order α, the
parameters λ1, λ2, and penalty parameters of βv, βx, βy ,
and βz , additionally, these parameters must be meticulously
adjusted to achieve higher precision in the outcomes.

Here, we primarily discuss the FOTV term parameter α
and the RF parameter λ2. Firstly, the value selected for
parameter α is crucial importance and the fractional order α
is 1 ≤ α < 2. In Fig.2 the ‘head’ image was processed with
a 5 × 5 Gaussian blur kernel (σ=5, impulse=70%) while the
‘abdomen’ image was subjected to a 7×7 Gaussian blur kernel
(σ=10, impulse=50%). The figures show the PSNR and SSIM
values increase with the α value. Therefore, for Gaussian blur,
a value of α = 1.9 can obtain the best PSNR and SSIM results.

In Fig.3, the ‘ankle’ image was processed with a 5 × 5
average blur kernel ( impulse=70%) while the ‘head’ image
was subjected to a 7× 7 average blur kernel ( impulse=50%).
Our analysis of the images show that the optimal values for
PSNR and SSIM are achieved at α = 1.3 value, thus our
preference for this value in the context of average blur kernel.



Fig. 2: PSNR and SSIM values for images restoration by my
method with different α, ‘head’ (5 × 5 Gaussian blur kernel,
σ=10 and impulse=70%) and ‘abdomen’ (7× 7 Gaussian blur
kernel, σ=10 and impulse=50%).

Fig. 3: PSNR and SSIM values for images restoration by my
method with different α, ‘ankle’ (5 × 5 average blur kernel
and impulse=70%) and ‘head’ (7× 7 average blur kernel and
impulse=50%).

(a1) (b1) (c1)

(a2) (b2) (c2)

Fig. 4: Restoration results of different λ2 for ‘abdomen’ (7×7
Gaussian blur kernel, σ=10 and impulse=30% ) and ‘pelvic’
(7× 7 average blur kernel and impulse=30%).

In this paper, the parameters λ2 control the weight and also
manage the magnitude of the value ϑ within the RF. Therefore,
the selection of the λ2 parameter is crucial. In Fig.4, we
conducted experiments with the Gaussian and average blur
kernel. The results show that the optimal effect is achieved
with λ2 = 0.001 when adding a Gaussian blur kernel, and

with λ2 = 0.005 when adding an average blur kernel.
In this experimental section, This process involves adjusting

one parameter at a time while maintaining the remaining
parameters at their default values.

B. Verify the Effectiveness of the Method

In order to verify the effectiveness of our method in re-
moving staircasing artifacts through fractional-order TV and
further noise reduction and texture enhancement through RF,
the subsequent sections will validate these capabilities. Our
proposed method is called FOTVF (13), and the model that
removes the third term ϕ(u)) from FOTVF is named as FOTV.
The model is also solved using the ADMM algorithm.

Fig. 5: PSNR and SSIM values of FOTVF item and FOTV
restoration results when 5×5 Gaussian blur kernel (std=5 and
impulse=40%).

(a1) (b1) (c1)

(a2) (b2) (c2)

Fig. 6: The first line is the recovered results for ‘head’ with
5×5 average blur kernel (std=5 and impulse=60%), while the
second line shows the fragments corresponding to the zoomed
images. (a1)-(a2) blurry image, (b1)-(b2) FOTV restored, (c1)-
(c2) FOTVF restored.

Fig. 5 and Fig. 6 show the PSNR and SSIM values of
FOTVF and FOTV at 5 × 5 Gaussian blur kernel (std=5
and impulse=40%), and Fig. 6 is the restoration results of
FOTVF and FOTV for ‘head’ at 5 × 5 average blur kernel
(impulse=60%). It can be seen that the PSNR and SSIM values
of FOTV, without the third term decrease a lot. Furthermore, it



TABLE I: Deblurring results for PSNR and SSIM values with 5× 5 Gaussian blur kernel (σ=5).

Noise level Image
Restoration

Median Filter HNHOTV-OGS ℓ0-OGSTV Proposed

30 abdomen 28.14/0.756 35.69/0.899 37.09/0.939 38.23/0.958
pelvic 27.52/0.855 37.62/0.938 37.94/0.937 38.81/0.957
sacroiliac 27.90/0.758 35.86/0.912 36.23/0.912 37.01/0.935
head 24.14/0.828 34.95/0.904 36.85/0.971 37.18/0.978
ankle 23.53/0.788 33.30/0.876 35.09/0.956 35.15/0.963
mrcp 28.62/0.873 35.72/0.877 37.88/0.932 39.47/0.960

50 abdomen 23.70/0.673 29.49/0.735 36.64/0.938 37.26/0.950
pelvic 23.61/0.770 28.80/0.680 37.48/0.941 37.55/0.953
sacroiliac 23.94/0.680 30.90/0.803 35.72/0.913 36.07/0.925
head 21.39/0.744 30.25/0.764 35.68/0.969 35.82/0.974
ankle 21.35/0.707 28.44/0.670 33.61/0.950 33.65/0.955
mrcp 23.82/0.786 27.82/0.593 37.80/0.939 38.58/0.959

70 abdomen 13.42/0.288 17.18/0.198 35.21/0.930 35.27/0.932
pelvic 13.51/0.278 16.14/0.071 35.21/0.940 34.89/0.942
sacroiliac 13.82/0.245 15.07/0.087 34.27/0.904 34.22/0.902
head 13.00/0.333 17.00/0.291 33.45/0.962 33.50/0.964
ankle 13.07/0.297 16.93/0.220 30.69/0.933 30.86/0.935
mrcp 13.33/0.313 17.24/0.105 36.50/0.948 36.62/0.954

TABLE II: Deblurring results for PSNR and SSIM values with 7× 7 Gaussian blur kernel (σ=10).

Noise level Image
Restoration

Median Filter HNHOTV-OGS ℓ0-OGSTV Proposed

30 abdomen 26.93/0.686 34.98/0.894 35.55/0.917 36.20/0.937
pelvic 26.70/0.825 36.40/0.932 36.18/0.916 36.82/0.943
sacroiliac 27.05/0.714 34.74/0.897 34.67/ 0.887 35.12/0.910
head 22.50/0.765 34.00/0.905 34.98/0.962 35.00/0.967
ankle 22.49/0.732 32.15/0.880 33.10/0.938 32.82/0.944
mrcp 27.28/0.835 35.49/0.891 36.15/0.907 37.43/0.944

50 abdomen 23.30/0.616 31.99/0.800 34.92/0.910 35.46/0.928
pelvic 23.32/0.745 31.11/0.791 35.73/0.921 36.08/0.940
sacroiliac 23.63/0.642 33.16/0.865 34.18/0.880 34.36/0.899
head 20.59/0.691 31.46/0.802 34.11/0.957 33.89/0.961
ankle 20.79/0.660 29.43/0.740 31.91/0.931 31.62/0.935
mrcp 23.41/0.755 30.77/0.727 35.90/0.914 36.78/0.943

70 abdomen 13.40/0.266 18.67/0.228 34.07/0.904 34.08/0.909
pelvic 13.50/0.268 17.20/0.086 34.56/0.924 34.46/0.929
sacroiliac 13.80/0.230 16.60/0.139 33.30/0.876 33.34/0.881
head 12.93/0.308 19.47/0.355 32.49/0.948 32.01/0.945
ankle 13.02/0.275 20.02/0.291 30.08/0.917 29.77/0.915
mrcp 13.31/0.300 19.28/0.141 35.17/0.926 35.43/0.941



TABLE III: Deblurring results for PSNR and SSIM values with 5× 5 average blur kernel.

Noise level Image
Restoration

Median Filter HNHOTV-OGS ℓ0-OGSTV Proposed

30 abdomen 28.30/0.753 35.54/0.897 36.92/0.937 37.31/0.950
pelvic 28.13/0.854 37.70/0.940 37.90/0.936 38.80/0.956
sacroiliac 28.18/0.756 35.95/0.913 36.26/0.913 37.07/0.933
head 24.08/0.825 34.92/0.899 36.89/0.971 37.02/0.977
ankle 23.70/0.786 33.33/0.873 35.27/0.955 35.32/0.964
mrcp 28.70/0.871 35.64/0.876 37.81/0.927 39.63/0.964

50 abdomen 23.73/0.671 29.25/0.733 36.70/0.939 36.40/0.942
pelvic 23.76/0.770 27.93/0.651 37.35/0.941 37.65/0.952
sacroiliac 24.00/0.678 29.79/0.776 35.94/0.917 36.17/0.925
head 21.35/0.742 29.89/0.751 35.82/0.969 35.69/0.973
ankle 21.42/0.705 28.55/0.673 33.56/0.950 33.68/0.955
mrcp 23.81/0.785 27.29/0.571 37.82/0.939 38.66/0.961

70 abdomen 13.42/0.287 16.94/0.189 35.43/0.932 34.49/0.920
pelvic 13.52/0.277 15.65/0.061 35.06/0.941 35.34/0.943
sacroiliac 13.82/0.245 14.83/0.075 34.48/0.906 34.23/0.902
head 13.00/0.332 17.19/0.295 33.58/0.963 33.25/0.962
ankle 13.08/0.296 16.81/0.209 30.87/0.935 30.99/0.935
mrcp 13.33/0.313 17.38/0.101 36.61/0.948 36.74/0.956

TABLE IV: Deblurring results for PSNR and SSIM values with 7× 7 average blur kernel.

Noise level Image
Restoration

Median Filter HNHOTV-OGS ℓ0-OGSTV Proposed

30 abdomen 26.89/0.684 34.92/0.892 35.32/0.912 35.53/0.927
pelvic 26.68/0.824 36.45/ 0.932 36.08/0.913 37.15/0.944
sacroiliac 27.03/0.712 34.81/ 0.898 34.21/0.866 35.42/0.910
head 22.45/0.763 34.09/0.906 35.32/0.961 35.00/0.964
ankle 22.46/0.730 32.26/0.880 33.36/0.937 33.38/0.946
mrcp 27.24/0.833 35.48/0.892 35.65/0.890 37.77/0.951

50 abdomen 23.29/0.614 32.03/0.801 35.03/0.912 34.76/0.917
pelvic 23.31/0.744 31.08/0.788 35.93/0.922 36.36/0.941
sacroiliac 23.62/0.641 33.13/0.865 34.24/0.882 34.68/0.900
head 20.57/0.689 31.40/0.795 34.24/0.956 33.84/0.958
ankle 20.77/0.658 29.47/0.737 32.17/0.931 32.17/0.937
mrcp 23.40/0.754 30.57/0.721 35.89/0.909 37.04/0.948

70 abdomen 13.39/0.266 18.76/0.229 34.21/0.908 33.38/0.921
pelvic 13.50/0.267 17.09/0.084 34.78/0.925 34.85/0.943
sacroiliac 13.80/0.230 16.45/0.137 33.43/0.877 34.48/0.883
head 12.93/0.307 19.64/0.356 32.58/0.947 32.03/0.945
ankle 13.02/0.274 19.80/0.290 30.23/0.918 30.08/0.917
mrcp 13.31/0.300 19.16/0.135 35.40/0.927 35.67/0.944
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Fig. 7: The (1), (3), and (5) rows show the results after applying a 7 × 7 average blur kernel ( impulse=30%, 50%, 70%) to
the ‘sacroiliac’ image. The (2), (4), and (6) rows display the corresponding enlarged image segments. Columns (a1)-(a6) show
the noisy versions, (b1)-(b6) are restored with HNHOTV-OGS, (c1)-(c6) with ℓ0-OGSTV, and (d1)-(d6) with our method.



can be observed from these figures that the restoration effect of
the FOTV is not ideal. In contrast, the FOTVF recovery image
not only smooths out the staircase artifacts but also achieves
a higher SSIM value.

C. Results and Analysis

The experimental results of our proposed model are com-
pared with three related methods: ℓ0-OGSTV [14], HNHOTV-
OGS [3], and Median Filter (built-in noise reduction technol-
ogy in MATLAB).

In this experiment, we assumed that the blurring kernel
is known. To simulate a noisy blurred image, we blur the
original images with a 5×5 Gaussian blur kernel with standard
deviation σ = 5 and a 7×7 Gaussian blur kernel with standard
deviation σ = 10, or two different sizes of average blur kernel
5 × 5 and 7 × 7 to the original images. Then, we introduce
impulse noise with different densities to the blurred images.

For parameters, we fixed λ1 = 1. The other parameters were
manually selected to obtain the most satisfactory restoration
quality. The parameters of HNHOTV-OGS and ℓ0-OGSTV are
consistent with the original text. Three different impulse noise
levels of 30%, 50% and 70% are added to the test image
respectively to generate each observed image. The obtained
PSNR and SSIM values are shown in Table I to Table IV.

In each table, we can observe when using various intensities
of noise and different blur kernels, our method almost always
achieves higher PSNR and SSIM values compared to the other
methods. Only in a few specific cases does ℓ1-OGSTV perform
slightly better. From Table.I to Table.IV, it can be observed
that our method performs well when relatively low levels
of noise, Despite a modest reduction in denoising efficacy
compared to ℓ0-OGSTV under conditions of high-density
noise, it continues to deliver superior PSNR and SSIM values.

For the Fig.7, we present the outcomes of three distinct de-
noising models applied to MR images. The image ‘sacroiliac’
is treated with average blur and 30%, 50%, and 70% impulse
noise. In the results, the HNHOTV-OGS image denoising
effect is not satisfactory; there are slight blocky artifacts, and
the denoising performance is poor at higher noise densities.

The main competition for our technique is the ℓ0-OGSTV
model, which effectively eliminates impulse noise and miti-
gates staircase effects through the application of the ℓ0-norm.
Despite the addition of varying degrees of Gaussian kernels
and average kernels, our method consistently outperformed
others, maintaining its advantage in producing better results.

V. CONCLUSION

We proposed a MR image restoration model that combines
regularization and filtering methods, aiming at effectively
removing impulse noise and staircasing artifacts present in
MR images. We demonstrated the effectiveness of using
the ℓ0-norm as a data fidelity term to eliminate impulse
noise, while incorporating fractional-order total variation and
recursive filtering as penalty terms to mitigate staircasing
artifacts and preserve important edges. We solved the proposed
model using the alternating direction method of multipliers.

In experiments involving Gaussian and average blurring, our
method outperformed three other methods in terms of PSNR
and SSIM across various levels of blur and noise.
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