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Abstract

Multi-agent collaborative perception could significantly upgrade the perception
performance by enabling agents to share complementary information with each
other through communication. It inevitably results in a fundamental trade-off
between perception performance and communication bandwidth. To tackle this
bottleneck issue, we propose a spatial confidence map, which reflects the spatial
heterogeneity of perceptual information. It empowers agents to only share spatially
sparse, yet perceptually critical information, contributing to where to commu-
nicate. Based on this novel spatial confidence map, we propose Where2comm,
a communication-efficient collaborative perception framework. Where2comm
has two distinct advantages: i) it considers pragmatic compression and uses
less communication to achieve higher perception performance by focusing on
perceptually critical areas; and ii) it can handle varying communication band-
width by dynamically adjusting spatial areas involved in communication. To
evaluate Where2comm, we consider 3D object detection in both real-world and
simulation scenarios with two modalities (camera/LiDAR) and two agent types
(cars/drones) on four datasets: OPV2V, V2X-Sim, DAIR-V2X, and our origi-
nal CoPerception-UAVs. Where2comm consistently outperforms previous meth-
ods; for example, it achieves more than 100, 000× lower communication volume
and still outperforms DiscoNet and V2X-ViT on OPV2V. Our code is available
at https://github.com/MediaBrain-SJTU/where2comm.

1 Introduction
Collaborative perception enables multiple agents to share complementary perceptual information
with each other, promoting more holistic perception. It provides a new direction to fundamentally
overcome a number of inevitable limitations of single-agent perception, such as occlusion and long-
range issues. Related methods and systems are desperately needed in a broad range of real-world
applications, such as vehicle-to-everything-communication-aided autonomous driving [1–3], multi-
robot warehouse automation system [4, 5] and multi-UAVs (unmanned aerial vehicles) for search
and rescue [6–8]. To realize collaborative perception, recent works have contributed high-quality
datasets [9–11] and effective collaboration methods [12, 13, 2, 14–19].
In this emerging field, the current biggest challenge is how to optimize the trade-off between
perception performance and communication bandwidth. Communication systems in real-world
scenarios are always constrained that they can hardly afford huge communication consumption in
real-time, such as passing complete raw observations or a large volume of features. Therefore,
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Figure 1: Collaborative perception could contribute to safety-critical scenarios, where the white car
and the red car may collide due to occlusion. This collision could be avoided when the blue car can
share a message about the red car’s position. Such a message is spatially sparse, yet perceptually
critical. Considering the precious communication bandwidth, each agent needs to speak to the point!

we cannot solely promote the perception performance without evaluating the expense of every bit
of precious communication bandwidth. To achieve a better performance and bandwidth trade-off,
previous works put forth solutions from several perspectives. For example, When2com [12] considers
a handshake mechanism which selects the most relevant collaborators; V2VNet [1] considers end-
to-end-learning-based source coding; and DiscoNet [2] uses 1D convolution to compress message.
However, all previous works make a plausible assumption: once two agents collaborate, they are
obligated to share perceptual information of all spatial areas equally. This unnecessary assumption can
hugely waste the bandwidth as a large proportion of spatial areas may contain irrelevant information
for perception task. Figure 1 illustrates such a spatial heterogeneity of perceptual information.

To fill this gap, we consider a novel spatial-confidence-aware communication strategy. The core idea
is to enable a spatial confidence map for each agent, where each element reflects the perceptually
critical level of a corresponding spatial area. Based on this map, agents decide which spatial area
(where) to communicate about. That is, each agent offers spatially sparse, yet critical features
to support other agents, and meanwhile requests complementary information from others through
multi-round communication to perform efficient and mutually beneficial collaboration.

Following this strategy, we propose Where2comm, a novel communication-efficient multi-agent collab-
orative perception framework with the guidance of spatial confidence maps; see Fig. 2. Where2comm
includes three key modules: i) a spatial confidence generator, which produces a spatial confidence
map to indicate perceptually critical areas; ii) a spatial confidence-aware communication module,
which leverages the spatial confidence map to decide where to communicate via novel message
packing, and who to communicate via novel communication graph construction; and iii) a spatial
confidence-aware message fusion module, which uses novel confidence-aware multi-head attention
to fuse all messages received from other agents, upgrading the feature map for each agent.

Where2comm has two distinct advantages. First, it promotes pragmatic compression at the feature level
and uses less communication to achieve higher perception performance by focusing on perceptually
critical areas. Second, it adapts to various communication bandwidths and communication rounds,
while previous models only handle one predefined communication bandwidth and a fixed number
of communication rounds. To evaluate Where2comm, we consider the collaborative 3D object
detection task on four datasets: DAIR-V2X [11], V2X-Sim [9], OPV2V [10] and our original
dataset CoPerception-UAVs. Our experiments cover both real-world and simulation scenarios, two
types of agents (cars and drones) and sensors (LiDAR and cameras). Results show that i) the
proposed Where2comm consistently and significantly outperforms previous works in the performance-
bandwidth trade-off across multiple datasets and modalities; and ii) Where2comm achieves better
trade-off when the communication round increases.

2 Related Works
Multi-agent communication. The communication strategy in multi-agent systems has been widely
studied [20]. Early works [21–23] often use predefined protocols or heuristics to decide how agents
communicate with each other. However, it is difficult to generalize those methods to complex
tasks. Recent works, thus, explore learning-based methods for complex scenarios. For example,
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Table 1: Major components comparisons of collaborative perception systems.
Method Venue Message packing Communication graph construction Message fusion
When2com [12] CVPR 2020 Full feature map Handshake-based sparse graph Attention per-agent
V2VNet [1] ECCV 2020 Full feature map Fully connected graph Average per-agent
DiscoNet [2] NeurIPS 2021 Full feature map Fully connected graph MLP-based attention per-location
V2X-ViT [26] ECCV 2022 Full feature map Fully connected graph Self-attention per-location

Where2comm NeurIPS 2022 Confidence-aware sparse Confidence-aware sparse graph Confidence-aware multi-head
feature map + request map attention per-location

CommNet [24] learns continuous communication in the multi-agent system. Vain [25] adopts the
attention mechanism to help agents selectively fuse the information from others. Most of these
previous works consider decision-making tasks and adopt reinforcement learning due to the lack
of explicit supervision. In this work, we focus on the perception task. Based on direct perception
supervision, we apply supervised learning to optimize the communication strategy in both trade-off
perception ability and communication cost.

Collaborative perception. As a recent application of multi-agent communication systems to per-
ception tasks, collaborative perception is still immature. To support this area of research, there is a
surge of high-quality datasets (e.g., V2X-Sim [9], OpenV2V [10], Comap[27] and DAIR-V2X[11]),
as well as collaboration methods aimed for better performance-bandwidth trade-off (see comparisons
in Table 1). When2com [12] proposes a handshake communication mechanism to decide when to
communicate and create sparse communication graph. V2VNet [1] proposes multi-round message
passing based on graph neural networks to achieve better perception and prediction performance.
DiscoNet [2] adopts knowledge distillation to take the advantage of both early and intermediate
collaboration. OPV2V [10] proposes a graph-based attentive intermediate fusion to improve percep-
tion performances. V2X-ViT [26] introduces a novel heterogeneous multi-agent attention module
to fuse information across heterogeneous agents. In this work, we leverage the proposed spatial
confidence map to promote more compact messages, more sparse communication graphs, and more
comprehensive fusion, resulting in efficient and effective collaboration.

3 Problem Formulation
Consider N agents in the scene. Let Xi and Yi be the observation and the perception supervision
of the ith agent, respectively. The objective of collaborative perception is to achieve the maxi-
mized perception performance of all agents as a function of the total communication budge B and
communication round K; that is,

ξΦ(B,K) = argmax
θ,P

N∑
i=1

g
(
Φθ

(
Xi, {P(K)

i→j}
N
j=1

)
,Yi

)
, s.t.

K∑
k=1

N∑
i=1

|P(k)
i→j | ≤ B,

where g(·, ·) is the perception evaluation metric, Φ is the perception network with trainable parameter
θ, and P(k)

i→j is the message transmitted from the ith agent to the jth agent at the kth communication
round. Note that i) when B = K = 0, there is no collaboration and ξΦ(0, 0) reflects the single-
agent perception performance; ii) through optimizing the communication strategy and the network
parameter, collaborative perception should perform well consistently at any communication bandwidth
or round; and iii) we consider multi-round communication, where each agent serves as both a supporter
(offering message to help others) and a requester (requesting messages from others).

In this work, we consider the perception task of 3D object detection and present three contributions:
i) we make communication more efficient by designing compact messages and sparse communication
graphs; ii) we boost the perception performance by implementing more comprehensive message
fusion; iii) we enable the overall system to adapt to varying communication conditions by dynamically
adjusting where and who to communicate.

4 Where2comm: Spatial Confidence-Aware Collaborative Perception System
This section presents Where2comm, a multi-round, multi-modality, multi-agent collaborative per-
ception framework based on a spatial-confidence-aware communication strategy; see the overview
in Fig. 2. Where2comm includes an observation encoder, a spatial confidence generator, the spatial
confidence-aware communication module, the spatial confidence-aware message fusion module and
a detection decoder. Among five modules, the proposed spatial confidence generator generates the
spatial confidence map. Based on this spatial confidence map, the proposed spatial confidence-aware
communication generates compact messages and sparse communication graphs to save commu-
nication bandwidth; and the proposed spatial confidence-aware message fusion module leverages
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Figure 2: System overview. In Where2comm, spatial confidence generator enables the awareness of
spatial heterogeneous of perceptual information, spatial confidence-aware communication enables
efficient communication, and spatial confidence-aware message fusion boosts the performance.

informative spatial confidence priors to achieve better aggregation; also see an algorithmic summary
in Algorithm 1 and the optimization-oriented design rationale in Section 7.3 in Appendix.

4.1 Observation encoder
The observation encoder extracts feature maps from the sensor data. Where2comm accepts single/multi-
modality inputs, such as RGB images and 3D point clouds. This work adopts the feature represen-
tations in bird’s eye view (BEV), where all agents project their individual perceptual information
to the same global coordinate system, avoiding complex coordinate transformations and supporting
better shared cross-agent collaboration. For the ith agent, given its input Xi, the feature map is
F (0)

i = Φenc(Xi) ∈ RH×W×D, where Φenc(·) is the encoder, the superscript 0 reflects that the
feature is obtained before communication and H,W,D are its height, weight and channel. All agents
share the same BEV coordinate system. For the image input, Φenc(·) is followed by a warping
function that transforms the extracted feature from front-view to BEV. For 3D point cloud input, we
discretize 3D points as a BEV map and Φenc(·) extracts features in BEV. The extracted feature map
is output to the spatial confidence generator and the message fusion module.

4.2 Spatial confidence generator
The spatial confidence generator generates a spatial confidence map from the feature map of each
agent. The spatial confidence map reflects the perceptually critical level of various spatial areas.
Intuitively, for object detection task, the areas that contain objects are more critical than background
areas. During collaboration, areas with objects could help recover the miss-detected objects due to
the limited view; and background areas could be omitted to save the precious bandwidth. So we
represent the spatial confidence map with the detection confidence map, where the area with high
perceptually critical level is the area that contains an object with a high confidence score.

To implement, we use a detection decoder structure to produce the detection confidence map. Given
the feature map at the kth communication round, F (k)

i , the corresponding spatial confidence map is

C
(k)
i = Φgenerator(F (k)

i ) ∈ [0, 1]H×W , (1)

where the generator Φgenerator(·) follows a detection decoder. Since we consider multi-round
collaboration, Where2comm iteratively updates the feature map by aggregating information from
other agents. Once F (k)

i is obtained, (1) is triggered to reflect the perceptually critical level at each
spatial location. The proposed spatial confidence map answers a crucial question that was ignored by
previous works: for each agent, information at which spatial area is worth sharing with others. By
answering this, it provides a solid base for efficient communication and effective message fusion.

4.3 Spatial confidence-aware communication
With the guidance of spatial confidence maps, the proposed communication module packs compact
messages with spatially sparse feature maps and transmits messages through a sparsely-connected
communication graph. Most existing collaboration perception systems [1, 2, 26] considers full feature
maps in the messages and fully-connected communication graphs. To reduce the communication
bandwidth without affecting perception, we leverage the spatial confidence map to select the most
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informative spatial areas in the feature map (where to communicate) and decide the most beneficial
collaboration partners (who to communicate).

Message packing. Message packing determines what information should be included in the to-be-
sent message. The proposed message includes: i) a request map that indicates at which spatial areas
the agent needs to know more; and ii) a spatially sparse, yet perceptually critical feature map.

The request map of the ith agent is R(k)
i = 1−C

(k)
i ∈ RH×W , negatively correlated with the spatial

confidence map. The intuition is, for the locations with low confidence score, an agent is hard to
tell if there is really no objects or it is just caused by the limited information (e.g. occlusion). Thus,
the low confidence score indicates there could be missing information at that location. Requesting
information at these locations from other agents could improve the current agent’s detection accuracy.

The spatially sparse feature map are selected based on each agent’s spatial confidence map and the
received request maps from others. Specifically, a binary selection matrix is used to represent each
location is selected or not, where 1 denotes selected, and 0 elsewhere. For the message sent from the
ith agent to the jth agent at the kth communication round, the binary selection matrix is

M
(k)
i→j =

{
Φselect(C

(k)
i ) ∈ {0, 1}H×W , k = 0;

Φselect(C
(k)
i ⊙R

(k−1)
j ),∈ {0, 1}H×W , k > 0;

(2)

where ⊙ is the element-wise multiplication, R(k−1)
j is the request map from the jth agent received at

the previous round, Φselect(·) is the selection function which targets to select the most critical areas
conditioned on the input matrix, which represents the critical level at the certain spatial location. We
implement Φselect(·) by selecting the locations where the largest elements at in the given input matrix
conditioned on the bandwidth limit; optionally, a Gaussian filter could be applied to filter out the
outliers and introduce some context. In the initial communication round, each agent selects the most
critical areas from its own perspective as the request maps from other agents are not available yet; in
the subsequent rounds, each agent also takes the partner’s request into account, enabling more targeted
communication. Then, the selected feature map is obtained as Z(k)

i→j = M
(k)
i→j ⊙F (k)

i ∈ RH×W×D,
which provides spatially sparse, yet perceptually critical information.

Overall, the message sent from the ith agent to the jth agent at the kth communication round
is P(k)

i→j = (R
(k)
i ,Z(k)

i→j). Note that i) R
(k)
i provides spatial priors to request complementary

information for the ith agent’s need in the next round; the feature map Z(k)
i→j provides supportive

information for the ith agent’s need in the this round. They together enable mutually beneficial
collaboration; ii) since Z(k)

i→j is sparse, we only transmit non-zero features and corresponding indices,

leading to low communication cost; and iii) the sparsity of Z(k)
i→j is determined by the binary selection

matrix, which dynamically allocates the communication budget at various spatial areas based on their
perceptual critical level, adapting to various communication conditions.

Communication graph construction. Communication graph construction targets to identify when
and who to communicate to avoid unnecessary communication that wastes the bandwidth. Most
previous works [1, 2, 10] consider fully-connected communication graphs. When2com [12] proposes
a handshake mechanism, which uses similar global features to match partners. This is hard to interpret
because two agents, which have similar global features, do not necessarily need information from
each other. Different from all previous works, we provide an explicit design rationale: the necessity
of communication between the ith and the jth agents is simply measured by the overlap between the
information that the ith agent has and the information that the jth agent needs. With the help of the
spatial confidence map and the request map, we construct a more interpretable communication graph.

For the initial communication round, every agent in the system is not aware of other agents yet.
To activate the collaboration, we construct a fully-connected communication graph. Every agent
will broadcast its message to the rest of the system. For the subsequent communication rounds, we
examine if the communication between agent i and agent j is necessary based on the maximum value
of the binary selection matrix M

(k)
i→j , i.e. if there is at least one patch is activated, then we regard the

connection is necessary. Formally, let A(k) be the adjacency matrix of the communication graph at
the kth communication round, whose (i, j)th element is

A
(k)
i,j =

{
1, k = 0;

maxh∈{0,1,..,H−1},w∈{0,1,...,W−1}

(
M

(k)
i→j

)
h,w

∈ {0, 1}, k > 0;
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where h,w index the spatial area, reflecting message passing from the ith agent to the jth agent.
Given this sparse communication graph, agents can exchange messages with selected partners.

4.4 Spatial confidence-aware message fusion
Spatial confidence-aware message fusion targets to augment the feature of each agent by aggregating
the received messages from the other agents. To achieve this, we adopt a transformer architecture,
which leverages multi-head attention to fuse the corresponding features from multiple agents at each
individual spatial location. The key technical design is to include the spatial confidence maps of all
the agents to promote cross-agent attention learning. The intuition is that, the spatial confidence map
could explicitly reflect the perceptually critical level, providing a useful prior for attention learning.

Specifically, for the ith agent, after receiving the jth agent’s message P(k)
j→i, it could unpack to retrieve

the feature map Z(k)
j→i and the spatial confidence map C

(k)
j = 1 −R

(k)
j . We also include the ego

feature map in fusion and denote Z(k)
i→i = F (k)

i to make the formulation simple and consistent, where
Z(k)

i→i might not be sparse. To fuse the features from the jth agent at the kth communication round,
the cross-agent/ego attention weight for the ith agent is

W
(k)
j→i = MHAW

(
F (k)

i ,Z(k)
j→i,Z

(k)
j→i

)
⊙C

(k)
j ∈ RH×W , (3)

where MHAW(·) is a multi-head attention applied at each individual spatial location, which outputs
the scaled dot-product attention weight. Note that i) the proposed spatial confidence maps contributes
to the attention weight, as the features with higher perceptually critical level are more preferred in
the feature aggregation; ii) the cross-agent attention weight models the collaboration strength with
a H ×W spatial resolution, leading to more flexible information fusion at various spatial regions.
Then, the feature map of the ith agent after fusing the messages in the kth communication round is

F (k+1)
i = FFN

 ∑
j∈Ni

⋃
{i}

W
(k)
j→i ⊙Z(k)

j→i

 ∈ RH×W×D,

where FFN(·) is the feed-forward network and Ni is the neighbors of the ith agent defined in the
communication graph A(k). The fused feature F (k+1)

i would serve as the ith agent’s feature in the
(k + 1)th round. In the final round, we output F (k+1)

i to the detection decoder to generate detections.

Sensor positional encoding. Sensor positional encoding represents the physical distance between
each agent’s sensor and its observation. It adopts a standard positional encoding function conditioned
on the sensing distance and feature dimension. The features are summed up with the positional
encoding of each location before inputting to the transformer.

Compared to existing fusion modules that do not use attention mechanism [1] or only use agent-level
attentions [12], the per-location attention mechanism adopted by the proposed fusion emphasizes the
location-specific feature interactions. It makes the feature fusion more targeted. Compared to the
methods that also use the per-location attention-based fusion module[2, 10, 26], the proposed fusion
module leverages multi-head attention with two extra priors, including spatial confidence map and
sensing distances. Both assist attention learning to prefer high quality and critical features.

4.5 Detection decoder
The detection decoder decodes features into objects, including class and regression output. Given
the feature map at the kth communication round F (k)

i , the detection decoder Φdec(·) generate the
detections of ith agent by Ô(k)

i = Φdec(F (k)
i ) ∈ RH×W×7, where each location of Ô(k)

i represents a
rotated box with class (c, x, y, h, w, cosα, sinα), denoting class confidence, position, size and angle.
The objects are the final output of the proposed collaborative perception system. Note that Ô(0)

i
denotes the detections without collaboration.

4.6 Training details and loss functions
To train the overall system, we supervise two tasks: spatial confidence generation and object detection
at each round. As mentioned before, the functionality of the spatial confidence generator is the same
as the classification in the detection decoder. To promote parameter efficiency, our spatial confidence
generator reuses the parameters of the detection decoder. For the multi-round settings, each round is
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(a) CoPerception-UAVs (b) OPV2V

(c) V2X-Sim (d) DAIR-V2X

Figure 3: Where2comm achieves consistently superior performance-bandwidth trade-off on all the
three collaborative perception datasets, e.g, Where2comm achieves 5,000 times less communication
volume and still outperforms When2com on CoPerception-UAVs dataset. The entire red curve comes
from a single Where2comm model evaluated at varying bandwidths.

supervised with one detection loss, the overall loss is L =
∑K

k=0

∑N
i Ldet

(
Ô(k)

i ,Oi

)
, where Oi is

the ith agent’s ground-truth objects, Ldet is the detection loss [28].

Training strategy for multi-round setting. To adapt to multi-round communication and dynamic
bandwidth, we train the model under various communication settings with curriculum learning
strategy [29]. We first gradually increase the communication bandwidth and round; and then,
randomly sample bandwidth and round to promote robustness. Through this training strategy, a single
model can perform well at various communication conditions.

5 Experimental Results
Our experiments covers four datasets, both real-world and simulation scenarios, two types of
agents (cars and drones) and two types of sensors (LiDAR and cameras). Specifically, we con-
duct camera-only 3D object detection in the setting of V2X-communication aided autonomous
driving on OPV2V dataset [10], camera-only 3D object detection in the setting of drone swarm on
the proposed CoPerception-UAVs dataset, and LiDAR-based 3D object detection on DAIR-V2X
dataset [11] and V2X-Sim dataset [9]. The detection results are evaluated by Average Precision (AP)
at Intersection-over-Union (IoU) threshold of 0.50 and 0.70. The communication results count the
message size by byte in log scale with base 2. To compare communication results straightforward
and fair, we do not consider any extra data/feature/model compression.

5.1 Datasets and experimental settings
OPV2V. OPV2V [10] is a vehicle-to-vehicle collaborative perception dataset, co-simulated by
OpenCDA [10] and Carla [30]. It includes 12K frames of 3D point clouds and RGB images with
230K annotated 3D boxes. The perception range is 40m×40m. For camera-only 3D object detection
task on OPV2V, we implement the detector following CADDN [31]. The input front-view image size
is (416, 160). The front-view input feature map is transformed to BEV with resolution 0.5m/pixel.

V2X-Sim. V2X-Sim [9] is a vehicle-to-everything collaborative perception dataset, co-simulated
by SUMO [32] and Carla, including 10K frames of 3D LiDAR point clouds and 501K 3D boxes.
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(a) CoPerception-UAVs (b) OPV2V (c) V2X-Sim
Figure 4: More communication rounds continuously improve performance-bandwidth trade-off.

The perception range is 64m×64m. For LiDAR-based 3D object detection task, our detector follows
MotionNet [33]. We discretize 3D points into a BEV map with size (256, 256, 13) and the resolution
is 0.4m/pixel in length and width, 0.25m in height.

CoPerception-UAVs. To enrich the collaborative perception datasets, we consider the swarm of
unmanned aerial vehicles (UAV) and propose a UAV-swarm-based collaborative perception dataset:
CoPerception-UAVs, co-simulated by AirSim [34] and Carla [30], including 131.9K aerial images and
1.94M 3D boxes. The perception range is 200m×350m. For the camera-only 3D object detection task
on CoPerception-UAVs, our detector follows DVDET [8]. The input aerial image size is (800, 450).
The aerial-view input feature map is transformed to BEV with the resolution of 0.25m/pixel, and the
size is (192, 352); see more details in Appendix.

DAIR-V2X. DAIR-V2X [11] is the only public real-world collaborative perception dataset. Each
sample contains two agents: a vehicle and an infrastructure, with 3D annotations. The perception
range is 201.6m×80m. Originally DAIR-V2X does not label objects outside the camera’s view,
we relabel all objects to cover 360-degree detection range. We complement several intermediate
fusion-based baselines on DAIR-V2X to comprehensively validate our method on real data. For
LiDAR-based 3D object detection task, our detector follows PointPillar [35]. We represent the field
of view into a BEV map with size (200, 504, 64) and the resolution is 0.4m/pixel in length and width.

5.2 Quantitative evaluation
Benchmark comparison. Fig. 3 compares the proposed Where2comm with the previous methods in
terms of the trade-off between detection performance (AP@IoU=0.50) and communication bandwidth;
also see exact values in Table 3 of Appendix. We consider single-agent detection without collaboration
(Ô(0)

i ), When2com [12], V2VNet [1], DiscoNet [2], V2X-ViT [26] and late fusion, where agents
directly exchange the detected 3D boxes. The red curve comes from a single Where2comm model
evaluated at varying bandwidths. We see that the proposed Where2comm: i) achieves a far-more
superior perception-communication trade-off across all the communication bandwidth choices and
various collaborative perception tasks, including camera-only 3D object detection from aerial view
and car front view, and LiDAR-based 3D object detection; ii) achieves significant improvements over
previous state-of-the-arts on both real-world (DAIR-V2X) and simulation scenarios, improves the
SOTA performance by 7.7% on DAIR-V2X, 6.62% on CoPerception-UAVs, 25.81% on OPV2V,
1.9% on V2X-Sim; iii) achieves the same detection performance of previous state-of-the-arts with
extremely less communication volume: 5128 times less on CoPerception-UAVs, more than 100K
times less on OPV2V, 55 times less on V2X-Sim, 105 times less on DAIR-V2X.

Multi-round evaluation. Fig. 4 presents the performances of Where2comm at communication rounds
ranging from 1 to 3. Each curve comes from a single Where2comm model with a certain communica-
tion round evaluated at varying bandwidths. Results show that 1 communication round is good, more
rounds are even better. Multi-round communication steadily improves the performance-bandwidth
trade-off across all three datasets, reflecting its effectiveness and robustness. This encourages the
agents to actively collaborate without worrying the performance degradation. This also validates
that Where2comm can well work at various communication bandwidths and rounds.

Robustness to localization noise. We follow the localization noise setting in V2VNet and V2X-ViT
(Gaussian noise with a mean of 0m and a standard deviation of 0m-0.6m) and conduct experiments
on all the three datasets to validate the robustness against realistic localization noise. Where2comm is
more robust to the localization noise than previous SOTAs. Fig. 5 shows the detection performances
as a function of localization noise level in CoPerception-UAVs, OPV2V and V2X-Sim datasets,
respectively We see: i) overall the collaborative perception performance degrades with the increasing
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(a) CoPerception-UAVs (b) OPV2V (c) V2X-Sim

Figure 5: Robustness to localization error. Gaussian noise with zero mean and varying std is
introduced. Where2comm consistently outperforms previous SOTAs and No Collaboration.

(a) X1 in BEV (b) C(0)
1 (c) M(0)

1→2 (d) W(0)
1→1 (e) Ô(0)

1

(f) X2 in BEV (g) R(0)
2 (h) Z(0)

2→1 (i) W(0)
2→1 (j) Ô(1)

1

Figure 6: Visualization of collaboration between Drone 1 and Drone 2 on CoPerception-UAVs
dataset, including spatial confidence map (C(0)

1 ), selection matrix (M(0)
1→2), message ({R(0)

2 ,Z(0)
2→1})

in the communication module, attention weight in the fusion module (W(0)
1→1,W(0)

2→1), and Drone 1’s
detection results before (Ô(0)

1 ) and after (Ô(1)
1 ) collaboration. Green and red boxes denote ground-

truth and detection, respectively. The objects occluded by a tall building can be detected through
transmitting spatially sparse, yet perceptually critical message.

localization noise, while where2comm outperforms previous SOTAs (When2com, V2VNet,DiscoNet)
under all the localization noise. ii) where2comm keeps being superior to No Collaboration while
V2VNet fails when noise is over 0.4m and DiscoNet fails when noise is over 0.5m on CoPerception-
UAVs. The reasons are: i) the powerful transformer architecture in fusion module attentively select
the most suitable collaborative feature; ii) the spatial confidence map helps filter out noisy features,
these two designs work together to mitigate noise localization distortion effects.

5.3 Qualitative evaluation
Visualization of spatial confidence map. Fig. 6 illustrates how Where2comm is empowered by the
proposed spatial confidence map. In the scene, Drone 1’s view is occluded by a tall building. With
Drone 2’s help, Drone 1 is able to detect through occlusion. Fig. 6 (a-d) shows Drone 1’s observation,
spatial confidence map (1), binary selection matrix (2), and ego attention weight (3). Fig. 6 (f-h)
shows Drone 2’s observation and message sent to Drone 1, including the request map (opposite of
confidence map) and the sparse feature map, achieving efficient communication. Fig. 6 (i) shows
the attention weight for Drone 1 to fuse Drone 2’s messages, which is sparse, yet highlights the
objects’ positions. Fig. 6 (e) and (j) compares the detection results before and after the collaboration
with Drone 2. We see that the proposed spatial confidence map contributes to spatially sparse, yet
perceptually critical message, which effectively helps Drone 1 detect occluded objects.

Visualization of detection results. Fig. 7 shows that compared to No Collaboration, When2com
and DiscoNet, Where2comm is able to achieves more complete and accurate detection results. The
reason is that When2com employs a scalar to denote the agent-to-agent attention, which cannot
distinguish which spatial area is more informative; DiscoNet employs a MLP-based fusion weight
learning, which cannot well capture the complex collaboration attention; while Where2comm can
zoom in to critical spatial areas in a cell-level resolution and leverage the spatial confidence map and
sensing distances as priors to achieve more comprehensive fusion.
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(a) No Collaboration (b) When2com (c) DiscoNet (d) Where2comm
Figure 7: Where2comm qualitatively outperforms When2com and DiscoNet in DAIR-V2X dataset.
Green and red boxes denote ground-truth and detection, respectively. Yellow and blue denote the
point clouds collected from vehicle and infrastructure, respectively.

Figure 8: Selection matrix ablation
study. Applying Gaussian filter im-
proves performance.

Table 2: Fusion component ablation study. Multi-head atten-
tion (MHA), sensor positional encoding (SPE) and spatial
confidence map (SCM) all improves the performances. Re-
sults are reported in AP@0.50/AP@0.70.

MHA SPE SCM OPV2V CoPerception-UAVs V2X-Sim
34.96/13.92 63.48/44.23 51.2/45.7

✓ 38.75/13.28 63.99/44.46 57.3/50.8
✓ ✓ 39.82/16.43 64.34/46.86 59.1/52.0
✓ ✓ ✓ 47.30/19.30 64.83/47.62 59.1/52.2

5.4 Ablation studies
Effect of Gaussian filter in perceptually critical area selection. Fig. 8 compares two versions
of the selection matrix (2) with and without Gaussian filter. We see that applying Gaussian filter
improves the overall performance. The reason is that: i) Gaussian filter could help filter out the
outliers in the input map, selecting more robust critical regions; ii) it considers the context, benefiting
the independent feature selection at each certain location by providing more information.

Effect of components in spatial confidence-aware message fusion. Tab. 2 assesses the effectiveness
of the proposed fusion with two priors. We see that: i) per-location multi-head attention (MHA)
outperforms the vanilla attention by 10.84% on OPV2V on AP@0.50, because MHA leverages
information from multiple heads, better capturing cross-agent attention; and ii) As two informative
priors, both sensing position encoding (SPE) and spatial confidence map (SCM) can consistently
improve the performance. Especially, the version with all three designs improves the detection
performance by 22.06% on OPV2V on AP@0.50.

6 Conclusion and limitation
We propose Where2comm, a novel communication-efficient collaborative perception framework. The
core idea is to exploit a spatial confidence map at each agent to promote pragmatic compression,
assisting agents to decide what to communicate with whom, and whose information to aggregate.
Each agent offers spatially sparse, yet perceptually critical features to support other agents; meanwhile,
requests complementary information from others in multi-round communication. Comprehensive
experiments covering multi-type agents and multi-modality inputs show that Where2comm achieves
far superior trade-off between perception performance and communication bandwidth.

Limitation and future work. The current work focuses on perceptually critical spatial areas. In
future, we plan to expand a similar idea to the temporal dimension and determine critical time stamps.
More cost will be reduced by exploring when to communicate. We also expect that more methods on
pragmatic compression and emergent communication could be applied to collaborative perception.
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the Science and Technology Commission of Shanghai Municipal under Grant 21511100900, CCF-
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