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ABSTRACT

Transparency and interpretability are crucial for enhancing cus-
tomer confidence and user engagement, especially when dealing
with black-box Machine Learning (ML)-based recommendation sys-
tems. Modern recommendation systems leverage Graph Neural
Network (GNN) due to their ability to produce high-quality recom-
mendations in terms of both relevance and diversity. Therefore, the
explainability of GNN is especially important for Link Prediction
(LP) tasks since recommending relevant items can be viewed as pre-
dicting links between users and items. GNN explainability has been
a well-studied field, but existing methods primarily focus on node
or graph-level tasks, leaving a gap in LP explanation techniques.

This work introduces Z-REx, a GNN explanation framework
designed explicitly for heterogeneous link prediction tasks. Z-REx
utilizes structural and attribute perturbation to identify critical sub-
structures and important features while reducing the search space
by leveraging domain-specific knowledge. In our experimentation,
we show the efficacy of Z-REx in generating contextually relevant
and human-interpretable explanations for ZiGNN, a GNN-based
recommendation engine, using a real-world real-estate dataset from
Zillow Group, Inc. We compare against State-of-The-Art (SOTA)
GNN explainers to show Z-REx outperforms them by 61% in Fidelity
metric by producing superior human-interpretable explanations.

CCS CONCEPTS

•Mathematics of computing→ Graph algorithms; • Comput-

ing methodologies→ Neural networks.
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1 INTRODUCTION

As user interactions in housing marketplaces grow in volume and
complexity, personalized recommendation systems are becoming in-
dispensable for improving user experience and satisfaction. Recent
advancements in data modeling and recommendation algorithms
enable the creation of detailed interaction graphs, that capture
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nuanced relationships between users and items (e.g., property list-
ings and cities). Leveraging the inherent structure of these graphs
provides fine-grained insights into user behaviors and preferences,
forming a strong foundation for advanced recommendation systems.
Building on these insights, various learning-based recommendation
systems have been developed and deployed to effectively utilize
this data, significantly improving personalization and engagement
rates across multiple domains.

In particular, GNNs have emerged as a powerful tool for mod-
eling relational data in recommendation systems. GNNs leverage
graph-structured data, where nodes represent entities (such as users,
listings, and cities) and edges denote interactions (such as user
views, saves, and tours). Through a message-passing mechanism,
GNNs aggregate information from neighboring nodes and edges,
enabling them to capture complex, multi-hop relationships within
the graph. This capability makes GNNs particularly effective for per-
sonalized recommendations, as they can identify nuanced patterns
in user preferences and item associations.

While GNN-based recommendation models achieve impressive
accuracy, their black-box nature poses significant challenges re-
garding trust and transparency. Users and system administrators
often require explanations for recommendations, particularly in
high-value transactions or critical decision-making scenarios. Cur-
rent GNN explanation techniques focus on node and graph-level
tasks whereas recommendation systems model the recommenda-
tion problem as Link Prediction (LP) tasks, as recommending rel-
evant items to users can be framed as predicting links between
users and relevant items. Therefore, there is a notable gap in the
literature concerning the explanation of LP tasks.

Existing GNN explanation techniques [1]–[3] primarily focus on
generating explanations by either learning a mask to select an edge-
induced subgraph or searching for the most informative subgraph.
While these methods are effective for node-level and graph-level
tasks, they face significant challenges in link-level prediction con-
texts. For instance, approaches like [1], [2] often yield disconnected
edges or subgraphs, making the resulting explanations challenging
to interpret about the predicted link. Furthermore, [3] suffers from
scalability issues as the graph size increases exponentially, leading
to computational challenges due to the combinatorial explosion of
possible subgraphs. This is particularly problematic since enumer-
ating all subgraph types requires checking for isomorphism, which
results in exponential time complexity as the graph’s vertices and
edges grow. Customizing these techniques for sparse datasets and
heterogeneous graphs introduces further difficulties. Existing meth-
ods emphasize dense local subsets of the dataset and are primarily
designed for homogeneous graphs, limiting their applicability to
more sparse and diverse graph structures.
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Explaining GNNs for LP introduces three unique challenges
(also noted by [4]): (1) accurate interpretation of substructures
in the presence of sparse relations, (2) scalability, and (3) hetero-
geneity. To address these challenges, we formulate LP explanation
as an instance-level, post-hoc task that generates interpretable
ground-truth aware explanations by identifying the most impor-
tant feature subset and critical subgraphs. Our approach offers both
interpretable and scalable explanations while also accounting for
the heterogeneity of real-world recommendation systems. This pro-
vides a critical advancement in improving the transparency and
trustworthiness of GNN-based recommendation systems.

We propose Z-REx, an instance-level GNN-based recommenda-
tion explanation framework for LP tasks using entire heterogeneous
graphs. Z-REx leverages both graph structures and domain knowl-
edge to identify critical structural relationships to provide explana-
tions with better contextual relevance and alignment with ground
truth. Our approach involves a two-step collaborative processwhere
we perturb: (1) the features to identify the most important subset,
and (2) the graph to determine the key subgraphs.

Our study emphasizes the importance of decoupling the decision-
making process using both structural and entire feature sets, and
instead focuses on using a subset of features and subgraphs to en-
hance the interpretability of recommendations. This allows us to
create context-aware explanations that align closely with the inter-
action patterns found in recommendation systems. We stress that
our framework, Z-REx, is designed to provide interpretable insights
into GNN decisions, not to improve recommendation accuracy.

To demonstrate the effectiveness of Z-REx, we measure the
quality of explanation for recommendations made by ZiGNN, a
GNN-based recommendation engine for heterogeneous interaction
graphs. We use a real-world real-estate dataset from Zillow Group,
Inc. The dataset is collected from a large-scale recommendation
platform, where user interactions are logged across a diverse set of
listings and cities over an extended period. Finally, we compare it
against SOTA GNN explainers, evaluating its ability to provide rele-
vant explanations in recommendation tasks. Our evaluation shows
that Z-REx outperforms existing explainers in terms of providing
actionable and interpretable insights for both users and system
administrators. This work highlights the potential for developing
domain-specific features to close the gap between high-performing
recommendation systems and their need for transparency.

In summary, the key contributions of our work are:
• To the best of our knowledge, this is the first end-to-end
framework that integrates recommendation and instance-
level explanation using whole graph structure without dis-
integrating into paths or subgraphs.
• We conduct an extensive analysis of the real-world hous-
ing market to uncover structural heuristics that reduce the
explanation search space and improve the relevance of rec-
ommendation explanations.
• We propose a collaborative approach combining feature and
structural perturbation, which enhances both the accuracy
and diversity of recommendations and is validated through
a real-world case study.

• Z-REx outperforms PaGE-Link by 29%, GNNExplainer by
85%, and SubgraphX by 70% in the Fidelity metric, demon-
strating its superior explanation accuracy.

2 BACKGROUND AND RELATEDWORKS

GNN-based Recommendation Framework. Graph Neural Net-
works (GNNs) have emerged as a powerful approach for enhancing
recommender systems. Over the past few years, several studies
have applied GNNs directly to user-item bipartite graphs, yield-
ing significant improvements in both effectiveness and efficiency
[5]–[9]. One common challenge in this approach lies in capturing
higher-order connectivity between nodes. Multi-GCCF [10] and
DGCF [11] address this by introducing artificial edges that con-
nect two-hop neighbors (e.g., user-user and item-item graphs) to
introduce proximity information into the user-item interaction.

Node representations are computed layer-by-layer in GNNs,
where the overall user and item representations are critical for
downstream tasks like recommendation prediction. The most com-
mon practice is to adopt the final-layer embeddings as the ultimate
representations [12], [13]. For a comprehensive survey of GNN-
based recommender systems, readers are referred to [14].

NGCF [9] enhances feature interactions between users and items
using an element-wise product operation. NIA-GCN [8], on the
other hand, introduces pairwise neighborhood aggregation to bet-
ter capture neighbor relationships. Inspired by GraphSAGE [15],
[10], [12], [13] utilize a concatenation operation followed by non-
linear transformations to update node representations. Conversely,
LightGCN [16] and LR-GCCF [7] simplify the aggregation by re-
moving non-linearities, which enhances both performance and
computational efficiency.
GNN-based Explainers. Recent research in GNN explainers [1]–
[3] has advanced in identifying key nodes, edges, or subgraphs
in GNNs. They are categorized into white-box and black-box ex-
plainers. White-box methods, e.g., GNNExplainer [1] and PGEx-
plainer [2], access GNN internals, including model weights and
gradients. Conversely, black-box methods like SubgraphX [3] oper-
ate on model inputs and outputs, reducing coupling between the
explanation framework and model architecture. GNN explainers
encounter exponentially increasing computation time with graph
size growth, hindering the interpretability in real-world graphs.
GNN-based Recommendation Explainers. The rise of GNN-
based recommender systems has created a pressing need for ex-
plainability in these recommendation systems [17]. Explainable
recommender systems aim to not only deliver accurate predictions
but also provide transparent and persuasive justifications for rec-
ommendations [17]–[20]. Prior work on explainable recommender
systems adopted these strategies [17] of designing intrinsically ex-
plainable models with interpretable logic [21], [22] and using post
hoc models that generate explanations for the predictions of black-
box models [23]. However, these methods face two key challenges:
(1) representing explainable information often requires node at-
tributes and influential subgraphs identification, and (2) reasoning
for recommendations relies on domain knowledge [17].

Several explainable AI (XAI) approaches have been proposed,
focusing on node or graph classification tasks [2], [24]–[26]. These
methods commonly provide factual explanations in the form of
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subgraphs deemed relevant for a particular prediction analogous to
feature-based XAI methods like LIME [27] and SHAP [28]. [4] was
the first work to do a path-based graph neural network explanation
for heterogeneous link prediction tasks with the primary limitation
that the explanation depends on the ego-graph constructed around
the explanation node. Therefore, the explanation technique cannot
provide relevant explanations for larger graphs with multiple node
attributes (e.g., ego-graph size increases exponentially) and large
graph diameter. Our approach bridges the gap between general XAI
solutions and the unique need for explainable recommendations,
addressing transparency challenges and the complexity of graph-
structured user-item relationships.

3 PROBLEM STATEMENT

In this section, we formally define the problem of providing inter-
pretable explanations for the link prediction task in GNN-based
recommendation systems using whole heterogeneous graphs. The
key challenge is to provide human-interpretable insights that align
with the ground-truth so that user confidence and user trust is con-
firmed. Therefore, we aim to identify the most important feature
subset and critical subgraphs used for recommendation by a GNN-
based recommendation engine using a real-world heterogeneous
real-estate dataset (e.g., Zillow Group, Inc).
Recommendation Task. The primary task of the recommendation
system discussed here is to predict the likelihood of a link between
a user 𝑢 ∈ V𝑢 and a city 𝑙 ∈ V𝑐 based on observed interactions and
the graph structure. This is formalized as a link prediction problem:
𝑦𝑢𝑐 = 𝑓𝜃 (𝑢, 𝑐,G), where 𝑓𝜃 is the link prediction model parame-
terized by 𝜃 , and 𝑦𝑢𝑐 is the predicted probability of an interaction
between user 𝑢 and city 𝑐 .

4 PRELIMINARIES

We outline the construction of interaction graphs used for recom-
mendation and define the ground-truth data leveraged for training
and evaluating our models.

User Listing City

contains

searched in
views
saves
tours

Figure 1: Interaction graph from a real-estate dataset.

4.1 Interaction Graph

The user interaction data in real-estate is inherently relational,
comprising of entities such as users, listings, and cities, along with

Src Node

Type

Dst Node

Type

Edge

Type

User Listing views, saves, and tours
User City searched in
City Listing contains

Table 1: Description of relationships in the heterogeneous graph.

various interaction types like views, saves, and tours as shown
in Figure 1 and listed in Table 1 (more details in §A.3). We focus
primarily on three entities in this study since location is the most
important factor in the home-buying process [29]. All searches
on Zillow Group, Inc website [30] correspond to a location, and
we consider the city to be one of the entities, in addition to the
interactions between users and listings. Since every listing belongs
to a city, a special contains edge is added between the listing
and the city. These entities and interactions are best modeled as a
heterogeneous interaction graph G = (V, E), where:
• V represents the set of nodes (e.g., user, listing, and city)
• E ⊆ V×V denotes the set of edges that encode interactions
(e.g., user→ views→ listing, city→ contains→ listing).

The construction of the interaction graph G involves aggregating
data from multiple sources, such as user behavior logs, listing meta-
data, and geographical information. Each edge 𝑒 ∈ E is associated
with a type 𝜏 (𝑒), representing the nature of the relationship between
two nodes. Formally, we define a heterogeneous interaction graph
as: G = (V𝑢 ∪V𝑙 ∪V𝑐 , E𝑢𝑙 ∪ E𝑐𝑙 ∪ E𝑢𝑐 ), where V𝑢 , V𝑙 , and V𝑐
represent the sets of user, listing, and city nodes, respectively. E𝑢𝑙
corresponds to interactions between users and listings, E𝑐𝑙 cap-
tures relationships between cities and listings, and E𝑢𝑐 captures
relationships between users and cities.

4.2 Ground Truth

The ground truth for training and evaluating is derived from histor-
ical user interactions with listings on the platform. Specifically, the
interaction logs provide labels for whether a user 𝑢 has engaged
with a listing 𝑙 (e.g., viewed, saved, and toured), resulting in positive
examples for link prediction. We infer the user to city interaction
based on the listing interaction as listings are all associated with a
city.

User Listing City

Positive Graph Negative Graph

User Listing City

Figure 2: Negative graph construction from positive graph.
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Negative examples are defined by selecting edges between users
and cities (or listing) where no interaction has been recorded, as-
suming that non-interaction implies a lack of interest. These are
weak negative edges, as there is no explicit evidence that the user
dislikes the item. However, for our use case in real-estate, we argue
that a user’s lack of interaction and interest are closely aligned,
given the context where the items are either listings or cities. Thus,
incorporating weak negative edges to create a negative graph helps
the recommendation model learn finer distinctions about the city
(or listing) preferences and understand why users do not interact
with them. A negative graph is generated by sampling negative
edges from user-listing and user-city pairs as shown in Figure 2.

We generate ground truth explanations by identifying the sub-
graphs most relevant for each prediction and comparing their node
features to identify their similarity. These subgraphs serve as inter-
pretable justifications for why a specific user 𝑢 is likely to engage
with listing 𝑙 , thus providing a transparent recommendation system.

Let, Y ⊆ V𝑢 ×V𝑙 be the set of observed interactions (positive
examples), andY′ ⊆ V𝑢 ×V𝑙 be set of sampled negative examples.
The training set T is constructed as T = {(𝑢, 𝑙,𝑦𝑢𝑙 ) | (𝑢, 𝑙) ∈
Y ∪ Y′, where 𝑦𝑢𝑙 = 1 if (𝑢, 𝑙) ∈ Y and 𝑦𝑢𝑙 = 0 if (𝑢, 𝑙) ∈ Y′.

5 Z-REX OVERVIEW

The workflow of Z-REx is illustrated in Figure 3 and algorithm is
described in Algorithm 1 where Z-REx first performs feature per-
turbation to find the important features and then performs graph
structural perturbations to identify the important subgraph struc-
tures. We focus on user-city due to the problem definition in §3, but
this method works for any relationship.

5.1 Feature Perturbation.

To interpret the GNN-based recommendation system, we first ana-
lyze the influence of target node features using feature perturbation.
Consider a user 𝑢 and their recommended city 𝑐𝑡 with their embed-
dings, ℎ𝑢 and ℎ𝑐𝑡 , where cosine similarity represents the predicted
affinity score that the GNN uses to rank city 𝑐𝑡 for user 𝑢:

sim(h𝑢 , h𝑐𝑡 ) =
h𝑢 · h𝑐𝑡
∥h𝑢 ∥∥h𝑐𝑡 ∥

. (1)

The feature perturbation involves the following steps:
(1) Feature Perturbation: Perturb the target city’s features

x𝑐𝑡 one by one by zeroing them out, and the indices of the
features to be zeroed out are in F . The perturbed features
x̄𝑐𝑡 are defined as:

x̄𝑐𝑡 [𝑖] =
{

0, if 𝑖 ∈ F ,
x𝑐𝑡 [𝑖], otherwise.

(2)

(2) Compare Performances:Compare the change in nDCG@K
ΔnDCG(F ) due to the perturbed features x̄𝑐𝑡 :

ΔnDCG@K(F ) = nDCG@K
(
x̄𝑐𝑡

)
− nDCG@K

(
x𝑐𝑡

)
. (3)

The ZiGNN is re-evaluated using the perturbed features, and the
resulting performance degradation is measured using the ranking
metric of nDCG@K (Normalized Discounted Cumulative Gain).
A significant drop in the metric indicates the importance of the
perturbed feature for the recommendation.

5.2 Structural Perturbation.

While feature perturbation focuses on node-level characteristics,
structural perturbation analyzes the impact of graph topology on
the model’s predictions. Thus, accounting for the whole graph con-
text in each recommendation explanation. Please note that struc-
tural perturbation happens with only the subset of features iden-
tified in the previous step. Feature perturbation identifies node
attributes that have a significant influence on the recommendation
outcomes, while structural perturbation uncovers graph edges and
relationships that are critical to the model’s predictions.

Specifically, we study how the presence or absence of edges in
the graph influences the recommendation similarity. The procedure
is as follows:

(1) Graph Transformation: From the heterogeneous graph,
a user-city graph Gℎ is created by collapsing all user-city
relationships and removing intermediate nodes (e.g., listings).
A 𝑘-hop subgraph G𝑘𝑢 centered around a target user𝑢 is then
extracted, focusing on both direct and indirect relationships
with city nodes.

(2) Identify Co-clicked Cities: For the subgraph G𝑘𝑢 , we iden-
tify pairs of cities (𝑐𝑖 , 𝑐 𝑗 ) that share a common predecessor
user 𝑢𝑝 . These pairs are added as new edges, representing
co-click relationships, and their contributions to the model
predictions are evaluated. By co-clicked cities, we mean cities
in which the current user clicked listings, as well as cities
other users clicked listings in, where they share at least one
common city with the current user. A co-clicked city indi-
cates user groups with similar preferences.

(3) Edge Removal and Similarity Change: To assess the im-
portance of structural connections, we iteratively remove
identified edges and recompute the similarity between the
user embedding h𝑢 and the target city embedding h𝑐′𝑡 . The
change in similarity Δsim after edge removal is defined as:

Δsim = sim(h𝑢 , h𝑐′𝑡 ) − sim(h𝑢 , h𝑐𝑡 ) . (4)
Edges with the highest absolute Δsim values are identified as

critical contributors to the recommendation. These edges represent
strong graph relationships that drive user preferences for specific
cities. The hyperparameters that influence the structural pertur-
bations are: (1) 𝑘 (hop distance) as it limits the number of edges
perturbed to efficiently evaluate while focusing on the most im-
pactful connections and increasing 𝑘 captures more indirect rela-
tionships but may introduce noise, and (2) edge removal strategy as
prioritizing edges based on shared predecessors ensures that only
influential connections are analyzed.

5.3 Graph Size vs. Resource Overhead

We provide real estate-specific recommendation explanations by
leveraging the insight that co-clicked cities have a significant impact
on recommendations. Co-clicked cities restrict the search space for
structural perturbations, which in turn lead to finding the optimal
number of edges required to change the recommendations. We
acknowledge that iterative perturbation can be a resource-intensive
process. But, our experiments show that real estate interaction is
sparse in nature (as seen in Table 7), since people view the most
number of listings, but only save a few, and tour even fewer listings.
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Important 
Node 

Attributes

Feature 
Perturbation

Structural 
Perturbation

Interaction Graph Important Subgraph 

Important Node 
Attributes + 
Subgraph

Figure 3: Z-REx overview.

Therefore, the interaction graph from the real-world data is also
sparse (as seen in the 30-days sub-section of Table 7), so large-scale
real-world deployments are feasible.

As seen in Table 8 in evalaution, training one epoch on a 30-day
interaction graph containing 29.8M edges requires 10.89 sec, only
an order of magnitude slower than the 0.88 sec required for a 3-
day snapshot containing 1.2M edges, confirming that additional
temporal coverage does not explode computation and inference
time stays almost the same. The results demonstrate that Z-REx
delivers timely and faithful explanations at a production scale.

5.4 Generalizability of Z-REx

To adapt the Z-REx for other recommendation tasks, the edge per-
turbation step needs modification since for real estate, we are using
domain knowledge and are focusing on co-clicked edges. For other
domains, these edges might not exist, or the assumption we made
might not be accurate. Since the structure influences the GNN’s
message passing step, we think that for other domains, we can
translate the insights to structural constraints, we can update §5.2
Structural Perturbation, and decrease the search space from all the
potential edges to a smaller list of potentially important edges.

6 EVALUATION

To comprehensively evaluate, Z-REx we investigate the following
research questions using the methodology §6.1 and dataset §6.2.
• RQ1: Recommendation Accuracy. Can ZiGNN recom-
mend relevant regions? (§6.3)?
• RQ2: Explanation Accuracy. Can Z-REx explain ZiGNN’s
recommendations ? (§6.4)?
• RQ3: Comparison with SOTA GNN Explainers. How do
the explanations of ZiGNN compare against those of SOTA
GNN explainers (GNNExplainer [1], PGExplainer [2], and
SubgraphX [3]) (§6.5)?

6.1 Methodology

The data processing of ZiGNN is described in Algorithm 2, which
begins by extracting features containing user activities (e.g., views
and saves), user and listing attributes, and their geographical re-
gions. During preprocessing, missing values are handled systemati-
cally to ensure data integrity. Outliers, which can distort analysis
and model training, are addressed by replacing extreme values
(detected using Z-scores) with the column mean. These steps en-
sure a clean and reliable dataset. Additionally, numerical features
are normalized using z-score normalization, creating a consistent
data representation. These preprocessing steps create a robust and
standardized dataset, ready for graph-based modeling in the rec-
ommendation system.

After preprocessing, the user, listing, and city data are used to
construct a heterogeneous graph. Each entity (e.g., user, listing,
and city) is represented as a unique node type, and edges capture
interactions between these nodes. For instance, user-to-listing edges
represent activities such as views or saves, while city-to-listing
edges denote listings contained within a city. Node features are
assigned and this comprehensive graph representation forms the
backbone of the recommendation system, enabling the ZiGNN to
understand complex relationships.

The training pipeline first constructs the negative graph to en-
sure a balanced training dataset by mimicking real-world scenarios
where users do not interact with all items. During evaluation, the
ZiGNN’s effectiveness was tested using node embeddings derived
from the trained model. These embeddings were normalized to en-
able cosine similarity-based retrieval, crucial for recommendation
tasks. For specific canonical edge types (e.g., ’user’, views, ’city’),
embeddings were computed separately for source (e.g., user) and
destination nodes (e.g., city). The recommendation performance of
ZiGNN is measured using nDCG@K, which evaluates the ranking
quality of recommendations and prioritizes highly relevant items.
Metrics like nDCG@K was used to evaluate recommendation qual-
ity, providing quantitative insights.
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Metric. Z-REx explains the recommendations generated by ZiGNN,
and for this experimentation, we focus on user-to-city views rela-
tionships, but this works for any relationships. First, we identify an
important subset of features by measuring the change in nDCG@K
score when individual features are zeroed out. Then, selecting those
that produce a negative impact on nDCG, meaning those features
were important for predicting relevant recommendations. To align
with the recommendation explainability task, we redefine the tradi-
tional Fidelity metric [3]—originally based on change in prediction
confidence—as the change in nDCG@K score due to perturbations.
The explanation performance of Z-REx is then evaluated based
on the drop in nDCG@K score and the change in cosine similar-
ity (Δsim) between user and city embeddings caused by structural
perturbations and by only using the important features.
Baseline. We compare Z-REx against GNNExplainer [1], Sub-
graphX [3] and PaGE-Link [4], demonstrating superior explanation
quality as evidenced by higher fidelity to the ground truth. We
also compare ZiGNN against two baselines to validate its effec-
tiveness: (1) random recommendations where recommendations
are generated randomly without considering user preferences, and
(2) histogram recommendations where a histogram-based method
that creates recommendations from user-item interaction summary.
ZiGNN outperforms both the baselines in recommendation accu-
racy as demonstrated by higher nDCG@K.

6.2 Dataset

The dataset was collected over a three-day and 30-day period from
the state ofWashington in the USA. The dataset statistics are shown
in Table 5 and Table 6, and more details in §A.4. The dataset is split
into training, validation, and test sets, ensuring that the test set con-
tains previously unseen pairs, which are evaluated on the following
day to avoid any data leakage. The 30-day setting naturally reduces
temporal leakage between training and evaluation interactions, fur-
ther strengthening the case for Z-REx as a robust, scalable, and
domain-aware explainer for real-estate recommender systems. Its
ability to combine high fidelity with diversified recommendations
makes it the only method that meets practical requirements for
accuracy, interpretability, and user engagement.

To note, currently there are no public real estate datasets that
contain user-to-listing interactions or the rich attributes we are
using. Therefore, we collected and used our own dataset, that ac-
counts for seasonal trends. In the 3-days training data (refer to
Table 7), expected trends are seen such as view events are the most
popular event, followed by save and then toured because users tend
to view multiple items before saving them and finally touring the
item. The average interaction of the user to listing for view event
for the 25th quantile is 1.0 and the 75th quantile is 8.0, the save
event for the 25th quantile is 2.7 and the 75th quantile is 3.0, and the
tour event for the 25th quantile is 3.2 and the 75th quantile is 4.0.
Therefore, from the average interaction of different events statistics
tells us that the graph generated from the dataset will contain more
sparse connections than dense connections.

The experiments utilize a heterogeneous graph built from user,
listing, and city interaction data (shown in Table 1), where node
types encompass multiple attributes of varying data types (shown
in Table 4); interested readers can find more details in §A.3. Certain

feature values can have valid but outlier values, such as commer-
cial properties with over a thousand bedrooms and bathrooms. In
contrast, residential real estate has an average number of bedrooms
of 4 and bathrooms of 3.

1 3 5 7 10
K

0.000
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0.010

0.015

0.020

0.025

nD
CG

Recommendation Accuracy
Model

ZIGNN (30 days)
ZIGNN (3 days)
Histogram
Random

Figure 4: Performance of ZiGNN against different baselines.

6.3 Recommendation Accuracy of ZiGNN

To investigate RQ1, we compared the performance between the
ZiGNN (3-days) and the baseline recommendation models to re-
veal ZiGNN consistently and substantially outperforms the rest
as seen in Figure 4. ZiGNN consistently surpasses the histogram
model across all values of K, with the performance gap widening
as K increases. Notably, at 𝐾 = 10, the ZiGNN achieves an nDCG
score of 0.019, a 52% improvement over the histogram model’s
0.0125, demonstrating ZiGNN’s ability to produce more accurate
and relevant recommendations as the recommendation set grows.

This trend is further emphasized by the steep growth curve
of the GNN’s performance compared to the relatively linear in-
crease observed for the histogram model, showcasing the ZiGNN’s
adaptability. ZiGNN’s structural representation learning captures
nuanced relationships in the data that the histogram model, with
its simpler statistical approach, fails to address. At 𝐾 = 1, where
only the top recommendation matters, ZiGNN outperforms the
histogram model by a remarkable 200% (0.0075 vs. 0.0025), high-
lighting its capacity to prioritize themost relevant results effectively.
Comparing ZiGNN performance using the extended 30-day dataset
and 3-day dataset, the 30-day model yields consistent improvement
gains ranging from 30% at 𝐾 = 10 to nearly 90% at 𝐾 = 1, high-
lighting the benefit of incorporating a longer 30-day interaction
window where the user behavior is captured with higher relevance.

6.4 Explanation Quality of Z-REx

For investigating RQ2, we first consider the feature perturbation
quality and show that we can identify the top ten important city
features for the recommendation by measuring the difference be-
tween the original nDCG and the perturbed nDCG when a feature
is zeroed out. When the difference is positive, the feature was im-
portant for predicting the recommendation, as shown in Figure 5,
and features with negative differences mean they were confusing
the model (more details in §A.5).
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Figure 5: Impact of zeroing out features to find important features.
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In particular, these important features can be grouped: (1) geo-
graphic - latitude (top right and bottom left) and longitude (bottom
left), (2) boolean - view, spa, and vacant land, and (3) numeric -
year, population count, days on the market, and square feet. As
illustrated in Figure 6, using only the important features yield better
performance than using all the features, demonstrating that Z-REx
effectively identifies the important features needed for user-city
recommendation. These top features will be the only features used
for measuring the structural perturbation quality.

The important city features align with domain knowledge: a city
is typically characterized by its geographic location and aggregate
properties (e.g., population count, the average year of houses, and
average days on the market), which are different from the features
usually used to characterize a listing (e.g., the number of bathrooms
and bedrooms). Aggregate properties offer a holistic snapshot of a
city’s dynamics and freshness. Interestingly, cities with a younger
infrastructure experience rapid growth, indicating a strong inter-
play between user preference and given recommendations.

In Figure 5, the boolean feature view yields the best recommen-
dation performance. Moreover, combining the top fourteen features
results in performance similar to the single boolean feature. Incor-
porating additional features is necessary because relying solely on

one boolean feature would compromise the model’s generalizability
and robustness. Furthermore, considering a diverse set of features,
Z-REx does not overfit its explanation to a single scenario.

Change in Z-REx PaGE-Link [4] GNNExplainer [1] SubgraphX [3]

3-days (Training)

nDCG (% decr.) 94% 81% (-13%) 21% (-73%) 47% (-47%)
cosine similarity -0.10 -0.07 (-0.03) -0.02 (-0.08) -0.04 (-0.06)

30-days (Training)

nDCG (% decr.) 92% 63% (-29%) 9% (-85%) 22% (-70%)
cosine similarity -0.09 -0.05 (-0.04) -0.01 (-0.08) -0.02 (-0.07 )

Table 2: Quantitative evaluation of Z-REx against GNN explainers.

Table 2 quantitatively evaluates the performance of Z-REx against
SOTA GNN explainers, where Z-REx outperforms PaGE-Link, GN-
NExplainer, and SubgraphX in both nDCG and cosine similarity
metrics, demonstrating its superior explanation accuracy compared
with the ground-truth. In the ground-truth, the edges in the real-
world dataset are treated as positive, and other edges are treated
as negative. It is seen that Z-REx achieves the most significant
reduction in nDCG (94%), indicating superior fidelity in explana-
tion degradation. Additionally, it achieves the largest decrease in
cosine similarity (-0.10), highlighting its effectiveness in finding the
important subgraphs that alter ZiGNN’s recommendations.

Our month-long (30-days) evaluation confirms that Z-REx deliv-
ers markedly stronger explanations than all baselines while opti-
mally scaling to a larger interaction graph. With a 30-days training
window, Z-REx preserves 92% of the original nDCG, almost identi-
cal to its 3-day performance (94%), and maintains the largest em-
bedding shift (-0.09), indicating that it highlights influential edges
without collapsing recommendation diversity.

The stability of Z-REx across time windows suggests that its
structural perturbation strategy generalizes rather than over-fitting
to short-term interaction noise. The two-point drop in nDCG reten-
tion and the 0.01 improvement in cosine similarity from 3 to 30 days
imply that extending the past horizon yields the same explanatory
fidelity with slightly more conservative embedding movements, an
attractive trade-off for production systems.

6.5 SOTA GNN Explainers vs. Z-REx

We compared Z-REx against a specialized GNN-based recommen-
dation explainer PaGE-Link [4] and two general GNN explainers,
GNNExplainer [1] and SubgraphX [3] in Table 2 to answer RQ3.
Z-REx performed the best, followed by PaGE-Link and general pur-
pose GNN explainers performed the worst which is expected since
Z-REx and PaGE-Link have been specifically designed for LP tasks.
In contrast, the recommendation-specific PaGE-Link retains only
63% of nDCG and induces a much smaller change in cosine similar-
ity, while general-purpose explainers fall to 22% (SubgraphX) and
7% (GNNExplainer). Competing methods degrade sharply because
their mask-optimization (GNNExplainer) or Monte-Carlo subgraph
search (SubgraphX) faces an exponentially expanding candidate
space as graph size grows.
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Since, PaGE-Link creates the k-hop ego-graph by limiting the
consideration of relevant features and subgraphs. Therefore, PaGE-
Link performance degrades sharply because they compute the k-
hop neighborhood around the target link, but there is no guarantee
that the k-hop relationship will include relevant links. This limita-
tion is reflected by -0.04 less decrease is cosine similarity. Z-REx
avoids this pitfall by exploiting domain knowledge: the number of
co-clicked cities grows sub-linearly, so the search space for mean-
ingful perturbations remains tractable even on month-long graphs.
Compared to general purpose GNN explainer, i.e., GNNExplainer
and SubgraphX, Z-REx demonstrates average of -78% more reduc-
tion in nDCG and -0.08 more cosine similarity increase, indicating
that it more effectively identifies the features and subgraphs the
GNN relies on to make recommendations.

Hyperparameter Values Tested nDCG@1 Scores Best Score

Neighborhood Size (𝑘) 4, 8, 16 0.0070, 0.0075, 0.0071 0.0075 (at 𝑘=8)
Edge Removal Strategy PRI, HID, HBC 0.0070, 0.0077, 0.0075 0.0077 (at HID)
Negative Graph Size 1, 3, 5 0.0072, 0.0074, 0.0075 0.0075 (at 5)
Learning Rate 10−3, 10−2, 10−1 0.0072, 0.0074, 0.0069 0.0074 (at 10−2)
Output Feature Dim. 128, 256, 512 0.0071, 0.0075, 0.0081 0.0081 (at 512)

Table 3: Hyperparameter sensitivity summary. Each row varies one

hyperparameter while holding the others constant; the rightmost

column reports the highest nDCG@1 observed for that setting.

6.6 Hyperparameter Sensitivity Study

Table 3 shows the hyperparameter sensitivity tuning summary
where we test different neighborhood sizes (𝐾 ), edge removal strat-
egy, size of negative graph, learning rate and output feature dimen-
sions. The size of the input feature dimension is governed by the
number of features for each entity type, so we did not incorporate
that. The three different edge removal strategies we used are: (1)
PRI (prioritize Recent Interaction) which removes edges with more
recent interactions first (reduces the strength of fresh user-item
relationships); (2) HID (High In-Degree) which removes edges to
nodes with the highest in-degree (breaking these highly connected
links disrupts potential shared neighborhoods); and (3) HBC (High
Betweenness Centrality) which removes edges with high between-
ness centrality, targeting the links acting as bridges in the hub cities
in the interaction graphs.

Increasing the neighborhood size (𝐾) from 4 to 8 improves
nDCG@1, but going further to 16 diminishes it, indicating that
while broader neighborhoods capture more context, too large a
neighborhood may dilute relevant signals. HID (high in-degree) as
the edge removal strategy yields the best score among the tested
strategies, suggesting that selectively removing overly connected
edges can help avoid excessive overlap and improve the model’s
focus on more distinct interactions. A larger negative graph size,
up to a point, seems beneficial (optimal at size 5 in this table) be-
cause it gives the model a more balanced signal to distinguish
relevant versus irrelevant connections. Tuning the learning rate
reveals that a rate of 1e-2 provides a stable convergence path. Fi-
nally, a higher output feature dimension (512) significantly boosts
nDCG@1, demonstrating that a richer embedding space helps the
model capture more nuanced relational patterns but at the cost of
resource consumption.

Figure 7: Z-REx’s explanation of a recommended city #1.

7 CASE STUDY

In the case study, we selected a real user (i.e., customer) and, based
on their interactions, generated a city recommendation along with
explanations. To enhance visualization, we present a simplified
graph (Figure 7) focusing on the customer (yellow node), co-clicked
cities (blue nodes), and the recommended city (green node). A blue
edge will exist between the co-clicked city nodes, the recommended
city is the green node, and the red edges are the edges identified as
important for recommendations.

Figure 7 illustrates that the user has direct connections to a lim-
ited number of co-clicked cities. However, one of these cities is
highly connected to other cities, including the recommended city.
These highly connected cities act as information hubs, facilitating
the flow of information between the user and the recommended
city. This information flow occurs through two mechanisms: (1)
shared preferences, users who co-click on listings in the hub city
exhibit similar preferences to the target user, making the recom-
mended city more relevant, and (2) indirect connections, the hub
city connects the user to a broader network of cities with relevant
listings, increasing the likelihood of discovering the recommended
city. Consequently, Z-REx identifies the edges connecting the user
to these hub cities as critical to the recommendation, as their re-
moval significantly impacts the information flow and potentially
disrupts the discovery of relevant recommendations.

8 CONCLUSION

We introduced Z-REx, which aims to bridge a critical gap in ex-
plainable ML for recommendation systems by providing human-
interpretable insights into GNN-based recommendation systems
to increase user confidence and customer engagement. Z-REx of-
fers contextually relevant and human-interpretable explanations
through structural and attribute perturbation. Z-REx outperforms
PaGE-Link by 29%, GNNExplainer by 85%, and SubgraphX by 70%
in the Fidelity metric, demonstrating its superior explanation accu-
racy compared with the ground-truth. Specifically, ZiGNN provides
whole graph instance-level explanations for GNN models in the
context of the heterogeneous link prediction (LP) task by identify-
ing a subset of node features and subgraphs that are most influential
for GNN’s-based recommendation system.
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A APPENDIX

A.1 ZiGNN Architecture

ZiGNN is a Graph Neural Network-based recommendation engine
designed to operate on heterogeneous graphs G built using real-
world real-estate (e.g., Zillow Group, Inc.) interaction data. ZiGNN
not only models user-listing (or city) interactions for recommen-
dation but also captures contextual information such as city-level
influences and item similarities. The ability to leverage hetero-
geneous relationships improves the recommendation quality by
allowing the system to reason about multi-hop dependencies and
indirectly related entities.

ZiGNN utilized the Zillow Group, Inc. dataset for modeling and
evaluation purposes, demonstrating its effectiveness in a real-world
recommendation system. However, the architecture of ZiGNN is
generic and can be adapted to various platforms across different
domains. ZiGNN can be extended to use cases where the context
is critical in influencing user decisions, such as (user, item, contex-
t/category), where the user and item types will dictate the node
types, and the context interaction between the user and item will
for the edges. For instance, it can model different interactions: (user,
food, restaurant) in the food industry, (user, post, topic) in social
media, (patient, doctor, hospital) in healthcare, or (user, job, com-
pany) in the job search industry. By leveraging the interaction graph
creation and behavioral learning flexibility, ZiGNN can cater to a
wide range of recommendation scenarios, enhancing user satisfac-
tion and specific context-aware decision-making across multiple
domains.

The ZiGNN consists of the following components:

(1) Node Embedding Layer: Each node 𝑣 ∈ V is mapped to a
dense vector representation h𝑣 ∈ R𝑑 using an embedding
layer. The initial embeddings are learned from the node fea-
tures and are iteratively updated during the training process.

(2) Message Passing Mechanism: ZiGNN employs a multi-hop
message passing mechanism, where each node 𝑣 ∈ V aggre-
gates information from its neighbors N(𝑣) through a learn-
able function. The node update rule for 𝑡-th layer is defined
as h(𝑡+1)𝑣 = AGG

(
h(𝑡 )𝑣 ,

{
h(𝑡 )𝑢 : 𝑢 ∈ N (𝑣)

})
, where AGG is

an aggregation function such as sum, mean, or attention-
based pooling. This allows the model to capture higher-order
dependencies between nodes.

(3) Link Prediction: The final node embeddings h𝑢 and h𝑙 for
users and listings are fed into a scoring function to compute
the likelihood of a link using 𝑦𝑢𝑙 = 𝜎 (h𝑇𝑢𝑊 h𝑙 ), where 𝜎 is
the sigmoid function and𝑊 is a learnable weight matrix.

ZiGNN is composed of three key components: a projection layer
for aligning feature dimensions across different node types, a Re-
lational Graph Convolutional Network (RGCN) for learning node
embeddings while considering multi-relational graph structures,
and a dot product predictor layer for scoring edge relationships.
The projection layer standardizes feature dimensions by applying
type-specific linear transformations. This ensures compatibility
with the RGCN, which processes node and edge type information
through multiple layers of convolution, enabling the model to cap-
ture complex interactions between heterogeneous entities.

L = 1

L = 2

Figure 8: Interaction graph diameter is two so we need at most two

GCN layers to incorporate information from the farthest nodes.

The RGCN implementation employs a two-layer design, where
each layer performs graph convolutions over different relationship
types. We purposefully selected two-layer RGCN because the graph
diameter of G is at most two as shown in Figure 8. Since, the
message passing step happens in parallel, the numbers of times the
message passing steps need to be completed for the information to
travel from the farthest part of the graph is two.

For each relationship, the model constructs a separate Graph
Convolutional layer and applies type-specific linear transforma-
tions to incorporate edge-specific features into the convolution
process. Additionally, self-loop embeddings are refined using resid-
ual connections for each node type, ensuring that the node’s ini-
tial features are preserved alongside learned representations. This
structure allows the RGCN to aggregate information across the
graph, dynamically updating node embeddings while addressing
the unique characteristics of heterogeneous relationships.

The dot product predictor layer scores edges by computing the
dot product between node embeddings at the source and target ends
of an edge for each edge type. During this process, the predictor
assigns scores to edges by using the learned node features (h) from
the RGCN, which encapsulate the structural and relational con-
text of each node in the graph. For positive edges, which represent
actual relationships observed in the graph, the scores reflect the
strength of these connections as encoded in the node embeddings.
Conversely, for negative edges, which are artificially sampled to
represent non-existent or unlikely relationships, the scores typically
indicate weaker or negligible associations. This distinction between
positive and negative edge scores is critical for the model to learn
meaningful embeddings and effectively differentiate between real
and spurious relationships, forming the basis for accurate recom-
mendation tasks.

The implementation is built using Deep Graph Library (DGL)
for graph operations and PyTorch for neural network components.
FAISS is integrated to perform efficient nearest-neighbor searches
for recommendation evaluation.
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Algorithm 1 Z-REx
Require: target user 𝑢, target city 𝑐𝑡 , heterogeneous interaction

graph𝐺hetero, trained GNN ZiGNN, rank cut-off𝐾 , city-feature
𝐹all, hop distance 𝑘

1: function Z-REx(𝑢, 𝑐𝑡 , 𝐹all, 𝑘)
2: ranked_features← FeaturePerturb(𝑢, 𝑐𝑡 , 𝐹all)
3: ranked_edges← StructuralPerturb(𝑢, 𝑐𝑡 , 𝑘)
4: return ranked_features, ranked_edges
5: end function

6: function FeaturePerturb(𝑢, 𝑐𝑡 , 𝐹all)
7: 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒_𝑛𝑑𝑐𝑔← NDCG(𝑢) ⊲ original score
8: ranked_features← {}
9: for all 𝑓 ∈ 𝐹all do
10: 𝑥𝑐𝑡 ← ZeroOutFeature(𝑐𝑡 , 𝑓 )
11: Δ𝑛𝑑𝑐𝑔← NDCG(𝑢, 𝑥𝑐𝑡 ) − 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒_𝑛𝑑𝑐𝑔 ⊲ Eq.(3)
12: ranked_features← ranked_features ∪ (𝑓 ,Δ𝑛𝑑𝑐𝑔)
13: end for

14: Sort(ranked_features) by Δ𝑛𝑑𝑐𝑔 (descending)
15: return ranked_features
16: end function

17: function StructurePerturb(𝑢, 𝑐𝑡 , 𝑘)
18: 𝐺ℎ ← CollapseToUserCityGraph(𝐺hetero, 𝑐𝑡 )
19: 𝐺𝑘 ← KHopSubgraph(𝐺ℎ, 𝑢, 𝑘)
20: AddCo-ClickEdges(𝐺𝑘 )
21: 𝑏𝑎𝑠𝑒_𝑠𝑖𝑚 ← cos(ZiGNN.embed(𝑢),ZiGNN.embed(𝑐𝑡 ))
22: ranked_edges← {}
23: for all edge 𝑒 incident to 𝑢 or 𝑐𝑡 in 𝐺𝑘 do

24: temporarily remove 𝑒
25: 𝑛𝑒𝑤_𝑠𝑖𝑚 ← cos(ZiGNN.embed(𝑢),ZiGNN.embed(𝑐𝑡 ))
26: Δ𝑠𝑖𝑚 ← 𝑛𝑒𝑤_𝑠𝑖𝑚 − 𝑏𝑎𝑠𝑒_𝑠𝑖𝑚 ⊲ Eq.(4)
27: ranked_edges← ranked_edges ∪ (𝑒, |Δ𝑠𝑖𝑚 |)
28: restore 𝑒
29: end for

30: Sort(ranked_edges) by |Δ𝑠𝑖𝑚 | (descending)
31: return ranked_edges
32: end function

During training, both positive and negative edge scores are cal-
culated for each edge type by applying the dot-product predictor
to pairs of node embeddings, enabling the model to distinguish be-
tween observed and unobserved relationships. We use the Adam op-
timizer with weighted decay to optimize margin-based loss, where
the positive edge scores are encouraged to exceed negative edge
scores by at least a margin of 1, penalizing cases where this condi-
tion is not met. The modular design supports inference by directly
returning node embeddings when negative edges are not provided.
This architecture ensures the model can efficiently learn and gener-
alize from multi-relational graph data for edge classification tasks.

A.2 Z-REx Algorithm

Algorithm 1 describes the Z-REx algorithm and Algorithm 2 de-
scribes the algorithm to generate the heterogeneous interaction
graph,𝐺ℎ𝑒𝑡𝑒𝑟𝑜 from clickstream events. Algorithm 2 converting raw
interaction and regional metadata CSVs into attribute-normalized

Algorithm 2 Generate Heterogeneous Interaction Graph
Require: CSVs (i.e., 𝑒𝑣𝑒𝑛𝑡𝑠_𝑓 𝑖𝑙𝑒 , 𝑟𝑒𝑔𝑖𝑜𝑛𝑠_𝑓 𝑖𝑙𝑒), normalization

method 𝑛𝑜𝑟𝑚_𝑚𝑒𝑡ℎ𝑜𝑑
1: function Preprocess(𝑒𝑣𝑒𝑛𝑡𝑠_𝑓 𝑖𝑙𝑒, 𝑟𝑒𝑔𝑖𝑜𝑛𝑠_𝑓 𝑖𝑙𝑒)
2: 𝑒𝑣𝑒𝑛𝑡𝑠 ← ReadCSV(𝑒𝑣𝑒𝑛𝑡𝑠_𝑓 𝑖𝑙𝑒)
3: 𝑟𝑒𝑔𝑖𝑜𝑛𝑠 ← ReadCSV(𝑟𝑒𝑔𝑖𝑜𝑛𝑠_𝑓 𝑖𝑙𝑒)
4: 𝑈𝐿 ← BuildUserListingEdges(𝑒𝑣𝑒𝑛𝑡𝑠)
5: 𝑟𝑒𝑔𝑖𝑜𝑛𝑠′ ← 𝑟𝑒𝑔𝑖𝑜𝑛𝑠 [𝑖𝑑 ∈ 𝑈𝐿 .𝑙𝑖𝑠𝑡𝑖𝑛𝑔_𝑖𝑑]
6: 𝑈𝐶 ← BuildUserCityEdges(𝑈𝐿, 𝑟𝑒𝑔𝑖𝑜𝑛𝑠′)
7: 𝐶𝐿 ← BuildCityListingEdges(𝑟𝑒𝑔𝑖𝑜𝑛𝑠′)
8: 𝑢𝑠𝑒𝑟𝑠 ← Uniqe(𝑒𝑣𝑒𝑛𝑡𝑠.𝑢𝑠𝑒𝑟_𝑖𝑑, 𝑋𝑎𝑣𝑖𝑒𝑟_𝐼𝑛𝑖𝑡)
9: 𝑙𝑖𝑠𝑡𝑖𝑛𝑔𝑠 ← CleanNumeric(𝑟𝑒𝑔𝑖𝑜𝑛𝑠′, 𝑛𝑜𝑟𝑚_𝑚𝑒𝑡ℎ𝑜𝑑)
10: 𝑐𝑖𝑡𝑖𝑒𝑠 ← AggregateCity(𝑟𝑒𝑔𝑖𝑜𝑛𝑠′, 𝑛𝑜𝑟𝑚_𝑚𝑒𝑡ℎ𝑜𝑑)
11: 𝐺ℎ𝑒𝑡𝑒𝑟𝑜 ← dgl.heterograph(𝑈𝐿,𝑈𝐶 ,𝐶𝐿)
12: return 𝐺ℎ𝑒𝑡𝑒𝑟𝑜

13: end function

heterogeneous graph,𝐺ℎ𝑒𝑡𝑒𝑟𝑜 , that connects the users, listings, and
cities through user-listing, user-city, and city-listing edges.

Using 𝐺ℎ𝑒𝑡𝑒𝑟𝑜 , Algorithm 1 delivers fine-grained model trans-
parency: for a given user-city recommendation, it (1) ranks city-
level features by zeroing them out and measuring the resulting
Δ𝑛𝐷𝐶𝐺@𝐾 , and (2) ranks graph edges in the 𝐾-hop neighbour-
hood by perturbing edge and observing the change in the cosine
similarity between the ZiGNN embeddings of the user and target
city. The joint output—two ordered lists of high-impact features
and structural subgraphs, exposes the concrete evidence that the
GNN relied upon.

Node

Type

Attribute

Attribute

Type

User session id Numeric

Listing
bedrooms, bathrooms, year built, sq. ft, price
binned sq. ft, binned price, price per bedroom

days on market, floors
Numeric

Listing
Waterfront, heating, basement, fireplace

Cooling, view, vacant, spa, carport
Pool, new construction

Boolean

Listing Latitude top/bottom left/ right
Longitude top/bottom left/right Geographic

City population count, avg. all the listing features
for listings per city Numeric

City avg. all the boolean features
for listings per city Boolean

City avg. all the geographic features
for listings per city Geographic

Table 4: Attributes and their types for different node types.
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A.3 Node and Edge Details

As described in the preliminaries §4.1, there are three different types
of nodes: user, listing, and city. There are different relationships
or edges between them, as shown in Table 1. The most popular
relationship between the user and the listing is the views relation-
ship, since users viewmultiple listings before narrowing down their
search by saving the listing and finally touring the listing. Between
user and city, searched in relationship exists, and between city
and listing contains relationship exists.

Table 4 outlines the attribute schema for the different node types
used in our model. The User node is characterized by a numeric
session identifier. The Listing node includes a diverse set of features:
numeric attributes (e.g., bedrooms, bathrooms, price, etc.), boolean
attributes (e.g.,waterfront, heating, etc.), and detailed geographic at-
tributes (latitude and longitude for the property boundaries). Mean-
while, the city node aggregates listing data by averaging numeric,
boolean, and geographic attributes and adding population count.

Date City Listing User

3-days Training 5/17-5/20 449 55k 393k
30-days Training 4/20-5/20 456 97k 1.3M
Testing 5/27-5/30 452 53k 405k
Evaluation 5/31 448 45k 203k

Table 5: Number of entities (e.g., nodes) in different datasets.

Date views saves tours contains

3-days Training 5/17-5/20 789k 169k 234k 55k
30-days Training 4/20-5/20 26M 2.2M 1.6M 97k
Testing 5/27-5/30 773k 138k 197k 53k
Evaluation 5/31 714k 41k 56k 45k

Table 6: Number of relationships (e.g., edges) in different datasets.

views saves tours

3-days

mean 7.97 2.74 3.24
25th quantile 1.00 1.00 1.00
median 3.00 2.00 2.00
75th quantile 8.00 3.00 4.00

30-days

mean 21.90 5.65 6.72
25th quantile 2.00 1.00 1.00
median 5.00 2.00 3.00
75th quantile 18.00 6.00 7.00

Table 7: Average number of user-city interactions.

A.4 Dataset Statistics

The dataset statistics as shown in Table 5 and Table 6 shows that
the dataset is divided into four segments: 3-day training (May 17-
20), month-long training (April 20 - May 20), testing (May 27-30),
and evaluation (May 31)—providing a temporal snapshot of var-
ious metrics. The 3-day training dataset, spanning May 17th to
May 20th, includes 55k listings viewed by 393k users across 449
cities, resulting in 789k views, 169k saves, and 234k tours. The
contains relationship matches the number of listings since each
listing must belong to a city. The testing dataset exhibits similar
characteristics from May 27th to May 30th with slightly different
values (53k listings and 405k users). Notably, the evaluation dataset
on May 31st, while covering a similar number of cities (448), shows
a smaller number of listings (45k), users (203k), saves (41k), and
tours (56k) in comparison to training and testing datasets since
there is a decrease in user engagement during the evaluation period
which is just one day after the testing period. The views are the
largest interactions since users view the listing the most, and only
a few of them convert to saves, and fewer convert to tours.

As illustrated in Table 7, user engagement with listings scales
markedly with the observation window. Over the 7-day horizon,
users perform a mean of 7.97 views, 2.74 saves, and 3.24 tour re-
quests per listing, yet the corresponding medians (3, 2, 2) reveal a
highly right-skewed distribution in which a small subset of users
interactions form the majority of the engagement dataset. Extend-
ing the window to 30 days amplifies this effect: mean interactions
roughly triple for views and more than double for both saves and
tours, while the medians increase more modestly (to 5, 2, 3), indi-
cating that additional time primarily benefits heavier-engagement
cohorts. The widening gap between the 25th and 75th percentiles
across all metrics further shows the importance of the growing
dispersion, suggesting that long-term recommendation strategies
should explicitly account for this heterogeneity rather than relying
on aggregate averages alone.
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Figure 9: Impact of zeroing out features to find unimportant features.
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A.5 Unimportant Features

The unimportant features, as shown in Figure 9, are identified by
measuring the performance increase when the features are zeroed
out, indicating that the feature was detrimental to the ZiGNN ’s
predictive performance. Therefore, these are unimportant features
and should be removed from the model to enhance accuracy. It
is interesting to see that the numeric unimportant features are
usually used to identify listing. Understandably, aggregating those
listing features is not helpful to ZiGNN when compared against
city-specific features, such as population count, average year built,
and geographic-based features.

Table 8: ZiGNN Runtime performance on different dataset windows.

Scenario # of Edges Time (s)

3-days

Training per epoch 1.2M 0.88
Evaluation per user 248k 5.14

30-days

Training per epoch 29.8M 10.89
Evaluation per user 248k 5.04

A.6 Runtime Analysis: 3 vs 30 Day Dataset

Table 8 shows that enlarging the interaction window from 3 days
(1.2M edges) to 30 days (29.8M edges) raises the cost of one training
epoch from 0.88s to only 10.89s. Despite a 25 times increase in graph
size, the runtime grows by just one order of magnitude, confirming
that our training pipeline scales sub-linearly with temporal cover-
age. Inference remains virtually size-independent: generating an
explanation for a single user takes 5.14s on the 3-day graph versus
5.04s on the 30-day graph. Together, these results demonstrate that
ZiGNN delivers timely and accurate explanations at production
scale.
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