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ABSTRACT

Recent advances in end-to-end, multi-task robot policies based on transformer
models have demonstrated impressive generalization to real-world embodied AI
tasks. Trained on vast datasets of simulated and real-world trajectories, these mod-
els map multimodal observations directly to action sequences for physical execu-
tion. Despite promising real-world capabilities, these models are still data-driven
and, therefore, lack explicit notions of behavioral correctness. We address this
gap by introducing SafeDec, a constrained decoding framework for autoregres-
sive, transformer-based robot policies that enforces invariant safety specifications
on candidate action trajectories. Task-specific safety rules are expressed as Signal
Temporal Logic (STL) formulas and are enforced at inference time with minimal
overhead. Our method ensures that generated actions provably satisfy STL spec-
ifications under assumed dynamics at runtime without retraining , while remain-
ing agnostic of the underlying policy. We evaluate SafeDec on tasks from the
CHORES benchmark for state-of-the-art generalist policies (e.g., SPOC, Flare,
PoliFormer) across hundreds of procedurally generated environments and show
that our decoding-time interventions are useful not only for filtering unsafe actions
but also for conditional action generation. Videos are available at constrained-
robot-fms.github.io.

1 INTRODUCTION

Recent advances in developing large transformer-based models for robotics have enabled general-
purpose policies that map multi-modal inputs such as RGB images, natural language instructions,
and proprioceptive inputs to action sequences (Hu et al., 2023). Shortest Path Oracle Clone (SPOC)
(Ehsani et al., 2024), PoliFormer (Zeng et al., 2025), Flare (Hu et al., 2025) and OpenVLA (Kim
et al., 2024) exhibit impressive generalization in navigation and manipulation tasks and serve as
versatile robot controllers for real-world deployment contexts. However, these models are primarily
data-driven and lack any explicit notion of safety. Although these models may implicitly exhibit
safety-related behaviors depending on the patterns in their training data, there is no formal guarantee
that models will consistently behave safely in all situations. This serves as a limiting factor for
deploying these foundation models in the physical world where rule compliance and regulatory
safety rule adherence are crucial.

Formal specifications have long been used to specify safety requirements for robotic deployments
(Menghi et al., 2019; Farrell et al., 2018). Temporal logics (TL) (Pnueli, 1977) can capture safety
constraints on robot behavior, such as “remain within the permitted region zones and avoid dan-
gerous obstacles”. Although TL has seen success in classical robotic planning for safety constraint
satisfaction, its use for enforcing safety for large transformer-based robot policies remains limited.
Additionally, retraining or fine-tuning these large pre-trained models to directly embed temporal
logic specification is challenging (Kapoor et al., 2024). First, retraining models is a costly endeavor
in terms of computational resources and data requirements. Moreover, due to the stochastic nature
of these models, it is difficult to guarantee strict satisfaction of safety constraints through training
alone. Hence, there is a pressing need for methods that can enforce safety specifications efficiently
at inference time without disrupting the model’s pre-trained behavior.

In the field of natural language processing, syntactic constraints have been successfully enforced
by applying constrained decoding at inference time (Willard & Louf, 2023; Beurer-Kellner et al.,
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2023; AI, 2023). These approaches typically mask out tokens that violate a syntactic constraint
defined over token sequences. For example, regular expressions (regex) represent a widely used
form of syntactic constraint, requiring that generated token sequences conform to predefined struc-
tural patterns (Willard & Louf, 2023; Beurer-Kellner et al., 2023). Inspired by this line of work,
we extend the paradigm of constrained decoding to enforce safety constraints over action trajecto-
ries in dynamical systems and propose safety specification aligned decoding (SafeDec) for trans-
former based policies that ensures generated action sequences provably satisfy Signal Temporal
Logic (STL) (Maler & Nickovic, 2004a) specifications under assumed dynamics. Our key insight is
that decoding-time interventions can be used not just to filter unsafe actions, but to condition the gen-
eration process itself on specification satisfaction. This conditioning is critical because it steers the
model toward generating safety specification satisfying actions rather than relying on post hoc rejec-
tion. SafeDec reduces risk of infeasible outputs while preserving the original action distribution
of the model. To enforce such specifications, we leverage the formal semantics of STL to evaluate
candidate actions at runtime and mask those that lead to future violations. Our method is agnostic
to the underlying foundation model, requiring only two properties: (1) access to the decoding-layer
logits during inference, and (2) access to an approximate dynamics model to predict future states. To
efficiently evaluate STL specifications at inference time, we use a high-performance computational
graph based library STLCG++ (Kapoor et al., 2025c). In this work, we focus on safety enforcement
for navigation policies in indoor environments, and leave extension to manipulation settings for fu-
ture work. We also focus on STL specifications without liveness operators as they capture a large
class of safety constraints in robot learning (He et al., 2024; Yun et al., 2025; Kapoor et al., 2025b;
Zhao et al., 2024). To the best of our knowledge, this is the first work to enforce formal safety on
transformer-based robotic policies at inference time using constrained decoding.

Our main contributions are as follows: First, we formalize the general problem of enforcing safety
constraints during inference for autoregressive robot policies. In this work, we use STL to represent
safety requirements because it is expressive over continuous states and provides quantitative robust-
ness. Additionally, we focus on transformer-based autoregressive policies given their widespread
adoption. Second, we propose an inference-time technique that reweights or masks candidate actions
using STL satisfaction scores in (Section 3.2 and 3.3). Finally, we demonstrate the effectiveness of
our method on state-of-the-art object navigation models without modifying model parameters (Sec-
tion 4).

2 PRELIMINARIES

2.1 SIGNAL TEMPORAL LOGIC

Signal Temporal Logic (STL) is an expressive framework for defining properties and reasoning over
continuous time real-valued (Maler & Nickovic, 2004b) . Formally, (s, t) |= ϕ denotes that a signal
s satisfies the STL formula ϕ at time t. An atomic predicate of an STL formula is represented by
inequalities of the form µ(s(t)) > 0. The truth value of the predicate µ is equivalent to µ(s(t)) > 0.
Note that with slight abuse of notation, µ represents both the predicate and a function of the trajectory
s(t). Any STL formula consists of Boolean and temporal operations on these predicates, and the
syntax of STL formulas is defined recursively as follows:

ϕ := µ | ¬µ | ϕ ∧ ψ | ϕ ∨ ψ |G[a,b] ψ | F[a,b] ψ | ϕU[a,b] ψ

where ψ and ϕ are STL formulae, G denotes the globally operator, F the eventually operator, and
U is the until operator. For example, s |= G[a,b]ψ specifies that ψ must be in all times in the given
interval, t ∈ [a, b] of the signal s. Similarly, the operator until in s |= ϕU[a,b]ψ defines that ϕ must
be true until ψ becomes true within a time interval [a, b].
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Given a signal st representing a signal starting at time t, the Boolean semantics of satisfaction of
st |= ϕ are defined inductively as follows:

st |= µ ⇐⇒ µ(s(t)) > 0

st |= ¬φ ⇐⇒ ¬(st |= φ)

st |= φ1 ∧ φ2 ⇐⇒ (st |= φ1) ∧ (st |= φ2)

st |= F[a,b](φ) ⇐⇒ ∃t′ ∈ [t+ a, t+ b] s.t. st′ |= φ

st |= G[a,b](φ) ⇐⇒ ∀t′ ∈ [t+ a, t+ b] s.t. st′ |= φ

Apart from the Boolean semantics, quantitative semantics are defined for a signal to compute a real-
valued metric indicating robustness, i.e., the strength of satisfaction or violation. For the sake of
brevity, the definition of robustness is provided in Appendix A.1.

2.2 CONSTRAINED DECODING IN TRANSFORMERS

A large variety of autoregressive transformer-based models generate final outputs by producing a
probability distribution over the model vocabulary at each timestep. This distribution is generated
by performing a softmax operation over the model’s last hidden layer. Then, through the process of
decoding, tokens are selected to maximize the overall likelihood of an output sequence. In standard
decoding, this maximization can be performed by either greedily selecting the most probable token
at each step or by using a beam search to maintain multiple high-likelihood candidates. However,
this often leads to degenerate output sequences that are repetitive (Holtzman et al., 2019). A common
approach is to use sampling strategies like top k (Fan et al., 2018), and nucleus sampling (Holtzman
et al., 2019) that introduce stochasticity to encourage more diverse outputs. Constrained decoding
(Hokamp & Liu, 2017) modifies this probabilistic selection by pruning invalid tokens to ensure
that the generated sequences satisfy predefined constraints. These constraints are often syntactic,
such as regular expressions, JSON formatting, or programming language grammars (Welleck et al.,
2024). There is also recent work on enforcing semantic constraints that ensure coherence of the
output or alignment with specific knowledge bases (Peyrard et al., 2024). Formally, constrained
decoding can be seen as maximizing the probability of the output sequence subject to a constraint
C: argmaxy∈YC P (y | x) where YC is the set of sequences satisfying C.

3 SPECIFICATION-GUIDED CONSTRAINED DECODING

In this section, we introduce a novel problem formulation for SafeDec in autoregressive
transformer-based robot policies. First, we highlight the challenge in specification checking for
these policies in contrast to traditional syntactical constraint checking adopted by LLMs, and our so-
lution to remedy it. Then, we propose two novel inference-time techniques for specification aligned
decoding: Hard Constrained Decoding (HCD) and Robustness Constrained Decoding (RCD).

3.1 PROBLEM STATEMENT

As highlighted in the background section, existing techniques in constrained decoding for language
models enforce syntactic constraints defined over tokens, such as conforming to a context-free gram-
mar or matching a regular expression. In these setups, constraint checking can be performed in the
model’s token space.

In contrast, transformer-based policies operate in a physical environment and constraints (captured
via temporal logic) are defined over state variables. Since a large class of end-to-end policies solely
propose action sequences, specification checking can only be performed as actions are executed
and the environment is simulated forward. In this case, constraint checking cannot be done solely
in the token space and requires environmental feedback or a dynamics stepping function. Hence,
we leverage an approximate first order dynamics function to compute specification satisfaction of
different action sequences proposed by these policies.

Consider a discrete dynamical system with states xt ∈ Rn and actions at ∈ A at time step t. The
system’s dynamics are defined by xt+1 = f(xt, at) where f : Rn ×A → Rn maps the current state
(xt ∈ Rn) and a discrete action (at ∈ A) to the next state xt+1 ∈ Rn. This system is controlled by
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Constrained Action Decoder 

“Find the plant
In the bedroom”

Transformer based policy (SPOC, Flare)

Safe Actions

Input Image Image 
Tokenizer

Text
Tokenizer

Action TokensSafety spec

Figure 1: Overview of our specification aligned decoding framework. Given multimodal observa-
tions (RGB images and language goals), a pretrained transformer-based navigation policy (e.g.,
SPOC, Flare, PoliFormer) generates candidate actions. Our constrained decoder then filters or
reweights these actions using robustness scores from a user-defined STL safety specification. Left:
Original action probabilities (red) from the pretrained policy are modified by SafeDec using STL ro-
bustness: actions predicted to violate the safety specification receive reduced weights, while safer ac-
tions are boosted. The chosen safe action and adjusted probabilities (green) are highlighted. Right:
An example navigation episode where the robot starts in the kitchen (white dot) and moves toward
the bedroom to locate the target object (green marker middle-right), while avoiding user-defined
hazardous regions (red zones) throughout the trajectory.

a policy that selects an action at at each time step based on observations and task context such as
user-provided natural-language instructions or goal waypoints.

In this work, we focus on robot policies that generate actions based on multi-modal inputs, including
sensor observations (e.g., RGB, depth, LiDAR) and natural language instructions. Let It represent
the aggregated input at timestep t. Given the history of encoded inputs up to time t, a transformer-
based policy parameterized by θ predicts embeddings for the next T−t actions:

{êat+k
}T−t
k=1 = Transformerθ

(
{eIτ

}tτ=0

)
.

Each predicted action embedding is decoded into an action ât+k ∈ A, resulting in a predicted action
sequence {ât+1, . . . , âT }, where T denotes the planning horizon.

Now, consider that the system is required to satisfy requirements encoded using an STL formula
φ defined over the state variables of the system. Formally, the goal is to ensure that the resulting
trajectory satisfies the specification φ:

{(x0, â0), . . . , (xT , âT )} |= φ

Most of the existing techniques for specification enforcement perform posthoc manipulation of pro-
posed actions through filtering or rejecting action sequences that violate the specification φ. Al-
though manipulation after sampling can ensure specification satisfaction, it can lead to distorting
the model’s learned distribution, producing low-likelihood output. This undermines the inductive
biases learned during pretraining and leads to degenerate, brittle behaviors. A similar problem was
highlighted when ensuring compliance with logical constraints for large language models (LLM) in
Park et al. (2024). Additionally, these models decode actions sequentially, where each action at is
conditioned on previously generated tokens a<t. Posthoc manipulation can disrupt this causal chain
and lead to a mismatch between the model’s internal hidden state and the executed sequence. Hence,
we propose the following problem statement:

How can we enforce temporal logic constraints during action generation in robot
foundation models such that the output sequence (1) satisfies an STL specification
φ, and (2) remains faithful to the model’s autoregressive distribution π(a1:T |
I1:T )?

4
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Let π(a0:T ) be the unconstrained action-sequence distribution produced by the transformer-based
policy’s decoder (e.g. the softmax over logits generated by the Transformer). We define the ideal
constrained distribution over action sequences as:

Qπ,φ(a0:T ) =
π(a0:T ) · 1[(x1:T , a0:T ) |= φ]∑

a′
0:T

π(a′0:T ) · 1[(x′1:T , a′0:T ) |= φ]
(1)

where x1:T denotes the state trajectory induced by the system dynamics under actions a0:T and
1[·] is the indicator function that returns 1 iff the trajectory-action pair satisfies the specification.
Equation 1 is the exact Bayesian conditioning of π on the event that the generated rollout satisfies φ.
Hence, sampling from Qπ,φ would give sequences that (i) inherit the original model’s preferences
encoded in π and (ii) guarantee specification satisfaction.

In this work, we propose a technique to overcome the drawbacks of post-hoc safety enforcement
methods (such as filtering) by leveraging constrained decoding techniques. Specifically, we propose
SafeDec : A constrained decoding strategy that integrates STL specifications into the foundation
model action selection process itself, ensuring satisfaction while remaining as close as possible to
the base model distribution.

3.2 HARD CONSTRAINED DECODING

As highlighted in the background section, in the final layer, predictions are detokenized and a pro-
jection layer converts the embeddings into logits over the vocabulary space. These logits are further
converted into a probability distribution using a softmax operation. In prior work, for structured out-
put generation in LLMs, some invalid tokens are masked based on syntactical constraints or other
criteria (Welleck et al., 2024; Park et al., 2024). This is done by setting their logit value as −∞
before the softmax operation is applied. For HCD, we use a similar approach as constrained decod-
ing literature (Welleck et al., 2024) and mask out predicted action tokens that violate our given STL
specification φ during sequential generation. Formally, to enforce the STL specification φ during
sequential generation, we adjust the logits at each timestep t+ k as follows:

Let zt+k denote the logits at timestep t+ k. For each action choice i at timestep t+ k, we define:

z
(i)
t+k =

{
−∞, if x̂(i)t+k = f(xt+k−1, â

(i)
t+k−1) violates φ

z
(i)
t+k, otherwise

Here t is the current decision step, k is an index for the look-ahead step t + k within a planning
horizon of length T (k ∈ [1..T ]), â(i)t+k is the action mapping to the token i and x̂(i)t+k is the next
state value upon taking this action. This next state is elicited using a simple dynamics model (f ) as
highlighted in the previous section. Adjusting logits in this fashion ensures that any invalid token
with respect to the safety specification will have zero probability of being selected after applying the
softmax function.

3.3 ROBUSTNESS CONSTRAINED DECODING

HCD ensures compliance but can lead to compromising task success, which can be undesirable. A
similar tradeoff was observed by Liu et al. (2021) when probability space-steering preserved model
fluency while reducing toxic continuations compared with hard-filtering strategies that inflated per-
plexity and eroded diversity. Hence, we propose an alternative approach, called RCD, where we
leverage the quantitative semantics of STL specifications (robustness). Unlike HCD, which applies
hard masking to completely remove unsafe actions, RCD softly guides the model toward safer ac-
tions by incorporating robustness scores that reflect the degree of satisfaction of φ. This is similar
to the approach proposed in Liu et al. (2021) where the next-token distributions were re-weighted
based on the utility scores provided by another language model. Our utility scores are quantified by
the robustness function( ρ(⟨x0, x1, . . . , xt⟩, φ) ) that returns a real-valued score indicating how well
a predicted state satisfies the specification. Positive robustness values denote specification satisfac-
tion, while negative values capture the degree of violation. A formal definition of robustness in line
with the STL quantitative semantics is provided in Appendix A.1.
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First, we compute a robustness score for each candidate action: r
(i)
t+k =

ρ(⟨x0, x1, . . . , xt+k−1, x̂
(i)
t+k⟩, φ) where ρ(·, φ) is the STL robustness metric, and x̂

(i)
t+k is the

predicted next state under action â
(i)
t+k. This robustness score r

(i)
t+k quantifies how well each

candidate action satisfies the specification φ. These scores are then converted into weights using
exponential scaling: wt+k,i = exp(α · rt+k,i) where α is a temperature parameter that adjusts the
sharpness of the bias. We use these weights to shift the original logits: z̃t+k,i = zt+k,i + β · wt+k,i

where β is a hyperparameter that modulates the trade-off between specification adherence and the
original task objective. Finally, we obtain the action distribution by applying softmax over the
adjusted logits: pt+k = softmax(z̃t+k)

This approach allows for graded preferences that improve flexibility and robustness to dynamics ap-
proximation errors. By ensuring that all actions preserve a non-zero probability, the policy remains
capable of recovering from errors arising from an imperfect dynamics model. Concretely, if the
predicted successor x̂t+1 is off by ϵ, an action that appeared marginally unsafe can be safe in the
true system, and vice versa. Retaining a weighted down probability for this action gives the sampler
a fall-back option whereas HCD would completely rule this action out due to 0 probability. Since
we are shifting the probability mass for unsatisfying actions, it is possible that they are still chosen
and lead to a violation. However, this is a tradeoff that we allow to achieve a given task objective.
We note that this still ensures higher STL sastifaction than unconstrained actions.

4 EVALUATION

4.1 IMPLEMENTATIONAL DETAILS

We comprehensively evaluate our constrained decoding framework on procedurally generated AI2-
THOR (Kolve et al., 2022) indoor scenes with diverse objects and layouts using three state-of-
the-art (SOTA) generalist robot policies: Shortest Path Oracle Clone (SPOC) (Ehsani et al., 2024),
PoliFormer (Zeng et al., 2025) and Flare (Hu et al., 2025). All three are large transformer-based
embodied agents trained on extensive language-conditioned robot trajectory datasets. These models
achieve strong zero-shot generalization for a vast variety of navigation tasks that span open vocab-
ulary object-goal navigation (“find a mug”), room-to-room traversal (“visit all rooms”), waypoint-
based navigation (“move three meters forward and stop near the red rug”), and attribute-conditioned
variants (“locate the chair closest to the refrigerator in the kitchen”). These models also demonstrate
reliable zero-shot transfer to real-world environments, achieving robust task satisfaction.

In addition, these models capture three different training paradigms for generalist robot policies.
SPOC is trained purely with imitation learning from shortest-path rollouts. Poliformer employs a
hybrid approach that combines reinforcement learning and imitation learning, enabling it to learn
long-horizon structure while retaining expert priors. Flare adopts a large-scale pretraining plus fine-
tuning on embodied navigation data in line with recent foundation model training paradigms. This
diversity in training paradigms allows us to evaluate the applicability of SafeDec across different
learning regimes.

In this work, we address safety specifications for robotics and, therefore, select those most rel-
evant to real-world deployment. In particular, we focus on an important class of safety spec-
ifications called invariants, which are specifications that must be enforced at every reachable
state of the system (e.g., “always avoid an unsafe region”). We enforce geofencing and ob-
stacle avoidance by encoding them as invariant specifications in STL. Specifically, we gener-
ate random regions in the configuration space that the robot must either avoid (obstacle zones)
or remain within (safe zones), and apply these constraints in real time during execution. The
specifications used are: φgeofence = G

(∨N
i=1

(
xLi ≤ x ≤ xUi ∧ zLi ≤ z ≤ zUi

))
, φavoid =

G
(∧N

i=1 ¬
(
xLi ≤ x ≤ xUi ∧ zLi ≤ z ≤ zUi

))
. The size of the regions for φavoid is 1 m2. For

φgeofence, we randomly pick a subset of rooms in each house and use each chosen room’s full
bounds. These safety specifications are common for robot learning applications (He et al., 2024;
Yun et al., 2025; Kapoor et al., 2025b; Zhao et al., 2024). We encode our test STL specifications
using an efficient computational graph-based STL library called STLCG++ that can evaluate mul-
tiple state signals in parallel (Kapoor et al., 2025c). This ensures minimal inference overhead at
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ϕavoid: STL / SR (% ↑) ϕgeofence: STL / SR (% ↑)

Decoding SPOC Flare PoliFormer SPOC Flare PoliFormer

Unconstrained 72.0 / 82.5 75.5 / 82.0 77.0 / 82.5 78.0 / 81.5 68.0 / 81.0 73.0 / 81.5
Filtering 100.0 / 72.0 100.0 / 78.5 100.0 / 75.5 100.0 / 72.0 100.0 / 66.5 100.0 / 67.5
HCD 100.0 / 72.5 100.0 / 81.0 100.0 / 78.5 100.0 / 76.5 100.0 / 67.5 100.0 / 72.5
RCD 93.0 / 76.0 83.0 / 82.5 87.5 / 83.5 95.5 / 80.0 80.0 / 71.5 85.5 / 77.5

Table 1: Comparison by decoding technique across models (SPOC, FLARE, PoliFormer) for speci-
fications ϕavoid and ϕgeofence. Each cell reports STL satisfaction / success rate (%). Higher is better
(↑).

runtime (10−5 s per timestep) , which is crucial for policy deployment. For our dynamics model,
we assume a unicycle model, an approximate first-order dynamics abstraction widely used in the
robotics literature for analysis and control (Cohen et al., 2024). This representation captures the
essential kinematics of motion in the plane and is widely used because it is applicable for diverse
robotic platforms.

4.2 EXPERIMENTAL SETUP

We compare our proposed techniques with (1) an unconstrained base model and (2) a base model
with a filtering mechanism. The filtering mechanism picks a default action (turning left or right in
place) upon predicted violation of the safety specification, similar to the Simplex architecture (Sha,
2001). Simplex architecture is a classic scheme in which a high-performance advanced controller
is continuously monitored by a provably safe but less capable backup controller. Simplex based
techniques have been used extensively for safety-critical robotics and are a widely accepted standard
for runtime-safety comparisons. We evaluate performance using two main metrics: STL Satisfaction
Rate (STL St), defined as the proportion of trajectories that satisfy the specified STL formula, and
Task Success Rate (SR), which measures standard task success. The three main research questions
we investigated in this paper:

1. RQ1: Do HCD and RCD provide higher STL satisfaction than the unconstrained baselines?
2. RQ2: Do HCD and RCD preserve task success rates comparable to the unconstrained

baselines?
3. RQ3: Does RCD achieve better task success than HCD while maintaining high STL satis-

faction?

4.3 RESULTS

Our results are highlighted in Table 1. We also visualize sample trajectories in Figure 2 for one
scene and task. Unless stated otherwise, all numbers are averaged over 200 evaluation episodes.

RQ1 – STL satisfaction. Both HCD and RCD consistently improve STL satisfaction relative
to the unconstrained baselines across all models. For ϕavoid, unconstrained controllers achieve 72-
77% satisfaction, while HCD raises this to 100% and RCD achieves 83–93%. For ϕgeofence, the gap
is even larger: unconstrained models reach only 68–78%, whereas HCD attains perfect compliance
(100%) in all cases and RCD achieves 80–95%. We observe that the Simplex-style filtering baseline
achieves similar STL-satisfaction rate as HCD, 97% for ϕavoid and 100% ϕgeofence. This parity is
expected as both methods block any action predicted to violate the specification.

RQ2 – Task completion. Simplex-style filtering attains high satisfaction but sacrifices task suc-
cess because the agent takes predefined safe actions. HCD shows similar behavior: although safety
is maximized, success rates are consistently 5–10% lower than the baseline across models and speci-
fications. However, as HCD factors in base model logits, it is able to achieve higher task satisfaction
compared to Simplex-style filtering. In contrast, RCD preserves success rates much closer to the
unconstrained level. For ϕavoid, RCD achieves 82–85% success compared to 82–83% for the un-
constrained controllers for Flare and PoliFormer. For ϕgeofence, it maintains 77–80% compared
to 81–82% unconstrained for SPOC and PoliFormer. However, we note that RCD does not fully
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(a) Unconstrained v/s HCD (b) Unconstrained v/s RCD

Figure 2: Qualitative comparison of decoded trajectories for a sample scene. Each plot shows a top
down view of an overlay of trajectories starting from the white dot under the instruction “find an
alarm clock”. The unconstrained model passes through two forbidden regions (red squares) on the
way to the target object located on the table. In contrast, HCD (left) and RCD (right) modify the
trajectories to respect STL safety specifications while still reaching the goal. More visualizations
are available in the Appendix A.2.

recover success in every case: on SPOC with ϕavoid and Flare with ϕgeofence, task success remains
several points below the unconstrained baseline. Nevertheless, RCD enforces safety while avoiding
the large performance penalty observed with filtering.

RQ3 – RCD vs. HCD. While both HCD and RCD improve safety over the unconstrained baseline,
they differ in how they balance constraint satisfaction with task success. HCD enforces strict STL
satisfaction that results in frequent conservatism and lower successful task completion rates. In
contrast, RCD’s soft penalization leads to higher task success while still maintaining reasonable
STL satisfaction. These results show that RCD achieves a better trade-off between safety and goal-
directed behavior, especially in settings where occasional low-risk actions can lead to higher long-
term rewards.

Overall, Our proposed techniques effectively enforce safety STL specifications during policy execu-
tion. HCD ensures full compliance, but occasionally sacrifices task success due to strict truncation.
RCD strikes a balance, offering high satisfaction rates and robust performance. This highlights the
feasibility of combining learning-based models with formal safety constraints.

4.4 ABLATION STUDIES

Does inaccurate dynamics modeling substantially reduce STL satisfaction? In this work, we
assume a simple unicycle dynamics model due it’s generalization capability for diverse robotic plat-
forms. Although this represents a high-level abstraction of true dynamics, such modeling simplifi-
cations are standard in the formally assured robot safety literature (Cohen et al., 2024). However,
both RCD and HCD depend on this assumption and inaccurate modeling can impact STL satisfac-
tion. To evaluate the impact of inaccurate dynamics modeling, we conducted an ablation in which
we inject gaussian perturbations into the dynamics (0.01 m per step translational noise i.e. 5% of
nominal forward step, 1 ° per step rotational noise i.e. 3.3% of yaw step) for both HCD and RCD.
Our results are visualized in Figure 3. Across all three base models, the drop in STL satisfaction
rates from baseline to noisy dynamics is relatively small. We observe that SafeDec shows graceful
degradation under significant per-step disturbances.
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Figure 3: Ablation studies. (a) STL satisfaction (%) for HCD and RCD under baseline vs noisy
dynamics across base models. (b) Effect of β on success rate and safety satisfaction.

How do varying values of β affect success rate and STL satisfaction in RCD? As highlighted
in section 3.3, RCD uses a hyperparameter β that modulates the trade-off between specification
adherence and the original task objective. The value of β affects the relative weighting between
robustness and base logits. To investigate the impact of β on the success rate and STL satisfaction,
we performed an ablation with varying values for β for Flare and PoliFormer. We observe that as
β increases for PoliFormer, both STL satisfaction and success rate improve in tandem until β =
10, suggesting that moderate regularization can actually aid policy execution. Beyond this, STL
satisfaction continues to improve but at the cost of lower success rates. For Flare, larger β values
improve STL satisfaction but reduce success rates. These results highlight that the influence of β
is model-dependent but in general demonstrate that SafeDec provides a tunable mechanism to
balance safety and performance objectives.

5 RELATED WORK

Constraint satisfaction for robotics has been an active area of research that involves techniques such
as control barrier functions (CBFs) (Ames et al., 2019), safe reinforcement learning (Gu et al., 2024),
and temporal logic-based shielding approaches (Alshiekh et al., 2017). Recently, with the advent
of vision language action models and their impressive generalizable capabilities for manipulation,
navigation and other tasks, there are growing concerns about ensuring safety and correctness with-
out retraining these large models. Although classical methods offer formal guarantees, they either
require pretraining/fine-tuning stage interventions or designing a new classical controller for each
safety specification, which can be restrictive. For example, SafeVLA (Zhang et al., 2025) fine-
tunes pre-trained foundation models with task-specific safety costs, achieving strong performance
in Safety-CHORES tasks. However, the safety specification is expected to be embedded in the
training data and loss, meaning the model cannot generalize to new safety constraints at test time.
In contrast, ASIMOV (Sermanet et al., 2025) explores rewriting dangerous instructions with better
human-aligned alternatives to steer model behavior without modifying model parameters, but lacks
trajectory-level formal guarantees. Our technique achieves a middle ground with the ability to adapt
to novel specifications at test time without modifying model parameters while requiring minimal
assumptions about the underlying model. The closest to our work is SELP (Wu et al., 2025) that
proposes LTL-constrained decoding for language model-based plan generation. However, SELP is
unsuitable for STL because its Boolean predicate-based LTL cannot encode numeric bounds (e.g.
||x–xgoal|| < 0.1m) and does not possess quantitative semantics, which is crucial for ranking ac-
tions. These techniques are also tailored to high-level plans from LLMs, not to the per-step low-level
actions generated online by policies.
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6 LIMITATIONS AND FUTURE WORK

In this work, we introduce a constrained decoding framework for enforcing safety specifications for
large transformer based robot policies. Our approach enables runtime adaptation to novel safety
specifications without retraining. Through experiments across multiple simulated environments, we
demonstrated that our method significantly improves STL satisfaction while maintaining high task
success rates. Our approach makes two critical assumptions that can be a limiting factor. First, we
assume access to specifications that are defined over the state space and that these specifications
are generated by roboticists. Although this is a common situation for safety critical deployment
contexts like aerial robotics (Aloor et al., 2023; Luckcuck et al., 2019), these specifications can
be difficult to design and involve access to a localization module that can provide accurate state
estimation. We plan to overcome this bottleneck by leveraging open-world safety specifications
using recent work on embedding spaces-based logic (Kapoor et al., 2025a) and using large language
models for generating high level specifications automatically (Li et al., 2025). Second, our approach
also assumes access to an approximate dynamics model to evaluate the impact of actions on future
trajectories. While a common assumption for provably safe robotics (Cohen et al., 2024), This can
limit applicability of our approach. However, it is possible to mitigate this via learned dynamics
models such as MoSim (Hao et al., 2025) or world models proposed in Zhou et al. (2025); Micheli
et al. (2023) and we plan to explore this in future work.
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A APPENDIX

A.1 QUANTITATIVE SEMANTICS OF STL

Given a signal st representing a signal starting at time t, the quantitative semantics of satisfaction of
st |= ϕ are defined inductively as follows:

ρ(st, µc) = µ(xt)− c

ρ(st,¬φ) = −ρ(st, φ)
ρ(st, φ1 ∧ φ2) = min(ρ(st, φ1), ρ(st, φ2))

ρ(st,F[a,b](φ)) = max
t′∈[t+a,t+b]

ρ(st′ , φ)

ρ(st,G[a,b](φ)) = min
t′∈[t+a,t+b]

ρ(st′ , φ)

A.2 VISUALIZATIONS

To complement our quantitative results, we provide numerous trajectory plots from evaluations
across a diverse set of procedurally generated indoor environments. Figure 4 illustrates represen-
tative top-down visualizations of trajectories induced by SafeDec .Each plot shows the agent’s
starting point and the resulting path under constrained decoding, with red circles marking target
objects, green boxes denoting forbidden regions, and orange paths depicting the safe trajectories
generated by our method. Together with our quantitative analysis, these qualitative results illustrate
the performance of SafeDec across environments and tasks.

Figure 4: Top-down views across indoor environments with SafeDec induced trajectories Red
circles mark target objects, green boxes are avoid regions, and orange paths show safe trajectories
under constrained decoding.
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