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Abstract

Real-world decision-making involves complex sequential so-
cial dilemmas (SSDs) where current reinforcement learning
(RL) algorithms struggle due to high non-stationarity caused
by dynamic interactions and conflicting goals, particularly
in games like Risk, Civilization, and Diplomacy. To address
this, we introduce a simplified ”Risk”-inspired environment
to study explainable AI in complex SSDs, retaining key fea-
tures like stochastic outcomes and temporary alliances. Ex-
periments show traditional RL methods (DDPG, A2C, PPO)
underperform against basic bots in this environment, suggest-
ing limitations in capturing opponent intentions from isolated
states. We also explored A2C Decision Transformer (A2C-
DT) that leverages temporal context, showing performance
gains over traditional methods.

Introduction
Most systems in this universe can be modeled as isolated en-
vironments with interacting elements governed by rules. By
design, these elements might have goal/s that may or may
not align with others. Dilemmas emerge when elements’
goals conflict.

Such dilemmas are prevalent across scales, from inter-
national diplomacy (economic, environmental, military) to
firm-level interactions, sports teams, and even individual
healthcare plans. Multi-agent RL, a promising approach,
mirrors human social interactions and has seen success
in addressing aspects of these dilemmas, particularly in
well-defined environments with bounded state and action
spaces (Li et al. 2019; Bao and Liu 2019; Lee and Lee
2021; Palanisamy 2020; Ning and Xie 2024). While re-
search has shed light on the emergence of cooperation in
competitive environments like tragedy of commons, tradi-
tional approaches have shown limited success in achieving
human-level cooperation (Perolat et al. 2017). Initial MARL
successes in promoting cooperation include PPO-like algo-
rithms demonstrating collaborative herding in predator-prey
situation (Ritz et al. 2021). (Leibo et al. 2017) further inves-
tigated cooperation and defection strategies in games like
Harvest and Wolfpack, highlighting environmental influ-
ences on their emergence. (Hughes et al. 2018) showed that
agent-specific properties like inequity aversion can foster
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cooperation, even in intertemporal social dilemmas, by in-
corporating human-like moral values into agents’ decision-
making, leading to temporary team formations for resolu-
tions. Subsequently, (Jaques et al. 2019), explored social
influence, using influence-based rewards and opponent mod-
eling (LSTM policies) with A3C, demonstrating improved
returns. However, they do not particularly quantify coopera-
tion and temporal change in the agent’s attitude.

Challenges of Real-world complexity and
limitations of existing approaches
While these studies advanced RL/MARL for social dilem-
mas, they often rely on simplified, synchronous environ-
ments with limited real-world applicability. Real-life sys-
tems are often asynchronous, with agents acting at differ-
ent frequencies due to constraints or strategies. Furthermore,
real-world scenarios are dynamic and non-stationary; oppo-
nent strategies evolve over time and may require long tem-
poral horizons to discern. This leads to state-action spaces
and transition/reward functions that are challenging to fully
estimate.

For humans, these events are quite common, and as
a species, we have shown resilience and identified solu-
tions for the toughest of such problems. Board games like
“Diplomacy” and “Civilization” known for their combina-
torial state-action spaces and relevance to real-world social
systems. Initial research explored Diplomacy as a testbed.
(Paquette et al. 2019) introduced Dipnet (GCN-based, hu-
man imitation learning, A2C self-play fine-tuning), demon-
strating dynamic coalition formation against bots. How-
ever, Dipnet showed limited skill improvement and incen-
tive optimization. (Anthony et al. 2020) hen proposed BRPI
(GNN encoder, LSTM decoder, imitation learning), achiev-
ing better performance against Dipnet, winning 27.3% times
against dipnet A2C and losing only 1.3% times. However,
their work did not elucidate cooperative strategies.

In their work (Gray et al. 2020) introduced Searchbot,
a one-step lookahead agent with regret minimization trained
on human data, achieving strong performance in Diplomacy.
(Bakhtin et al. 2021) developed DORA, a double oracle
RL agent, achieving superhuman performance in 2-player
Diplomacy without human data. However, they also showed
self-play models diverge from human strategies in larger set-
tings, suggesting limitations of pure self-play. They further



noted, Transformer-based models outperformed GCNs stud-
ied earlier (Paquette et al. 2019; Anthony et al. 2020; Gray
et al. 2020). (Jacob et al. 2022), addressed human alignment
by regularizing regret minimization with imitation learning
(IL), improving upon Searchbot. (Bakhtin et al. 2022) gen-
eralized this approach, achieving top performance in human-
AI Diplomacy competitions. ( FAIR) further explored hu-
man alignment using LLMs for negotiation and coordina-
tion, reinforcing the need for human data to achieve human-
aligned strategies in complex social games.

Similar approaches are being explored in Civilization, an-
other complex strategy game involving long-term empire-
building and player interaction.In a recent effort, (Qi et al.
2024) proposed Mastaba, a hierarchical LLM-agent archi-
tecture for Civilization. The model showed moderate per-
formance compared to humans and failed to learn defensive
strategies. While these results may cast doubts on the util-
ity of the LLMs while using long-term in-context informa-
tion effectively in the gameplay, since the models were not
specifically trained for the environment, the actual capability
of these models remains unclear.

Motivating Social Learning and Evolutionary
Insights for AI Agents
While human value alignment is important for AI, it’s not
immediately obvious why AI policies must resemble human
policies for effective cooperation. The primary AI goal is to
optimize utility in environments with diverse agents, coop-
erative or not, similar to human deliberations. However, it is
evident from the mentioned research that current AI models
seem to lack a ”human element”, which might be crucial to
solving the demanding societal challenges. Furthermore, the
complexity of the explored social environments might be too
high to learn from, evaluate, and understand the reasoning of
actions in a social interaction.

Although early research focused on environmental and
agent characteristics to explain cooperation and deception,
subsequent work shifted to algorithm and architecture op-
timization, yet often without full success. Scaling models
and data, performance factors in learning tasks, alone may
be insufficient, potentially missing a key ”social learning”
component – learning with society, not just in society.

Evolutionary biology offers insights into social intelli-
gence. Social Exchange Theory (Cosmides, Barrett, and
Tooby 2010) suggests, the presence of human cognitive ar-
chitecture incorporating specialized reasoning, shaped by
natural selection to solve adaptive problems like social in-
teraction and avoiding dangers. The Cultural Brain Hypoth-
esis (Muthukrishna et al. 2018)) posits that the brain has
evolved to acquire, store, and manage adaptive knowledge
gained through social and individual learning. In particular,
larger groups and inherited knowledge favor social learning.

Hypotheses, Tiny-Risk Environment, and A2C-DT
Model
Based on the above provided arguments, we hypothesize:.
(1) Current environments for studying cooperation are ei-
ther too complex (Diplomacy, Civilization) or too simplis-
tic for real-world social dilemmas (SSDs). (2)Evolutionary

insights and initial MARL research suggest exploring al-
gorithms that leverage social learning, modeling social ex-
changes and adaptive policies, potentially without relying
solely on human data. (3) Inspired by (Cosmides, Bar-
rett, and Tooby 2010; Muthukrishna et al. 2018; Ashton,
Thornton, and Ridley 2018; Rosati 2017), we hypothesize
that learning in large, dense social environments could re-
sult in improved performance when transferred to smaller-
scale SSDs. We aim to validate if AI agents can develop and
transfer such socially learned skills..

To address hypothesis 1, we first consider Risk (has-
brp.com 1993). While simpler than Diplomacy, Risk still
presents complexity with unbounded actions, dynamic al-
liances, delayed rewards, and non-stationarity (Gordon
2013), making it suitable for negotiation studies (Marks
1998; Asal et al. 2014). Despite the success of AlphaZero-
like models in games like Chess and Go (EXPTIME com-
plete) (Tromp and Farnebäck 2006; Robson 1983; Zhang
and Yu 2020; Fraenkel and Lichtenstein 1981; Adachi,
Kamekawa, and Iwata 1987), initial Risk explorations with
MCTS and self-play have been limited (Blomqvist 2020;
Carr 2020; Olsson 2005; Tan 1997; Osborne 2003). Risk
and Diplomacy’s unbounded actions and negotiation pos-
sibilities lead to NP-hard Nash equilibrium and value esti-
mation problems (Fatima, Wooldridge, and Jennings 2007;
De Jonge and Sierra 2015; De Jonge and Zhang 2017)
.The exponential branching factor creates a vast state-
action space, hindering effective learning of average human-
level complex strategies. Furthermore, player intentions are
opaque over many turns, complicating strategy analysis. To
address these challenges and enable strategy analysis, we in-
troduce Tiny-Risk, a simplified Risk variant retaining core
complexities but with constrained dynamics, detailed in the
next section.

Initial experiments in Tiny-Risk show that standard RL
methods like DDPG, A2C and PPO struggle to learn effec-
tive strategies, exhibiting low win rates even against random
legal action bots.

To address hypothesis 2, we propose A2C-DT, an Advan-
tage Actor-Critic Decision Transformer variant, designed for
efficient and stable policy gradient optimization with a target
network.

Expected Contributions and Future Directions: A
Decision Transformer for Social Strategy Learning
Our main contribution is Tiny-Risk for studying adaptability
in dynamic SSDs. Additionally, we also provide an initial
analysis of using only RL training in DT.

A2C-DT leverages temporal trajectories of agent and op-
ponent actions (without explicit opponent modeling) to in-
trinsically learn opponent strategies. We postulate that this
enables dynamic alliance formation and emergent cooper-
ation/defection, even without human data. Preliminary re-
sults show A2C-DT outperforms baselines in Tiny-Risk. We
anticipate A2C-DT will excel against ”personality” agents
with predictable temporal patterns, leveraging Transform-
ers’ success in sequence modeling. The attention mecha-
nism in DTs may allow for estimating opponent strategy
horizons. Future work will analyze social interaction mech-



anisms, meta-strategies (cooperation/defection), and value
function design, alongside validating hypothesis 3, and ex-
ploring models like RWKV and Mamba for enhanced long-
range context modeling.

Tiny-Risk: Environment Description and
workflow

Risk is a turn-based world conquest game where players
eliminate opponents by controlling territories and deploying
armies. In the process, players can make temporary alliances
by directly communicating with other players on dedicated
channels or by supporting actions in the game. To reduce the
complexity, the game setting is restricted to no-press.

Setup and Game Dynamics
The game board comprises 4 continents build of 10 territo-
ries. with continental connections via 2 specific territories
per continent. fig. 1 Each game cycle consists of sequential
player turns with 3 phases:

A. Troop Reinforcement: Players start with 3 troops and
receive a fixed number each cycle (unlike Risk’s territory-
based reinforcement), encouraging collaboration and strate-
gic positioning.

Start of the game: Players place initial troops in unoc-
cupied territories. Later players have positional defense ad-
vantages. Card-to-troop exchange is removed to emphasize
cooperation. Attack outcomes primarily introduce stochas-
ticity fig. 1b.

After setting the 1st territory: fig.( 1c, 1d, 1e), Actions
are bounded only by the number of spare troops and player
strategy. Therefore, players can reinforce occupied territo-
ries by placing spare troops. If they have troops left after
one action they can take multiple actions and spread out
through territories or concentrate strategically for their next
move. This flexibility increases game complexity due to an
almost unbounded number of actions. With each action in
a phase, reachable states grow exponentially, encouraging
more thoughtful gameplay.

End of the game for the player: fig. 1f, Once all the oc-
cupied territories of a player are lost, they lose the game and
cannot place new troops, even in the empty territories, even
if they have spare troops. The game progresses with the re-
maining players.

B. Attacking: Following 1st phase, players can attack ad-
jacent territories owned by opponents or those that are still
unoccupied.

Attack dynamics: Attacks on adjacent territories require
at least one troop. During the attack, the player selects terri-
tory, proportion of troops, and attack position. Combat out-
come is probabilistic, determined by normal distributions
based on attacker and defender troop counts (wider for at-
tacker advantage, narrower for defender advantage). Losing
attacks results in troop losses for both sides, equal to the
minimum of attacking and defending troops. During win-
ning attacks, with an attacker advantage, remaining troops
are sent to the newly captured location, unless only 1 troop
remains, then the defender territories is freed. Defender ad-
vantage, enables the attacker to incorporate risks in their

strategies, if it wins the defender loses all its troops, and the
attacker is left with 1 troop.

Similar to the 1st phase, the actions in the attack phase
are only bounded by troops on the board; allowing multi-
ple sequential attacks actions within a turn, and are the sole
method for territory acquisition.

Old and new sources of Stochasticity: Stochasticity is in-
troduced through normal distributions for combat outcomes,
with better error and function estimation gaurenties, simpli-
fying Risk’s dice rolls uneven distributions. Further, Troop
deployment to conquered territories is also simplified to
leave one behind strategy.

C. Fortifying: Players can transfer armies between con-
nected controlled territories for defense or attack prepara-
tion. Unlike Risk transfers are limited to directly connected
territories, with only one action per turn, forcing them to find
the path in a dynamically changing environment.

Additional Constraints
While dice control, Risk cards, continent bonuses, and ac-
quisition of opponent resources from eliminated opponents
from the game are removed as they only added to the the-
oretical stochasticity of the environment. To enhance game-
play by increasing exposure to starting and ending scenarios,
additional restrictions have been implemented

Maximum number of troops in a territory: Although
this feature is editable, the experiment limits maximum ca-
pacity to 50 per territory. This forces agents to use different
techniques after they achieve a certain level of defense. This
is specifically to avoid strategies that involve creating a sin-
gle indefeasible territory that can result in a deadlock when
multiple agents try the same, resulting in a draw, which is not
the worst but neither the best outcome, but is certain, there-
fore can result in high confidence, followed by a restricted
exploration of social strategies.

Time limit of the game: While the game can run for days,
we created an editable feature, restricting the total number
of steps per game episode to 3000 steps in our experiments.
On average, a cycle could take 200 steps. Therefore we are
forcing agents to learn strategies that can be achieved in 15
game cycles, restricting the search space.

Reward Function and Illegal Moves
In-game rewards: A reward of +1 is given for conquering
every new territory. Conquering is defined by the presence
of the player’s troops at the new location. Additionally, -1 is
given for losing a previously conquered territory.

End-game rewards: If a player is eliminated in the mid-
dle of a game, a -100 is rewarded, and at the end of the game,
a winner is rewarded with a +100, and all losers again get a
-100, which means the 2nd best player only gets -100 and
previously eliminated players get -200 in total apart from
in-game rewards. In case of a draw by reaching the max-
imum time, all the players are given -100, resulting in all
alive players sharing the 2nd place.

Penalties for illegal actions: A changeable variable is
defined for taking any illegal move in the game. At every
timestep, given the current territory acquisitions, allocated
troops, spare troops, and phase, the possible actions that can



(a) Beginning (b) 1st territories (c) 275th timestep

(d) 330th timestep (e) 690th timestep (f) End of game

Figure 1: Tiny Risk: Gameplay and map, showcasing different stages of the game, with players’ occupied territory and troops

be taken in the game are restricted. As these configurations
change, so do the legal actions. Humans can make visual in-
ferences, however, this is not the case for Agents, therefore
the game board identifies and shares these actions as an ac-
tion mask. However, given the model does not know how
to use the mask, it can still make illegal moves. A prede-
fined constant penalty is given for each such action. In our
environment, we used -0.01, given a single player plays all
the possible moves, for example, if the step limit per game
is 3000, then a cumulative reward of -30 is accumulated in
addition to the game draw reward.

Phase-Turn skip: Maximum possible illegal actions, as
a changeable variable, are defined to ensure the game’s
progress for every phase of the turn in a given cycle. Once it
is crossed, the game automatically moves to the next phase.
In our experiments, we allowed the player to make 4 illegal
actions per phase.

Environment Design
This subsection defines the state and action space, along
with other observables.

State space: A 2D matrix of shape (10,2), each row cor-
responding to a location on the map, and the 1st column de-
fines ownership of the territory, given by a number dedicated
to the player, and the 2nd column represents the number of
troops deployed.

Other observations: Specific information like the num-
ber of player’s spare troops, along with the action mask de-
picting its legal actions for the timestep, are always visible
to the player in their and other’s turn. Common information
such as the current phase, current agent, and current timestep
is visible to all agents.

Hidden information: Information specific to other play-
ers is not visible, however is not difficult to estimate. Edges
of the game are not directly visible and should be learned,
given it is a static information it is not provided separately.

Action space: Each action is a pair of 2 variables, hav-
ing different meanings during different actions. There are

32 possible action values for the 1st variable per timestep in
any given phase; this is done to maintain uniformity of ac-
tion space throughout the game. The 2nd variable is a con-
tinuous float between 0 and 1 inclusive.

- Positioning actions: For the 1st variable, the 1st 10 ac-
tion values, starting with 0, correspond to distinct territories
on the map, used in the 1st phase of the action cycle, the
31st action corresponds to moving to end the current phase,
and the 32nd action for ending the turn, and actions between
11th and 30th are not legal. The 2nd variable corresponds
to the proportion of spare players to be placed. The num-
ber of spare players is only bounded by the total number of
cycles and can change dynamically. The proposed configu-
ration can handle a large number of cycles.

- Transitory actions: Attack and fortification phases re-
quire troops to move from one place to another. The former
required from conquered territory to opponent territory, for
the latter both are conquered territories. For the 1st variable,
actions between 11th and 30th inclusive, corresponding ded-
icated 20 unidirectional edges can be used, mapping to a
specific form and to territory, 31st and 32nd action follows
the same rules as positioning actions. The 2nd variable cor-
responds to the ratio of the troops to be sent. In case the
proportion is 100%, the environment enforces restrictions to
keep a single trooper and tries to send the remaining.

Action mask: The action space defines the legal actions
for the agent per phase as a one-hot vector of length 32:

- Positioning actions: Its 10 values are set to 1 when the
positioning is legal on the corresponding territory, i.e., either
the player owns the territory, or the territory is unoccupied,
and the player hasn’t deployed its first troop, additionally the
player has some spare troops, else these are 0. The 11th to
30th values are 0, and the 31st and 32nd actions are always
legal, i.e., 1.

- Transitory actions: 1st 10 values are always 0 in the
attack phase. Only those edge actions are legal where the
”from” territory is owned by the player and has at least 2
troops, along with the ”to” territory either occupied by an



opponent or empty. In the fortify phase, however, the ”to”
territory should be self-owned.

Game loop: The game loops through cycles sequentially
through each player and all three phases for the players. Un-
til either the time limit is reached or all players but one are
eliminated from the map.

Model Architecture and Training pipeline
We employ causal transformer models with three heads per
timestep: two action heads (a1t , a2t ) and one value head (Vt).
Action head a1t outputs a 32-dimensional SoftMax distribu-
tion (aligned with the action mask), while a2t , predicts a sin-
gle continuous value (0 to 1). (Vt) outputs an unbounded
continuous value.

Given a context length k, the model receives sequences of
states st, actions a1t , a2t , and return-to-go Rt (totaling 4k−3
tokens up to st), predicting Vt and the distribution of . The
most probable a1t is chosen (randomly breaking ties). a2t is
then predicted autoregressively ,fig. 3, by updating the tra-
jectory Tt and re-feeding it to the model, allowing the agent
to act. This autoregressive step occurs once per timestep. Ini-
tially, return-to-go is set to the maximum possible return(110
in the case of Tiny Risk).

Notice, unlike DT (Chen et al. 2021), A2C-DT predicts
the state value function (not return-to-go) (Zheng, Zhang,
and Grover 2022; Yamagata, Khalil, and Santos-Rodriguez
2023; Wu, Wang, and Hamaya 2024; Liu et al. 2022) which
is used for advantage estimation and loss calculation in self-
play training. This approach can be extended to imitation
learning. The model uses only the last predicted token, fo-
cusing on the current state in the sequence.

Training pipeline:
The training pipeline, fig. 2 consists of three phases: Expe-
rience, Data Preprocessing, and Model Update.

Experience phase: In each cycle, N trajectories for N
episodes are recorded. For each episode, each agent main-
tains a context k running memory and tensors of episode
observables. Agents observe state changes even during op-
ponent turns, storing these trajectories (excluding opponent
actions/masks) to differentiate timesteps with and without
agent actions for loss calculation. While agents could po-
tentially visualize opponent legal moves, we omit this to
simplify the state space, expecting independent dynamics
learning. Gradient analysis of opponent action influence is
deferred to future work. At each timestep, normalized ob-
servables update the running memory for a1t , a2t , and Vt pre-
diction. Initial training cycles use epsilon-greedy random le-
gal action exploration, decaying over time. Episode records
of observables, agent actions, and predicted values are then
passed to data preprocessing phase.

Data Processing phase: This phase involves three steps:
normalizing state observables per episode for stability; esti-
mating discounted future return per action. Lastly, to mini-
mize space utilization, each episode trajectory is converted
to a data loader of a single trajectory that produces a se-
quence of k observables, rewards, and recorded predictions.
A replay buffer of size X is maintained, replacing from old-
est X − N trajectories with new ones. This buffer acts as a

data loader of data loaders, shuffling and providing episode
data loaders during training.

Model update: The model trains on shuffled episode tra-
jectories. Each trajectory yields a variable-sized batch (tra-
jectory length × context length). Each batch is chunked into
fixed-size mini-batches of size W for standardized updates.
Mini-batch losses are normalized by the number of mini-
batches per episode to account for varying trajectory lengths.
A target network (delayed weights) predicts V (st+1) for
critic loss estimation. Training model weights are copied
to the target network every N episodes. AdamW optimizer
with small weight decay and a cosine annealing scheduler
(with warmup) is used for learning rate control.

Loss functions:
This section defines the Actor and Critic loss functions,
adapted from Advantage Actor-Critic, calculated per mini-
batch.

Actor Loss: Actor loss is computed only for mini-batch
sequences ending with agent actions (predicted or explored).
Mini-batches without agent actions only contribute to Critic
loss. Due to the shared network backbone, Critic updates
still improve feature representations. The A2C policy gradi-
ent is estimated as (Schulman et al. 2017; Mnih et al. 2016;
Sutton et al. 1999), where τ is the trajectory history of length
k:

∇θJ(θ) ≈
∑

[∇θ log πθ(a|τ) ·A(τ, a)]

However, the action a is composed of autoregressively pre-
dicting a1 and a2. The joint probability of taking both ac-
tions a1 and a2, given trajectory τ , is:

πθ(a = {a1, a2}|τ) = πθ(a
1|τ) · πθ(a

2|a1, τ)

Therefore, the log probability of the action reduces to:

log πθ(a = {a1, a2}|τ) = log πθ(a
1|τ) + log πθ(a

2|a1, τ)

There are two policy gradients that can be estimated: one
for â1 and â2v2 predicted autoregressivly, and the second for
the prediction of â2 given the actual action taken a1. Let’s
denote the predicted actions as â1 and â2, and the actual
actions as a1 and a2. Therefore:

LP1 = log πθ(a = {â1, â2v2}|τ)

= log πθ(â
1|τ) + log πθ(â

2
v2|â1, τ)

LP2 = log πθ(â
2|a1, τ)

The total log probability (LP) is a weighted combination:

LP = ρ · LP1 + β · LP2

And the policy gradient becomes:

∇θJ(θ) ≈
∑[

∇θLP ·A(τ, a = a1, a2)
]

The log probabilities can be expressed using cross-
entropy (CE) and binary cross-entropy (BCE):

log πθ(â
1|τ) = CE(Logits(â1), a1)

log πθ(â
2
v2|â1, τ) = BCE(p(a2|â2v2, â1), p(a2|a2, a1))



Figure 2: Workflow of A2C DT pipeline, depicting different stages training process

Figure 3: A2C-DT Autoregressive action prediction

log πθ(â
2|a1, τ) = BCE(p(a2|â2, a1), p(a2|a2, a1))

Notice, the gradient of a1t are retained a2t , The final policy
gradient per minibatch is where M is total number of mini-
batch in an episode, and N is the number of sequences end-
ing in the agent’s action.

∇θJ(θ) ≈
1

M

W∑
i=1

1

Ni

[
∇θLP

(i) ·A(τ (i), (a1, a2)(i))
]
(1)

Advantage A, is defined as(the discount return is pre-
calculated in during data processing):

A(τ (t), (a1, a2)(t)) =

T−t∑
k=0

γkrt+k+1 − V (τt)

Critic Loss: Critic loss minimizes the difference between
predicted value function Vθ(s) and actual returns. To ac-
count for rewards gained during opponent turns, critic loss

predicts trajectory value at each timestep, initially defined as
per (Mnih et al. 2016):

Lcritic =
1

M ×W

W∑
i=1

(
R(τ (i))− Vθ(τ

(i))
)2

where R(τ (i)) is the actual discounted cumulative reward.
To enhance stability (Barto and Duff 1993; Amiranashvili
et al. 2018), we incorporate a one-step TD error term using a
target network to predict value at t+1. Therefore, the follow-
ing definition of the loss was used, where θ and ϕ represent
the training and target models, respectively.

Lcritic =
1

M ×W

W∑
i=1

[
λ
(
r(i) + γVϕ(τ

′(i))− Vθ(τ
(i))

)2

+ η
(
R(τ (i))− Vθ(τ

(i))
)2

]
(2)

Experiments and Results
This section covers the results of our preliminary experi-
ments using A2C-DT on Tiny Risk. Most runs were con-
ducted on a 3-player board with 10 territories. Our initial ex-
periments focus on the learnability of the model, with A2C-
DT competing against two random legal action agents with
a time limit of 3000 steps per game.

During training, 85% of episodes terminated, and the re-
maining 15% resulted in a draw. Close to the 200th episode,
on average, 95% of the moves were made by the A2C-DT
agent fig. 4c. A 5% action stochasticity was introduced to
maintain environmental complexity. Note that as the branch-
ing factor per action cycle increases exponentially for a
phase, the impact of 5% stochasticity per action cycle also
increases similarly. As seen in fig. 4b, 4a, even with a
penalty of -0.01 per bad action, the model learns to avoid



(a) Agent Action steps per episode (b) Ratio of illegal moves per episode (c) Ratio of agent to random actions

(d) Win rate: 1st position over time (e) Return per episode: Draw & Termi-
nated

(f) Count of captured territories : draw

Figure 4: A2C-DT behavioral characteristics and learning performance in 3 player TR, against random legal bots

them over time, even with a dynamic legality of the action
space, which increases as the model tries to explore and
take illegal actions. The number of total actions taken per
episode also increases, suggesting the learning and execu-
tion of longer-term strategies.

As shown in fig. 4d, despite the stochasticity, the model
achieves the highest 85% win rate in 1200 episodes against
two random legal-action bots. In contrast, vanilla A2C and
PPO models showed no visible improvement even after 5
million episodes and are therefore omitted due to the signif-
icant difference in training time and their poor performance.
This suggests high sample efficiency for our model, a point
we aim to validate in future work.

The model’s returns exhibit instability, potentially due to
four factors: Cosine Annealing Learning Rate Scheduler:
While aiding escape from local minima, the cyclical nature
of cosine annealing can introduce oscillations in prediction
accuracy. Furthermore, cyclical learning rate increases can
amplify optimizer momentum, causing overshooting and os-
cillations around optimal parameter regions. High Gradi-
ent Variance: The sparsity of rewards in Tiny Risk leads to
large gradient fluctuations and, consequently, unstable pre-
diction performance. Off-Policy Updates: The mini-batch-
based data management and network updates introduce off-
policy elements. This can cause instability, as the data col-
lection policy may differ from the updated policy. Limited
Hyperparameter Tuning: While transformers are gener-
ally robust across various configurations, the extensive train-
ing time required for validating each parameter set limited
our exploration. Due to computational constraints, we used
a smaller transformer model (3 blocks, dimension 64) and a
replay buffer of only 20 episodes. Given the promising per-
formance of this base model, further tuning is likely to yield
improvements.

The results shown in fig. 4e, 4f, the moving average of Re-
turn per episode, including draws and terminated episodes,
aligns with our earlier discussion on the increasing win rate,
depicted by the rise in average rewards, alongside the oscil-
lations explained previously. The average reward decreases
in later episodes with more steps, resulting in draws. How-
ever, even in these drawn episodes, the average number of
territories the agent controls increases.

This suggests the agent, aiming for a longer game, is at-
tempting to expand its territorial control. While potentially a
viable strategy, draws still result in a -100 reward, only par-
tially offset by the +1 reward per territory occupied. The re-
ward function, while defining the social dynamics of SSDs,
also governs the learnability of effective strategies. Balanc-
ing these considerations within the reward function is a ma-
jor design challenge and a key requirement for applying Tiny
Risk to real-world problem reduction.

In experiments with a 10,000 timestep limit, the model
began learning to create strongholds, leading to a higher fre-
quency of draws. This, in turn, resulted in a substantial num-
ber of episodes with negative rewards, where the agent ex-
hibited game suicide behavior. This phenomenon may indi-
cate the limitations of a smaller model in navigating a highly
complex environment, potentially due to restricted represen-
tational power. Larger models and longer training times, in
conjunction with reward function redesign, could address
this limitation.

Conclusion and Discussion
This research introduces Tiny Risk, a simplified variant of
Risk designed to study cooperation in complex SSDs. Mo-
tivated by the limitations of existing MARL approaches in
environments like Diplomacy and Civilization, TR balances
complexity and tractability, enabling analysis of emergent



strategies and the potential of social learning algorithms.
While retaining Risk’s core strategic elements, TR con-
strains dynamics for manageable analysis.

To address the performance gap of existing MARL mod-
els in SSDs and explore social learning potential (second
hypothesis), we developed A2C-DT, an A2C-based Deci-
sion Transformer architecture. A2C-DT learns from state
change trajectories influenced by its own and opponents’
actions, implicitly modeling opponent strategies without ex-
plicit modeling or prior human data. This framework is eas-
ily adaptable to incorporate human data in the future. Our
results show A2C-DT’s high sample efficiency, achieving an
85% win rate against random agents within 1200 episodes.
This suggests effective social situation identification through
observing opponent-driven trajectory changes, enabling ef-
ficient learning in SSDs. The transformer’s attention mech-
anism likely facilitates handling the dynamic nature of strat-
egy initiation.

Despite its success in this limited setting, A2C-DT ex-
hibits performance oscillations, likely attributable to the co-
sine annealing learning rate schedule, high gradient vari-
ance, off-policy mini-batch updates, and computational con-
straints on hyperparameter tuning.

To fully address the second hypothesis, future work must
explore techniques for optimizing model training, includ-
ing advantage normalization, GAE, and alternative learn-
ing rate schedules to mitigate oscillations. Furthermore, we
will incorporate algorithmic modifications to better capture
the nuances of cooperation and competition in TR, study-
ing dynamic relationship building, the impact of induced
moral values in opponents, and dynamically changing en-
vironmental factors. This will involve evaluating A2C-DT
against more sophisticated opponents, incorporating explicit
communication, and analyzing emergent cooperative behav-
iors.

Experiments with longer game horizons revealed a be-
havioral bias, highlighting the limitations of smaller models
in representing complex long-term strategies. This under-
scores the importance of representational capacity in solv-
ing SSDs, motivating future work with larger models and
extended training.

To explore the impact of social group size on agent intel-
ligence (third hypothesis), we will train A2C-DT in larger,
denser Risk environments and assess transfer learning to
smaller scenarios. Inspired by the cultural brain hypothe-
sis, we hypothesize that experience in complex social set-
tings will enhance performance in simpler ones. This re-
search contributes to the development of more sophisticated,
socially intelligent agents.
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Appendex A.1 : Additional details on the
Tiny-Risk Environment

A.1.1 Task Difficulty - State action space
complexity
Risk shares similarities with almost unbounded state-action
space complexity. In real-world scenarios, tasks often have
prolonged natural or unnatural terminations, such as the
death of an agent, aging, disease, natural calamities, or
changes in economic policies. Similarly, by design, in the
game Risk, there is no predefined termination condition in
case a single player fails to conquer the entire world.

This implies the existence of at least three non-terminal
gameplay scenarios. First, a purely defensive strategy fo-
cused on survivability, where an agent aims to outlast op-
ponents by building an impenetrable stronghold. Theoreti-
cally, by deploying an infinite number of troops in a single
territory over an infinite period, a player could create a prac-
tically impenetrable defense.

Furthermore, multiple players could adopt this strategy
simultaneously. While this scenario is not a true stalemate,
as it remains possible for other strong players to form an
alliance and defeat such a player. Given an equal number of
turns, an alliance of players would collectively possess more
troops.

Additionally, gameplay can lead to a dynamic loop, where
players are perpetually unable to gain sufficient strength to
monopolize the game board. This is primarily because, un-
like games like Go or Chess, the number of troops and terri-
tories owned in Risk are not fixed, troops can be perpetually
added and removed from the board. These variable quanti-
ties are critical factors influencing game termination. Con-
sequently, the action space is essentially unbounded.

By extension, the state space is not solely defined by
territory ownership (e.g., for Tiny Risk: 310 configurations
for 10 territories and 3 players). Instead, it must also ac-
count for the varying number of troops in each territory.
Even with a cap of 300 troops per territory in Tiny Risk,
the total number of state configurations can be calculated as
(3× (300 + 1))10, which is approximately 3.6× 1029 for a
game board with 3 players and 10 territories (approximately
360 sextillion). Increasing the number of players by one in-
creases the state space by a factor of approximately 17.75x,
and by two players by approximately 165.38x. Similarly, in-
creasing the number of territories by one increases the state
space by approximately 903x, and by two territories by ap-
proximately 815, 409x. The full game of Risk, if limited to
a maximum of 300 troops per territory, 42 territories, and 3
players, would have approximately 1.3×10124 possible state
configurations, which is about 3 × 1077 times larger than
John Tromp’s estimate for the state space of Chess. How-
ever, in a general, unrestricted game of Risk, the number of
troops and even players can be further increased, exacerbat-
ing this complexity. Consider a player with 3 territories, 100
troops per territory, 2 possible actions per troop per territory,
and 50 moves per turn. The per-turn branching factor, in this
simplified scenario, is approximately ((2×100)3)50, and this
factor increases dramatically with more moves, troops, and
territories. This immense scale underscores the significant
challenges Tiny Risk presents for traditional reinforcement
learning approaches due to the vastness of its state and ac-
tion spaces.

This potentially is one of the reasons we saw traditional
models struggling even in a smaller setting of Tiny-Risk.

A.1.2 Task Difficulty - Non-Markovian Game
Property
The game of RISK, particularly when considering the social
dynamics between interacting agents (both human and AI),
fundamentally violates the Markov property, posing signif-
icant challenges for the direct application of standard re-



inforcement learning (RL) algorithms. A Markov Decision
Process (MDP), the cornerstone of many RL methods, relies
on the assumption of memorylessness: the future state of the
system depends solely on the current state and the agent’s
action. Past history is considered irrelevant once the cur-
rent state is known. In social RISK, however, this assump-
tion is demonstrably false, making the environment non-
Markovian.

Partial observability and its violation The core issue is
that the complete state of the game is not fully observable.
While the board configuration (territory ownership and army
placements) is visible to all, a crucial part of the state re-
mains hidden: the internal states of the other agents. These
internal states are not merely static parameters, but rather
dynamic and evolving representations of:

• Reputation: Each agent holds internal beliefs about the
other agents, quantifying their trustworthiness, aggres-
siveness, propensity for retaliation, and opportunism.

• Grudges and Alliances: Agents remember past interac-
tions.

• Strategic Intentions: Agents have hidden goals and plans.

These internal states are interdependent and create feed-
back loops. An agent’s action modifies not only the board
state, but also the internal states of other agents. These al-
tered internal states then influence the future actions of those
agents, which feedback to affect the original agent.

Cyclical Dependency of Beliefs and Actions:

1 Agent A’s Action: Agent A takes an action based on its
internal beliefs and the board state.

2 Other Agents’ Belief Update: Other agents (e.g., Agent
B) observe A’s action and update their own internal be-
liefs about A.

3 Other Agents’ Action: Agent B, based on its updated in-
ternal beliefs about Agent A, takes an action.

4 Agent A’s Belief Update: Agent A observes B’s action
and updates its own internal beliefs about B, completing
the cycle.

Illustrative Example:
Consider two scenarios with identical board states: Bot A

and Bot B are neighbors with equal armies.

• Scenario 1 (History: Neutral): No prior interaction. Bot
B might fortify its borders.

• Scenario 2 (History: Betrayal): Bot A previously be-
trayed Bot B. Despite the identical board state, Bot B’s
internal state (high grudge, low trust) will likely make it
attack Bot A preemptively.

This difference, from the same observable state but differ-
ent histories and internal states, shows the non-Markovian
nature. The future is not conditionally independent of the
past, given the present observable state.

This presents a substantial obstacle for standard RL. Par-
tially Observable MDPs (POMDPs) address hidden state,
but make a crucial simplifying assumption: the underlying
state transitions, while hidden, still follow a Markov process.
This means that even though the agent doesn’t see the true

state, the probability distribution governing how that true
state changes from one step to the next is static and depends
only on the current true state and the agent’s action.

In RISK, this is not the case. The ”underlying state”
(which includes all agents’ internal beliefs) changes in a way
that does not have a static probability distribution. The prob-
ability of an opponent attacking is not a fixed number; it de-
pends on their dynamically changing internal state (reputa-
tion, grudge, etc.), which is influenced by the entire history
of interactions and, crucially, by the learning agent’s own ac-
tions. This creates a non-stationary environment where the
rules of the game, from the agent’s perspective, are con-
stantly changing. The observation the agent receives, which
is tied to the underlying interal state, no longer follows
a simple, consistent probability distribution. Therefore the
POMDP assumption is violated.

This requires sophisticated opponent modeling, poten-
tially incorporating Theory of Mind, and handling non-
stationarity and the complex feedback loops, posing a sub-
stantial challenge for traditional RL.

NOTE: While we restricted our competitors to be random
legal agents, which highly restricts this challenge, it is ex-
pected during SSD experiment designs, the experimenters
would develop rule-based or learning agents to mimic dif-
ferent human player personalities. We intend to develop and
open-source reusable human personality agents in future
work.

A.1.3 Task Difficulty - Non-stationary
The game of RISK presents a profoundly non-stationary
environment for reinforcement learning agents, exceeding
the challenges typically encountered in traditional non-
stationary settings. In standard RL, non-stationarity often
arises from changes in the environment’s dynamics, such as
shifting reward functions or transition probabilities that are
external to the agent’s actions. In RISK, however, the non-
stationarity is endogenous, driven primarily by the interac-
tions between multiple intelligent agents, each with their
own evolving strategies and hidden internal states. Several
key factors contribute to this:

Drastic State-Space Changes: Unlike environments
where state transitions are primarily driven by the learning
agent’s actions or gradual environmental shifts, RISK’s state
space can undergo large, unpredictable changes between an
agent’s turns due to the actions of other players, in their
turn. These changes are not simply stochastic environmental
noise; they are the result of strategic decisions made by other
agents, making them difficult to model as a fixed probabil-
ity distribution. This is fundamentally different from, say,
a changing weather pattern in a navigation task, where the
changes, while non-stationary, are typically independent of
the agent’s choices. Additionally, in Risk this impact is fur-
ther amplified when opponents change their strategies, i.e.
during a game players can intentionally change their long
term behaviour, which renders the current perception of oth-
ers, based on historical interactions, meaningless.

Dynamic Player Count: The number of players in RISK
is not fixed. As players are eliminated, the fundamental dy-
namics of the game change dramatically. A strategy that is



optimal in a six-player game may be disastrous in a three-
player game, as the balance of power, potential alliances, and
threat landscapes are completely altered. This is a discrete,
structural change in the environment, not just a gradual pa-
rameter shift.

Asynchronous and Intermittent Reward Signals: In
many RL environments, rewards are received directly af-
ter the agent’s actions. In RISK, however, an agent re-
ceives rewards (e.g., gaining or losing territories and armies)
throughout the entire round, even when it is not the agent’s
turn to act. This means that the total reward received after
a single action is not solely a consequence of that action; it
is also heavily influenced by the intervening actions of all
other players, a factor that is both unpredictable and depen-
dent on their evolving strategies. The length and complexity
of these intervening actions compound this effect, creating a
highly variable and delayed reward signal that is difficult to
attribute to specific actions.

These sources of non-stationarity are particularly chal-
lenging because they are directly tied to the strategic behav-
ior of other intelligent agents. The environment is not simply
changing randomly or according to some pre-defined sched-
ule; it is being actively reshaped by the decisions of oppo-
nents who are themselves learning and adapting. This cre-
ates a complex, interdependent, and highly dynamic learning
problem that goes beyond the typical assumptions of non-
stationary RL environments.

A.1.3 Design Choices and Simplifications
As described in the main text many simplifications are added
to Tiny Risk, these simplifications are intentional and crucial
for isolating and analyzing complex social interactions. Our
primary goal is not to replicate the full operational complex-
ity of a real-world environment but to provide a tractable and
interpretable testbed for studying sequential social dilem-
mas. That is, by reducing extraneous complexities (e.g., de-
tailed combat mechanics), Tiny Risk allows us to concen-
trate on how agents learn to navigate these social dilem-
mas, understand opponent strategies, and adapt. The sim-
plified environment facilitates clearer analysis of agent be-
havior and promotes reproducibility, which is essential for
foundational research in this area.

Simplified stochasticity model To improve the tractabil-
ity of reinforcement learning in RISK, we introduce a sim-
plified stochasticity model in our ”Tiny RISK” environment,
replacing the traditional dice rolls and card draws with two
normal distributions. This design choice is motivated by sev-
eral factors:

Reduced Complexity, Increased Focus on Strategic In-
teraction: The original RISK game incorporates multiple
sources of randomness:
• Battle Resolution: Dice rolls determine combat out-

comes, with a maximum of five dice (three for the at-
tacker, two for the defender) and a complex probability
distribution for troop losses.

• Card Rewards: Players receive cards that can be ex-
changed for variable numbers of troops, introducing un-
certainty in resource acquisition.

• Card Inheritance: Eliminating a player grants the victor
the defeated player’s cards, adding an unpredictable in-
flux of resources.

• Territory-Based Reinforcements: The number of troops
received each turn depends on the number of territories
controlled, which is itself subject to the actions of other
players.

These intertwined stochastic elements make it exceed-
ingly difficult to isolate the impact of strategic decisions
from the influence of chance. The resulting variance in re-
wards significantly dilutes the credit assignment process,
hindering effective learning. By replacing these with two
normal distributions (please refer section 2 of the main text),
we create a controlled source of randomness that allows us
to focus on the core strategic challenges of the game: oppo-
nent modeling, long-term planning, and social interaction.

Analytical Tractability and Robustness: Normal distribu-
tions are well-understood and have desirable mathematical
properties. A vast body of work exists on learning and opti-
mization in the presence of normally distributed noise. This
provides stronger theoretical guarantees for convergence and
robustness compared to the complex, discrete, and multi-
faceted randomness of the original game. The central limit
theorem suggests that even the combined effects of multiple
dice rolls tend to approximate a normal distribution, making
this simplification a reasonable, albeit imperfect, approxi-
mation. Using the normal distribution, a defined mathemati-
cal equation, makes analysis easy.

Concentrated Stochasticity: Rather than having random-
ness injected at multiple points (battles, cards, territory con-
trol), we concentrate the stochasticity into a single, well-
defined mechanism within the battle resolution. This allows
for a clearer attribution of outcomes to strategic choices,
while still maintaining an element of uncertainty that pre-
vents the game from becoming fully deterministic. It helps
focus the training procedure.

In summary, while the original RISK’s randomness adds
to its realism and excitement as a game for human players,
this complexity hinders the application of RL techniques.
Our simplification using normal distributions strikes a bal-
ance between retaining some stochasticity (essential for a
non-deterministic game) and creating a more analytically
tractable and learnable environment, allowing us to isolate
and study the core strategic challenges of multi-agent inter-
action in RISK.

Micro-action and Reward Shaping A key aspect of our
Tiny RISK environment is the configurability of the micro-
action limit and the reward shaping parameters (action
penalty and illegal action penalty). By varying these parame-
ters, we can investigate their impact on agent learning, emer-
gent strategies, and social dynamics. This enables us to ex-
plore not just how agents learn to play RISK, but also how
the environment itself shapes the learning process.

To ensure computational tractability and encourage effi-
cient learning, we introduce two key modifications to the
standard RISK game structure in our Tiny RISK environ-
ment. These modifications are designed to streamline the
game while preserving its core strategic elements:



Micro-Action Limit (Configurable): While the average
RISK game length is around 15 full turns, significantly
longer games are possible. To prevent computationally ex-
pensive ”runaway” games and encourage efficient explo-
ration, we impose a configurable limit on the total number
of micro-actions an agent can take. A micro-action is de-
fined as a single atomic action, such as attacking a territory
or fortifying troops. The default limit is set to 3000.

Reward Shaping (Configurable): The original RISK game
provides a sparse reward signal: +1 for winning and 0 (or -1)
for losing. This makes learning extremely challenging. To
facilitate learning, we introduce configurable reward shap-
ing:

• Illegal Action Penalty: A small negative reward is given
for each micro-action. The default value is -0.01, encour-
aging efficient solutions. Varying this value results in dif-
ferent strategic exploration and development. If an agent
reaches the micro-action limit (primarily through repeat-
edly attempting illegal actions for 3000 steps), it accu-
mulates a large negative penalty of -30, strongly discour-
aging unproductive behavior. This is an extreme case.

• Terminal Reward: The original win/loss reward for Risk
is (+1/-1 or +1/0), however the size of this reward can be
varied to study the associated impact on learning process
and stability.

A.1.4 Uniqueness of Tiny Risk, and why is it a
necessity: comparison with existing environments
Tiny Risk offers several key advantages for modeling real-
world problems, compared to SSD environments heavily
studied in literature, such as Harvest and Cleanup. Three
crucial factors enhance its applicability:

Rich Social Dynamics: Unlike the primarily competi-
tive environment of Harvest and the mixed cooperative-
competitive setting of Cleanup, Tiny Risk offers a unique
blend. While primarily competitive, the extended timeframe
and single-reward structure incentivize cooperation due to
high long-term uncertainty. These alliances differ signifi-
cantly from the short-term cooperative behaviors seen in
Cleanup’s teaming variants. The longer interaction horizon
in Tiny Risk allows for exploring nuanced social dynam-
ics like deception, forgiveness, resentment, reciprocity, ne-
gotiation, niche behaviors (e.g., competitive exclusion), and
even stubbornness. Multifaceted interactions across differ-
ent territorial fronts, where players might cooperate with
some opponents while competing with others, further enrich
the diplomatic landscape. While Melting Pot 2.0’s substrates
exhibit some of these elements, no single environment com-
bines them all as Tiny Risk does (Agapiou et al. 2022). Im-
portantly, Tiny Risk’s player-driven environmental changes
promote transitions between different interaction types, un-
like Harvest’s static environment. Cleanup captures some of
this dynamism, but its short reward horizons limit the com-
plexity of emergent behavior.

Unified, Long-Term Objective: A key driver of Tiny
Risk’s social dynamics and uncertainty is its single, long-
term reward structure. In contrast, the multiple in-game re-
wards of Harvest and Cleanup allow for partitioning the

game into smaller, matrix-like subgames, as demonstrated
in previous research. This translates to repetitive game dy-
namics, which, while useful, limits the emergent complexity
compared to a single, overarching objective. This simplifi-
cation may not adequately capture the complexities of real-
world sub-tasks or long-term goal-oriented social interac-
tions. These factors necessitate modeling evolving opponent
strategies within each game episode.

State-Action Dynamics: Harvest, Cleanup, and similar en-
vironments compel action at every timestep within a de-
fined ecosystem, assuming all players act with a bounded set
of predefined actions. This model doesn’t accurately reflect
real-world scenarios for several reasons:
• Multitasking: Humans often work on multiple tasks con-

currently, choosing to act or not on each task at different
times. One person’s activity doesn’t preclude another’s
progress on a different task. Turn-based games like chess
and Go, while simplifying simultaneous actions, still re-
strict players to single actions defined by the action dis-
tribution.

• Skill and Time Disparities: Real-world actors exhibit
varying skill levels and time constraints. Some individ-
uals can perform multiple actions while others manage
only one. Furthermore, performance can fluctuate even
within a single skill domain due to various factors.

Risk offers a more general model with long sequences of
micro-actions per turn. Other players can observe the chang-
ing world state but not the opponent’s specific actions. A
simplified real-world analogy is a court trial, where the de-
fense and prosecution take turns asking multiple questions,
influenced by skill and circumstance, with limited explicit
cooperation. Tiny Risk’s action space offers further nuances:
• Dynamic Action Legality: Unlike Harvest’s fixed legal

actions and Cleanup’s environment-dependent legality,
Tiny Risk’s legal actions depend on both the environ-
ment (territory ownership, troop deployments) and the
game phase. The current phase dictates the possible ac-
tion types.

• Context-Dependent Action Meaning: The same action
can have different effects depending on the game phase.
For example, reinforcing a territory versus attacking it.
This context-based polysemy, abundant in real life (e.g., a
back slap as praise or punishment), isn’t fully captured in
other environments, including Melting Pot. Forced task
partitioning in Cleanup, while introducing some context,
doesn’t alter the fundamental meaning of actions.

• Action Complexity: Tiny Risk’s actions incorporate de-
grees of application, reflecting human sophistication. The
”right” amount of action, not just the type, matters.
Physics-based environments, such as Pistonball, explore
this concept but with limited action types.

Comparison with GO and Chess While games like Go
and Chess have served as landmark challenges for AI, they
represent a specialized case of turn-based gameplay that
RISK significantly generalizes. Classic board games ex-
hibit two key limitations. First, they possess a fixed action
distribution, predetermining the complexity of each move.



While techniques like allowing sequences of micro-actions
can vastly increase the effective complexity and enable near-
human performance, this complexity remains fundamentally
bounded by the game’s inherent rules. Second, Go and Chess
enforce a rigid alternation of turns, forcing a response af-
ter every single opponent action. This contrasts sharply with
real-world scenarios, where agents often engage in multi-
tasking, operate under flexible time constraints, and do not
adhere to a predefined schedule of actions with fixed com-
plexity. Furthermore, skill levels, both between different
players and even within a single player across different tasks
or time periods, exhibit considerable variance.

Appendix A.2: Additional details on A2C-DT
Motivation for A2C-DT
Motivation to use a transformer model: The choice of a
Transformer architecture for our RISK agent, as opposed
to traditional neural networks like multi-layer perceptrons
(MLPs) or recurrent neural networks (RNNs), is motivated
by several key advantages, particularly in the context of
this complex, multi-agent, partially observable, and non-
stationary environment:
• Contextualized Representations and Implicit Opponent

Modeling: The self-attention mechanism allows the
Transformer to create contextualized representations of
states and actions. The representation of a particular ac-
tion is influenced by all other states and actions within the
context window, including those of other players. This
provides a richer, more informative representation than
feedforward networks (which treat each input indepen-
dently) or RNNs (which have a limited, sequential con-
text). This implicit consideration of other players’ actions
is a form of intrinsic opponent modeling, allowing the
agent to better anticipate and react to opponent strate-
gies, mitigating the challenges of partial observability.
Since this representation/constructs created inherently in
the network from observations and value-based optimiza-
tion, they are potentially better than handmade Reference
(Indirectly Related - Opponent Modeling): [Albrecht, S.
V., & Stone, P. (2018). Autonomous agents modelling
other agents: A comprehensive survey and open prob-
lems. Artificial Intelligence, 258, 66-95.]relationship fea-
tures.

• Improved Sample Efficiency: By capturing long-range
dependencies and creating richer representations within
the context window, Transformers can often learn effec-
tively from fewer training examples than RNNs or MLPs.
This was observed in our experiment as well.

• Handling Non-Stationarity (Indirectly): While Trans-
formers don’t directly solve non-stationarity, their abil-
ity to capture long-range dependencies and contextual in-
formation within the context window makes them more
robust to these changes. Additionally, by considering a
wider context within the window, the agent is less likely
to be thrown off by short-term fluctuations in opponent
behavior.

• Parallelization: Unlike RNN, transformer allows for par-
allel processing, which helps in faster learning.

Existing model architectures Recent transformer models
in RL often focus on representation learning or world mod-
els (transition/reward functions) as assistive frameworks,
rather than pure reinforcement learning, (Chen et al. 2022;
Gopalakrishnan et al. 2023; Melo 2022). For instance, the
original offline DT (Chen et al. 2021) acts as a transi-
tion function model, stitching observed offline trajectories
through supervised learning. While capturing causal se-
quential transitions, it doesn’t address the value of indi-
vidual actions through bootstrapped value functions, devi-
ating from theoretical Bellman optimality, though further-
ing the recent successes of supervised sequential modeling.
DTQN (Esslinger, Platt, and Amato 2022) and UPDET (Hu
et al. 2021) explore Q-value learning with transformers, but
transformers’ sample inefficiency poses challenges in com-
plex state-action spaces. A2C’s on-policy learning, advan-
tage function, and target network reduce variance and sta-
bilize training, minimizing oscillations, (Babaeizadeh et al.
2016; Han et al. 2020). While not discounting the potential
of more stable algorithms like PPO, we prioritized faster de-
bugging and analysis in this initial work. Unlike MAT (Wen
et al. 2022), DTQN, and UPDET, A2C-DT’s critic updates
use both TD loss and supervised sequential learning, model-
ing value changes from all changes in the environment, even
when the model is not active. This is particularly useful to
mitigate the non-stationary nature of single-delayed rewards
multiagent environment. Furthermore, In A2C-DT we mod-
eled causally dependent components of micro-actions from
different distributions within a single framework, general-
izable to any deep RL setting, which was either tackled by
separate networks, independence assumption or learning to
search for best action (Van de Wiele et al. 2020).

Overcoming limitations of offline Decision
Transformer
While our work primarily focuses on Tiny-Risk environ-
ment, to better model a performant agent we derived A2C
Decision Transformer (A2C-DT) architecture for online re-
inforcement learning in complex, multi-agent environments
like RISK. Traditional Decision Transformer (DT) is typ-
ically trained offline on pre-collected datasets, often em-
ploying value pessimism to mitigate distributional shift is-
sues inherent in offline RL. While effective in batch settings,
these approaches can struggle with the limited and evolving
state-action distributions encountered during online learn-
ing. Our A2C-DT overcomes these limitations by incorpo-
rating a process of updating batches of experiences using a
replay-buffer and an actor-critic framework, enabling online
training and active exploration. Unlike sequence-modeling-
only approaches like the original DT, which rely solely on
supervised learning to ”stitch” together successful trajecto-
ries, our model integrates the strengths of both value-based
learning (through the A2C component) and sequential mod-
eling (through the transformer component). The actor-critic
framework provides crucial value estimates for guiding pol-
icy improvement, mitigating the reliance on purely super-
vised imitation of past actions. The transformer architec-
ture, with its attention mechanism, captures long-range de-
pendencies and contextual information within the trajectory,



enabling a more informed ”look-ahead” and ”look-back”
capability compared to traditional recurrent or feedforward
networks. This combination allows for both effective ex-
ploitation of learned value functions and efficient explo-
ration guided by the sequential context.

Extended reason for Value-based learning: A critical
challenge in RL, particularly in games with long horizons
and delayed rewards like RISK, is the credit assignment
problem. This refers to the difficulty of determining which
actions, within a long sequence, were responsible for the
eventual outcome (win or loss).

The RTG method in the original DT, could face severe
limitations in highly non-stationary long-horizon game like
Risk:

• Delayed and Sparse Rewards: In RISK, the primary re-
ward signal (+1× k for winning, 0 or −1× k for losing,
where k is some constant) is only received at the very end
of the game. This means that the RTG for actions taken
early in the game is based on a single, distant outcome.
The original paper explores this idea in a stationary robot
environment problem. Further exploration and compara-
tive analysis is required to ascertain the utility of offline
DT in Risk-like environment.

• Noisy Signal: The RTG for an early action is an ex-
tremely noisy signal of that action’s true value. A single
good move early on can be followed by many mediocre
or even bad moves, yet the final reward (and thus the RTG
for all actions in the sequence) will be the same. Con-
versely, a poor early move might be compensated for by
later good moves. The RTG would face difficulties in dis-
tinguish between these, added with high non-stationarity
of the environment.

Finally, RTG based-learning in DT is effectively a Monte
Carlo (MC) estimation. MC methods tend to exhibit higher
variance than Temporal Difference (TD) methods (Sutton,
Barto et al. 1998)(chapter 6,7), (Kearns and Singh 2000).
This is because the MC update target (the full return) is a
sum of many random variables (rewards), and the random-
ness accumulates over the entire episode. TD, by bootstrap-
ping from the estimated value of the next state, relies on a
shorter-term, less variable signal. This effect is prominent in
long-horizon, stochastic environments with delayed reward
like in RISK.

However, Off-Policy TD Learning methods (like Q-
learning) can have significantly higher variance than on-
policy methods. Therefore, to control the variance we chose
on-policy A2C learning.

Design Modification in RL algorithms for Tiny
Risk
The subsection describes the model modification used to
adapt DDPG, A2C and PPO algorithms to work with Tiny-
Risk’s hybrid action space (Discrete, Continuous).

Dynamic N-step Return : A significant challenge in ap-
plying reinforcement learning to RISK is the game’s long
sequence length and cyclic, turn-based gameplay. The agent

only takes consecutive actions during its own turn and re-
mains inactive while other players act. However, the agent
continues to receive rewards during these intervening pe-
riods (e.g., due to other players attacking its territories or
the territories of its opponents). This asynchronous reward
structure makes credit assignment difficult, particularly for
one-step or fixed n-step TD learning methods. To mitigate
this, we employ a dynamic n-step return during training.

Dynamic N-step return, Rn(t) at timestep t, adapts to the
asynchronous and cyclical nature of the game. The value
of n represents the number of steps until the agent’s next
opportunity to act. During the agent’s turn, n=1 for most
micro-actions, reflecting the immediate effect of the agent’s
choices. However, for the final micro-action of the agent’s
turn (in the third phase), n becomes equal to the total num-
ber of micro-actions taken by all other players before the
agent’s next turn begins. If the agent is eliminated during
the game, n capture the entire length of the gameplay post
the agents’s last action. This captures the cumulative effect
of other players’ actions on the agent’s reward.

The dynamic N-step return is calculated as follows:

Rn(t) =

n−1∑
i=0

γi × r(t+ i) (3)

where:
• Rn(t) is the dynamic N-step return at timestep t.
• n is the dynamic step size, as described above.
• i the iterator.
• γis the discount factor.
• r(t+ i) is the reward received at timestep t+i.

By using this dynamic N-step return, we provide a more
accurate and informative training signal for the agent, bridg-
ing the gap between its actions and the delayed, asyn-
chronous rewards influenced by other players. This im-
proves credit assignment and facilitates more effective learn-
ing in this complex, multi-agent environment.

Notice, as calculating Rn(t), requires a dynamic look
ahead, the processed episode interactions are added to the
replay buffer only after completion of each episode.

Loss functions - DDPG
TD loss critic: Adapting Rn(t) in the Q’ equation, we cal-
culate the TD Q-value loss for the critic as follows:

DDPG TD losscritic =

mse

[
Rn(t) + γn ×Qtarget(st+n, a

′1, a′2),

Qcurrent(st, a
1, a2)

]
where:

• Rn(t) is the dynamic N-step return at timestep t.
• γis the discount factor.
• st+n is the state observed at time t+n
• a′1, a′2) are the on policy actions taken at time t+n.



Figure 5: Modified DDPG actor-critic prediction flow and
summarized architecture

• Qtarget(st+n, a
′1, a′2), is the q value estimate at state-

actions triplet st+n, a
′1, a′2, using target critic network,

and is 0 for the last state of the game.
• Qcurrent(st, a

1, a2) is the q value estimate at state-
actions triplet st, a1, a2 using current network.

Policy loss: The policy loss is calculated for the actions
taken, and it follows the same calculation as the original
DDPG:

a1 = Actor1(st)

a2 = Actor2(st, a
1)

DDPG Policy loss = −Qcurrent(st, a
1, a2)

Because the two sub-actions (a1, a2) are predicted by sep-
arate networks, and due to the nested dependency of the Q-
function on a2 (which itself depends on a1), we use two dis-
tinct optimizers, one for each sub-action’s network. Back-
propagation requires two steps, retaining the computational
graph, as the gradient flows to Actor 1 through two paths:
directly via the Q-function and indirectly via Actor 2. Fig-
ure 5 details the modified prediction flow of the two different
actor networks and the critic.

Loss functions - A2C

TD loss critic: Similar to DDPG we estimate the TD Loss
for critic using Rn(t), as follows:

Vtarget(st) = Rn(t) + γn × V (st+n)

Vpredicted(st) = V (st)

A2C TD losscritic =

mse
(
Vtarget(st), Vpredicted(st)

)

Notice, as A2C uses a state-value function (fig. 6) in-
stead state-action-value function, its estimation is not action-
dependent and therefore can be made for every time-step,
even during the opponent’s turn. However, we still use Dy-
namic n-step estimation in our calculations, as it enables
faster information propagation while reducing biases present
in 1-step TD learning (Kearns and Singh 2000). Also note,
that a target critic network is not utilized in A2C (Mnih et al.
2016). For further learning stabilization, gradient clipping
was employed.

Policy loss: The two losses are calculated the two actor
networks, respected, which are updated using a policy gra-
dient method, guided by the advantage function. The advan-
tage Adv is calculated as follows:

Advt = Vtarget(st)− Vpredicted(st)

Note that A is detached from the computational graph to
prevent gradients from flowing back through the critic dur-
ing the actor updates.

The policy loss for each actor is then calculated as the
negative of the expected log probability of the taken action,
weighted by the advantage. An entropy regularization term
is added to encourage exploration.

During training, Actor 1 (Discrete Action, a1) outputs a
probability distribution, p1(s) ∈ [0, 1]|A1|, over discrete ac-
tions A1, given state s, calculated using a softmax over net-
work logits, with masking of invalid actions. action mask is
1 for valid actions, and 0 otherwise:

z = logits(s) · actionmask(s) + ϵ

p1,i(s, a) =
exp(zi(s))∑

j∈A1
exp(zj(s))

where p1,i(s, a) is the probability of action a (an integer
index), and zi(s) are the logits. The log probability of the
chosen action a1 is:

log p1(a
1|s) = log(p1,a1(s))

The policy entropy is:

H(p1) = −
∑
a∈A1

p1,a(s) log(p1,a(s))

Actor 2 (Continuous Action, a2) outputs parameters of a
Gaussian distribution (mean µ(s, a1) and standard deviation
σ(s, a1)) over continuous actions A2, conditioned on s and
a1. The log probability density of the chosen action a2 is:

log p2(a
2|s, a1) = −1

2
log(2πσ(s, a1)2)− (a2 − µ(s, a1))2

2σ(s, a1)2

The differential entropy of Actor 2’s policy (for a univari-
ate Gaussian) is:

H(p2) =
1

2
+

1

2
log(2π) + log(σ(s, a1))

The loss functions for actions are calculated as follows:
A2CL1(θ1) = Est,a1

t∼πθ1

[
− log πθ1(a

1
t |st) ·Adv(st)

−βH(πθ1(·|st))



Figure 6: Modified A2C and PPO actor-critic prediction flow
and summarized architecture

A2CL2(θ2) =

Est,a1
t ,a

2
t∼πθ2

[
− log πθ2(a

2
t |st, a1t ) ·Adv(st)

−βH(πθ2(·|st, a1t ))
where
• A2CL1(θ1) and A2CL2(θ2) are the loss functions for

Actor 1 and Actor 2, respectively, parameterized by their
network weights θ1 and θ2.

• Est,a1
t∼πθ1

[. . . ] denotes the expectation over states st
and actions a1t sampled from the policy πθ1 of Actor 1.
Similarly for Actor 2.

• πθ1(a
1
t |st) is the probability of taking action a1t in state

st under Actor 1’s policy.
• πθ2(a

2
t |st, a1t ) is the probability of taking action a2t in

state st and action of actor 1 a1t under Actor 2’s policy.
• Adv(st) is the advantage function.
• H(πθ1(·|st)) is the entropy of Actor 1’s policy in state
st.

• H(πθ2(·|st, a1t )) is the entropy of Actor 2’s policy in
state st and action of actor 1 a1t .

• β is the ‘entropy coefficient‘, controlling the strength of
the entropy regularization.

• Note that, expectation is being taken over st, a1t for actor
1, and st, a

1
t , a

2
t for actor 2.

Due to the nested dependency (Actor 2 depends on Ac-
tor 1), backpropagation is done in two steps, similar to
DDPG:
• Actor 1 Update: A2CL1(θ1) is backpropagated, retain-

ing the computational graph.
• Actor 2 Update:A2CL2(θ2) is then backpropagated.

Separate optimizers (actor1 optimizer,actor2 optimizer)
are used. Gradient clipping is applied to both critic and actor
networks.

Loss functions - PPO
This section details the modifications made to the A2C algo-
rithm (described in the last subsection) to implement mod-
ified Proximal Policy Optimization (PPO). PPO constrains

the policy update to prevent excessively large changes, en-
hancing stability. This is achieved via a clipped surrogate
objective.

Old Policy: PPO introduces ”old” policies, πθ1old
(Ac-

tor 1) and πθ2old
(Actor 2), representing the policies *be-

fore* the current update. Their parameters, θ1old and θ2old ,
are updated periodically via a soft update:

θiold ← τθi + (1− τ)θiold
where i ∈ {1, 2} and τ is a hyperparameter.
Probability Ratio: A core element of PPO is the probabil-

ity ratio, quantifying the change between the current and old
policies. We calculate separate ratios for Actor 1 and Ac-
tor 2:

r1(st, a
1
t ) =

πθ1(a
1
t |st)

πθ1old
(a1t |st)

r2(st, a
1
t , a

2
t ) =

πθ2(a
2
t |st, a1t )

πθ2old
(a2t |st, a1t )

These ratios are computed in log-space for numerical sta-
bility. The old policy log probabilities are detached from the
computational graph.

Clipped Surrogate Objective:PPO uses a clipped surro-
gate objective. The unclipped objectives for Actor 1 and Ac-
tor 2 are:

LCLIP
1 (θ1) = r1(st, a

1
t ) ·A(st)

LCLIP
2 (θ2) = r2(st, a

1
t , a

2
t ) ·A(st)

where A(st) is the advantage function (calculated as in
A2C). PPO clips the probability ratio:

ri clipped = clip(ri, 1− ϵ, 1 + ϵ)

where i ∈ {1, 2} and ϵ is a hyperparameter. The clipped
surrogate objectives are:

LCLIP
1 (θ1) = min(r1(st, a

1
t ) ·A(st),

r1 clipped(st, a
1
t ) ·A(st))

LCLIP
2 (θ2) = min(r2(st, a

1
t , a

2
t ) ·A(st),

r2 clipped(st, a
1
t , a

2
t ) ·A(st))

This clipping prevents excessively large policy updates.
Actor Loss: The final PPO actor losses, incorporating the

clipped surrogate objective and entropy regularization, are:

PPOL1(θ1) = Est,a1
t∼D

[
−LCLIP 1(θ1)−

βH(πθ1(·|st))

PPOL2(θ2) = Est,a1
t ,a

2
t∼D

[
−LCLIP 2(θ2)−

βH(πθ2(·|st, a1t ))
Crucially, unlike in the A2C implementation where ac-

tions are resampled from the current policy during training,



the actions a1t and a2t used in the PPO loss calculations are
the actions taken in the past and stored in the replay buffer,
denoted by D. These are not resampled from the current
policies πθ1 and πθ2 . This is a defining characteristic of PPO
and contributes to its stability.

These losses are minimized using the respective actor op-
timizers. The critic loss and the overall training loop struc-
ture (sampling, backpropagation, gradient clipping) remain
the same as in A2C. The key difference is the clipped surro-
gate objective in the actor loss, which promotes more stable
policy updates.

Connecting with A2C-DT
This section details the action prediction mechanism and
loss function calculations for our A2C Decision Transformer
(A2C-DT) model in the Tiny RISK environment. We build
upon the foundational concepts of A2C and Decision Trans-
formers, introducing several key modifications designed to
improve learning efficiency, stability, and performance in
this complex setting of Tiny-Risk.

Transformer-Based Action Prediction: Unlike standard
A2C, which typically uses separate actor networks, our
A2C-DT leverages the Transformer’s inherent sequential
processing capabilities for direct action prediction. The
Transformer’s hidden states, encoding the context of the
input sequence (states, actions, rewards, and, importantly,
returns-to-go), serve as the basis for action selection.

• Input Sequence: The Transformer receives a sequence
of inputs representing the game history (within a con-
text window), including states, actions (of all players),
rewards, and returns-to-go.

• Hidden States: The Transformer processes this input,
producing hidden states, h = [h1,h2, ...,hT ].

• Action Prediction: Simple linear layers, applied to spe-
cific hidden states, predict the action distribution param-
eters:

– Discrete Action (a1): A linear layer, W1, followed by
a Softmax, maps the hidden state corresponding to the
agent’s turn, ht, to a probability distribution over dis-
crete actions:

p1 = Softmax(W1ht + b1)

where p1 ∈ [0, 1]|A1| is the probability vector, and b1
is a bias term. Invalid actions are masked before the
Softmax.

– Continuous Action (a2): A separate linear layer, W2,
maps the hidden state corresponding to the agent’s
turn, ht, to the parameters of a Beta distribution:

params2 = W2ht + b2

Where the parameters are then used to get α and β of
the beta distribution.

Beta(α, β)

Where the parameters are calculated as, α =
params2 ∗ concentration and β = (1 − params2) ∗
concentration.

We use a Beta distribution, rather than the Gaussian
distribution used in our previous A2C/PPO implemen-
tations, because the continuous action in our setting
(e.g., the proportion of troops to allocate) is naturally
bounded between 0 and 1. The Beta distribution is
well-suited to this constraint, providing a flexible and
appropriate way to model the action distribution.

Improvement: This integrated approach offers several
advantages:

– Contextualized Decisions: Actions are conditioned
on a rich representation of the game history, unlike
standard A2C where actions depend only on the cur-
rent observation.

– Implicit Policy Representation: The policy is implic-
itly encoded within the Transformer and the linear lay-
ers, simplifying the architecture.

– Better Long-Range Reasoning: The Transformer’s
attention mechanism can capture long-range depen-
dencies within the context window more effectively
than RNNs.

Note unlike A2C and PPO we do not mask the illegal ac-
tions for A2C-DT, as we force the model to learn how to
differential during training, via negative reward.

Critic Loss: We combine both a 1-step TD loss and a
Monte Carlo loss:

V TD
target(st) = rt + γV (st+1)

LTD = E
[
smooth l1 loss

(
V (st), V

TD
target(st)

)]
LMC = E [smooth l1 loss (V (st), Gt(st))]

LCritic = LTD + LMC

Where:

• V (st) is the predicted value.
• rt is the immediate reward.
• γ is the discount factor.
• V TD

target(st) is the 1-step TD target.

• Gt(st) is the actual discounted return, starting from st.
• smooth l1 loss is the Huber loss.

Improvement: This hybrid approach combines the bene-
fits of both TD and MC learning:

• TD: Lower variance and faster initial learning due to
bootstrapping.

• MC: Unbiased estimate of the true value function, pro-
viding a long-term correction to the TD estimates.

• Robustness: The Huber loss (smooth L1) is less sensitive
to outliers than MSE, improving robustness in a stochas-
tic environment.

• Forming internal representation of opponent’s strategy:
since we are learning from long-term opponent behaviour
observed as trajectory input the DT, it learns to associate
the value outcome and the past behavior.



Actor Loss: The actor loss is calculated only for
timesteps where the agent itself took an action. We intro-
duce a three-loss structure for the actors: The advantage
function is:

Adv(st) = Gt(st)− V (st)

Note the use of full return Gt(st) instead of TD target.

– LActor 1(θ1) (Discrete Action): This loss uses the
past action a1tD from the replay buffer:

LActor 1(θ1) =

Est,a1
tD

∼D

[
I(t ∈ Agent’s Turns) ·

(
− log πθ1(a

1
tD |st) ·Adv(st)

−βH(πθ1(·|st))
)]

The expectation is over states st and past actions a1tD
sampled from the replay bufferD. The log πθ1(a

1
tD |st)

term is the log probability of the *past* action a1tD un-
der the *current* policy πθ1 , given the current state st.
This is computed by taking cross-entropy loss between
the predicted probabilities and past action.

– LActor 2(θ2) (Continuous Action, Conditioned on
Re-predicted a1t ): This loss uses the *re-predicted*
continuous action a2t from the current policy πθ2 , con-
ditioned on the current state st and the *re-predicted*
discrete action a1t :

LActor 2(θ2) =

Est,a1
t∼πθ1

,a2
tD

∼D

[
I(t ∈ Agent’s Turns) ·

(
− log πθ2(a

2
tD |st, a

1
t ) ·A(st)

−βH(πθ2(·|st, a1t ))
)]

The expectation is over states and actions a1t sampled
according to current policy πθ1 and a2t is sampled from
D. The log πθ2(a

2
tD |st, a

1
t ) is computed using a BCE

Loss.
– LActor 2′(θ2) (Continuous Action, Conditioned on

Past a1tD
′): This loss uses the *same* re-predicted

continuous action a2t as LActor 2, *but* it is condi-
tioned on the past discrete action a1tD

′ taken from the
*replay buffer*:

LActor 2′(θ2) =

Est,a1
tD

′∼D,a2
tD

∼D

[
I(t ∈ Agent’s Turns) ·

(
− log πθ2(a

2
tD |st, a

1
tD

′) ·A(st)

−βH(πθ2(·|st, a1tD
′))

)]
The expectation is over states and past actions a1tD

′

sampled from the replay buffer D. The action a2t is

sampled from the current policy πθ2 given st and
a1tD

′. The log πθ2(a
2
t |st, a1tD

′) term is computed using
a BCE Loss.

Where:

– I(t ∈ Agent’s Turns) is an indicator function (1 if t is
an agent’s turn, 0 otherwise).

– D represents the replay buffer.
– H(πθ1) and H(πθ2) are the policy entropies.
– β is the entropy regularization coefficient.
– a<i

t represents the actions taken by actors *before* ac-
tor i

Backpropagation is performed in a multi-step process,
retaining the computational graph as necessary. We use
separate optimizers for each actor network and for the
critic network.


