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ABSTRACT

Offline policy optimization has a critical impact on many real-world decision-
making problems, as online learning is costly and concerning in many applications.
Importance sampling and its variants are a widely used type of estimator in offline
policy evaluation, which can be helpful to remove assumptions on the chosen
function approximations used to represent value functions and process models.
In this paper, we identify an important overfitting phenomenon in optimizing the
importance weighted return, and propose an algorithm to avoid this overfitting.
We provide a theoretical justification of the proposed algorithm through a bet-
ter per-state-neighborhood normalization condition and show the limitation of
previous attempts to this approach through an illustrative example. We further
test our proposed method in a healthcare-inspired simulator and a logged dataset
collected from real hospitals. These experiments show the proposed method with
less overfitting and better test performance compared with state-of-the-art batch
reinforcement learning algorithms.

1 INTRODUCTION

Learning decision policies from offline data has a critical impact on real-world decision-making
applications such as healthcare (Lei et al., 2012; Komorowski et al., 2018), recommendation systems
(Li et al., 2010; Chen et al., 2019), and intelligent tutoring systems (Mandel et al., 2014).In real-world
decision-making applications, we often need to use limited amounts of data about past decisions to
yield better future performance in complex, hard-to-model domains. Such offline policy optimization
encounters two key generalization challenges: distribution shift and modeling bias. Distribution
shift arises because, under a new decision policy, the distribution of observations and actions will be
different than the distribution of observations and actions in the offline data. Modeling bias can occur
when popular assumptions over the domain structure or model class (such as the Markov assumption,
realizability, or the value function class being closed under the Bellman), fail to hold in the problem
setting. Learning from limited data, algorithms ignoring these challenges can produce policies and
estimates of policy performance that are far more optimistic than they achieve in practice, similar to
the overfitting in supervised learning.

To address this, prior work in batch reinforcement learning (RL) and contextual bandits mostly falls
into two categories: (1) changing the estimator or loss function used in computing offline value
estimates, or (2) constraining the policy search space. In category (1), self-normalized IS (or weighted
IS) (Hesterberg, 1995; Swaminathan & Joachims, 2015b), variance regularization (Swaminathan &
Joachims, 2015a; Metelli et al., 2018), doubly robust methods(Dudı́k et al., 2011; Jiang & Li, 2016;
Thomas & Brunskill, 2016), and uncertainty regularized model-based batch RL (Yu et al., 2020;
Kidambi et al., 2020) are all approaches that aim to provide more stable and variance-penalized
estimates of a policy’s performance to address the uncertainty due to limited data and distribution
shift. The second category of direct constraints on the policy class includes bandit learning under
action/policy constraints with behavior probability (Sachdeva et al., 2020), value-based batch RL
algorithms by constraining the policy disagreement (Kumar et al., 2019; Buckman et al., 2020),
thresholding the action probability (Fujimoto et al., 2019; Futoma et al., 2020), or thresholding the
marginalized state-action probability (Liu et al., 2020), under the behavior policy.

Many of the works above rely on learning MDP models or value functions based on MDP assumptions.
However, the Markov assumption and function approximation assumptions are often unrealistic in
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real-world problems and hard to verify, which limits their eligibility in certain application problems.
In this paper, we consider learning an policy to optimize an importance weighted return, as it is free
from Markov and other types of model assumptions. We identify an unique overfitting that is not
solved in prior work about policy optimization and propose a new constraint on policy named eligible
actions (EA) to address the overfitting issue.

The overfitting issue comes from fitting the importance weights in the weighted return objective. The
importance weighted return can effectively remove a certain subgroup of samples in the dataset by
decreasing all weights to zero. This context avoidance is unrealistic when the subgroup consists of
a subset of initial states, as the policy does not get to control the initial state distribution. Consider
the following motivating example: an AI decision policy may learn from historical treatment logs
to avoid all the logged treatment in the history for patients with severe conditions as they lead to
low rewards. This avoidance can be achieved with finite data if the action space is large, and such
avoidance will result in high off-policy estimates. However, in the real environment, a policy still
should make good decisions for patients who arrive with severe conditions. This propensity overfitting
problem was studied in contextual bandit problems (Swaminathan & Joachims, 2015b). While their
solution effectively constrained the upper bound on importance weights on high-reward samples, the
challenge of overfitting to avoid the low-reward samples remains.

Our contribution To address the issue that optimizing with propensity weights may avoid certain
initial states, we propose the Policy Optimization with ELigible Actions (POELA) algorithm. We
constrain the potential action set to the set of observed actions with similar states to prevent improper
avoidance to lower-reward initial states. Thus within a radius of a particular state, the sum of observed
importance weights are always lower bounded. We then study the empirical performance of POELA
in a medical simulator and a real-world medical dataset. Our approach finds much better decision
policies than prior state-of-the-art algorithms in both domains.

2 OFFLINE POLICY OPTIMIZATION

We study the problem of offline policy optimization in sequential decision-making under uncertainty.
Let the environment be a finite-horizon Contextual Decision Process (CDP) (Jiang et al., 2017). A
CDP can capture more general, non-Markovian settings (also sometimes refered to as a Non-Markov
DP (Kallus & Uehara, 2019b)). A CDP is defined as a tuple 〈X ,A, H, P,R〉, where X is the
context space, A is the action space, and H is the horizon. P = {Ph}Hh=1 is the unknown transition
model, where Ph : (X × A)h−1 → ∆(X ) is the distribution over next context given the history
P1 : ∆(X ) is the initial context distribution. Similarly, R = {Rh}Hh=1 is the reward model and
Rh : (X ×A)h → ∆([−Rmax, Rmax]).

In this paper we focus on learning policies that map from the most recent context to an action
distribution, π : X → ∆(A). This is optimal when the domain is Markov and can often be more
interpretable and more feasible to optimize given finite data in the offline setting. In offline policy
optimization settings, we have a dataset with n trajectories collected by a fixed behavior policy
µ : X → ∆(A), and we aim to find a policy π in a policy class Π with the highest value.

Policy gradient and optimization approaches do not rely on a Markov assumption on the under-
lying domain, and have had some encouraging success in offline RL (Chen et al., 2019). Often
these methods leverage an importance sampling (IS) estimator in policy evaluation: v̂IS(π) =
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. The IS estimator is an unbiased and consistent estimate

of the value under the following two assumptions:

Assumption 1 (Overlap). For any π ∈ Π, and any x ∈ X , a ∈ A, π(a|s)
µ(a|s) <∞.

Assumption 2 (No Confounding / Sequential ignorability). For any policy π ∈ Π and µ, conditioning
on the current context xh, the sampled action ah is independent of the outcome rh:H and xh+1:H .

IS often suffers from high variance, which has prompted work into extensions such as doubly robust
methods (Jiang & Li, 2016; Thomas & Brunskill, 2016) and/or methods that balance variance and
bias. Truncating the weights and using self-normalization has been shown to be empirically beneficial
both in bandit and RL settings (Swaminathan & Joachims, 2015b; Futoma et al., 2020): we refer to
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this as Self-Normalized Truncated IS (SNTIS):

v̂SNTIS(π) := 1∑n
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3 THE OVERFITTING PROBLEM IN IMPORTANCE WEIGHTED POLICY
OPTIMIZATION

We now highlight an important problem with using important sampling estimators such as the above
during offline policy optimization. For concreteness we will describe this in the contextual bandit
setting using the self-normalized importance sampling estimator, but a similar results hold for un-
normalized estimator. We will also shortly describe in the main text how this issue persists in existing
importance weighted off-policy learning methods and about the multi-step case in the appendix.

The key issue is that given a finite dataset, during optimization the IS estimator objective can benefit
policies that improperly avoid low reward states, inducing a lack of overlap on the empirical behavior
data. To see this, let vπ(x) = E[r|x, a ∼ π], p̂(x) be the empirical probability mass/density over the
contexts x in the dataset, and W (x) =

∑
i:x(i)=x

W (i)

W . We now decompose the importance weighted
off-policy estimator into three parts.

v̂ = Ep̂[vπ(x)]︸ ︷︷ ︸
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(2)

The first term is a supervised empirical value estimate whose only error is due to the error in the
empirical context distribution sampled in the dataset, vs the true context distribution. The second
term captures the error caused by the difference between context distribution introduced by weights
and empirical context distribution in the dataset. The third term computes the difference between the
weighted IS estimate of the value of the policy in a specific context x versus its true value vπ(x), and
then sums this over all contexts.

The second term is of particular interest, because it highlights how the IS estimator of a policy may
effectively shift the relative weight on the context space. Note in the bandit setting (and in the initial
starting state distribution for the RL setting) such shifting should not be allowed: the policy may
control what actions are taken, but cannot change the initial context distribution.

Before illustrating the problematic behavior that can result from this type of objective function for
offline policy learning, we first further analyze if it is possible for W (x) to differ significantly from
hatp(x), given the normalization constraint of π. Expanding the difference between the empirical
distribution over a context and W (x):
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∑
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)
π(a|x) (4)

While the first term is asymptotically zero because W → N , the second term will be non-zero
whenever the policy π puts non-zero weight on actions in contexts where the empirical behavior
distribution differs significantly from the true behavior distribution. Such a difference between the
empirical and true behavior distributions can easily happen. This is especially the case in settings
where the state-action space is large and the number of observed actions per state is small, which is
common in recommendation settings, healthcare and many other applications.

A policy learning algorithm maximizing the objective in Equation 2 can exploit this difference in
context weights and return a policy with an over inflated value estimate, as we now illustrate:

3



Under review as a conference paper at ICLR 2022

Example 1. Consider a contextual bandit problem with |X | contexts and |A| actions in each context.
For half the contexts Sp, the reward is 1 for one action and zero for others. For the other half of
the contexts, Sn, the reward is -1 for half the actions, and -5 for the rest. The true distribution
over contexts is uniform. Note in this setting the optimal policy would have a reward of 0. The
behavior dataset is draw from a uniform distribution over contexts and actions. When the sample size
|D| < |A|, we can assume there is only one observed positive reward in the dataset. Then computing
the policy to maximize the important sampling weighted objective will yield weights that are 0 on all
contexts except for the context with the positive reward, through a policy π that selects actions that
are not present in the dataset for all contexts whose observed actions lead to only zero or negative
rewards: let Asi = {ai : r(si, ai) ≤ 0} then π(si) = aj where aj /∈ Asi .
The resulting IS/SNIS estimator of the value of π is 1, which is much higher than the optimal policy
value. In addition, note that the returned policy π is likely to be worse than the optimal policy for any
context where r(si, ai) = −1, since that is the optimal reward possible for such states si, and by π
selecting an unobserved action aj in that state (π(si) = aj), the policy π may select an action with
worse true reward, r(si, aj) = −5.

Note that in this example, there is no error in the importance weighted return for the contexts with
positive W (x) (which is the third term in the decomposition shown in Equation 2). The issue
arises because to optimize the objective, it is possible to select a policy whose W (x) distribution
over the contexts has zero weight on at least the half of the contexts with negative rewards Sn, by
assigning them actions not selected in the dataset. This causes the second term in the decomposition
(Equation 2) to be significantly overestimated.

This is a unique overfitting phenomena in the counterfactual (or called off-policy) learning settings
since in supervised learning it is not possible for a hypothesis π to manipulate the weights over the
input contexts. While this issue can arise in contextual bandits with large state and action space in
small datasets, we show that it is even easier for this to occur in sequential reinforcement learning
settings, even when only 2 actions are available in Example 2 and 3 in the Appendix.

Intuitively, the issue arises because in estimating the value of a new decision policy, it is acceptable to
choose a policy that re-distributes the weights of actions within an initial context but not re-distribute
the weights across initial contexts, since it is not a function of the actions selected. It is well known
that in importance sampling, the expected ratio of the weights should be 1: Ey∼µ[π(y)/µ(y)] =
1. In contextual policies, we expect that the expected weights should also be 1 for all initial
contexts x0: Ea∼µ(a|x0) [π(a|x0)/µ(a|x0)|x0] = 1. However, optimizing for a standard importance
sampling objective (such as Equation 2) does not involve constraints that the empirical expectation
of weights given an initial context Ê

[
W
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h

]
(or the weights of n-step given initial context

Ê
[
W (i)|x(i)

1 )|x(i)
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]
) is still close to one. In order to optimize the future return, the optimization

algorithm can optimize the weights of initial contexts in the dataset, instead of optimizing the weights
on different actions/ action sequences in a given initial context.

This result may seem surprizing, given that under mild assumptions which are satisfied here (As-
sumptions 1 and 2) importance sampling is well known to provide an unbiased estimate of the value
of a policy. Our observations do not contradict this fact: while importance sampling will still provide
an unbiased estimate given a policy, the policy optimization can exploit the finite sample error and its
heterogeneousness across the policy class.

4 PRIOR WORK ON OFFLINE POLICY OPTIMIZATION

Before we describe a method to alleviate this problem, we first review prior work. There is increasing
interest in multi-armed bandits and offline RL to avoiding overly optimistic estimates of policies
computed from finite datasets that can cause suboptimal policy learning, and prior work has discussed
extrapolation error(Fujimoto et al., 2019), propensity overfitting (Swaminathan & Joachims, 2015b),
and bandit error (Brandfonbrener et al., 2020). The problem we identified arises specifically from
deficient support in the observed dataset.

To address potential overfitting, one line of work focuses on changing the objective used for policy
optimization. For example, Swaminathan & Joachims (2015b) has shown that policy optimization
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using vanilla importance sampling in contextual bandits will over-maximize the weights if the reward
is positive and over-minimize the weights for negative reward. Shifting the rewards will help with
the latter (and avoid part of the context avoidance we describe) but can worsen the former. The
self-normalized estimator proposed to address the issue of over-maximizing reward (Swaminathan &
Joachims, 2015b) is equivariant to any constant shift in rewards, and will still suffer from the context
avoidance issues we describe above. Counterfactual risk minimization (Swaminathan & Joachims,
2015a) uses variance regularization based on the empirical Bernstein’s inequality. However, this
penalization is at the policy level and does not directly address the problem with avoiding contexts
with low reward. In Appendix Figure 2c we show the counterfactual risk minimization regularization
with or without self-normalization requires a large dataset to perform well. Later work (Joachims
et al., 2018) extended norm-POEM to stochastic gradient descent settings for large-scale training.
Recent work (Brandfonbrener et al., 2020) discussed a similar overfitting issue as we describe and
compared the performance of offline policy optimization and model/value-based method on this
overfitting issue. Those authors focus primarily on the negative result of the policy optimization
approach and the advantage of the model/value-based method. Doubly robust estimators (Dudı́k
et al., 2011; Jiang & Li, 2016; Thomas & Brunskill, 2016; Kallus & Uehara, 2019a;b) have multiple
benefits but as long as the learned Q function is imperfect, policy learning can still overfit to the
high/positive residual r−Q. Pessimism under uncertainty approaches are promising (Kidambi et al.,
2020; Yu et al., 2020) but have so far only been developed for Markov settings and are not robust to
model class misspecification.

Another line of offline batch policy optimization constrains the policy search space, for example
to constrain target policies to be close in some distance to the behavior policy (Kumar et al., 2019;
Buckman et al., 2020). A common approach is to constrain target policies to have a minimum
conditional action probability under the behavior policy µ(a|s) (e.g. Sachdeva et al. (2020); Fujimoto
et al. (2019); Futoma et al. (2020); Liu et al. (2020)). This work has focused on algorithms and
analysis for the Markov setting with additional model realizability assumptions, except Sachdeva
et al. (2020) in the bandit case and Futoma et al. (2020) in the RL setting. For example, the MDP
value based approaches often require the value function class is closed respect to the Bellman operator
and the value function is realizable. Such assumptions are hard to verify in real-world domains.

This prior work does not address the issues we outlined, that occur due to deficient support in
the observed finite data rather than in the expected behaviors. Our work can be broadly viewed
as following in the recent line of work on pessimism under uncertainty, but adapted to provide
policy search based offline learning method that does not require the Markov assumption or model
realizability assumptions, and can achieve strong performance given a finite dataset.

5 LOWER BOUND OF Ê[W|x] AND ELIGIBLE ACTIONS

We have observed that the issue rises in policy learning because weight can be placed on unobserved
actions for certain contexts, causing the empirical conditional expectation of weights given a context
to be zero for such contexts. To address this, one possibility is to constrain the conditional expectation
of weights given a context to be 1 or lower bounded. However doing so in infinite/continuous context
spaces is subtle: each context likely only appears once in the dataset, and requiring Ê[W |x] = 1
would be equivalent to only allowing a policy that exactly matches the observed logged actions.

We now propose a slight relaxation of the above proposal. Intuitively the issue arises because without
further constraints, policy learning can place large weight on unobserved actions in the dataset, for
which our reward uncertainty is high. The recent line of pessimism under uncertainty for model and
value based MDP offline RL explicitly accounts for such statistical uncertainty through constraining
or penalizing actions and/or states and actions for which there are limited observed data. Similar to
this, we introduce a pessimistic constraint on the policy class to be considered, and then demonstrate
this allows us to constrain the empirical conditional expectation of weights given a context.

For policy learning, we create local constraints on the eligible policy class by defining for each
context x, dataset D and a given threshold δ, the eligible action set A(x;D, δ)

Ah(x;D, δ) = {ah : ∃(xh, ah) ∈ D s.t.dist(x, xh) ≤ δ} (5)

Intuitively this allows any action that was taken for a given context, or actions taken in contexts
within a given distance of the observed contexts.
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We now show that any policy that only selects actions in eligible action sets will ensure that the
empirical sum of weights in any hypersphere of any context can be lower bounded, as desired. To do
so we first introduce an assumption about the policy’s smoothness in the context space.
Assumption 3 (L-Lipschitz policy). ∀π ∈ Π, ‖π(a|x)− π(a|x′)‖ ≤ Ldist(x, x′).

Under this and the former assumptions, we can now show the following. All proofs, when omitted,
are provided in the appendix:

Theorem 1. ∀x(i)
h , B(x

(i)
h , δ) := {x : dist(x, x

(i)
h ) ≤ δ},

∑
x
(j)
h ∈B(x

(i)
h ,δ)

W
(j)
h ≥ 1− δL|A|

Given the likelihood ratio is lower bounded, we can further show that the self-normalized truncated
weights are also lower bounded in the one-step settings.

Corollary 1. For H = 1,
∑
x
(j)
1 ∈B(x

(i)
1 ,δ)

max{W (i),M}∑n
i=1 max{W (i),M} ≥

1−δL|A|
nM for M > 1.

In n-step sequential settings, it is necessary to have the 1-step weights be greater than zero in order to
have n-step weights greater than zero.

Proposition 1. For any x, δ, E[W
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1:h|x
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If the policy overfits the weights on an h-step context such that Ê[W
(i)
h |x

(i)
h ∈ B(x, δ)] = 0, the

n-step weights will also be zero even the roll-in probability under π is non-zero.

The above results highlight that introducing a constraint on the policy class to have local overlap with
actions taken in the dataset, is sufficient to ensure that the weights on the contexts are lower bounded.
This will help address the overfitting issue highlighted in the prior sections. Policy learning can now
be done by finding the policy which satisfy the eligible actions constraints given the input dataset:

arg maxπ∈Π J(π;D) s.t.∀i, h
∑
a∈Ah(x

(i)
h ;D,δ) π(a|x(i)

h ) = 1 (6)

J(π;D) can be any objective function such as v̂IS, v̂SNTIS or with the counterfactual risk minimization
regularization (Swaminathan & Joachims, 2015a) in prior work:

arg maxπ∈Π v̂SNTIS(π)− λ
√

V̂ar (v̂SNTIS(π)). (7)

A natural question is whether these action eligibility local constraints limits the expressivity of the
policy class Π. We show that asymptotically the expressivity is the same, and the maximizer in
Equation 6 will converge to the optimal policy in the policy class if J(π,D) is consistent.
Theorem 2. i) Fixed δ, for any x, Ah(x;D, δ) → {a : µ(a|x) > 0} as n → ∞ with probability
1. Thus the solution to Equation 6 is the same as π̂D,J = arg maxπ J(π,D). ii) If J(π,D) is the
objective in Equation 7, the truncation threshold M as a function satisfies M →∞ and M/n→ 0
as n→∞, and |Π| <∞, then vπ̂D,J → maxπ∈Π v

π in probability.

6 ALGORITHM: POLICY OPTIMIZATION WITH ELIGIBLE ACTIONS

Algorithm 1 Policy Optimization with ELigible Actions (POELA)

1: Input: D, Πθ, sphere radius δ, IS truncation M , CRM coefficient λ, learning rate α
2: Output: π̂θ
3: Initialize θ0

4: for t = 0, 1 until convergence do
5: π̂θt(a|x) := 1{a ∈ Ah(x;D, δ)}πθt(a|x)/ (

∑
a 1{a ∈ Ah(x;D, δ)}πθt(a|x))

6: θt+1 ← θt + α∇θ
(
v̂SNTIS(π̂θt)− λ

√
V̂ar (v̂SNTIS(π̂θt))

)
7: end for

Now in Algorithm 1 we introduce our POELA (Policy Optimization with Eligible Actions) algorithm
that implements the learning objective in Equation 6 (see Algorithm1—. We use the counterfactual
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risk minimization objective function Equation 7 as the J(π;D), where the estimator V̂ar(v̂SNTIS)

is constructed using the Normal approximation in [ (Owen, 2013, Equation 9.9) V̂ar(v̂SNTIS) =∑n
i=1(r

(i)−v̂SNTIS)
2
(min{W (i),M})2

(
∑n

i=1 min{W (i),M})
2 . After each gradient step, we enforce the policy to satisfy the

eligible action constraints by re-normalizing the output probability on Ah(x;D, δ) for x ∈ D. The
eligible action set for each training sample is static and can be stored to reduce computational cost.
In the experiments, we use Euclidean distance in over nearby states at any time index.

7 EXPERIMENT

We now compare POELA with several prior methods for offline RL. Perhaps the most relevant work
in avoiding overfitting when using importance sampling is norm-POEM (Swaminathan & Joachims,
2015b). Here we extend it here to be suitable for sequential decision settings, use a neural network
policy class and refer to the resulting algorithm as PO-CRM. A second baseline PO-µ constrains the
policy class to only include policies which take actions with a sufficient probability under the behavior
policy µ(a|s) (see e.g.Futoma et al. (2020)). We also compared with recent deep value-based MDP
methods in batch RL: BCQ (Fujimoto et al., 2019) and PQL (Liu et al., 2020). For all algorithms we
use a feedforward neural network for the relevant policy and/or value, function approximators.

We use the same procedures for each algorithm to select its hyper-parameters. An algorithm is trained
on the training set multiple times, using different hyper-parameters and several restarts. Intermittent
policies generated during the training process are saved at checkpoints. Across this set of potential
policies, we identify the policy with the highest self-normalized truncated IS (SNTIS) estimates on
a held-out validation set. Finally, we report the test performance of selected policy either through
online Monte-Carlo estimation if a simulator is available, or using SNTIS estimates on a held out test
set. Full experimental details are provided are in the Appendix.

7.1 EXPERIMENT IN LGG TUMOR GROWTH INHIBITION SIMULATOR

The Tumor Growth Inhibition (TGI) simulator (Ribba et al., 2012) describes low-grade gliomas
(LGG) growth kinetics in response to chemotherapy in a horizon of 30 steps (months), with an
non-Markov context and a binary action of drug dosage (Yauney & Shah, 2018). The reward consist
of an immediate penalty proportional to the drug concentration, and a delayed reward of the decrease
in mean tumor diameter. The behavior policy selects from a fixed dosing schedule of 9 months (the
median duration from Peyre et al. (2010)) with 70% probability and else selects actions at random.

In this experiment, the behavior policy can only take values in {0.15, 0.85}. This means constraining
the policy class to have a minimal probability under µ(a|s), as in baseline PO-µ, is only a non-trivial
constraint for thresholds greater than 0.15: this produces a single potential target policy, which is
the deterministic fixed-dosage part of behavior policy. We include this as 9-mon (short for 9 month
dosing) in Table 1. The training and validation set both have 1000 episodes, and we repeat the
experiment 5 times with 5 different train and validation sets. Policy values are normalized between 0
(uniform random) and 100 (best policy from online RL).

As shown in Table 1 (Non-MDP rows), our POELA achieves the highest test value as well as smaller
variability compared with the baselines.

Does POELA reduce overfitting? We calculate the difference between v̂SNTIS on the validation set
and the online test value. Although for a given algorithm, we select the final policy using off-policy
evaluation on the validation set, most algorithms still result in a policy whose value is a significant
overestimate of its true performance (see Table1, rows for v̂SNTIS − vπ). In contrast, our approach
yields a policy whose value is much more accurately estimated and performs better.

Performance comparison in MDP environment We also repeat the experiment with an MDP
modification of the simulator, including an immediate Markovian reward and additional features for
a Markovian state space. Note that we expect BCQ and PQL to do very well: both are designed to
avoid overfitting in offline MDP learning and in particular PQL uses a pessimism under uncertainty
approach to penalize policies that put weight on state–action pairs with little support. Though
our POELA algorithm makes no Markov assumptions, it performs only slightly worse than the
conservative MDP methods. POELA also substantially outperforms other policy-based approaches.

7
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Algorithms POELA PO-CRM BCQ PQL 9-mon

Non-MDP Test vπ 92.20± 1.63 75.06± 13.22 30.24± 15.22 74.76± 9.75 68.12
v̂SNTIS − vπ −1.26± 1.92 15.57± 13.07 63.72± 15.54 17.74± 9.49 −

MDP Test vπ 89.52± 1.55 78.79± 6.42 95.64± 4.64 96.88± 3.76 68.12
v̂SNTIS − vπ 5.16± 1.78 14.93± 5.71 −0.69± 0.81 0.55± 5.12 −

Table 1: Test vπ and amount of overfitting of the learned policy. Test vπ is computed from 1000
rollouts in the simulator. v̂SNTIS on the validation set − test vπ represents the amount of overfitting.
All numbers are averaged across 5 runs with the standard error reported.

Method POELA PO-µ PO-CRM BCQ PQL Clinician

Test SNTIS 91.46 (90.82) 87.95 87.71 82.67 84.40 81.10
95% BCa UB 93.24 (92.61) 90.58 90.04 86.83 88.29 82.19
95% BCa LB 89.59 (88.68) 84.77 84.90 78.25 80.13 79.80

Test ESS 624.92 (586.37) 372.00 399.59 228.82 231.93 2995

Table 2: MIMIC III sepsis dataset. Test evaluation, (0.05, 0.95) BCa bootstrap interval, and effective
sample size. The value of POELA without a CRM variance penalty is shown in parentheses.

7.2 EXPERIMENT IN ICU DATA - MIMIC III

We next apply our method in a real-world example of learning policies for sepsis treatment in medical
intensive care units (ICU). We use an extracted cohort (Komorowski et al., 2018) of patients fulfilling
the sepsis-3 criteria from the MIMIC III data set (Johnson et al., 2016) and obtain a dataset of 14971
patients, 44 context features, 25 actions and a 20 step maximum horizon. Full details are in the
Appendix. We hold out 20% of data for validation and 20% of data for the final test. The treatment
logs do not include the probabilities of clinicians’ actions. Instead, as suggested by prior work(Raghu
et al., 2018), we estimate the probabilities of the behavior clinicians’ policy by k-NN with k = 100.
To ensure overlap, for all policy optimization algorithms we allow π(a|s) > 0 only if µ̂(a|s) > 0.

Using self-normalized truncated importance sampling to evaluate the performance on a test set is
appealing because it makes little assumptions on the underlying domain. However, it may be that
very few test behavior policy trajectories match a candidate test policy, which can make the resulting
value estimate unreliable. The amount of overlap between the test set and a desired policy to evaluate
can be measured quantitatively by the effective sample size (ESS) (Owen, 2013). To help increase
the chance that the test effective sample size is sufficient to yield reliable estimates, during the policy
selection process for a given algorithm, only policies with an effective sample size of at least 200
on the validation set are considered.1 Similar to prior work (Thomas et al., 2015), in addition to the
SNTIS estimator on the test set, we also report a 95% upper and lower bound from bias-corrected
and accelerated (BCa) bootstrap. The clinician’s column is the test dataset rewards and sample size.

Table 2 shows our POELA is the best on all metrics, achieving the highest evaluation on the test set,
the highest upper and lower bounds, and the highest effective sample size.

Is the variance regularization helpful? To demonstrate the effect of variance penalty on the
POELA algorithm, we demonstrate the test performance POELA without the variance penalty. The
performance is worse than using the variance penalty but still higher than the baseline algorithms.

Is there a trade-off between effective sample size (ESS) and performance estimates? A tension
in conservative offline optimization is that the most reliable and conservative policy estimates come
from effectively imitating the behavior policy (which will maximize effective sample size). Policies
that differ substantially from the behavior policy may yield higher performance, but have less overlap
with the existing logged data (and lower ESS). In Figure 1a we plot each hyper-parameter and each
re-start from different algorithms. The plots show that POELA achieve a better Pareto frontier
between performance estimates and effective sample size than other algorithms.

1Note that the variance penalty may not ensure that the ESS is large. In particular, if only 2 trajectories in a
dataset match a desired target policy (an ESS of 2). When they have the same reward and weights, the variance
penalty of self-normalized estimator will be 0.
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(a) Trade-off between ESS and OPE (b) Action counts in high-SOFA contexts

Figure 1: (a): Trade-off between effective sample size and value estimates. (b): Action counts
heatmap in high-SOFA initial contexts of the policy learned.

Do learned policies take medically reasonable actions on sicker patients? As we discuss, prior
IS methods can overfit to achieve high estimated IS/SNIS score by avoiding initial contexts with low
expected rewards. We now explore the learned policies for patients with high logged SOFA score
(measuring organ failure) initially in the test dataset. Figure 1b depicts the number of actions that
would be taken by different policies, as well as by the clinicians on the high-SOFA contexts. POELA
mainly takes high-vasopressors high-IV-fluid treatments but also some IV-fluid-only treatments,
which is similar to the clinician’s policy but more concentrated on high-vasopressors treatments.
In contrast, PO-CRM and value-based methods, take treatments that are different from the logged
clinician decisions. This suggests these policies may be overfitting to avoid the contexts with high
SOFA in the distribution. However, some patients arrive with high SOFA scores, so a policy must
have a suitable policy to support such individuals, which our method helps to ensure.

While these results are promising, before deploying any offline reinforcement learning algorithm in a
high stakes clinical setting, further investigation and collaborations with clinicians would be essential.

8 CONCLUSION & FUTURE WORK

To conclude, we identify a novel overfitting challenge that arises when using importance sampling
as part of an offline policy learning objective. In particular, the objective can result in a policy that
under-weigh certain (lower performing) initial contexts, to achieve higher average value. To address
this, we constrain the policy class to only consider logged actions taken by nearby samples. This
can be viewed as a similar pessimism constraint that has been used in MDP offline policy learning,
but now developed for a non-Markov, direct policy search setting. Our approach yielded strong
performance relative to state-of-the-art prior approaches in a tumor growth simulator and a real
world dataset on ICU sepsis treatment. Our method may be particularly useful for many applied
settings such as healthcare, education and customer interactions, which have a short or medium length
decision horizon, but are unlikely to be Markov in the observed per-step variables.

A reader might wonder if a similar benefit might be possible if the algorithm first learned an empirical
behavior policy from the logged dataset, and then constraining the policy class to be close to the
empirical behavior policy. Our current results suggest that such an approach is likely to require
additional innovation: indeed the PO-µbaseline for the sepsis dataset uses an empirical behavior
policy, and does not perform as well as our approach. This is interesting because prior work has
shown that using such an empirical behavior policy can yield better off-policy estimates than using
true behavior policy (Xie et al., 2018; Hanna et al., 2021) settings, and lead to benefits in off
policy learning for contextual bandits Xie et al. (2018). However, this prior work did not consider
constraining the policy class nor performing offline RL, and there are some significant subtleties in
learning an empirical behavior policy for large continuous spaces. For example, Hanna et al. (2021)
demonstrated that learning a behavior policy that maximized the likelihood of the logged data in a
IS-based estimator did not yield the most accurate estimate. An interesting direction for future work
is whether different ways of learning an empirical behavior policy might yield similar or additional
benefits to our locally constrained approach proposed.
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We first briefly describe the structure of appendices here. In Appendix A we add two more example
in the multi-step settings as supplementary to the example in Section 3. In Appendix B we provide
the proof of theorems in Section 5. In Appendix C we include experiment details and more results of
ablation study as well.

A COUNTER EXAMPLES IN RL SETTINGS

In the main text, we gave an example about the overfitting issue in contextual bandits with large state
and action space in small datasets. Here we show that it is even easier for this to occur in sequential
reinforcement learning settings, even when only 2 actions are available in the next two examples with
or without state aliasing.

Example 2. Consider a sequential treatment problem as shown in Figure 2a. There are two actions
available in each state. From the first state, action a1 has a 50% chance of leading to an immediate
terminal positive reward r = 1 and a 50% chance of leading to an immediate terminal negative
reward r = −1. From the first state, action a2 also has 50% chance of leading to an immediate
terminal positive reward r = 1. For the other 50% of states, action a2 results in transitions to
additional states, which are followed by additional actions, for another H − 1 steps; however, all
transitions eventually end in a large negative outcome (e.g. r = −5). For example, one could
consider a risky surgical procedure that results in many subsequent additional operations and but is
ultimately typically unsuccessful. Assume the behavior policy is uniform over each action, yielding
µ(a = 0|x1) = µ(a = 1|x1) = 0.5 and a probability of each action sequence following a2 of 1

|A|H−1 .
With even minimal data the value of π(x0) = a1 will be accurately estimated as 0. However, when
H is large relative to a function of the dataset size, there always exists a action sequence after an
initial selection of a2 that is not observed in the dataset. This means that a policy π2 that starts with
π(x0) = a2 and then selects an unobserved action sequence will essentially put 0 weight on the
resulting contexts that incur r = −5 outcomes, even though such outcomes will occur 50% of the
time after taking action a2. In this case, the value of π2 will be overestimated significantly by IS or
self-normalized IS. Thus the offline policy optimization will prefer taking action 2 at the first step as a
result of overfitting even though the true value of first taking a2 is −1.5 and the optimal policy value
is 0, obtained by taking action a1.

Now we add a slight change in the transitions shown in Figure 2a. We can see that model/value-based
approach will also fail.

Example 3. In this example, we add another action in the first step. The action 3 and action 1 will
lead to the same next state. However in the next state, no matter which action taken, the reward will
depends on the action taken in the last step: If a1 = 1, then we have the same reward for a = 1 in
the example in Figure 2a. If a1 = 3 then we have a reward −5. Thus model and value based method
will mix the reward for a1 = 1 and a1 = 3 so fail in this example. Other method is not affected by
the additional structure as it only add an action with minimum reward.
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B PROOFS FOR SECTION 5

Proof of Theorem 1
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Proof of Proposition 1
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Proof of Theorem 2

Proof. We first prove the first part.

Let Ph(x;µ) to be the distribution of context at h-th step with roll-in policy µ. For any fixed a,
we can define the distribution Ph(x|a;µ) = µ(a|x)Ph(x;µ)/

∑
a µ(a|x)Ph(x;µ). For a such that

µ(a|x) > 0, Ph(x|a;µ) is also greater than zero. All x(i)
h with a(i)

h = a are i.i.d. samples draw from
the distribution Ph(x;µ). By the property of nearest neighbor (Cover & Hart, 1967), with probability
1

min
x
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h s.t.a

(i)
h =a

dist(x, x
(i)
h )→ 0 < δ

That means with probability 1 a ∈ Ah(x;D, δ) for all a such that µ(a|x) > 0. Given the overlap
assumption, we have a ∈ Ah(x;D, δ) for for all a such that π(a|x) > 0 with probability 1. Thus the
solution to Equation 6 is the same as arg maxπ J(π,D) = π̂J,D.

Now we prove the second part. By the condition that M →∞ and M
n → 0 as n→∞, we have that

the truncated IS estimator is mean square consistent (Ionides, 2008):
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as n→∞. Similarly, we have that the mean of weights converge to 1 in quadratic mean:
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Figure 3: The process of hyper-parameters search and test in the experiment.

By continuous mapping theorem, we have that the self-normalized truncated IS converge to vπ in
probability v̂SNTIS

p−→ n. The empirical variance penalty, also converge to 0 almostly surely, since
M/n converge to 0:∑n

i=1

(
r(i) − v̂SNTIS

)2
(min{W (i),M})2(∑n

i=1 min{W (i),M}
)2 ≤ M2(∑n

i=1 min{W (i),M}
)2 q.m.−−−→ 0 (15)

Thus the objective function J(π;D) converge to vπ in probability:

Pr (|J(π;D)− vπ| > ε) = δn → 0 (16)

Since we assume |Π| <∞, we have

Pr (∀π ∈ Π |J(π;D)− vπ| > ε) = |Π|δn (17)

So with probability |Π|δn, for any ε:

vπ̂J,D ≥ J(π̂J,D,D)− ε (18)
≥ J(π?,D)− ε (19)

≥ vπ
?

− 2ε, (20)

where π? is arg maxπ∈Π v
π . As |Π|δn → 0, we proved the true value of empirical maximizer vπ̂J,D

converge to the maximum of value maxπ∈Π v
π in probability.

C EXPERIMENT DETAILS

For all experiment, we follows the 3-phases pipelines to decide the test score we finally report in the
paper. The pipeline is described in the main text and summarized in Figure ?? here as well.

C.1 EXPERIMENT DETAILS IN TGI SIMULATOR

The TGI simulator describes low-grade gliomas (LGG) growth kinetics in response to chemotherapy
in a horizon of 30 months using an ordinary differential equation model. The parameter in ODEs
are estimated using data from adult diffuse LGG during and after chemotherapy was used, in a
horizon of 30 months. The goal in this environment is to achieve a reduction in mean tumor diameters
(MTD) while reducing the drug dosage (Yauney & Shah, 2018). We includes the MTD, the drug
concentration, and the number of month (time-step) in the context space. Notice that this context space
is non-Markov as it does not include all parameters in the ODEs. Actions are binary representing
taking the full dose or no dose which is same as prior work (Yauney & Shah, 2018). The reward
at each step consist of an immediate penalty proportional to the drug concentration, and a delayed
reward at the end measures the decrease of MTD compared with the beginning. Each episodes, the
parameters including the initial MTD are sampled from a log-Normal distribution as (Ribba et al.,
2012) representing the difference in individuals. The behavior policy is a fixed dosing schedule of 9
months (the median duration from Peyre et al. (2010)) plus 30% of a uniformly random choice of
actions. We run all algorithms on a training set with 1000 episodes with different hyperparameters
(listed below), and 5 restarts, saving checkpoints along the training. Then we select the best policy
for each algorithm by v̂SNTIS on the validation set with 1000 episodes as well.
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Hyperparameters In the first part of Table 3 we show the searched hyperparameters of each
algorithm, except that the parameter b in PQL is set adaptively as the 2-percentile of the score on the
training set as in the original paper Liu et al. (2020). As we know the behavior policy, we use the true
behavior policy in BCQ and PQL algorithm. So BCQ threshold takes only two values as the behavior
policy is ε-deterministic so there are only two distinct values. In the second part of Table 3 we specify
some fixed hyperparameters/settings for all algorithm. All policy/Q functions are approximated by
fully-connected neural networks with two hidden layers with 32 units.

Hyperparameters used in algorithms values

δ POELA 0.05, 0.1, 0.5
CRM Var coefficient POELA, PO-CRM 0, 0.1, 1

BCQ threshold BCQ, PQL 0.0, 0.2

M in v̂SNTIS All 1000
Max training steps POELA, PO-CRM, PO-µ 500

BCQ, PQL 5000
Number of checkpoints All 50

Batch size BCQ, PQL 100

Table 3: Hyperparameters in the TGI simulator experiment

The difference in the max update steps and checkpoints frequency is caused by the fact that BCQ and
PQL is updated by stochastic gradient descent and all policy optimization based on SNTIS is using
gradient descent.

C.2 EXPERIMENT DETAILS IN MIMIC III DATASET

The MIMIC III sepsis dataset is available upon application and training:
https://mimic.mit.edu/iii/gettingstarted/. The code to extract the cohort is available on:
https://gitlab.doc.ic.ac.uk/AIClinician/AIClinician. This cohort consists of data for 14971
patients. The contexts for each patient consist of 44 features, summarized in 4-hour intervals, for at
most 20 steps. The actions we consider are the prescription of IV fluids and vasopressors. Each of
the two treatments is binned into 5 discrete actions according to the dosage amounts, resulting in 25
possible actions. The rewards are defined from the 90-day mortality in the logs, 100 if the patient
survives and 0 otherwise.

We now provide details of the experiment on MIMIC III sepsis dataset here. We run all algorithms
on a training set with 8982 trajectories with different hyperparameters (listed below), and 3 restarts,
saving checkpoints along the training. Then we select the best policy for each algorithm by v̂SNTIS
on the validation set with 2994 trajectories. Finally we get the v̂SNTIS evaluation on the test set with
2995 trajectories.

In the first part of Table 4 we list the hyperparameters that we searched on the validation set for each
algorithm, except that the parameter b in PQL is set adaptively as the 2-percentile of the score on
the training set as in the original paper Liu et al. (2020). In the second part of Table 3 we specify
some fixed hyperparameters/settings for all algorithm. All policy/Q functions are approximated by
fully-connected neural networks with two hidden layers with 256 units.

As we explained, the difference in the max update steps and checkpoints frequency is caused by the
fact that BCQ and PQL is updated by stochastic gradient descent and all policy optimization based
on SNTIS is using gradient descent.

C.2.1 ACTION VISUALIZATION FOR MID/LOW-SOFA PATIENTS

In the main text we show the action visualization for high-SOFA (> 15) as a diagnose of how
algorithm behave for the high-risk patients. For the completeness of results here we show the
visualization of mid-SOFA (5− 15) and low-SOFA (< 5) patient contexts.

15



Under review as a conference paper at ICLR 2022

Hyperparameters used in algorithms values

δ POELA 0.4, 0.6, 0.8, 1.0
µ̂ threshold PO-µ 0.01, 0.02, 0.05, 0.1

CRM Var coefficient POELA, PO-CRM 0, 0.1, 1, 10
BCQ threshold BCQ, PQL 0.0, 0.01, 0.05, 0.1, 0.3, 0.5

M in v̂SNTIS All 1000
Max training steps POELA, PO-CRM, PO-µ 1000

BCQ, PQL 10000
Number of checkpoints All 100

Batch size BCQ, PQL 100

Table 4: Hyperparameters in the MIMIC III sepsis experiment

C.2.2 ADDITIONAL ABLATION STUDY: WITHOUT EFFECTIVE SAMPLE SIZE CONSTRAINTS FOR
HYPER-PARAMETER SELECTION ON VALIDATION SET

In the main text, we set an effective sample size threshold of 200 for a policy/hyper-parameter to be
selected on validation set. This is to make sure we have large enough effective sample size on the test
set to provide reliable off-policy test estimates. Here we show the result if we do not threshold the
effective sample size on validation set. Generally, all algorithms will prefer a high off-policy estimates
without enough effective sample size. On the test set, all algorithms yields a small effective sample
size, thus unreliable off-policy estimates and large bootstrap confidence interval. The proposed
methods is better than baselines but also has much smaller 95% bootstrap lower bound than with the
effective sample size constraint.

Method POELA PO-µ PO-CRM BCQ PQL

Test SNTIS 87.63(86.29) 82.36 82.36 83.28 96.32
95% BCa LB 85.06(83.51) 64.92 63.48 56.65 57.25
95% BCa UB 90.00(88.59) 94.22 93.62 100 100

Test ESS 528.18(491.71) 21.23 21.23 9.04 1.27

Table 5: Test evaluation without effective sample size constraint on the validation set, (0.05, 0.95)
BCa bootstrap interval, and effective sample size in the sepsis cohort of MIMIC III dataset. Value
inside parenthesis of POELA is without CRM variance penalty.
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(a) Action counts in mid-SOFA contexts

(b) Action counts in low-SOFA contexts

Figure 4: (a): Action counts heatmap in mid-SOFA contexts of the policy learned from different
algorithms. (b): Action counts heatmap in low-SOFA contexts of the policy learned from different
algorithms.

C.3 IMPORTANCE WEIGHTS IN LOW-REWARD TRAJECTORIES

To examine if the proposed overfitting phenomenon exists in real experimental datasets, we compute
the importance weights of the learned policy on the low-reward trajectories in the training data for
our MIMIC III dataset and our tumor simulator. Our hypothesis is that overfitting of the importance
weights in policy gradient methods may result in the algorithm avoiding initial states with low rewards,
which motivated our proposed algorithm.

In MIMIC III dataset the reward for a trajectory is either 0 or 100. We define the low-reward
trajectories as those with 0 reward. Low-reward trajectories are over 60% of all trajectories in the
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dataset. In the Tumor simulation experiment we define a low-reward trajectory when reward is less
than −2. Over 95% of trajectories in the Tumor simulation dataset are low-reward trajectories.

The table below shows, for each algorithm and setting, the sum of the SNTIS weights of the learned
policy on the training set, for low-reward trajectory states. Our primary interest is to illustrate that
alternate policy gradient methods that are also suitable for non-Markov domains, can exhibit the
importance sampling overfitting of avoiding low reward trajectories. We indeed see that our POELA
method has a much larger weight on low-reward trajectories than these alternate offline policy search
methods:

Method POELA PO-µ PO-CRM

MIMIC III 0.028 0.001 0.003
Tumor non-MDP 0.054 - (fixed policy) 0.005

Table 6: Importance weights overfitting: sum of SNTIS weights of learned policy on the training set.

The Q-learning baselines we consider (BCQ and PQL) do not directly use the importance weights,
but they do try to avoid actions and/or states and actions with little support. Our POELA method
can be viewed as being similarly inspired, but for non-Markovian settings where policy gradient
is beneficial. We also compute the SNTIS weights of the BCQ/PQL policy on the training set in
the Markov domain that satisfies the Markov assumptions of BCQ/PQL. Here we can see that our
POELA, BCQ and PQL all still give significantly more weight to low reward trajectories than the
alternate policy gradient methods:

Method POELA PO-µ PO-CRM BCQ PQL

Tumor MDP 0.097 - (fixed policy) 0.0004 0.083 0.124

Table 7: Importance weights overfitting: sum of SNTIS weights of learned policy on the training set.

These results help illustrate that the over avoidance of low-reward trajectories can be observed by
past policy gradient methods in our datasets. Of course, one challenge is that in real settings, an
excellent policy may have low importance weights in avoidable low-reward states and trajectories, but
should have higher importance weights in non-avoidable low reward starting states and trajectories.
To get a fuller picture of performance, it is helpful to look both at the weights on trajectories with
low rewards and the test evaluation results. Compared with strong policy gradient baselines, our
proposed regularization method have larger importance weights on low-reward trajectories, and the
gap between training/validation evaluation and online test performance is also smaller, suggesting that
we are less likely to learn policies that erroneously believe they can avoid unavoidable low reward
settings.

C.4 THE EFFECT OF ELIGIBLE ACTION CONSTRAINTS δ

In this section we explore how the choice of δ, which constrains the policy class through impacting
the eligible actions, impacts empirical performance. Larger δ corresponds to a less constrained policy
class. Other hyper-parameters are selected by the same procedure as described in previous sections.

As δ increases, the policy search operates with less constraints. The results show that in this case, our
policy gradient method produces a policy with a higher value in the training set, but that policy may
not perform as well in the test evaluation, and may have a smaller effective sample size than when a
smaller δ is used. The best hyper-parameter value δ lies in the middle of the explored range. δ can be
selected based on performance and effective sample size.
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δ 0.4 0.6 0.8 1.0

training v̂SNTIS 91.62 98.41 98.9 99.12
training ESS 3601.12 2242.07 1993.08 1769.46
test v̂SNTIS 86.62 90.07 91.46 90.23
test ESS 1278.08 819.64 624.92 542.53

Table 8: The effect of eligible action constraints δ on the results in MIMIC III sepsis dataset.
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